When are local stereological volume estimators exact?
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Summary

In this paper, we show that local stereology and geometric tomography are closely
related. Using this relationship, bodies it are studied which have the property that
their volume can be determined without error by the local stereological volume estimator
of order (n,p,r). In such cases, the local stereological volume estimator is said to be
exact. The balls inR" have exact local stereological volume estimators of any order.
For this reason, bodies iR™ with exact local stereological volume estimator of order
(n,p,r) are called quasi-spherical of ordet, p,r). It is shown, using the injectivity
property of the spherical Radon transform, that the class of quasi-spherical bodies of
order(n, p, r) does not depend gn Furthermorestar-shapedjuasi-spherical bodies of
order(n, p,0) are characterized by a constantchord function. This class is studied
in some detail and it is shown that it contains non-spherical convex bodies as well
as non-convex bodies. A formula for the variance of the local stereological volume
estimators is also given.

Keywords: chord function; convex body; exact estimator; geometric tomography; local
stereology; non-convex body; quasi-spherical body; section function; spherical Radon
transform; star-shaped body.

1. Introduction

Local stereology is a relative new part of stereology, concerned with the estimation
of quantitative parameters of spatial structures which may be regarded as neighbour-
hoods of points, called reference points. The estimation is based on information col-
lected in sections through the reference points. The important example of application
comes from the microscopical study of biological tissue. Here, the spatial structure
is a cell which is regarded as a neighbourhood of its nucleus or nucleolus. Original



derivations of local stereological estimators may be found in Jensen & Gundersen (1985,
1989). Specific local methods are treated in Gundersen (1988), Jensen & Gundersen
(1993) and Tandrup et al. (1997).

A unified exposition of local stereological methods has recently been given in
the research monograph Jensen (1998). See also the recent review by Jensen &
Nielsen (1999). The emphasis has in the monograph been on providing the necessary
mathematical background in geometric measure theory and on giving an overview of
the existing local stereological estimators. Less attention has been paid to the statistical
properties of the local stereological estimators, although it has been pointed out that
the transitive methods of Matheron, cf. Matheron (1965, 71), can be used to provide
variance approximations of local stereological estimators, associated with systematic
designs. See also Gundersen et al. (1999).

In the present paper, we will take up the discussion of the statistical properties of
local stereological estimators. More specifically, we will study the variances of local
stereological estimators of volume. We will derive a formula for the variance and give
a characterization of the bodies for which the variance of the volume estimator is equal
to zero. Since local stereological estimators are unbiased, a zero variance implies that
the volume estimator is equal to the actual volume, almost surely. For this reason, the
local stereological volume estimator is called exact in such cases.

In studying these questions, it turns out to be important to utilize a close connection
betweenlocal stereologyand the part of tomography callegeometric tomography
In the research monograph Gardner (1995), a lucid and self-contained exposition of
geometric tomography is given. See also the recent condensed review Gardner (1999).
It turns out that the local stereological estimators of volume are well-known in geometric
tomography with names such as chord functions and section functions.

In Section 2, important concepts from local stereology are presented and the relation
to geometric tomography is established. Bodie#ih for which the local stereological
volume estimator of ordefn, p,r) is exact, are studied in Section 3. Such bodies are
called quasi-spherical of ordér, p, ). In Section 4, star-shaped quasi-spherical bodies
of order(n, p,0) are discussed in further detalil. In Section 5, a formula for the variance
of the local stereological volume estimators is derived. Problems for further research
are briefly mentioned in Section 6.

2. Local stereology and its relation to geometric tomography

Most of the integral geometric results mentioned below can be found in many
text books, but are here presented in a unified way with reference to Jensen (1998),
for practical reasons. For a detailed treatment of geometric tomography, the reader is
referred to Gardner (1995).

Local stereological estimates of quantitative parameters are based on information
collected on section planes " through a reference point. Without loss of generality,
the originO can be used as reference point. A section plane through the reference point



of dimensionp is then ap—dimensional linear subspace &f*, p = 0,1,...,n. For
brevity, ap—dimensional linear subspace will be callegh-asubspace.

It is of interest to considep—subspaces, containing a fixed lower dimensional
part. We Ietﬁg(r) denote the set of—subspaces, containing a fixed-subspace.,.,
0<r<p<n OnL  ameasurg,  , can be constructed, which is invariant under
rotations that keeh,. fixed. This measure is unique up to multiplication with a positive
constant and is often constructed such that

/LZ(T) (E]T)L(r)) = C(TL -np—- T)?

where
O0nOn—1"""0n—p+1

c(n,p) = oo 1oy

and o, = 27"/%2/T'(n/2) is the surface area of the unit sphet&~! in R", cf. e.g.
Jensen (1998, Propositions 3.2 and 3.4). In what follows, we will vxirlt]gr) as short
for [LZ(T)(de) and use the notatiordL; for ALy

By normalizing /LZ(T)’ a probability measure can be constructedm;tar) which
defines the type of random subspaces considered in the present paper.

Definition 1. An isotropic p—subspace imkR", containing the fixed-—subspacd.,, is
a randomp—subspace with constant densitywith respect toug(r)

1
L,) = L LY ..
f( P) C(?”L—T,p—?”)7 p € p(r)
An isotropicp—subspace iR, containingO, is simply called an isotropig—subspace
in R". O

By identifying a¢—subspacel, in R with R it is obvious how to extend this
definition to isotropicp—subspaced.,, (contained) inL,, (and) containingL,, where
0<r<p<g<nandL, C L, are fixed subspaces of the indicated dimension.

Isotropic subspaces have a number of useful properties some of which are listed
below. We use the notatioh, © L, for the orthogonal difference of, and L,, i.e.

L,& L, = L,N L. The indices in the list fulfib < » < p < ¢ < n. Proofs may be
found in Jensen (1998, p. 65, 68, 71, 83).

* Let L be an isotropic 1-subspacefy. Then,L; is distributed aspan{w} where
w is uniform random onS™"~1 N L,.

* L, is an isotropicp—subspace in_,, containingL,, if and only if L, © L, is an
isotropic (¢ — p)—subspace inL, & L,.

* L, is an isotropicp—subspace i, containingL,, if and only if L, © L, is an
isotropic (p — r)—subspace in., & L,.

* Anisotropicp—subspacd., in k" can be generated by first generating an isotropic
q—subspace., in R and next an isotropip—subspacel,, in L,.



We will now introduce the local stereological estimators of volumedimensional
Lebesgue measure). Suppose thaC R" is a body inR", i.e. a non-empty compact
subset which is its closure of its interiour. Then, the local stereological estimator of
its volumeV (X)) (= A\,(X)), based on an isotropje—subspacd.,,, containing a fixed
r—subspacel,., takes the form

FupeX Ly L) = 0 [ sl rdar, @
" xhL,
where|| - || is the Euclidean normy . is the orthogonal projection ontb; and da”

is the element ofp—dimensional Lebesgue measure by Note that (1) defines a
whole class of estimators. The estimatgy, . is called the local stereological volume
estimator of order(n,p,r). It is unbiased

~

E(Vnpr(X N Ly; L)) = V(X), )

and can be derived as a Horvitz-Thompson type estimator, cf. Jensen (1998, p. 105,
115).

It is possible to expresﬁmw in terms of\7n_r7p_r,0. According to Jensen (1998,
Proposition 4.6), we thus have

~

Do (X 01 Ly L) = / Vrpro(X = 9) 1 (Ly © L) O)dy". 3)
L,

Forp =1 andr = 0, (1) reduces to

P oo(X L0y = Lzt
n NL1;0) = —+ " :
10X N1:0) = g [ el
XNLy
If X is star-shaped (aD), i.e. if X N L; is a line-segment for alL; € L}, then
Vn1,0(X N L1; O) takes a particularly simple form. Thus, let (w),w € S7~1 pe the

radial function of X, i.e.
px(w) =max{c: w € X},

cf. Gardner (1995, p. 18), and let
px(W)" + px(—w)" forOe X

n w) = n n
o) = { o i) for
w € S*! be then—chord function of X at O, cf. Gardner (1995, Definition 6.1.1).
Then, the estimator is proportional to the-chord function
~ a2

Vaa,0(X Nspan{w}; O) = nT(n/2)

Then—chord function and its generalizations are a very well studied subject in Gardner
(1995). Thus, Chapter 6 of his research monograph is devoted to this topic.

X ppx (W), w € sn—t (4)



The estimators based on subspaces of different dimensions are related to each other
by a so-called Rao-Blackwell procedure whereby one estimator can be obtained by a
conditional mean-value operation on the other. &6t r < p; < po < n, we thus have

Vn,pz,r(X N Lyp,; Ly)= E(Vmpm(X N Ly,; Lr)|Lp2)> (5)
where L,, is an isotropicp; —subspace in_,,, containingL,, cf. Jensen (1998, p.
110-111). In particular, ifX is star-shaped; = 0, py = 1 andps = p

~ ~

Vap,o(X N Ly; O) = E(Va1,0(X N Ly; O)|Lp)

~ dwb=!
= / Vi,1,0(X Nspan{w}; O) - ,
Op

S"=1AL,

where we have used that is an isotropic 1-subspace I),. The element of surface
area measure of"~!' N L, is denoted bydw?~!. In particular, if X is star-shaped,
we can use (4) and get

~ a2 1 b1
Vn7P7O(X N LP; O) = RP(TL/Q) O'_ me(w)dw
pS"*ﬂLp
n/Q M ~
Q0 p
= Py (XN,
nF(n/Q) O'p 7]0( P)

WhereXN/n,p(X N -) is the so-called section function, cf. Gardner (1995, p. 247).

For p = 1, the section function is equal to the-chord function while forp = n
we have

Vino(X;:0) = V(X)) = V(X),

the Lebesgue measure af. Section functions are studied in detail in Chapter 7 of
Gardner (1995).

Local stereological estimators may in general be constructed/fatimensional
volume measure? (Hausdorff measure) ilR". Recall that\! is counting measure,
A1 is surface area measure ahfl = )\, is the Lebesgue measure Rf.

3. Quasi-spherical bodies of order(n,p,r)

In this section, we will use the results from the previous section to study the class
of bodies X for which the local stereological volume estimator of orderp,r) is
exact, i.e.

~

Vopr (XN Ly L) =V(X), for almost allL,.
Since local stereological volume estimators are unbiased, cf. (2), exact estimators are
characterized by a zero variance.

It is easy to see théﬁh,p,r(X N-; L,) is exact if X' is a ball. For this reason, bodies
having an exact volume estimator will be called quasi-spherical.

Definition 2. Let X be a body inR". Then, X is called quasi-spherical of order
(n,p,r) ifand only if V,, , (X N L,; L,) = V(X), for almost allL,,. O



It turns out that quasi-sphericity is a property that only depends andr. The
proof of this result uses the injectivity property of the spherical Radon transform, as
stated in the lemma below. The spherical Radon transfBrivof a Borel functionf
on 5"~ ! is defined by

Rf(w) = / f()dv" ™2 w e "1
Sn=1nspanfw}™
A slightly weaker version of the lemma may be found in Gardner (1995, Theorem

C.2.4). The version presented below is tantamount to sayingRhist injective on
distributions, cf. Goodey & Weil (1992).

Lemma 3. If f is a bounded even Borel function @it ~! such that for\” ! —almost
all w € 571

Rf(w) =0,

then f(w) = 0 for \»~!—almost allw € S"~1. O

Proof. Let g € C2°(S"~1), the set of even infinitely differentiable functions 6#—".
Since R is a bijection ofC2°(S™~1) to itself, cf. Gardner (1995, Theorem C.2.5), we
can findh € C2°(S™~1) such thaty = Rh. Using the self-adjoint property ot at ()
below, cf. Gardner (1995, Theorem C.2.6), we find

[ @@t = [ je) R
Sn—1 Sn—1

Y Rf(w)h(w)de!
J

Sinceg was chosen arbitrarilyf (w) = 0 for \»~!—almost allw € S" 1. O

In the proposition below, we show that quasi-sphericity is a property that only
depends om andr. The proposition is for star-shaped andr = 0 closely related
to Gardner (1995, Theorem 7.2.3). See also Gardner & Volcic (1994). The important
tool in proving the theorem by Gardner is also the injectivity property of the spherical
Radon transform.

Proposition 4. Let 0 < r < p; < po < n and letX be a body inR". Then, X is
quasi-spherical of orddm, p;, ) if and only if X is quasi-spherical of ordén, ps, 7).

Proof. Let L,, be an isotropig,—subspace ink", containingL,, and letL,, be an
isotropic p; —subspace i,,, containingL,.. Then, the marginal distribution df,, is

6



that of an isotropig; —subspace ik", containingL,, and we find, using (5), that

Var(Vy py (X 0 Ly, L))
= Var(E(Vmpm(X N Ly,; Lr>|Lp2)) + E(Var(vmpw‘(X N Ly,; Lr>|Lpz>>
= Var(vn,pz,r(X N Ly,; L)) + E(Var(vmpw(X N Ly,; Lr)|Lp2>>

A~

> Var(Vy, por (X N Ly,; Ly)).

Therefore, it immediately follows that iK' is quasi-spherical of ordgm, pi,r) then
X is quasi-spherical of ordem, p2, ).
In order to prove that quasi-sphericity of order, p,, ) implies quasi-sphericity
of order(n, p1,r), first note that because of what we have shown already it suffices to
consider the casg, = n — 1 andp; = r + 1. We then know that

-~

Vn,n—l,r(X N Ln—l; Lr) = V(X>7 (6)

for almost allL,,—;. The random subspade,_; is an isotropic(n — 1)—subspace in
R™, containingL,.. Therefore,L,_; is distributed as

L, @ (Ly ©spanfw}),
wherew is uniform random ors”~'n L. Accordingly, the assumption (6) implies that
Vin—1-(X N [L, @ (L & span{w})]; L,) = V(X), 7)

for \»~!="—almost allw € S"~' n L+
We will next rewritef/mn_l,,,(X N L,—1; L,). According to (5), we have

~ ~

Vn,n—l,r (X N Ln—l; Lr) = E(Vn,r+1,r(X N Lr—l—l; Lr>|Ln—1)a

where L,4; is an isotropic(r + 1)—subspace in.,,_;, containingL,. SincelL,; is
distributed ad., ©span{v} wherev is uniform random or"~ 1N (L,_1 © L,), we find

An,n—l,r(X N Ln—l? Lr)

R dn—?—r
- / Viat,r (X 1 (L @ span{o}); Ly) . ®

On—1—r

S$n=1(Ln_1©L,)

Using (7), (8) and the identity
An=2=rgn=t (Ll s span{w))) = oo 1omw € SN LT,

we finally get

/ f(v)dv" 2" =0,

Sm=1N(L+espan{w})



for almost allw € S*~' n L+, where

A~

f(v) =Virs1,(X N (L, ®span{v}); L,) — V(X).

Using Lemma 3, it follows thaf (w) = 0 for \»~!="—almost allw € S~ n L;- and
X is quasi-spherical of ordén,r + 1,r). O

According to Proposition 4, the class of quasi-spherical bodies of drder, )
does not depend op. This class will in what follows be denoted LY.

In the next section, star-shaped bodiestinare studied in some detail.

4. Star-shaped bodies inX)

Let X be a star-shaped body iAy. Then, becauseX is quasi-spherical of
order (n,1,0), we find, using (4), that itss—chord functionp,, x(w) is constant for
An~!_almost allw € S*~!. Note that because of the unbiasedness of the local volume
estimators and (4), the constant cannot be any number. We have

() = "Dy (x), ©

for A\~ —almost allw € S"~1.

It is clear thatXj is a very rich class of bodies, obeying a certain kind of anti-
symmetry. Indeed, any star-shap&de< X;, which containsO, is determined by its
'upper half Xy = X n H;, where

Hy={r € R":x, >0},

and the value o/ (X). The setX, can be quite arbitrary. In fact, let > 0 and let
X4 be any star-shaped body, satisfyilge X, C H, and

nl'(n/2)

72 o)™ for A?~! — almost allw € S (10)
mw

px, (W) <|
Then, there exists a unique star-shaped Xj, which containg), such that’(X) = v
and X N H; = X,. The actual construction of from knowledge ofv and X, can be
performed as follows. Sincd is star-shapedX is determined by its radial function
px. It is easy to see that this function may be expressed in termsaofd the radial
function px, of X;. Forw € S"!, we have

[ px, (W) for w,, >0
px(w) = [ni(zl/z?)v _ pX+(_w)”]1/” for w, < 0.

Note that we do not need to specify the radial function on thg set S"~* : w, =0}
because this set hag'~! -measure zero.

8



Figure 1. Five quasi-spherical planar bodies of order1,0), constructed from their 'upper
halfs’ which are half-ellipses with horizontal semi-axis of length- 1 and vertical semi-axes
of lengthsb = 1/3,2/3,1,1.3,1/2, respectively. The limiting body, fa¥ — 0, is also shown.

In Figure 1, a collection of six star-shaped quasi-spherical planar bodies are shown.
They have all area (2—dimensional volumg equal tor. Five of them have been
constructed from their 'upper halfs ;. which are half-ellipses with horizontal semi-axis
of lengtha = 1 and vertical semi-axes of lengths=1/3,2/3,1,1.3,1/2, respectively.

The valueb =+/2 is an upper bound for the length of the vertical semi-axis, according
to (10). Forb — 0, X will approach a half-circle of radius/2, shown as the sixth
planar body in Figure 1. Note that although is convex,X may well be non-convex.

In Figure 2, another example of a star-shaped quasi-spherical planar body is shown.
It has been obtained by adding a systematic set of sine waves to a circle and modifying
them such that the 2—chord function remains constant.

In Gardner (1995, Theorem 6.3.2), a more sophisticated method of constructing
non-spherical convex bodies ity of arbitrary dimension is described. The idea is to
start with a non-spherical compact convex a&tin the {x1, z,}—plane of R" such
that O € X’, X’ has constant—chord function andX’ is symmetric with respect to
the z,,—axis. LetX be the convex body obtained by rotatidg about thez,,—axis.
Then, X will also have constant—chord function. To see this, let € S*~!. Then,
there is a unique plane containingand thex,—axis and—w also lies in this plane.

The intersection ofY’ with this vertical plane will be a copy ok’ and therefore the
n—chord function of X is constant.



Figure 2. Quasi-spherical body of order (2,1,0).
The boundary of the body is the full-drawn curve.

In Figure 3, an example of this construction is shown+for 3. The planar body

X', shown to the left in the figure, has in tHe, z3}—plane a radial function with
polar representation

px(0) = (sinf + ;)1/3,9 € [0,2m).

It is easy to check thak” is convex,0 € X'/, X’ has constant 3—chord function and
is symmetric about the:s—axis.

Figure 3. Quasi-spherical body of order (3,2,0) and (3,1,0) (right), obtained by rotating the
planar body shown to the left about the vertical axis. The planar body is shown at a smaller scale.

If X’ is non-convex, but the other assumptions are still satisfied, #hér@comes
a non-convex element at;. Two examples are given in Figure 4. Her&/ is
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constructed from its upper half which is a half-ellipse with ratigs = 2'/3,1/3,
respectively, between the lengths of the vertical semi-axis to the horizontal semi-axis.
Note thatX”’ is here constructed such that the 3—chord function is constant.

In Gardner (1995, Section 6.3), matters concerning the existence of quasi-spherical
bodies are called equichordal problems. In particulaX ifs a star-shaped body which
containsO in its interiour and satisfies (9) for all € S"~!, then O is called an
n—equichordal point ofX.

Figure 4. Two quasi-spherical bodies (right), both of order (3,2,0) and
(3,1,0), obtained by rotating the planar bodies shown to the left about
their vertical axis. The planar bodies are shown at a smaller scale.

5. A variance formula

The above considerations may be used to give a qualitative idea about the kind
of bodies for which the volume can be estimated accurately by a local stereological
estimator. In this section, we will derive an expression for the variance which gives
some more insight into the problem.

First, we need the following lemma.

Lemma 5. Let L, € L',r < n, and letX be a body inR". Let
g: 8" tnLt —svinLt

11



be a non-negative, even Borel function. Then,

/ g g = v (X) / 9() fp, ()dea™™ T, (11)
X

[7p ]l
Sn—1nL+

where fx 1, is the probability density with respect tg—"~1 of the form

1 ~

Proof. Let us first notice thatX N L, is a set of\,,—measure zero and the integral
on the left-hand side of (11) is therefore well-defined. Using translative decomposition
of Lebesgue measure, we find,

7TLLCU _
/ (—=——)dz"™ / / 2y (12)
! H?TLMCH HZH

(X—y)NL+

Next, we concentrate on the inner integral and use polar decomposition of the Lebesgue

on L+
z
9()d="""
/ 1]

(X —y)NL;-

= / 1H{uw € X — ylg(w)u" " tdudw™ "1
Sn—tNLt {uwu>0}

/ / 1z € X — yhg(w)||2|]"" " dotdwm =L, (13)

Sn—1NL;- span{w}

Here,1{-} is the notation used for the indicator function. At the last equality sign, we
have used thag is an even function. Inserting (13) into (12) and changing the order
of integration, we get, using (1) and (3),

’ﬂ_LL.T
g(—"—)da"
/ el
X

SR

Sn—1 ﬂLL L

1 ~
e / g(w>Vn’r+1’r(X N [L’V’ @ Span{w}]; Lr>dwn—r—1’

On—r

n 1,0 LX gDrWspan{w} Cndyrdwn ol

Sn—1NLLt

and the result now follows immediately. I

12



Notice that the probability densityx ;. is constant almost surely if and only if
X is quasi-spherical of ordémn,r + 1,7) or according to Proposition 4 quasi-spherical
of order (n,p,r) for somep.

We are now ready to present the general formula for the variance. Note that also
in the casey > r + 1 it is possible to expres‘s’ar(Vnpr(X N Ly; L)) in terms of the
density fx r,.

Proposition 6. L, € £ and letX be a body inR". Then, ifp =r +1

1
2
n

Var(Vpr (X 0 Lys L)) = 0nr V(X)? / (@) -
Sn=1NLt

]dwn—r—l’

0-—7“

while for p > r +1

Var(V,, (X ﬂLp,L )
— Inor Op—r-iy, / / (1—{ M’w) )~ (n—p)/2
Op—r—1 Op—r

Sn— lmLJ_ Sn— lmLJ_

2
< [fx,0.(wi)fx,L, (w2) = QL] [[dwi=",

nero=1

where (-, -) is the Euclidean inner product.

Proof. The result forp = r + 1 follows immediately from the fact that
Vit (X 0 Lygrs Ly)
is distributed as
‘/}n,r—f—l,r(X N [L, & span{w}]; L),

wherew is uniform random onS™~! N L.

Next, let us consider the cage> r + 1. The proof is based on the classical
Blaschke-Petkantschin formula for two sets. This version of the Blaschke-Petkantschin
formula may be formulated as follows, cf. Jensen (1998, p. 104),

(n—2—7”p—2—7"// g(1, 19 Hd:v

X1 Xo

/ / / g1, 9)Va( 7TLJ_.CI?1,7TLJ_CUQ pdede”

y XaiNL, X2NL,
whereV,(y1, yz) is equal to 2 times the area of the triangle spanne@ by, andys, i.e.

Va(yt, y2) = [y lPllwell® — (w1, v2)°]H>

13



Using this formula and (1), we find

E(Vpr(X 0 Ly; Ly)?)

n

= [ 2= [ Impalrrae
Opy i c(n—r,p—r)

L XMLy,

2
_ i ™ xz Tr1iX
el I (RO el | O
el Trgeaal |
X T T =1
X)?

Op—r—1 Op—r

X
Op—yr Op—r—1 V(

Op—r—1 Op—r

2
x / / (1~ (w12~ P2 () o (wn) [ d?™", (19)

Sn1ALL Sn-1nLt =1

where we at the last equality sign have used Lemma 5 two times. In particulgg, if
is a ball of volumel’(X), then X is quasi-spherical of ordén, p,r) and(n,r +1,7)
and it follows from (14) that

V(X)? = V(Xo)?
= E(Vapr(Xo 0 Lyi L))

_ Op—yr Op—r—1 V(X)Q

On—r—1 Op—r

2
. J[ &/1 (1~ (wrw)) P2 L Tt (15)

Tn—r ;=
Sr=InLi S»=INLi

Combining (14) and (15), the variance formula for- » + 1 follows immediately. (1

If X is star-shaped an@ € X, then it follows from (4) that

- 9n/2
To10(X N span{}; 0) = -

rx(w)" =V(B(rx(w))),

where

(@) =[5 (px(@)" + px ()" U,

and B(r) is the ball in " with centreO and radiusr. Therefore, the formulae

for Var(V,, ,0(X N L,;0)) have for star-shaped” with O € X the following nice
formulations

14



p=1: Var(‘A/n,p,o(X N Ly; 0))

— LV(X)2 / [V(B(TX(W»)Q _ 1]dwn—1.

p>1:Var(Vo,o(X N Ly; O))
— Tty [ [ ey

OnOn—1 Op
Sn—l Sn—l

2
VB VB [T

6. Further research

One of the most obvious topics for further research is a study of the classes of
bodiesX,,r = 1,...,n— 2. Recall thatY, consists of bodies which are quasi-spherical
of order(n,p,r),p=7r+1,...,n— 1. The formula (3) may be useful in such a study.

Another interesting topic is the variance of local stereological estimators of lower-
dimensional properties such as surface area and length.
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