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Abstract

We consider risk processes where the premium rate p(t) at time
t is calculated according to past claims statistics, for example p(t) =
(1 + η)At−/t or p(t) = (1 + η)(At− − At−s)/s where η is the safety
loading and At the total compound Poisson claims in [0, t]. We per-
form a comparison of the ruin probabilities with those of the Cramér–
Lundberg model, and characterize the claims experience leading to
ruin. With heavy tails, the controlled risk process has typically at
least as large a ruin probability as the Cramér–Lundberg model. With
light tails, the adjustment coefficient is typically larger so that the
ruin probability is smaller; a key tool is the Gärtner–Ellis theorem
from large deviations theory. We also consider similar problems for
diffusion approximations.
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1 Introduction

The classical model for the reserve R∗t of an insurance corporation at time t
is

R∗t = u+ pt−
Nt∑
i=1

Ui (1.1)

where {Nt} is a Poisson process with rate β and the claims U1, U2, . . . are
i.i.d. with common distribution B and independent of {Nt}. The premium
rate p is calculated according to the expected value principle with safety
loading η > 0 (e.g. [14]), i.e.

p = (1 + η)βm

where m is the mean of B.
Given the safety loading η, the model (1.1) implicitly assumes that the

Poisson intensity β and the claim size distribution B (or at least its mean
m) are known. Of course, this is not realistic. An apparent solution to this
problem is to calculate the premium rate p = p(t) at time t based upon
claims statistics. Most obviously, the best estimator of βm based upon Ft−,
where Ft = σ(As : 0 ≤ s ≤ t), At =

∑Nt
i=1 Ui, is At−/t. Thus, one would take

p(t) = (1 + η)At−/t where , and instead of (1.1) one would consider

Rt = u+ (1 + η)
∫ t

0

As
s
ds− At (1.2)

The purpose of the present paper is the investigation of the effect of such
adapted premium rules on the ruin probability. Formally, we require that
p(t) is measurable w.r.t. Gt− where the filtration {Gt}t≥0 satisfies

Ft ⊆ Gt for all t (1.3)

{At+s − At−}s≥0 is independent of Gt− for all t (1.4)

1

t

∫ t

0
p(s) ds

a.s.→ (1 + η)βm. (1.5)

Here (1.4) expresses that the premium rule is non–anticipative; Ft ⊂ Gt could
occur, e.g., if F0 contains some claims history prior to t = 0 (for an example,
see Section 3). The content of (1.5) is that no unfair loading is charged;
except for Theorem 1, we will in fact have the stronger IEp(t) = (1 + η)βm
in the examples we study. The controlled risk process is

Rt = u+
∫ t

0
p(s) ds−At . (1.6)
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Let

T ∗(u) = inf {t > 0 : R∗t ≤ 0} , T (u) = inf {t > 0 : Rt ≤ 0}

be the ruin times for the two processes and

Ψ∗(u) = IP(T ∗(u) <∞), Ψ(u) = IP(T (u) <∞)

the corresponding ruin probailities. An obvious question is then how Ψ∗(u)
and Ψ(u) compare, and what is the claims experience given ruin. That is,
given the unlikely event of ruin: what was the atypical behaviour of the
claims process {At} that caused ruin?

Consider first the case of light–tailed claims. With γ∗ > 0 given as
solution of

κ∗(γ∗) ≡ β(φ(γ∗)− 1)− (1 + η)γ∗βm = 0, (1.7)

where φ(α) = IEeαU =
∫∞
0 eαsB(dx), the classical Cramér–Lundberg approx-

imation then states that Ψ∗(u) ∼ C∗e−γ
∗u for some suitable constant C∗ as

u → ∞. In Asmussen [1], it is shown that ruin is caused by β and the dis-
tribution B of the claims to be changed initially in an exponentially twisted
way, so that in particular the linear drift of {R∗t } is changed from positive to
negative.

It is notable that such a behaviour is taken care of by the adaptive pre-
mium rule in (1.2). Namely, if the drift βm of {At} is replaced by α > βm,
then the drift of {Rt} changes from ηβm to ηα > ηβm. This might lead to
expecting Ψ(u) to be substantially smaller than Ψ∗(u). However, one could
also argue that the opposite should be true because {Rt} is more variable
then {R∗t } and because there are new ways in which ruin could occur: ini-
tially, the claims could be atypically small so that one would charge a too
low premium and when the typical behaviour sets in (or when claims grow
atypically large), the adapted premium rule could be too slow in compen-
sating for this. In Section 2, we will in fact see that Ψ(u) is smaller than
Ψ∗(u) in the sense that the adjustment coefficient γ (the exponential decay
parameter of the ruin probability) for the model (1.2) satisfies γ ≥ γ∗, with
strict equality except for a degenerate claim size distribution. The analysis
also shows that indeed ruin will occur as consequence of atypically small and
few early claims followed by atypically large and many claims. We will next
see in Section 3 that there are different adaptive premium rules such that
γ is not only substantially larger than γ∗ but in fact in a certain sense the
largest possible.

With heavy–tailed claims, there is no hope for such a reduction of the
ruin probability:
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Theorem 1 Assume that both the claim size distribution B(x) = IP(Ui ≤ x)

and its integrated tail
∫ ∞
x

(1 − B(y)) dy are subexponential. Then for any

adapted premium rule satisfying (1.3), (1.4), (1.5) one has

lim inf
u→∞

Ψ(u)

Ψ∗(u)
≥ 1.

[for subexponential distributions, see e.g. [6]]. The heuristics behind this
result is quite simple: with heavy tails, ruin for {R∗t} occurs as consequence
of one large claim occuring rather late (Asmussen & Klüppelberg [3]) and
because of (1.5), this behaviour is just as dangerous for {Rt} as for {R∗t }. The
rigorous proof is given in Section 4. We do not consider it a straightforward
matter to prove that the limit actually is 1.

Finally, in Section 5 we consider similar issues when {R∗t}, {Rt} are re-
placed by processes {r∗t }, {rt} driven by SDE’s; this replacement may either
be motivated by a heavy–traffic approximation (η ↓ 0), or one may apriori
postulate the SDE model, as is a current trend in much current insurance
risk literature. In this setting, we obtain somewhat sharper conclusions.

2 The rule (1.2) with light–tailed claims

With light–tailed claims, a standard measure of the risk inherent in a given
model is the adjustment coefficient γ. We will work with techniques from
large deviations, so we define γ in the logarithmic sense, i.e. by

γ = − lim
u→∞

1

u
log Ψ(u) (2.1)

To show that the limit exists and to identify γ, a convenient tool is the
following consequence of the Gärtner–Ellis theorem (e.g. [4] p. 14) given in
Glynn & Whitt [8], Theorem 2; see also Nyrhinen [13] for closely related
discussion. Note that no independence or stationarity is assumed.

Theorem 2 Let {Xn}n=1,2,... be a sequence of real r.v.’s, Sn = X1 + . . .+Xn,
Ψ(u) = IP(Sn > u for some n). Assume that there exist a finite function κ
and positive constants γ, ε such that
(i) n−1 log IEeθSn → κ(θ) for |θ − γ| < ε,
(ii) κ(γ) = 0, κ′(γ) > 0,
(iii) IEeγSn <∞ for all n.

Then −1

u
log Ψ(u) → γ, u→∞.
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From this result, we easily get:

Theorem 3 Consider the model (1.2). Then
1

u
log Ψ(u) → −γ where γ is

the solution of the equation κ(γ) = 0 with

κ(α) = β
∫ 1

0
φ(α(1 + (1 + η) log u) du − β (2.2)

= βIE

[
eαU

1 + (1 + η)αU

]
− β (2.3)

Proof The result is a variant of one given recently in Example 2 of Nyrhinen
[13]. For the verification via Theorem 2, note first that if {A′t} is a time inho-
mogeneous compound Poisson process with arrival intensity β(t) and jump
size distribution with m.g.f. φt(α) at time t, then (derive, e.g., a differential
equation in t)

log IEeαA
′
t =

∫ t

0
β(s)(φs(α)− 1) ds . (2.4)

Write

St =
Nt∑
i=1

Ui − (1 + η)
∫ t

0

∑Ns
i=1 Ui
s

ds =
Nt∑
i=1

Ui

(
1− (1 + η) log

t

Ti

)
(2.5)

so that Rt = u− St, and let κt(α) = log IEeαSt . It is then follows from (2.4)
that

κt(α) = β
∫ t

0
φ
(
α
[
1− (1 + η) log

t

s

]
ds
)
− βt = tκ(α) (2.6)

where κ is given by the first expression in (2.2). For the second, note the

probabilistic interpretation S1
D
=
∑N1
i=1 Yi where

Yi = Ui(1 + (1 + η) log Θi) = Ui(1− (1 + η)Vi)

where the Θi are i.i.d. uniform(0, 1) or, equivalently, the Vi = − log Θi are
i.i.d. standard exponential. Then

IEeαY = IE
[
Θ(1+η)αUeαU

]
= IE

[
eαU

∫ 1

0
t(1+η)αUdt

]
= IE

[
eαU

1 + (1 + η)αU

]
.

Considering a discrete skeleton {Snh}n=0,1,..., (2.6) implies that κnh(α)/n
has a limit (in fact, is constant), and so by Theorem 2 (the remaining regular-
ity conditions are straightforward to verify) we conclude that IP(maxn Snh >
u) ∼ e−γu in the logarithmic sense. An easy argument that we omit shows
that one can replace the maximum over nh by the continuous time maximum
over t, and since Ψ(u) = IP(maxt≥0 St > u), we obtain the desired conclusion.

2

We proceed to some aspects of Theorem 3 not discussed in [13].
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2.1 Comparison of the adjustment coefficients γ, γ∗

The defining equations κ(γ) = 0, κ∗(γ∗) = 0 mean

IE

[
eγU

1 + (1 + η)γU

]
= 1, resp. IEeγ

∗U = IE [1 + (1 + η)γ∗U ] .

From this is follows at once that if U is degenerate, U ≡ m, then γ = γ∗.

Theorem 4 γ ≥ γ∗, with equality if and only if U is degenerate.

Proof The function k(x) = eγ
∗x − 1− (1 + η)γ∗x is convex with k(∞) =∞,

k(0) = 0, k′(0) < 0, so there exists a unique zero x0 = x0(η) > 0 such that
k(x) > 0, x > x0, and k(x) < 0, 0 < x < x0. Therefore

IE

[
eγ
∗U

1 + (1 + η)γ∗U

]
− 1 = IE

[
k(U)

1 + (1 + η)γ∗U

]

=
∫ x0

0

k(y)

1 + (1 + η)γ∗y
B(dy) +

∫ ∞
x0

k(y)

1 + (1 + η)γ∗y
B(dy)

≤ 1

1 + (1 + η)γ∗x0

{∫ x0

0
k(y)B(dy) +

∫ ∞
x0

k(y)B(dy)
}

= 0, (2.7)

using IEk(U) = 0. This implies κ(γ∗) ≤ 0, and since κ(s), κ∗(s) are convex
with κ′(0) < 0, κ∗

′
(0) < 0, this in turn yields γ ≥ γ∗. Further, equality in

(2.7) can only occur if U ≡ x0. 2

In Section 5, we consider the heavy traffic limit η ↓ 0. The detailed
properties of γ, γ∗ in this limit are given by the following result. Write
m2,m3 for the second, resp. third moment of B, m1 = m.

Proposition 1 As η ↓ 0,

γ∗ = γ∗(η) =
2m1

m2
η − 4m2

1m3

3m3
2

η2 +O(η3), (2.8)

γ = γ(η) =
2m1

m2

η +
8m2

1m3 − 12m1m
2
2

3m3
2

η2 +O(η3) . (2.9)

Proof By Taylor expansion, we have up to O(η3) terms that

eγx

1 + (1 + η)γx

=

(
1 + γx+

γ2x2

2
+
γ3x3

6

)(
1− γ(1 + η)x+ γ2(1 + η)2x2 − γ3(1 + η)3x3

)
= 1− ηγx+ (γ2/2 + ηγ2)x2 − γ3/3 x3 .
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Taking expectations, equating to 1 and dividing by γ yields

ηm1 = (1 + 2η)
γ

2
m2 −

γ2

3
m3.

Thus, γ = 2m1/m2 η+O(η2). Substituting the trial solution γ = 2m1/m2(η+
cη2) +O(η3) yields

ηm1 = (1 + 2η)(η + cη2)m1 −
4m2

1m3

3m2
2

η2, 2 + c− 4m1m3

3m2
2

= 0

and the desired expansion for γ follows easily. The one for γ∗ is obtained
similarly, though slightly easier. 2

Remark 1 It follows from Proposition 1 that

γ′(η)|η=0 = γ∗
′
(η)|η=0 =

2m1

m2

whereas

γ′′(η)|η=0 = 2
8m2

1m3 − 12m1m
2
2

3m3
2

≥ 8m2
1m3 − 12m1m

2
2

3m3
2

= γ∗
′′
(η)|η=0

That ≥ holds is immediate from Theorem 4 but follows also from the moment
inequality (IEU2)2 ≤ IEU ·IEU3 which is well-known and may easily be derived
from the log convexity of the m.g.f. of logU .

2.2 The large deviations path

We next consider the question of how ruin occurs. One would expect that
there is again an initial change of linear drift of {Rt} from positive to negative.
However, this issue is not addressed in [8], and it is also not clear what are
the implications for the more interesting question of how {At} itself behaved
given ruin.

The answer is roughly: with initial reserve u, ruin occurs by {At} chang-
ing distribution from a time–homogeneous Poisson process with parameters
β,B to a time–inhomogeneous one with arrival intensity β(u)

s and jump size
distribution B(u)

s with m.g.f. φs(α) at time s given by

β(u)
s = βφ(γ + (1 + η)γ log {sκ′(γ)/u}), (2.10)

φ(u)
s (α) =

φ([α+ γ][1 + (1 + η) log {sκ′(γ)/u}])
φ(γ + (1 + η)γ log {sκ′(γ)/u}) (2.11)

7



This follows since according to [8], ruin occurs roughly at time u/κ′(γ) and
as if the cumulant g.f. of Su/κ′(γ) was changed from κu/κ′(γ)(α) (cf. (2.6)) to

κu/κ′(γ)(α+ γ)− κu/κ′(γ)(γ)

= β
∫ u/κ′(γ)

0
φ

(
(α+ γ)

[
1− (1 + η) log

u/κ′(γ)

s

]
ds

)

− β
∫ u/κ′(γ)

0
φ

(
γ

[
1− (1 + η) log

u/κ′(γ)

s

]
ds

)

=
∫ u/κ′(γ)

0
β(u)
s

(
φ(u)
s (α)− 1

)
ds

The desired conclusion thus follows by appealing to (2.4).
The implications of (2.10), (2.11) are:

1. β(u)
s increases monotonically from 0 to βB̂[γ] as s increases from 0 to

the time u/κ′(γ) of ruin. On the time interval [0, s0), β(u)(s) is smaller
than the typical value β whereas β(u)

s > β for s ∈ (s0, u/κ
′(γ)]; here

the switchover point is s0 = ue−1/(1+η)/κ′(γ).

2. B(u)
s increases in stochastic ordering as s increases from 0 to u/κ′(γ),

such that B(u)
s <st B for s < s0 and B(u)

s >st B for s > s0.

3. For simulation, the implication is that the natural algorithm for simu-
lating Ψ(u) is to simulate not the given time–homogeneous compound
Poisson model with parameters β,B but a time–inhomogeneous one
with parameters β(u)

s , B(u)
s . The simulation estimator is then the like-

lihood ratio at time T (u). See for example Bucklew, Ney & Sadowsky
[5] and Glynn & Glynn [7] for related discussion.

3 Some premium rules with short memory

The analysis of Section 2.2 seems to indicate that a main problem with
the premium rule (1.2) is its long memory. Motivated from this, we now
investigate alternatives which put more weight on recent claims statistics.

For mathematical convenience, we will carry out the analysis in a dis-
crete time setting. Thus, let Un be the claims encountered in year n and
assume that the premium p(n) charged in year n is a weighted average of
Un−1, Un−2, . . .:

p(n) = (1 + η) {f0Un−1 + f1Un−2 + · · ·} (3.1)

8



where {fn} is a probability mass function (we assume a complete history of
claims so that Gn = σ(Uk : k = n, n−1, n−2, . . . ,−∞)). The corresponding
risk process is Rn = u− Sn where

Sn =
n∑
i=1

Ui − (1 + η)
n∑
i=1

i−1∑
j=−∞

Ujfi−1−j.

For example, if f0 = 1, f1 = f2 = . . . = 0, then p(n) = (1 + η)Un−1 and Sn =
Un − η

∑n−1
0 Ui.

We solely consider the case where the radius θ∗ of convergence of φ(θ) =
IEeθU is finite and where IEeθU ↑ ∞, θ ↑ θ∗ (much of the analysis carries
over in a straightforward way to the case θ∗ =∞ but the results need some
reformulation).

It is clear that in the model formulation of Section 1, one will always have
γ ≤ θ∗ (one can never avoid the effect of one early large claim). However,
indeed the model (3.1) attains the optimal rate of decay θ∗ of ψ(u):

Theorem 5 Assume 0 < θ∗ < ∞. Then for any premium rule of the form
(3.1) with fn ≥ 0,

∑∞
0 fn = 1,

∑∞
0 nfn <∞, one has γ = θ∗.

Proof Let Fn = f0 + · · ·+ fn, ω(α) = logφ(α), κn(α) = log IEeαSn . Then

Sn = Un − (1 + η)
n−1∑
j=−∞

Uj
n∑

i=1∧(j+1)

fi−1−j

= Un −
n−1∑
j=1

Uj((1 + η)Fn−1−j − 1)− (1 + η)
0∑

j=−∞
Uj(Fn−1−j − F−j−1),

κn(α) = ω(α) +
n−1∑
j=1

ω(−α[(1 + η)Fn−1−j − 1])

+
0∑

j=−∞
ω(−α[1 + η][Fn−1−j − F−j−1])

Taylor expanding ω around 0 and using
∑∞

0 nfn <∞, it follows easily that
the last sum has the finite limit

0∑
j=−∞

ω(−α[1 + η][f−j + f1−j + · · ·])

Since each term in the first sum has limit ω(−ηα), it follows that

1

n
κn(α) → ω(−ηα)

9



Note that this limit is the cumulant g.f. of a negative r.v. so we cannot directly
apply Theorem 2 (the root in (ii) fails to exist). However, let S̃n = Sn + nε.
Then in obvious notation, κ̃n(α)/n → εα + ω(−ηα). For 0 < ε < ηm, there
exists a unique root γ̃ > 0 of εγ̃ +ω(−ηγ̃) = 0 and γ̃ → 0 as ε ↑ ηm, γ̃ →∞
as ε ↓ 0. Hence we can choose ε such that γ̃ is smaller than but arbitrarily
close to θ∗. Then Condition (iii) of Theorem 2 holds, and since the rest
are trivial, we get Ψ̃(u) ∼ e−γ̃u in the logarithmic sense. Since obviously
Ψ(u) ≤ Ψ̃(u), we get

lim sup
u→∞

log Ψ(u)

u
≤ −γ̃, lim sup

u→∞

log Ψ(u)

u
≤ −θ∗.

As noted above, lim inf ≥ is trivial, so the proof is complete. 2

4 Heavy–tailed claims: proof of Theorem 2

From At/t
a.s.→ βm, (1.2) and (1.5) we get St/t

a.s.→ −ηβm where St = u−Rt.
Hence given ε > 0, we can choose K such that IP(F ) > 1− ε where

Ft = {−K − (ηβm+ ε)v < Sv < K − (ηβm− ε)v for all v ≤ t} .

Now the predictable intensity for the event of ruin is I(T (u) ≥ t)βB(x−St−)
where B(x) = 1−B(x), so

Ψ(u) = β
∫ ∞

0
IE
[
B(u− St−; T (u) ≥ t

]
dt

≥ β
∫ ∞

0
IE
[
B(u− St−; T (u) ≥ t, Ft

]
dt

Let u ≥ K. Then Ft ⊆ {T (u) ≥ t} and hence

Ψ(u) ≥ β
∫ ∞

0
B(u+ (ηβm+ ε)t)IP(Ft) dt

≥ (1− ε)β
∫ ∞

0
B(u+ (ηµ+ ε)t) dt

≥ 1− ε
ηm

∫ ∞
u

B(y) dy

Combining with the well–known asymptotics

Ψ∗(u) ∼ 1

ηm

∫ ∞
u

B(y) dy

(e.g. [6]) and letting ε ↓ 0, the proof is complete. 2
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5 Models governed by SDE’s

Write µ = βm, σ2 = β(2), Dt = At−µt. Assume in the following that σ2 = 1
which can be achieved by a change of time scale, and that µ = 1 which can
be achieved by a change of scale. Then it is standard (Donsker’s theorem in
continuous time) that {

ηDt/η2

}
t≥0

D→ {wt}t≥0

(in the sense of weak convergence in the Skorokhod space D[0,∞)), where
{wt} is standard Brownian motion; the interpretation of η as the safety
loading is not important for this, it suffices that η ↓ 0. Writing

ηR∗(t/η2) = ηu+ η(1 + η)t/η2 − ηDt/η2 − ηt/η2

and assuming ηu→ x, we thus obtain the well–established diffusion approx-
imation {

ηR∗t/η2

}
t≥0

D→ {x+ t− wt}t≥0 (5.1)

cf. Iglehart [12] and Grandell [9], [10], [11]. In the same way, we can write

ηR(t/η2) = ηu+ η(1 + η)
∫ t/η2

0

Ds

s
ds+ η(1 + η)t/η2 − ηDt/η2 − ηt/η2

= ηu+ t+ (1 + η)
∫ t

0

ηDs/η2

s
ds− ηDt/η2 (5.2)

and are lead to:

Proposition 2 Consider the process (1.2). Then if η ↓ 0, ηu→ x, then{
ηRt/η2

}
t≥0

D→ {x+ t+ zt}t≥0 , (5.3)

where zt =
∫ t

0

ws
s
ds− wt.

The proof is given at the end of this section. In fact, the limits in (5.1) and
(5.3) have the same distribution:

Proposition 3 {zt}t≥0 is standard Brownian motion.

In particular, the limiting diffusions {r∗t }, {rt} for {R∗t }, {Rt} given by

dr∗t = 1− dwt, drt = 1 + dzt, r∗(0) = r(0) = x,

11



have the same ruin probabilities

ψ∗(x) = IP(τ∗(x) <∞) = ψ(x) = IP(τ(x) <∞) = e−2x

where

τ∗(x) = inf {t > 0 : r∗(t) = 0} , τ(x) = inf {t > 0 : r(t) = 0}

are the corresponding ruin times. On one hand, this is not surprising in
view of the asymptotic properties of γ, γ∗ for small η given in Proposition 1
and Remark 1. On the other, it is not straightforward to recognize {zt} as
standard Brownian motion. However, Proposition 3 can be found in Ch. 1 of
Yor [15]. For a direct proof, note that {zt} is obviously Gaussian with mean
zero so that it suffices to show Cov(zt, zu) = t for t ≤ u. To this end, let
w′t = tw1/t and note that {w′t} is again standard Brownian motion. Thus

zt =
∫ t

0
w′1/sds− tw′1/t = −

∫ ∞
1/t

1

s2
w′s ds− tw′1/t =

∫ ∞
1/t

1

s
dw′s (5.4)

which yields

Cov(zt, zu) =
∫

[1/t,∞)∩[1/u,∞)

1

s2
ds =

∫ ∞
1/t

1

s2
ds = t.

It is standard how ruin occurs for {r∗t }, {rt}, namely as if the drifts for
the governing Brownian motions {wt}, resp. {zt}, were changed from 0 to 2,
resp. from 0 to -2. For example,

IPx
(
{zt}0≤t≤τ(x) ∈ ·

)
= IP

(
{zt − 2t}0≤t≤τ1(x) ∈ ·

)
(5.5)

where τ1(x) = inf {t : zt − t = −x} and similarly for {r∗t }. However, in the
case of {rt} the more interesting question is what this means for {wt} and
thereby the claims process {At} (cf. the similar discussion in Section 2.2).
Our first result gives an exact description; one possible interpretation is as
a simulation algorithm for generating a sample path of {wt}0≤t≤τ(x) with
distribution IPx, the conditional distribution of {wt}t≥0 given τ(x) <∞.

Theorem 6 Let z̃ be a standard Brownian motion, τ̃1(x) = inf {t : z̃t − 2t = −x}
and let V be a standard normal variable independent of z̃,

w̃t = t
∫ τ̃1(x)

t

1

s
dz̃s + 2t log

t

τ̃1(x)
+ t

√
τ̃1(x)V .

Then the distribution of {w̃t}0≤t≤τ̃1(x) is the same as IPx–distribution of {wt}0≤t≤τ(x).

12



Let Fw = {Fwt }t≥0 denote the filtration generated by w, i.e. Fwt = σ(ws :
0 ≤ s ≤ t) (similar notation is used for F z, F zt etc.)

For the proof of Theorem 6, we first note that the representation (5.4)

also shows that zv =
∫∞

1/v s
−1dw′s and wu = u

∫ 1/u
0 dw′s are uncorrelated for for

v ≤ t ≤ u so that

Lemma 1 For any t, F zt and {ws}s≥t are independent. In particular, if
τ < ∞ is a stopping time w.r.t. F z, then the conditional distribution of wτ
given F zτ is normal (0, τ).

(the last statement can be shown, e.g., by first considering the case where
τ has a discrete support and next considering an approximation of τ from
above with such stopping times).

Let bt = {bts}0≤s≤t be the Brownian bridge up to time t, bts = ws −
s

t
wt,

and F bt = σ(bt) = σ(bts : 0 ≤ s ≤ t).

Lemma 2 For v ≤ t ≤ u, zt =
∫ t

0

bus
s
ds − but , btv = v

∫ t

v

1

s
dzs. In

particular, F zt = F bt .

Proof The expression for zt in terms of bu is obvious from the definition of
the Brownian bridge, which also yields

d

dt
btv = −v

t
dwt +

v

t2
wt =

v

t
dzt

and hence the expression for bt in terms of {zs}s≤t. 2

Proof of Theorem 6. Analogously to (5.5), the IPx–distribution of {zt}t≤τ(x)

is the same as the distribution of {z̃t − 2t}t≤τ̃1(x). Hence by Lemma 2, the

IPx–distribution of
{
b
τ(x)
t

}
t≤τ(x)

is the same as the distribution of

{
t
∫ τ̃1(x)

t

1

s
(dz̃t − 2dt)

}
t≤τ̃1(x)

=

{
b̃
τ̃1(x)
t + 2t log

t

τ̃1(x)

}
t≤τ̃1(x)

Writing

wt = b
τ(x)
t +

t

τ(x)
Wτ(x), t ≤ τ(x),

and appealing to Lemma 1, the proof is complete. 2

Corollary 1 For any p > 1/2, sup
0≤t≤τ(x)

∣∣∣∣ 1

xp

(
wt − 2t log

t

x

)∣∣∣∣ → 0 in IPx–

probability as x→∞.
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Proof By Theorem 6 and its proof,{
t
∫ τ̃1(x)

t
+ t

√
τ̃1(x)V

}
0≤t≤τ(x)

D
=

{
b
τ∗(x)
t

}
0≤t≤τ∗(x)

∣∣∣∣ τ∗(x) <∞ (5.6)

in IPx distribution uiformly in 0 ≤ t ≤ τ(x). Further x−p sup0≤t≤ax wt
IP→ 0

for any a implies x−p sup0≤t≤v≤ax b
v
t

IP→ 0 and since

lim
x→∞

IP(τ∗(x) > ax | τ∗(x) <∞) = 0 (5.7)

(use, e.g., that τ∗(x) = x +
√
xV (x) where the limiting IPx–distribution of

V (x) is standard normal), it follows that (5.6) is negligible after division by
xp. Thus

sup
0≤t≤τ(x)

∣∣∣∣ 1

xp

(
wt − 2t log

t

x

)∣∣∣∣
D
= sup

0≤t≤τ(x)

∣∣∣∣∣ 1

xp

(
2t log

t

τ̃1(x)
− 2t log

t

x

)∣∣∣∣∣ + o(1)

= sup
0≤t≤τ(x)

1

xp
2t log(1 + V (x)/

√
x) + o(1)

=
1

xp
O(x)O

(
1

x1/2

)
+ o(1) = o(1)

(using once more (5.7) for the O(x) term). 2

The implication of the above results is roughly a change of drift at time
t of w from 0 to

d

dt
2t log(t/x) = 2 + 2 log t− 2 log x

given τ(x) < ∞. However, this is in an asymptotic sense, not exact as
in (5.5), and the IPx–distribution of {wt}0≤t≤τ(x) cannot be viewed as the
distribution of a stopped diffusion.

At the end, we briefly consider the limits as η ↓ 0 of the models in Section
3 with short memory. For a simple case, consider

vt = x+ t+ wt − wt−1

corresponding to fb1/η2c = 1. Then obviously the ruin probability satisfies

IP
(

inf
t≥0

vt ≤ 0
)
≥ sup

t≥0
IP(wt−1 − wt > x+ t)

= IP(N(0, 1) > x) = 1− Φ(x) ∼ e−x
2/2

x
√

2π
.
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There are many results in the literature which indicate that a lower bound
obtained in this way is often close to the correct asymptotics but we will not
go into a further discussion of this.

We finally turn to the proof of Proposition 2. The problem is to control
the behaviour at t = 0.

Lemma 3 Define Za
t =

∫ t

0

Ds

s+ a
ds. Then there exists t0 such that IP(Za

t ≥
0) ≥ 1/4 for all t ≥ t0 and all a ≤ t.

Proof In the same way as in the proof of Theorem 3, we can write

Za
t
D
=

Nt∑
i=1

UiWi −
∫ t

0

s

s+ a
ds

where W a
i = log((t+ a)/(tΘi + a)): Note by explicit calculation that

IEW a
i = 1− a

t
log

t+ a

t
=

1

t

∫ t

0

s

s+ a
ds

and that
inf
a≤t

IEW a2

i > 0, sup
a≤t

IEW a3

i <∞

Hence by the Berry–Esseen theorem, there exists a constant C such that∣∣∣∣IP (Za
t ≥ 0|Nt = n)− 1

2

∣∣∣∣ ≤ C

n1/2

for all t and for all a ≤ t. Using the LLN to bound Nt below, the result
follows. 2

Lemma 4 For any δ > 0, IP

(
sup

0≤v≤t

∣∣∣Z0
v

∣∣∣ > δ

)
≤ 4IP

(∣∣∣Z0
2t

∣∣∣ > δ
)

for all

t ≥ t0.

Proof Define σ = inf {v > 0 : |Z0
v | > δ}. Writing

Z0
2t = Z0

σ +Dσ log
2t

σ
+
∫ 2t

σ

Ds −Dσ

s
ds

and noting that Dσ ≥ 0 on {Z0
σ > δ}, we obtain

IP
(
Z0

2t > δ
)
≥ IP

(
σ ≤ t, Z0

σ > δ,
∫ 2t

σ

Ds −Dσ

s
ds ≥ 0

)
≥ 1

4
IP
(
σ ≤ t, Z0

σ > δ
)
,
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using Lemma 3. Adding with a similar bound at −δ yields

4IP
(∣∣∣Z0

2t

∣∣∣ > δ
)
≥ IP

(
σ ≤ t,

∣∣∣Z0
σ

∣∣∣ > δ
)

= IP

(
sup

0≤v≤t

∣∣∣Z0
v

∣∣∣ > δ

)
.

2

Proof of Proposition 2. Clearly for any ε > 0,{∫ t+ε

ε

ηDs/η2

s
ds

}
t≥0

D→
{∫ t+ε

ε

ws
s
ds
}
t≥0

(5.8)

Hence the desired conclusion follows immediately from (5.2) and

IP

(
sup

0≤t≤ε

∣∣∣∣∣
∫ t

0

ηDs/η2

s
ds

∣∣∣∣∣
)

= IP

(
sup

0≤t≤ε/η2

η
∣∣∣Z0

t

∣∣∣ > δ

)
≤ 4IP

(
η
∣∣∣Z0

2ε/η2

∣∣∣ > δ
)

≤ 4O(ε/η2)

δ2/η2
→ 0

as ε ↓ 0 with δ fixed. Here the last inequality follows from V ar(Z0
t ) = O(t)

(explicit calculation). 2
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