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We propose a new approach to the description in the general case of continuous in time
indirect measurement of an open system.  Our approach is based not on the concept of a
generating map of  an instrument as the way for the description of an indirect
measurement  process and not on quantum stochastic calculus as a tool of consideration
but on the methods of quantum theory and the dingeroSchr�� equation.
Our approach is valid for a broad class of quantum measurement models and quantum
input processes but not only in the case of the Markovian approximation.
In the general case we introduce the operator describing the  evolution  of an open system
under the condition that the output process was continuously observed until the moment  t
and found to have the definite trajectory. We derive the integral  equation describing  the
quantum stochastic evolution of an open system in the general case of nondemolition
observation.
As an example of application of our  results to concrete measurement models  we
consider the  special measurement model  which is the extended variant (including the
gauge term) usually considered in the frame of so called quantum stochastic mechanics.
We get the new equation describing  the quantum  stochastic evolution of an open system
under continuous in time diffusion observation.
This equation can be rewritten in the stochastic form which in case of the vacuum initial
state of a reservoir and the absence of the gauge term  coincides with the well known
quantum filtering equation in quantum stochastic mechanics introduced by V.P.Belavkin.

Keywords and phrases: Quantum theory, continuous in time measurements,
nondemolition observation of an open system.

1. Introduction.

Different aspects of  description of continuous in time  observation  of an open system
were considered in the well known papers of A.Barchielli, V.P.Belavkin, E.B. Davies,
L.Diosi, A.S.Holevo, M.Ozawa, A.Peres and others [3-22, 26, 27].
The usual approach to the description of  continuous in time indirect observation of an
open system is  based on the use of the dynamic measurement model of the so called
stochastic dingeroSchr�� equation -- the  particular case of quantum stochastic differential
equation introduced by R.L.Hudson et al. [24].
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For a description of the process of indirect measurement the concept of a generating map
of an instrument of indirect observation introduced by A.Barchielli  [3-7 ] is used.
The well known quantum filtering equation  introduced  first in papers of  V.P.Belavkin
[9-15]  and describing  the posterior  quantum stochastic evolution of an open system
subjected to continuous in time nondemolotion  measurement  is  a quantum  stochastic
one. The mathematical properties of solutions of such  stochastic equations were studied
in [8,23].

But as it was shown by us in [1]  even for this simple quantum measurement model the
quantum stochastic calculus is not an obligatory technique for the description of  that
continuous in time observation  and the derivation of the quantum filtering equation. The
standard methods of quantum theory can be used as well and give the same results in this
special model.
In fact the stochastic dingeroSchr�� equation corresponds to only one very special  kind of
quantum theory model -- the model which describes the behaviour of an open system plus
an extremely idealized  reservoir. Despite of its name this equation does not include the
stochasticity caused by  the measurement process. As well as the "usual" dingeroSchr��

equation it describes the unitary time evolution of an open system plus the extremely
idealized reservoir  but only in the new type of calculus.
In [25] it was shown that in the sense of weak solutions the more general quantum
stochastic differential equation of R.L.Hudson and K.R.Parthasarathy (including the
gauge term)  is equivalent to the "usual" dingeroSchr�� equation with the special kind of
Hamiltonian.
The situation in the case of a general quantum theory model was considered in papers of
L.Accardi [2].  L. Accardi showed that in the general case the quantum stochastic
differential equations appear in quantum theory only as a result of some limit procedure
corresponding to the Markovian approximation.

In the present paper we  would like to consider in the general case the problem of correct
description of  the quantum stochastic evolution of an open system under  continuous in
time indirect observation.  We do not concretize the type of interaction between an open
system and a reservoir. Our approach is based not on quantum stochastic calculus and not
on the concept of a generating map of an instrument but on standard methods of quantum
theory. That is why it is valid for a broad class of quantum measurement models  and
quantum input  processes and not only in the case of  the Markovian approximation.

It is well  known [17, 26] that from the mathematical point of view the POV measure of
any indirect measurement can be regarded as the result of averaging some projection-
valued measure given on a larger Hilbert space over auxiliary degrees of freedom. This
mathematical fact is in  perfect correlation with  the real  physical situation where any
indirect observation of an open system is performed by means of direct  observation of
some von Neumann observable of  the reservoir modelling the measuring  device. Due to
the interaction with an open system the direct measurement of an observable of the
reservoir gives us indirect information and a reduced description of an open system.
The case of continuous in time measurement  cannot be an exclusion  for such a situation
since in the Heisenberg picture we can describe the whole process of continuous in time
indirect observation of an open system  with the help of the POV measure on the product
space of  all sets of possible outcomes of continuous observation at all moments of time
until t . This POV measure  can be also regarded [1] as the result of averaging some
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projection-valued measure given on a larger Hilbert space and describing the process of
continuous in time direct observation of an extended system.
That is why for the description of continuous in time indirect observation of an open
system we use the scheme  where indirect observation is performed by means of
continuous in time direct observation of an observable of the reservoir modelling the
measuring device. We call such indirect measurements R-indirect.

The basic ideas of our approach to the description of continuous in time measurements
(direct and indirect) and the derivation of the equation for the posterior state of an open
system  were first formulated  in cooperation with  C.Aberg  in  [1].

2. The description of continuous in time direct observation of a quantum system

In this section we first consider the problem of description of continuous in time direct
measurement of any quantum system.
We use the clear and consistent approach based on the main principles of quantum theory
and developed in [1].

It is well known that simultaneous direct measurement of distinct observables of a
quantum  system is possible if and only if these observables commute [17]. The result of
a direct measurement of each of this observable does not depend on its context, that is it
does not depend on whether we measure every observable alone or together with some, or
all, other observables.
In the Heisenberg picture the concept of an observable wholly incorporates the unitary
time evolution of the system, that is why  the problem of description of continuous in
time direct  measurement of some observable of a system is  equivalent to the problem of
description of simultaneous direct measurements of several distinct system observables.
Consequently, continuous in time direct measurement of a quantum observable is
possible  if and only if  in the Heisenberg picture this observable satisfies the conditions
[1]:

(1) [ ] .,for,0)(ˆ),(ˆ

),(ˆ)(ˆ

11 tttAtA

tAtA

HH

HH

∀=

= +

In this case the repeated  direct measurements of this kind of observable at different
moments of time do not interfere and one can perform a continuous in time direct
measurement of a system with arbitrary precision without disturbing the results of
consecutive observations.
Observables of a quantum system satisfying (1) are usually called quantum nondemolition
observables.
It was shown in  [1]  that the  process of continuous in time direct observation  of a

nondemolition system observable  )(ˆ sAH  until the moment t   is described by a

projection-valued measure )(ˆ ],0(
ˆ ⋅t

AH
P  on the product space ],0( tΩ  of all sets of possible

outcomes of continuous observation of )(ˆ sAH  at all moments of time ts ≤<0 .

Denote by ],( 21 ttΩ  the product space of all sets of possible outcomes of continuous

observation of )(ˆ tAH  for all moments  21 tst ≤< .
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Then

                                        ],(],0(],0( 2112 tttt Ω×Ω=Ω .

For a self-adjoint observable  )(ˆ tAH   the set of possible outcomes of measurement at any
moment of time coincides with the spectrum of this operator which is a subset of R .

Let  )(ˆ ](
ˆ

2,1 ⋅tt

AH
P   be a projection valued measure on  ],( 21 ttΩ  describing the process of

continuous in time direct measurement of )(ˆ sAH  for all moments   21 tst ≤< .
The introduced measures must  satisfy the following relations:
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For all moments of time the introduced measures commute and are compatible in the
sense that
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The first relation in (3) corresponds to the causality  principle and expresses the fact
that future measurements cannot influence measurements in the past. The second relation
in (3) corresponds to the fact that a continuous in time direct measurement until the
moment t   of a nondemolition observable (1)  does not disturb the results of subsequent
measurements.
The probability that a continuous direct measurement of the nondemolition observable

)(ˆ tAH  until the moment t  on a system being initially in a pure state Φ  gives a result in

the subset ],0(],0( ttE Ω⊆  is given by:

(4a)                                .)(ˆ,)( ],0(],0(
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The process of description of continuous in time measurement of a nondemolition

observable )(ˆ tAH is similar to the  description of a classic stochastic process with a

probability measure  )(],0( ⋅tµ  on  ],0( tΩ  being induced by an initial state of a system.

From (3) and (4a) it follows that for scalar probability measures  )(],0( ⋅tµ  we have the
relations of compatibility similar to (3):
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3.. The description of continuous in time  R-indirect  measurement of an open
system

Consider now the interaction of an open system described by the complex separable
Hilbert space H S  and being initially in the pure state ψ 0  with  reservoir, described by the

complex Hilbert space H R  and being initially in the pure state Rϕ . The case when an
open system and a reservoir are described initially by density operators can be  easily
considered as well..
The extended system, i.e. the system plus reservoir, is described  by the self-adjoint
Hamiltonian

(5)                                        
ˆ H S+ R = ˆ H S ⊗ ˆ I + ˆ I ⊗ ˆ H R + ˆ H int

on the Hilbert space H S ⊗  H R  of the extended system. In (5)  �H int  is the Hamiltonian of

interaction of an open system with the reservoir.

The time evolution of the extended system in the interaction picture generated  by  RĤ

and corresponding to the free dynamics of a  reservoir is described by the unitary operator

(6a)
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satisfying the Cauchy problem:
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here )(ˆ
.int tH  is the interaction Hamiltonian in the interaction picture:

(7)
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The operator ),(ˆ stU  represents the two-parameter family of unitary operators strongly
continuous with respect to s and t  and being a cocycle:
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(8)                                    ).,(ˆ),(ˆ),(ˆ
22 stUttUstU =

We use sometimes the special notation for

               )(ˆ)0,(ˆ tUtU ≡ .

Consider now the process of description of continuous in time R-indirect   measurement
of an open system  which is performed through  continuous in time direct measurement of

a nondemolition observable   )(ˆ tQH  corresponding in the Heisenberg picture to some

free dynamics observable  )(ˆ tQ  of the reservoir:

(9)                                    ),0,(ˆ))(ˆˆ)(0,(ˆ)(ˆ tUtQItUtQH ⊗= +

The POV measure )(ˆ ],0( ⋅tM   on the product space   ],0( tΩ   describing the process of

continuous in time R-indirect measurement of an open system until the moment t  is a
family of linear, self-adjoint,  positive operators on the Hilbert space H S  of an open

system and  is  defined  [1]  by a projection-valued measure )(ˆ ],0(
ˆ ⋅t

QH
P of  the process of

continuous in time direct measurement of a nondemolition observable )(ˆ tQH :
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here 
RH>⋅⋅< ,  is a scalar product in the Hilbert space H R of a reservoir.

The probability of getting a result of indirect measurement of an open system in
],0(],0( ttE Ω⊆  is given by

(11)                               ,)(ˆ,)( 0
],0(],0(

0
],0(],0(

SH

tttt EME ψψµ =

where 
SH

⋅⋅, is a scalar product in the Hilbert space H S  of an open system. The relation

(11) defines  a scalar probability measure on ],0( tΩ  corresponding to the process of
continuous in time indirect measurement.

The family of  POV measures (10)  (and the family of scalar probability measures (11) as
well)  are compatible in the sense that
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4. The principles of nondemolition observation

We are interested now in a special case of continuous in time R-indirect measurement
called a nondemolition case.

The main principles of  continuous in time  nondemolition  measurement were introduced

by V.P. Belavkin  [9-11 ] and  imply that in the Heisenberg picture there must exist an

observable of the extended system corresponding to some free dynamics observable

)(ˆ tQ of a reservoir

                  ),0,(ˆ))(ˆˆ)(0,(ˆ)(ˆ tUtQItUtQH ⊗= +

 satisfying the conditions

(13a)                                 [ ] .,for,0)(ˆ),(ˆ
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and commuting with all observables of an open system under ts ≤

(13b)                                 0)(),(
^^

=



 sQtZ HH .

The condition (13a)  is similar to (1) and corresponds simply to  the  fact  that  this kind
of measurement is performed through continuous in time direct observation of a reservoir
and consequently, according to our considerations in section 2,  there must exist a
nondemolition observable of a reservoir which can be continuously directly observed.
The condition  (13b)  corresponds to a  further restriction inside the considered class of
continuous in time R-indirect  measurements and expresses the fact that under
such kind of measurement  the open system is in fact not demolished as a quantum object
and that it is in principle possible to make at any moment of time t  measurements on any
observable of the open system simultaneously with the continuous observation  until t  of

tssQH ≤),(ˆ .
Thus in this case it is possible to introduce the notion of a posterior state of the
continuously observed open system.

Sufficient conditions (14)  (considered below) for a continuous in time R-indirect
measurement to be a nondemolition one (due to Belavkin's definition) correspond  to
such  demands on a reservoir and it's interaction with an open system  which are quite
natural from a physical point of view  ----
in order that this  reservoir could pretend to be a measuring device.
Particularly, for a measuring device:
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a)  It is quite natural to demand that  without an interaction with an open system, that is

under its free dynamics, a reservoir  observable )(ˆ tQ  could be continuously directly
observed as well and that is why  it must be a nondemolition observable as well:

(14a)                       [ ] .,for,0)(ˆ),(ˆ

),(ˆ)(ˆ

11 tttQtQ

tQtQ

∀=

= +

The families of operators }0),(ˆ{ tssQ ≤< and }0),(ˆ{ tssQH ≤<  are usually called input
and output operator-valued  processes, respectively.

b) For a measuring device  it is natural to demand as well that the interaction with an
open system should be of such  kind  that the results of indirect measurement of the open

system would not be dependent on the meanings of the input observable  )(ˆ tQ   before the
beginning of  the process of measurement

(14b)                               tsrrQIstU ≤<∀=⊗ ,0))](ˆˆ(),,(ˆ[ ,

Due to (6) the relation

(14c)                                tssQItH <∀=⊗ ,0))](ˆˆ(),(ˆ[ int

is a  necessary and sufficient condition for (14b) to be valid.

It is easy to show that the conditions (14) are sufficient for the conditions (13) to be true,
that is for a continuous in time indirect measurement to be a nondemolition one according
to Belavkin's definition.
In the present paper we consider  the conditions (14) to be  valid and we shall
identify a continuous in time nondemolition  R- indirect measurement  as one
corresponding to (14).

6. The POV measure in case of continuous in time nondemolition
    measurement of  an open system

Let us now construct the POV measure defined by (10)  in case of continuous in time
nondemolition  measurement.

From (14) it follows

(15)                                 ),0,(ˆ))(ˆˆ)(0,(ˆ)(ˆ tUsQItUsQH ⊗= +     ts ≤ .

Let   )(ˆ ],0(
ˆ ⋅t

Q
P  be a projection -valued measure describing the process of continuous  direct

measurement of  the input nondemolition observable )(ˆ tQ  until the moment t  (in case of
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the free dynamics of reservoir),  and let )(ˆ ],0(
ˆ ⋅t

QH
P  be a projection -valued measure for the

output nondemolition  observable )(ˆ tQH .
From  (15) and from the definition (given in the section 2) of  projection-valued measures
corresponding to nondemolition observables,  we derive the following  important
relation:

(16)

                                    
.,

),0,(ˆ))(ˆˆ()0,(ˆ)(ˆ

1
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1
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Consequently, in  the case  of  nondemolition  measurement the POV measure defined by
(10)  can be represented in the form

(17)                             

.

,)(ˆ))(ˆˆ()(ˆ,)(ˆ

],0(],0(

],0(],0(
ˆ

],0(],0(
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H
R
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QR
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E

tUEPItUEM
R

Ω⊆∀

⊗= + ϕϕ

Consider  a nondemolition observable )(ˆ tQ  describing the free dynamics of a reservoir.

For simplicity suppose that )(ˆ tQ is continuous with respect to t in the strong operator

topology and that  for any moment t  the family of commuting operators  { } ],0()(ˆ
tssQ ∈

on  H R  is full.

The spectrum of the self-adjoint output operator )(ˆ tQH , defined by (15), at any moment

of time, coincides with the spectrum of the input observable )(ˆ tQ and is a subset of R .

Denote by RsQ ∈)(  a possible outcome of a direct measurement of  )(ˆ sQH  at the
moment s.   A time-ordered sequence of possible outcomes of continuous measurement

of  )(ˆ sQH  at all moments of time ,21 tst ≤< where 01 ≥t ,

 (18)                                        { } ],(
],(

21

21 )( tts
tt sQQ ∈=

is  an element of  ],( 21 ttΩ . We shall use the special notation

                                                 { } ],0()( ts
t sQQ ∈= .

From the general representation of an observable through its projection-valued measure
(due to the the spectral theorem [28]),  it is clear that all  information about the kind of
spectrum is contained  in  a  projection-valued measure corresponding to that operator.
Having that in mind, without loss of generality,  we identify  a space )(sΩ of  possible

outcomes of measurement at the moment s with  R . Consequently, ],0( tΩ -- the product

space of all sets of possible outcomes of continuous observation of )(ˆ sQH  ( or )(ˆ tQ )
until the moment t  -- can be identified with a space of trajectories. The family of

projection-valued measures  )(ˆ ],0(
ˆ ⋅t

QH
P   on ],0( tΩ  gives us then automatically  the

probability distributions of possible results of observation.
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The projection-valued measure )(ˆ ],0(
ˆ ⋅t

Q
P  describing the process of continuous in time

measurement until the moment  t  of  the input nondemolition observable  )(ˆ sQ  of a

reservoir being initially in the state Rϕ  induces a scalar probability  measure on ],0( tΩ
(see section 2)  by

(19)

                                      RHR
tt

QR
tt

Q
EPE >=< ϕϕν )(ˆ,)( ],0(],0(

ˆ
],0(],0(

ˆ ,

satisfying the relations of compatibility (4b).
In the considered case, due to our assumption of the continuity with respect to t  of the

operator )(ˆ tQ  in  the strong operator topology , ],0( tΩ   is a space of  trajectories
"continuous" with respect to t   in the sense of  the probability measure (19).

At any  moment of t   the following resolution of identity on the Hilbert space H R  of a

reservoir  is valid

(21)                                         .)(ˆˆ
],0(

],0(
ˆ∫

Ω∈

=
ttQ
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Q
dQPI

Let us introduce  a linear operator    ];,[ˆ R
t tQV ϕ    on the Hilbert space  H S   of an open

system by the following relation

(22)

              
,
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R
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Hfor
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ψ

ϕψϕψϕ

understood in the infinitesimal sense.

Using the definition (22)  of the operator ];,[ˆ R
t tQV ϕ  and the relation (19) for a scalar

probability measure )(],0(
ˆ ⋅t

Q
ν  of  the input process, we can rewrite the POV measure

represented by (17) in the form

(23)                    

.

),(];,[ˆ];,[ˆ)(ˆ
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∈
∫ νϕϕ

The probability of getting a result in a subset ],0(],0( ttE Ω⊆  under  continuous in time R-
indirect measurement of an open system  is given by



11

(24)           )(];,[ˆ];,[ˆ,)( ],0(
ˆ00
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(24) defines the scalar probability  measure on ],0( tΩ  describing  the process  of indirect
measurement  through a scalar probability measure )(],0(

ˆ ⋅t

Q
ν  of the input process.

From the definition (22)  the following  representation  follows

(25)                  

.
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Consequently, the linear operator  ],,[ˆ R
t tQV ϕ  on the Hilbert space H S  of an open

system introduced by (22)  represents   the operator-valued  distribution  in resolution
(25) standing under  the projection onto the subspace of H R  corresponding to the definite

observed trajectory tQ   in the case when the initial state of the reservoir is Rϕ .

From (25) and (19) we get  the following  resolution  for the reduced evolution for an
open system in the case of continuous in time R- indirect measurement

(26)                     ∫
Ω∈

=><
],0(

)(];,[ˆ)(ˆ, ],0(
ˆ

tt
R

Q

tt

QR
t

HRR dQtQVtU νϕϕϕ .

Rewriting  the Cauchy problem (6b) for the unitary  operator )(ˆ tU  describing the time
evolution of the extended system  in the form of an  integral equation and substituting it

into (22),  we  derive  the following  integral equation for the operator ];,[ˆ
R

t tQV ϕ :

(27)
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In (27) we introduced the linear operator ];,,[ˆ
1 R
tt tQQW ϕ  on the Hilbert space H S  by:
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The relation (28) must  be understood in the infinitesimal form.
We  show in the section 7  that, due to (14c),  the third  term in (27) corresponding to the
"memory" effects can be essentially simplified.

The notion of quantum stochastic evolution operator as well as the notion of the posterior
wave function under continuous in time nondemolition measurement were  first
introduced in papers of V.P.Belavkin [9-15 ] for the case of a special measurement model
of quantum stochastic calculus. His definition is introduced through  the method of a
generating map of an instrument in the case of classic  input process and is given in the
integral form.

Our definition (22) of the operator ),,(ˆ
R

t tQV ϕ  is  new, it is more detailed since this
operator is defined  in the infinitesimal form  directly through the unitary  time evolution

operator )(ˆ tU  of the extended system,  the projection-valued measure corresponding to

the observed trajectory tQ  and the initial state of the reservoir Rϕ .
Due to our definition  we could derive the new  representations  (25), (26) as well as the
new integral equation (27).

From the mathematical point of view it is clear, that relations (22) - (26) and the integral
eqution (27) are valid  not only in the case of nondemolition  measurement but for any
continuous in time R-indirect  measurement  as well  -  in this case one should only

understand  the introduced measures )(ˆ ],0(
ˆ ⋅t

Q
P  and )(],0(

ˆ ⋅t

Q
ν  of the input process in the

different context.
In the general case of continuous in time R-indirect measurement of an open system the

introduction of the operator  ],,[ˆ R
t tQV ϕ  is formal though very convenient since  through

(23), (24)  this operator describes  the indirect measurement process.

In the next section we show that from the  point of view of  quantum  theory the operator

],,[ˆ R
t tQV ϕ  can be interpreted  as  the  operator describing the  quantum stochastic

evolution of an open system subjected to continuous  in time observation only in the case
of nondemolition measurement. We show that only in the case of such measurement
process there is a sense to introduce the notion of the posterior state of the continuously
observed open system.
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6. The quantum stochastic evolution of an open system under continuous in time
    nondemolition  measurement

 The mean value at the moment t  of  any observable  Ẑ  of an open system in the initial
state  Rϕψ ⊗0   is given by

(29)                      RRH tUIZtUtZ ϕψϕψ ⊗⊗⊗= +
00 )((ˆ)ˆˆ()(ˆ,)(ˆ ,

Considering  (22)  and (19), we can rewrite (29) in the form

(30)                )(];,[ˆˆ];,[ˆ)(ˆ ],0(
ˆ0,0

],0(

tt

Q
Q

HR
t

R
t

H dQtQVZtQVtZ
tt

S
νψϕϕψ∫

Ω∈

+ ><= .

Consider  now a probability of a possible joint direct  measurement on an extended
system  being in the initial state Rϕψ ⊗0 . This joint measurement corresponds  to

continuous in

time until the moment t  measurement  of the observable )(ˆ sQH  and  measurement at the

moment t  of any system observable  )(ˆ tZH .
Since we consider a nondemolition measurement when  these observables commute

                                           0)(),(
^^

=



 sQtZ HH ,     ts ≤ ,

such joint direct measurement is possible and it is described by a projection-valued
measure

(31)            )(ˆ))(ˆˆ()ˆ)(ˆ()(ˆ)(ˆ)(ˆ ],0(],0(
ˆˆ

],0(],0(
ˆˆ tUEPIIFPtUEPFP tt

QZ

tt

QZ HH
⊗⊗= +

on the  space ],0( tR Ω×  of possible outcomes of such joint measurement. Here )(ˆ
ˆ FP
Z

 is a

projection-valued measure for a system observable Ẑ .
The probability of getting a result of such measurement in the subset    ],0( tEF ×   is given
by

(32)

              
],0(],0(

],0(
ˆ0ˆ0

],0( )(];,[ˆ)(ˆ];,[ˆ,)(
],(

tt

tt

QR
t

ZR
t

EQ

t

REFfor

dQtQVFPtQVEF
tot

Ω×⊆×∀

><=× +

∈
∫ νψϕϕψω

From (32) and the expression (24) for a scalar probability measure )(],0( ⋅tµ  describing
the process of continuous in time indirect observation of an open system it follows that
the conditional probability  of finding a result of measurement of a system observable

)(ˆ tZH  at the moment t  in the subsetF , under the condition  that the output process
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)(ˆ sQH  has been continuously observed until the moment t  and found to have a trajectory
tQ  is given by    

(33)

SS HR
t

R
t

HR
t

ZR
t tQVtQVtQVFPtQV ><>< ++

000ˆ0 ];,[ˆ];,[ˆ,];,[ˆ)(ˆ];,[ˆ, ψϕϕψψϕϕψ

Consequently, due to (24), (30) and (33), in the case of nondemolition measurement the

introduced operator  [ ]R
t tQV ϕ;,ˆ   describes the irreversible in time  stochastic evolution

of an open system under the condition  that  the output process )(ˆ sQH  was continuously

observed until the moment  t and found to have the trajectory .tQ
The state

(34)                                  
S

R
t

R
t

Hfor

tQVtQ

∈∀
=

0

0 ,];,[ˆ];,[

ψ
ψϕϕχ

should be interpreted  as the posterior state of an open system.  It  satisfies the linear
integral equation

(35)

        

.)(];,[];,,[ˆ

];,[ˆ];,[

0

1
],0(

ˆ11

0

0

],0(
1

τνϕτχϕτ

τϕτχψϕχ

τττττ

τ

τ

ddQQQQW
i

dQH
i

tQ

t

QRR

Q

R

t

SR
t

t
∫ ∫

∫
















−+

+




−+=

Ω∈�

�

Consider now  what  simplifications we can make in the  "memory" terms of the
equations (27) and (35) if we take into account  the conditions (14).

For the most general nondemolition case  defined  by (14) we have the following relation

(36)    
,

,,0)())(ˆˆ)((ˆ))(ˆˆ))(()(( 1
],0(

ˆint
],0(

ˆ1

S

R
tt

Q

tt

Q

Hfor

tsdQPItHdQPIsQsQ

∈∀

<∀=⊗⊗⊗−

ψ

ϕψ

understood in the infinitesimal sense.
Consequently,  from  (28) and (36) we conclude that in the nondemolition case the

"memory" operator ][ˆ ⋅W   in (27) and in (35) must have the following construction:

(37)                  
)(];,,[ˆ];,,[ˆ ),0(),0(

1111
tt

R
tt

R
tt QQtQQWtQQW −= νδϕϕ

,

where   )( ),0(),0(
1

tt QQ −νδ  is a functional  )(⋅δ -function with respect to the scalar measure

)(],0(
ˆ ⋅t

Q
ν of the input process.  ][ˆ

1 ⋅W   in (37) is a linear operator  on the Hilbert space H S ,
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defined in any concrete nondemolition measurement model  by )(ˆ
int tH  and, in particular,

by its commutation relation with )(ˆ tQ  at the moment t .
Thus, in the most general case of nondemolition measurement the "memory" term in (27)
and  (35)  can be simplified  and  is given by:

(38)

{ } )),((~],,[ˆ],,,[ˆ

)(];,[ˆ];,,[ˆ

1ˆ

),0(

),()(

)()(

111

],0(],0(
ˆ11

1

1

],0(

tdQtQVtQQW

dQtQVtQQW

Q

ts

sQsQ

ttQ

R
t

R
tt

tt

Q
Q

R
t

R
tt

tt

νϕϕ

νϕϕ

∈

=
Ω∈

Ω∈

∫

∫

=

=

where )(tΩ   is a space of possible outcomes of measurement  at the moment t  and

                                 ∫
Ω

−=
),0(

)()())((~
1

],0(
ˆ

),0(
1

),0(
1ˆ

t

tt

Q

tt

Q
dQQQtdQ νδν ν

is a scalar  measure on this space.
Finally, from (38) it follows, that in the most general case of  nondemolition
measurement   the integral equation  for the posterior state ],,[ R

t tQ ϕχ  of an open system
subjected to continuous in time nondemolition measurement has the form:

(39a)

{ } ,))((~],,[],,,[ˆ

];,[ˆ];,[

0

1ˆ

),0(

),()()()(

111

0

0

1
1

ττνϕτχϕτ

τϕτχψϕχ

τ
ττ

τττ

τ

ddQQQQW
i

dQH
i

tQ

t

Q

s

sQsQQ

RR

R

t

SR
t

∫ ∫

∫
























−+

+




−+=

∈

=Ω∈�

�

We can also rewrite (39a) in a differential form in the sense of generalized distributions
calculus:
(39b)

{ }

00

1ˆ

),0(

),()()()(

111

|

))((~],,[],,,[ˆ];,[ˆ];,[
1

1

ψχ

νϕχϕϕχϕχ

=

+=

=

∈

=Ω∈
∫

t

Q

ts

sQsQttQ

R
t

R
tt

R
t

SR
t tdQtQtQQWtQHtQ

dt

d
i�
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The equations (39) describe in the most general nondemolition case  the quantum
stochastic evolution  of an open system under the condition that the output process was
continuously observed until the moment t  and found to have the trajectory tQ .
The "memory" term in (39b)  points out that in the most general nondemolition case the
posterior state  of the continuously observed open system  can depend  not only on the
meanings of possible outcomes of measurement for all moments of time up to the
moment t   but it can also depend on the  posterior states  corresponding  to  trajectories
different from tQ  by jumps at the moment t.

We would like also to mention  that from our definition (22) of the quantum stochastic

evolution operator  it follows that [ ]R
t tQV ϕ;,ˆ  and ];,[ R

t tQ ϕχ  depend not only on the
meanings of the outcomes of measurement of the output process until the moment t but
on the initial state Rϕ  of a reservoir as well.  This can be easily understood since different

initial states of reservoir induce different probability measures on ],0( tΩ  and
consequently, different quantum stochastic evolution of an open system.

The notion of quantum stochastic evolution operator as well as the notion of the posterior
wave function were  first introduced in papers of V.P.Belavkin [9-15 ] in the special
nondemolition measurement model of quantum stochastic calculus. His  definition is
based on  the concept of a generating map of an instrument and is given in the integral
form.The equation for the posterior state  derived by  V.P.Belavkin [9-11]  is valid only
for the case of the measurement model of quantum stochastic calculus  which implies the
Markovian approximation.
Our approach to the description of continuous in time indirect measurement as well as

our definition (22) of the quantum stochastic evolution operator ],,[ˆ R
t tQV ϕ  allow us to

introduce  the new  representations  (24), (25) and to derive the new  equations  (27),
(35), (39) describing  the  quantum  stochastic evolution of an open system under
continuous in time  observation  in the most general case of nondemolition measurement.

7.The special nondemolition measurement model of quantum stochastic calculus,
     the extended variant

In this section  we apply our results to  the concrete special measurement model  of
quantum stochastic mechanics -- the only dynamic model which is  considered  in the
theory of continuous in time indirect measurements. This measurement model satisfies
the principles of nondemolition observation [9-15].
In the frame of quantum stochastic mechanics  the unitary time evolution of an extended
system  in the interaction picture is supposed to be described  by the quantum stochastic
differential equation of Ito's type introduced by Hudson R.L. and Parthasarathy K.R. in
[24].  In our paper we take the general variant of this equation:

(40a)

          ( ) ),(ˆ)(ˆ)ˆˆ()(ˆˆ)(ˆ)ˆˆ()ˆˆ()(ˆ tUtdIRtAdLtAdRLdtIKtUd Λ⊗−+⊗+⊗−⊗−= ++

including the gauge term which is usually omited under the consideration of continuous
in time measurement.
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In (40a) LLKKRL ˆˆˆˆ;ˆ;ˆ ++ =+   are  operators on the Hilbert space H S  of an open system,

the operator R̂  is unitary .

The exact relation between the operator K̂  in (40a) and the Hamiltonian SĤ of an open

system in the case when IR ˆˆ −≠  is given  [25]  by:

(40b)                                     LIRRLH
i

K S
ˆ)ˆˆ(ˆˆˆ 1−+ ++=

�
.

The reservoir, modelling the measuring device, is described as a Bose field and is
represented by a symmetric Fock space  �����  over a single particle Hilbert space Z

which in applications in quantum stochastic mechanics is taken to be )(2 RL  .

 The annihilation, creation and gauge (or number) operators  ),(ˆ),(ˆ tAtA +

)(ˆ)(ˆ tt +Λ=Λ  describing  the free dynamics of  the Bose field  form  the annihilation,
creation and gauge processes,  respectively.  These operators are continuous with respect
to t  in the strong operator topology ,  hence locally  square integrable [24].
Denote by )(),( 2 RLffe ∈  -- a normalized coherent vector for the Bose field:

(41)                                      ,)())(
~

()()(ˆ
0
∫=
t

fedffetA ττ

where )(
~

tf  is a Fourier transform of a function )(2 RLf ∈ .
Let us consider now the nondemolition observables in this model.

The input operator

(42)                                         
11 ,,0)](ˆ),(ˆ[

),(ˆ)(ˆ)(ˆ

tttQtQ

tAtAtQ

∀=

+= +

represents  a nondemolition observable and the Heisenberg observable )(ˆ tQH ,

corresponding to )(ˆ tQ in the Heisenberg picture defined by the operator )(ˆ tU  is also
nondemolition and satisfies the principles of nondemolition observation. As it was shown

in  [1],  the process of  continuous  in time direct observation of )(ˆ tQH  corresponds to  a

classic stochastic process of diffusion type on ],0( tΩ .
The input operator
(43)

                                      .0,ˆ))(ˆ)(ˆ()(ˆ)(ˆ ≥+++Λ=Π + lItltAtAlttl

                                                2121 ,,0)](ˆ),(ˆ[ tttt ∀=ΠΠ ,

represents a nondemolition observable as well and the output operator corresponding to

)(ˆ tlΠ  in the Heisenberg picture defined by )(ˆ tU , satisfies the principles of

nondemolition measurement.
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The family of self adjoint, commutative  operators }0),(ˆ{ ≥Π ttl  corresponds to an

operator-valued realization of the Poisson process of intensity  l   [24]. The gauge process

}0),(ˆ{ ≥Λ tt  can be considered as the Poisson one with itensity .0=l
We would like to mention that no two of the processes in (43) commute. Consequently,
as it follows from our consideration in the previous sections, no two of these quantum
processes can be directly observed simultaneously.

In the present paper we consider  only the description of  continuous in time R-indirect
measurement of an open system performed by means of continuous in time direct

observation of the observable )(ˆ tQH  of diffusion type. The special case,  when IR ˆˆ =  ,
was considered by us on the basis of the presented approach  in [1].
Now we would like to consider the more general case of indirect diffusion observation.
The description of the processes of  continuous in time indirect observations of an open

system due to continuous in time measurements of observables (t)ˆor)(ˆ ΛΠ tl  will be

presented in a forthcoming paper.

The equation for the posterior state ],,[ R
t tQ ϕχ  of an open system can be easily derived

from (35) and  (28).
Take the most general case when the initial state of the reservoir )( feR =ϕ .
Considering  the Hamiltonian [25] of the dingeroSchr�� equation corresponding (when

IR ˆˆ −≠ ) to the quantum stochastic differential  equation  (40), we derive the  following

expression  for the "memory" term in (35) (and (39)) in case IR ˆˆ −≠ :

(44)

              { } )],(;,[))ˆˆ)((
~ˆ)(()(ˆ

)()](;,[)](;,,[ˆ ],0(
ˆ11

],0(
1

fetQIRtfLtqtGi

dQfetQfetQQW

t

tt

Q

ttt

Q tt

χ

νχ

−+−−=

=∫
Ω∈

�

where we introduced the operator on the Hilbert space of an open system
(45)

),ˆˆ)((
~

2

1ˆˆ)(
~

)ˆˆ(ˆ)(
~

2

1

ˆ)ˆˆ)((
~

2

1ˆ)ˆˆ(ˆˆˆ
2

1
)(ˆ

22

12

IRtfRLtfIRLtf

LIRtfLIRRLLtG

−++++

+−+++=

+

−+

and the notation 
dt

tdQ
tq

)(
)( =   of  the generalized derivative of the function ).(tQ  In the

considered case the observed trajectories of the quantum process are continuous and
consequently, )(tq  is a piecewise continuous  function.
In particular,  the relation (44) shows that in the case of diffusion observation -- when the
trajectories tQ are continuous  -- the "memory" term in (39) is simplified at the most.
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Substituting (44) into (39,) we get the integral equation for the posterior state of an open
system  subjected to continuous in time indirect observation of diffusion type:
(46)

,,)](;,[})ˆˆ)((
~ˆ){(

)](;,[))(ˆˆ()](;,[

0

0

0

0

S

t

t

S
t

HdfeQIRfLq

dfeQGH
i

fetQ

∈∀−++

++−=

∫

∫

ψττχττ

ττχτψχ

τ

τ

�

We can rewrite  the integral equation (46) for the posterior state ],,[ R
t tQ ϕχ  in the

stochastic form  using the methods of classic stochastic calculus:
(47a)

.),()](;,[})ˆˆ)((
~ˆ{

)](;,[)}ˆˆ)((
~

)ˆˆˆ)((
~ˆ)ˆˆ(ˆˆˆ{

)](;,[

0

0

0

21

0
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t

HdQfeQIRfL

dfeQIRfLRLfLIRRLH
i

fetQ

∈∀−++

+−+++++−

−=

∫

∫ +−+

ψττχτ

ττχττ

ψχ

τ

τ

�

The stochastic integral in (47a) is understood in  Ito's sense.
The stochastic differential equation for the posterior state ],,[ R

t tQ ϕχ  of an open system
is given by

(47b)

{ } ),()](;,[)ˆˆ)((
~ˆ

)](;,[)ˆˆ)((
~
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fetQIRtfLRLtfLIRRLH
i

fetQd

t

t
S

t

χ

χχ

−+=

=






 −++++++ +−+

�

.00 ψχ ==t

In (47) )(tdQ is a  stochastic differential of the classic diffusion process induced by
continuous in time observation of the input  observable (42)  in the initial state

)( feR =ϕ . The scalar  probability measure of this input process is defined by (19).

We would like to note that we could derive the stochastic equations  (47) in another way -

-substituting  the unitary operator )(ˆ tU  describing the time evolution of the extended
system in this model and given  by the quantum stochastic differential equation  (40)
directly to the relation (22) defining  the quantum stochastic evolution operator

];,[ˆ R
t tQV ϕ .

The  stochastic equations (47)  for the posterior state of an open system are more general
than the quantum filtering equation in quantum stochastic mechanics first introduced by
V.P.Belavkin  [12-13] and describing the posterior evolution of an open system under
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continuous in time observation of diffusion type.   The equations (47) coincide with  the
stochastic equation given in [12-13]  only if the initial state of a reservoir is vacuum and

IR ˆˆ = .  The exact correlation between the operators  in the  equations (46), (47) for the
posterior state of an open system  and the operators  in the quantum stochastic differential
equation  (40) is very important for further concrete calculations.

8. Concluding remarks

In this paper  we present a clear and consistent approach to the description of continuous
in time  measurements.
Our approach allows us to derive the most  general  results valid not only in the case of
the Markovian approximation.
As an example of application of our results to concrete quantum measurement models  we
consider the special case of continuous in time indirect observation of diffusion type in
quantum stochastic mechanics.
In a forthcoming paper we shall consider the further application of our  approach to the
description  of other types of  continuous in time indirect observations of an open system.
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