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We propose a new approach to the description in the general case of continuous in time
indirect measurement of an open system. Our approach is based not on the concept of a
generating map of an instrument as the way for the description of an indirect
measurement process and not on quantum stochastic calculus as a tool of consideration
but on the methods of quantum theory andSkb6 diegeation.

Our approach is valid for a broad class of quantum measurement models and quantum
input processes but not only in the case of the Markovian approximation.

In the general case we introduce the operator describing the evolution of an open system
under the condition that the output process was continuously observed until the nboment
and found to have the definite trajectory. We derive the integral equation describing the
guantum stochastic evolution of an open system in the general case of nondemolition
observation.

As an example of application of our results to concrete measurement models we
consider the special measurement model which is the extended variant (including the
gauge term) usually considered in the frame of so called quantum stochastic mechanics.
We get the new equation describing the quantum stochastic evolution of an open system
under continuous in time diffusion observation.

This equation can be rewritten in the stochastic form which in case of the vacuum initial
state of a reservoir and the absence of the gauge term coincides with the well known
guantum filtering equation in quantum stochastic mechanics introduced by V.P.Belavkin.
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1. Introduction.

Different aspects of description of continuous in time observation of an open system
were considered in the well known papers of A.Barchielli, V.P.Belavkin, E.B. Davies,
L.Diosi, A.S.Holevo, M.Ozawa, A.Peres and others [3-22, 26, 27].

The usual approach to the description of continuous in time indirect observation of an
open system is based on the use of the dynamic measurement model of the so called
stochasticSchib dingezquation -- the particular case of quantum stochastic differential

equation introduced by R.L.Hudson et al. [24].
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For a description of the process of indirect measurement the concept of a generating map
of an instrument of indirect observation introduced by A.Barchielli [3-7 ] is used.
The well known quantum filtering equation introduced first in papers of V.P.Belavkin
[9-15] and describing the posterior quantum stochastic evolution of an open system
subjected to continuous in time nondemolotion measurement is a quantum stochastic
one. The mathematical properties of solutions of such stochastic equations were studied
in [8,23].

But as it was shown by us in [1] even for this simple quantum measurement model the
guantum stochastic calculus is not an obligatory technique for the description of that
continuous in time observation and the derivation of the quantum filtering equation. The
standard methods of quantum theory can be used as well and give the same results in this
special model.

In fact the stochasttechi® dingequation corresponds to only one very special kind of

guantum theory model -- the model which describes the behaviour of an open system plus
an extremely idealized reservoir. Despite of its name this equation does not include the
stochasticity caused by the measurement process. As well as the Schial” dinger

equation it describes the unitary time evolution of an open system plus the extremely
idealized reservoir but only in the new type of calculus.

In [25] it was shown that in the sense of weak solutions the more general quantum
stochastic differential equation of R.L.Hudson and K.R.Parthasarathy (including the
gauge term) is equivalent to the "usug@thidingerequation with the special kind of

Hamiltonian.

The situation in the case of a general quantum theory model was considered in papers of
L.Accardi [2]. L. Accardi showed that in the general case the quantum stochastic
differential equations appear in quantum theory only as a result of some limit procedure
corresponding to the Markovian approximation.

In the present paper we would like to consider in the general case the problem of correct
description of the quantum stochastic evolution of an open system under continuous in
time indirect observation. We do not concretize the type of interaction between an open
system and a reservoir. Our approach is based not on quantum stochastic calculus and not
on the concept of a generating map of an instrument but on standard methods of quantum
theory. That is why it is valid for a broad class of quantum measurement models and
guantum input processes and not only in the case of the Markovian approximation.

It is well known [17, 26] that from the mathematical point of view the POV measure of
any indirect measurement can be regarded as the result of averaging some projection-
valued measure given on a larger Hilbert space over auxiliary degrees of freedom. This
mathematical fact is in perfect correlation with the real physical situation where any
indirect observation of an open system is performed by means of direct observation of
some von Neumann observable of the reservoir modelling the measuring device. Due to
the interaction with an open system the direct measurement of an observable of the
reservoir gives us indirect information and a reduced description of an open system.

The case of continuous in time measurement cannot be an exclusion for such a situation
since in the Heisenberg picture we can describe the whole process of continuous in time
indirect observation of an open system with the help of the POV measure on the product
space of all sets of possible outcomes of continuous observation at all moments of time
until t. This POV measure can be also regarded [1] as the result of averaging some
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projection-valued measure given on a larger Hilbert space and describing the process of
continuous in time direct observation of an extended system.

That is why for the description of continuous in time indirect observation of an open
system we use the scheme where indirect observation is performed by means of
continuous in time direct observation of an observable of the reservoir modelling the
measuring device. We call such indirect measurements R-indirect.

The basic ideas of our approach to the description of continuous in time measurements
(direct and indirect) and the derivation of the equation for the posterior state of an open
system were first formulated in cooperation with C.Aberg in [1].

2. The description of continuous in time direct observation of a quantum system

In this section we first consider the problem of description of continuous in time direct
measurement of any quantum system.

We use the clear and consistent approach based on the main principles of quantum theory
and developed in [1].

It is well known that simultaneous direct measurement of distinct observables of a
guantum system is possible if and only if these observables commute [17]. The result of
a direct measurement of each of this observable does not depend on its context, that is it
does not depend on whether we measure every observable alone or together with some, or
all, other observables.

In the Heisenberg picture the concept of an observable wholly incorporates the unitary
time evolution of the system, that is why the problem of description of continuous in

time direct measurement of some observable of a system is equivalent to the problem of
description of simultaneous direct measurements of several distinct system observables.
Consequentlycontinuous in time direct measurement of a quantum observable is

possible if and only if in the Heisenberg picture this observable satisfies the conditions

[1]:

A, () = A (),

1 ~ ~
? [AH (), A, (tl)]=0, forClt,t,.

In this case the repeated direct measurements of this kind of observable at different
moments of time do not interfere and one can perform a continuous in time direct
measurement of a system with arbitrary precision without disturbing the results of
consecutive observations.

Observables of a quantum system satisfying (1) are usually called quantum nondemolition
observables.

It was shown in [1] that the process of continuous in time direct observation of a

nondemolition system observabléH (s until the moment is described by a
projection-valued measuriég’t] (O on the product spac@®! of all sets of possible

outcomes of continuous observation/%;j(s) at all moments of tim@®<s<t.
Denote byQ®"! the product space of all sets of possible outcomes of continuous
observation ofA, (t) for all momentst,<s<t,.



Then

Q(Ortz] - Q(Oxtﬂ X Q(tytz] ]

For a self-adjoint observz:lblei?\H (t) the set of possible outcomes of measurement at any
moment of time coincides with the spectrum of this operator which is a suliset of

Let |5£:1,t21 (O be a projection valued measure @i*?! describing the process of

continuous in time direct measurementqu(s) for all moments t,<s<t,.
The introduced measures must satisfy the following relations:

5 (0.6] (EOL]y = p.O U]l (EO U]y P (] (b t]

(2) E(O'tZ] — E(Oxh] % E(tl'tZ]
for 0 E(Ovtﬂ 0 Q(Ovtﬂ 0 E(tptz] 0 Q(tptz]_

For all moments of time the introduced measures commute and are compatible in the
sense that

ﬁg, EEOE ﬁg, LI(ECY x QU By for DEOY O Q@Y
(3)
If)A(;lv t5] (E(Hvtz]) - If)'&(j t5] (Q(Ovtﬂ x E(tl.tzl)’ for DE(tlth] 0 Q(Hvtz].

The first relation in (3) corresponds to the causality principle and expresses the fact

that future measurements cannot influence measurements in the past. The second relation
in (3) corresponds to the fact that a continuous in time direct measurement until the
momentt of a nondemolition observable (1) does not disturb the results of subsequent
measurements.

The probability that a continuous direct measurement of the nondemolition observable

AH (t) until the moment on a system being initially in a pure staegives a result in
the subse€® 0 QY is given by:

(4a) HCI(EDY) = (@, BOI(EC) @)

The process of description of continuous in time measurememtarfcemolition
observableA, (t) is similar to the description ofaassic stochastic procesgsth a
probability measureu®? (0 pn QY being induced by an initial state of a system.

From (3) and (4a) it follows that for scalar probability measuyné®! (O we have the
relations of compatibility similar to (3):



IJ(OxH] (E(Oxtﬂ) - “(Ortzl (E(Ortﬂ X Q(tl o] )’ for DE(OxH] ] Q(Oxtﬂ :
(4b)
u(tvtz] (E(tvtz]) :u(ovtzl (Q(Ovtﬂ x E(tl.tzl), for DE(Hvtz] 0 Q(Hvtz].

3.. The description of continuous in time R-indirect measurement of an open
system

Consider now the interaction of an open system described by the complex separable
Hilbert spaceH ¢ and being initiallyin the purestatey, with reservoir, described by the
complex Hilbert spackl ;, and being initially in the pure stagg,. The case when an

open system and a reservoir are described initially by density operators can be easily
considered as well..

The extended system, i.e. the system plus reservoir, is described by the self-adjoint
Hamiltonian

N

(5) |:|S+R:|:IS|:]’I\+I|:]|:IR+PIint
on the Hilbert spackl 0 H of the extended system. In (3}, , is the Hamiltonian of

interaction of an open system with the reservoir.
The time evolution of the extended system in the interaction picture generatet], by

int

and corresponding to the free dynamics akaervoir is described by the unitary operator
(62)

G(t.s) =expd (7 0 ) tHexd k| (ot -9 bxak L (70 H,) s
T Il O h O 0O h O

satisfying the Cauchy problem:

2209 - oi+ A, 00w,
U(t,s) . =1,
here HAim.(t )is the interaction Hamiltonian in the interaction picture:
(7)

Ao 0 = exad (7 0 A ot B exelh L (7 oAt
) 0 0 h 0

The operatotj (t,s) represents the two-parameter family of unitary operators strongly
continuous with respect te andt and being a cocycle:



8) U(t,s)=U(tt,)U(t,,9).
We use sometimes the special notation for
U@,0=U0().

Consider now the process of description of continuous in time R-indirect measurement
of an open system which is performed through continuous in time direct measurement of

a nondemolition observable@H (t) corresponding in the Heisenberg picture to some
free dynamics observablé(t) of the reservoir:

9) Q. (t)=U"(t,0)(I DQM)U (t,0),

The POV measuré © (0 Yon the product spaceR®! describing the process of

continuous in time R-indirect measurement of an open system until the mbimsent
family of linear, self-adjoint, positive operators on the Hilbert sphgef an open

system and islefined [1] by a projection-valued meas@%” (Oof Ythe process of

continuous in time direct measurement of a nondemolition obser@t(le):
(10) M (o,t](E(O,t]) =< ¢R' If)é(s,t](E(o.t]) ¢R >HR, OE®©U Y '

here<[I3, is a scalar product in the Hilbert spatgof a reservoir.

The probability of getting a result of indirect measurement of an open system in
ECY 0 QO is given by

(11) HOYECT) = (o, M OI(E ), )

1
HS

where (LIl is a scalar product in the Hilbert spatg of an open systenThe relation

(11) defines a scalar probability measure@fi" corresponding to the process of
continuous in time indirect measurement.

The family of POV measures (10) (and the family of scalar probability measures (11) as
well) are compatible in the sense that

(12)

M (0.44] (E(Ovt:l]) - |\7| (0,t,] (E(Ortﬂ X Q(tl ’t2]) for DE(OxH] ] Q(Ortﬂ

M (t1.to] (E(tptz]) — |\7| (0.1,] (Q(O,tl] x E(tl‘tZ]) for OEM™ Q(tlth].



4. The principles of nondemolition observation

We are interested now in a special case of continuous in time R-indirect measurement
called a nondemolition case.

The main principles of continuous in time nondemolition measurement were introduced
by V.P. Belavkin [9-11 ] and imply that in the Heisenberg picture there must exist an

observable of the extended system corresponding to some free dynamics observable
Q(t) of a reservoir

Q. (t)=U"(t, 0)(I D QW)U (t,0),

satisfying the conditions

Q. (t) =05, (1),

13 - -
. 6., .0, w)]=0. forrit,

and commuting with all observables of an open system undér
n 0
(13b) Z4(0,Q,(95= 0

The condition (13a) is similar to (1) and corresponds simply to the fact that this kind

of measurement is performed through continuous in time direct observation of a reservoir
and consequently, according to our considerations in section 2, there must exist a
nondemolition observable of a reservoir which can be continuously directly observed.

The condition (13b) corresponds to a further restriction inside the considered class of
continuous in time R-indirect measurements and expresses the fact that under

such kind of measurement the open system is in fact not demolished as a quantum object
and that it is in principle possible to make at any moment of timeasurements on any
observable of the open system simultaneously with the continuous observation ofintil

QH (s),s<t.
Thus in this case it is possible to introduce the notion of a posterior state of the
continuously observed open system.

Sufficient conditions (14) (considered below) for a continuous in time R-indirect
measurement to be a nondemolition one (due to Belavkin's definition) correspond to
such demands on a reservoir and it's interaction with an open system which are quite
natural from a physical point of view ----

in order that this reservoir could pretend to be a measuring device.

Particularly, for a measuring device:
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a) lItis quite natural to demand that without an interaction with an open system, that is

under its free dynamics, a reservoir observ@ﬂe could be continuously directly
observed as well and that is why it must be a nondemolition observable as well:

Q) =Q* (),

14
(42 [Q(t),é(tl)]:O, forCt, t,.

The families of operator@(s),o <s<t} a\nd{(ﬁH (s),0<s<t} are usually called input
and output operator-valued processes, respectively.

b) For a measuring device it is natural to demand as well that the interaction with an
open system should be of such kind that the results of indirect measurement of the open

system would not be dependent on the meanings of the input obse@(ib)ld)efore the
beginning of the process of measurement

(14b) U9, 0Q(r)]=0, Or<s<t,

Due to (6) the relation

(14c) [Hu @), (T 0Q(e)] =0,  Ds<t

is a necessary and sufficient condition for (14b) to be valid.

It is easy to show that the conditions (14) are sufficient for the conditions (13) to be true,
that is for a continuous in time indirect measurement to be a nondemolition one according
to Belavkin's definition.

In the present paper we consider the conditions (14) to be valid and we shall

identify a continuous in time nondemolition R- indirect measurement as one
corresponding to (14).

6. The POV measure in case of continuous in time nondemolition
measurement of an open system

Let us now construct the POV measure defined by (10) in case of continuous in time
nondemolition measurement.

From (14) it follows
(15) Q, () =U*(t,0)( DQ(U (t,0), s<t.

Let Ifgo’ 1(D be a projection -valued measure describing the process of continuous direct

measurement of the input nondemolition observajite) until the moment (in case of
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the free dynamics of reservoir), and F%{“] (O bg a projection -valued measure for the

output nondemolition observabf@ t.)

From (15) and from the definition (given in the section 2) of projection-valued measures
corresponding to nondemolition observablese derive the following important
relation:

(16)
Pés,u(Ew,t]) =U*(t,0)(I O Pé"'”(E‘O'”))U(tl,O),

for DECY OQOY Ot >t.

Consequently, in the case of nondemolition measurement the POV measure defined by
(10) can be represented in the form

. MO E) = (8,0 O DB E DI

DE®T O Q.

Consider a nondemolition observab}ét dgscribing the free dynamics of a reservoir.

For simplicity suppose tha:ﬁ(t I9 continuous with respect tan the strong operator
topology and thatfor any moment the family of commuting operator§ Q(S) }, o,

on H is full.

The spectrum of the self-adjoint output operefpgr(t , défined by (15), at any moment

of time, coincides with the spectrum of the input observéﬁﬁte and)is a subset &t .

Denote byQ(s) R a possible outcome of a direct measuremer@g(s at the

moments. A time-ordered sequence of possible outcomes of continuous measurement
of @H (s) at all moments of tim¢,<s<t, wheret,> Q

(18) Q(tl,tz] = {Q(S)}gl(tl,tz]
is an element ofQ“"!. We shall use the special notation

Q' = {Q(S)}sﬂ(o, f-

From the general representation of an observable through its projection-valued measure
(due to the the spectral theorem [28]), it is clear that all information about the kind of
spectrum is contained in a projection-valued measure corresponding to that operator.
Having that in mind, without loss of generality, we identify a sgas) of possible

outcomes of measurement at the momemiith R . ConsequentlyQ ! -- the product
space of all sets of possible outcomes of continuous observatfgm(e)‘ (or Q(t))
until the moment -- can be identified with a space of trajectories. The family of
projection-valued measureééf* 1@ 9gn Q@Y gives us then automatically the

probability distributions of possible results of observation.
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The projection-valued measuf%o* (0O dgscribing the process of continuous in time

measurement until the momentof the input nondemolition observab[é(s ofla

reservoir being initially in the staig, induces a scalar probability measure®#"
(see section 2) by

(19)
vEIECY) =<, RFIESY) ¢ >,

satisfying the relations of compatibility (4b).
In the considered case, due to our assumption of the continuity with respeiftttee

operatoré(t )in the strong operator topolog,®"! is a space of trajectories
"continuous” with respect tb in the sense of the probability measure (19).
At any moment ot the following resolution of identity on the Hilbert spatg of a

reservoir is valid

(21) [ = | P{(dQ)

Q'Y

Let us introduce a linear operator\7[Qt,t;¢R] on the Hilbert spaced ; of an open
system by the following relation

(22)
VIQ't:¢e 10 P, (dQ) W O ¢e) = (1 DR (dQ))U®) W O ¢r)
for DY OHg,

understood in the infinitesimal sense.

Using the definition (22) of the operat\a}[Qt,t;qbR ahd the relation (19) for a scalar
probability measureéo’” (O »f the input process, we can rewrite the POV measure

represented by (17) in the form

M ©0(E©IY = [ V*IQ't; 9] VIQ' .t; ¢ v (dQY),
(23) Q'Y

for OE®Y OgQ©Y,

The probability of getting a result in a sub&?t" 0 QY under continuous in time R-
indirect measurement of an open system is given by
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@4 HOUEE [ (e VIR SIVIQ LS W), vEI(Q).

Q'CE (0

(24) defines the scalar probability measureh" describing the process of indirect
measurement through a scalar probability measé?ré(m of the input process.

From the definition (22)he following representation follows

UMW D) = _[(V[Q 5 9e] OP,7(dQY) (@ O ¢,

Q'ha (4
(25)
for Oy OH ..

Consequently, the linear operatlvA/r[Qt ,t,¢<] on the Hilbert space ¢ of an open

system introduced by (22) represents the operator-valued distribution in resolution
(25) standing under the projection onto the subspakle, aforresponding to the definite

observed trajector)' in the case when the initial state of the reservajr.is

From (25) and (19) we get tifi@lowing resolution for the reduced evolution for an
open system in the case of continuous in time R- indirect measurement

(26) <PUMPr >, = [VIQ L g:]vi(dQ).

Q'rin©4

Rewriting the Cauchy problem (6b) for the unitary operaAlt(ID describing the time
evolution of the extended system in the form of an integral equation and substituting it
into (22), we derive the followingntegral equation for the operator [Q',t;¢]:

27)
VIQ't: b, ]—|+§-£H (O ¢ ]dr +

+E‘%%EDDQ(\O/}/[Q QT3 9RIVIQ T $]v ™ (dQ] )EdT

In (27) we introduced the linear operawfQ',Q', t; ¢, o1 the Hilbert space ¢ by:
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(28)

WIQ', QL 661 v (dQ)) O PL(dQ)W D ¢g) =
= (I 0P U (dQ)H,, 1) 0 P (dQ))W D 6r),

for Oy@UOH,.

The relation (28) must be understood in the infinitesimal form.
We show in the section 7 that, due to (14c), the third term in (27) corresponding to the
"memory" effects can be essentially simplified.

The notion of quantum stochastic evolution operator as well as the notion of the posterior
wave function under continuous in time nondemolition measurement were first
introduced in papers of V.P.Belavkin [9-15 ] for the case of a special measurement model
of quantum stochastic calculus. His definition is introduced through the method of a
generating map of an instrument in the case of classic input process and is given in the
integral form.

Our definition (22) of the operat()|7(Qt t,¢5) is new, it is more detailed since this
operator is defined in the infinitesimal form directly through the unitary time evolution
operatorU(t) of the extended system, the projection-valued measure corresponding to
the observed trajector®’ and the initial state of the reservagr, .

Due to our definition we could derive the new representations (25), (26) as well as the
new integral equation (27).

From the mathematical point of view it is clear, that relations (22) - (26) and the integral
eqution (27) are valid not only in the case of nondemolition measurement but for any
continuous in time R-indirect measurement as well - in this case one should only

understand the introduced measu%%” (O an()ivéo'” (D of the input process in the

different context.
In the general case of continuous in time R-indirect measurement of an open system the

introduction of the operato\&?[Qt t,¢] is formal though very convenient since through
(23), (24) this operator describes the indirect measurement process.

In the next section we show that from the point of view of quantum theory the operator
\7[Qt ,t,¢<] can be interpreted as the operator describing the quantum stochastic
evolution of an open system subjected to continuous in time observation only in the case
of nondemolition measurement. We show that only in the case of such measurement
process there is a sense to introduce the notion of the posterior state of the continuously
observed open system.
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6. The quantum stochastic evolution of an open system under continuous in time
nondemolition measurement

The mean value at the momenof any observableZ of an open system in the initial
state ¢, O ¢ is given by

(29) (24 )= (wo 095, 0" OEZ D NUOW, D),
Considering (22) and (19), we can rewrite (29) in the form

(30) (Z4®)= [ <wo V'IQ't¢e] Z VIQ'tide] Yo >,

Q'

véo't] (dqQ').

S

Consider now a probability of a possible joint direct measurement on an extended
system being in the initial stai, [l ¢ ;. This joint measurement corresponds to

continuous in
time until the moment measurement of the observalg (s) and measurement at the

momentt of any system observablg,, (t).
Since we consider a nondemolition measurement when these observables commute

gH(t),éH(s)Ez 0 s<t,

such joint direct measurement is possible and it is described by a projection-valued
measure

(31) P, (F)PLI(ECT)=U" M) (P,(F) D) (IO P (EC!) Ut )

on the spac®kx Q" of possible outcomes of such joint measurement. lﬁ’g(E isa)

projection-valued measure for a system observable
The probability of getting a result of such measurement in the sutfsste©! is given
by

(32)
WFXEC) = [ <y, V'[Q' 1 -] Py (F)VIQ' i ¢e] o >v " (dQ)

QIDE(D,I]

for OFxE® ORxQ®

From (32) and the expression (24) for a scalar probability measif¢ descyibing

the process of continuous in time indirect observation of an open system it follows that
the conditional probability of finding a result of measurement of a system observable

ZH (t) at the moment in the subsek , under the condition that the output process
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QH (s) has been continuously observed until the momemd found to have a trajectory
Q' is given by

(33)

<Wo VIIQLE 8] P (F)VIQLE @l W >, [ <Wo, VTIQ'G @ IVIQ' L drlw, >,

Consequently, due to (24), (30) and (33), in the case of nondemolition measurement the
introduced operator\/[Qt,t;¢R] describes the irreversible in time stochastic evolution
of an open system under the condition that the output pn@e@ was continuously

observed until the moment t and found to have the trajeQbry
The state

X[QLt 6.1 =VIQ' .t 9] W,

(34)
for Oy,0OHg

should be interpreted as the posterior state of an open sy$taatisfies the linear
integral equation
(35)
t o+, B_ I q T .
XQ.t o] =1, *0 %gHSX[Q Tipeldr +

+ Er'%g EHD;EXY[QT QLT ] XIQ T el v (dQJ)EdT-

Consider now what simplifications we can make in the "memory” terms of the
equations (27) and (35) if we take into account the conditions (14).

For the most general nondemolition case defined by (14) we have the following relation

(Qu(9) - Q) T PLY(Q ) H,, ()T O PP (AQ)) W D e) =0, Os<t,
for O@OHg,

(36)

understood in the infinitesimal sense.
Consequently, from (28) and (36) we conclude that in the nondemolition case the

"memory" operatoW[[_[] in (27) and in (35) must have the following construction:

(37) WIQ', Q! ] =W, [Q",Q},t;0.] I, (QY —Q1*Y) |

where 9§, (Q® -Q )is a functional 5(1-function with respect to the scalar measure
vg“] (0Jof the input processW, [0 ]n (37) is a linear operator on the Hilbert speice
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defined in any concrete nondemolition measurement modeﬁirp& and,)in particular,

by its commutation relation witbﬁ(t) at the moment.

Thus, in the most general case of nondemolition measurement the "memory" term in (27)
and (35) can be simplified and is given by:

(38)

WIQ', Q1,641 VIQ] ti e ]v e (dQY) =

Q' (01

= JM{QEQLt%N[QLL%] A Y0))
Qb

Q) S0t

where Q(t ) is a space of possible outcomes of measurement at the mioaraht

U, @QM) = [ 3,Q" -QOWeI(dQ)

Q®n

is a scalar measure on this space.
Finally, from (38) it follows, that in the most general case of nondemolition

measurement the integral equation for the posterior gf@et,¢, of arj open system
subjected to continuous in time nondemolition measurement has the form:

(39a)
X[Qtat; 1=, +§_%§HASX[QTsT;¢R]dT+

. H ]
I_ | Y T AT T 7. (d |:|d
B hgﬁm | UCREREAPCRES I Ql(r»ﬁ r,
s(0,1)

We can also rewrite (39a) in a differential form in the sense of generalized distributions
calculus:
(39b)

ih%X[Qt,t; 9] = HoXIQ' tigel + r[{vi/l[Qt,Q{,t,¢R]X[Q;,t,¢R] 7, (dQ (1)
Qu(t)oa(t) Qu(s)=Q(s),
s(0, t)

X l==W,
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The equations (39) describe in the most general nondemolition case the quantum
stochastic evolution of an open system under the condition that the output process was
continuously observed until the moment t and found to have the traj&g'tory

The "memory" term in (39b) points out that in the most general nondemolition case the
posterior state of the continuously observed open system can depend not only on the
meanings of possible outcomes of measurement for all moments of time up to the

momentt but it can also depend on the posterior states corresponding to trajectories

different fromQ"' by jumps at the moment t.

We would like also to mention that from our definition (22) of the quantum stochastic
evolution operator it follows thal[Qt ,t;¢R] and x[Q',t;¢. 1depend not only on the

meanings of the outcomes of measurement of the output process until the inoment
on the initial statep, of a reservoir as well. This can be easily understood diffeeent

initial states of reservoir induce different probability measure€Xt! and
consequently, different quantum stochastic evolution of an open system.

The notion of quantum stochastic evolution operator as well as the notion of the posterior
wave function were first introduced in papers of V.P.Belavkin [9-15 ] in the special
nondemolition measurement model of quantum stochastic calculus. His definition is
based on the concept of a generating map of an instrument and is given in the integral
form.The equation for the posterior state derived by V.P.Belavkin [9-11] is valid only

for the case of the measurement model of quantum stochastic calculus which implies the
Markovian approximation.

Our approach to the description of continuous in time indirect measurement as well as

our definition (22) of the quantum stochastic evolution oper‘x'i(@t t,¢<] allow us to

introduce the new representations (24), (25) and to derive the new equations (27),
(35), (39) describing the quantum stochastic evolution of an open system under
continuous in time observation in the most general case of nondemolition measurement.

7.The special nondemolition measurement model of quantum stochastic calculus,
the extended variant

In this section we apply our results to the concrete special measurement model of
guantum stochastic mechanics -- the only dynamic model which is considered in the
theory of continuous in time indirect measurements. This measurement model satisfies
the principles of nondemolition observation [9-15].

In the frame of quantum stochastic mechanics the unitary time evolution of an extended
system in the interaction picture is supposed to be described by the quantum stochastic
differential equation of Ito's type introduced by Hudson R.L. and Parthasarathy K.R. in
[24]. In our paper we take the general variant of this equation:

(40a)
dU(t) = ((-K 0 1)dt—(C'R) O dA®) + L 0 dA* (1) + (R-1) 0 dA®)) U 1),

including the gauge term which is usually omited under the consideration of continuous
in time measurement.
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In (40a) L; R K+K*=L'L are operators on the Hilbert sp&te of an open system,
the operatorﬁ IS unitary .
The exact relation between the operatoin (40a) and the HamiltoniaH ¢ of an open

system in the case wheRz -1 is given [25] by:

A

(40D) K=—H,+L'RR+1)L.

[
n
The reservoir, modelling the measuring device, is described as a Bose field and is
represented by a symmetric Fock spda&)) over a single particle Hilbert spage
which in applications in quantum stochastic mechanics is taken to(B .

The annihilation, creation and gauge (or number) opera&@t}s A* (1),

A(t) = A (t) describing the free dynamics of the Bose field form the annihilation,

creation and gauge processes, respectively. These operators are continuous with respect
to t in the strong operator topology , hence locally square integrable [24].

Denote bye(f), f OL*(R )-- a normalized coherent vector for the Bose field:
t _~

(41) Ae(t) = ([ f (M dne(f)
0

where f(t) is a Fourier transform of a functiohd L*(R . )
Let us consider now the nondemolition observables in this model.

The input operator

(42) QA(t) =AA+ (t) + Ab),
[QM).Q(t)] =0, Ott,

represents a nondemolition observable and the Heisenberg obs@w@ble

corresponding tc@(t) in the Heisenberg picture defined by the opera]t(Il) is also
nondemolition and satisfies the principles of nondemolition observation. As it was shown
in [1], the process of continuous in time direct observatidﬁtHdt) corresponds to a

classic stochastic process of diffusion type®@fi!.
The input operator
(43)
M, (1) =A®) ++/1 (A (©) + AR) +I1tl,  1=0.

[N@),N@E)] =0  Ott, ,

represents a nondemolition observable as well and the output operator corresponding to
M, (t) in the Heisenberg picture defined Byt), satisfies the principles of
nondemolition measurement.



18
The family of self adjoint, commutative operat({)l*:i;I (t),t =0 cdrresponds to an
operator-valued realization of the Poisson process of intehsji34]. The gauge process
{f\(t),t > 0} can be considered as the Poisson one with itehsity.

We would like to mention that no two of the processes in (43) commute. Consequently,
as it follows from our consideration in the previous sections, no two of these quantum
processes can be directly observed simultaneously.

In the present paper we consider only the description of continuous in time R-indirect
measurement of an open system performed by means of continuous in time direct

observation of the observabtf@rI (t) of diffusion type. The special case, wher | |

was considered by us on the basis of the presented approach in [1].
Now we would like to consider the more general case of indirect diffusion observation.
The description of the processes of continuous in time indirect observations of an open

system due to continuous in time measurements of obser\lﬁpqes or A will o
presented in a forthcoming paper.

The equation for the posterior statgQ',t,¢, oflan open system can be easily derived
from (35) and (28).

Take the most general case when the initial state of the resg¢rveie(f . )
Considering the Hamiltonian [25] of ti&chi©®  dingguation corresponding (when

R# -1 ) to the quantum stochastic differential equation (40), we derive the following
expression for the "memory" term in (35) (and (39)) in dase-I :

(44)

WIQ', QL te()IXIQL tie(F)v e 1(dQ') =

Qi

= -inf(®) - + T OR- MXQ" te(F)],

where we introduced the operator on the Hilbert space of an open system
(45)

A

é(t):%ﬁﬂﬁﬁa(feﬁ)-l[ FLTOR-NC +

N

fOLR+T) + FLR +

+
NI~ T

F2)(R? - 1),

N

and the notatiomg(t) =

d(j_it) of the generalized derivative of the functiQ(t). In the

considered case the observed trajectories of the quantum process are continuous and
consequentlyq(t) is a piecewise continuous function.

In particular, the relation (44) shows tirathe case of diffusion observation -- when the
trajectories Q' are continuous -- the "memory" term in (39) is simplified at the most.
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Substituting (44) into (39,) we get the integral equation for the posterior state of an open
system subjected to continuous in time indirect observation of diffusion type:
(46)

XQ' 6 (D] =4, = [ s+ GEIAQ" Tie(F)] o +
+[a@{L+ FE)R-MXQ  rie(Hl dr. Oy, OH,

We can rewrite the integral equation (46) for the posterior gf&@e,t,¢. in the

stochastic formusing the methods of classic stochastic calculus:
(47a)

X[Qt,t;e(f)]=
JO'{ +URR+ DL+ F@)(C R+ 1)+ F2(0)(R- 1N} x[Q,T:€(f)] dT +

+£{E+ f(r)(R- 1} XIQ" . T;e(f)]dQ(r), Oy, OHsq.

The stochastic integral in (47a) is understood in Ito's sense.
The stochastic differential equation for the posterior std€@',t,¢. of ah open system
is given by

(47h)
dx[Q'te(f)] + A-Ho + CRR+ DL+ F ) (L R+ L) + Fz(t)(li—f)@x[Qt,t;e(f)]:

QD

L+ FoOR-NQ te(H)ldQ),

X|t:o:¢’o-

In (47) dQ(t)is a stochastic differential of the classic diffusion process induced by

continuous in time observation of the input observable (42) in the initial state
¢, =¢e(f). The scalar probability measure of this input process is defined by (19).

We would like to note that we could derive the stochastic equations (47) in another way -
-substituting the unitary operatr(t) describing the time evolution of the extended

system in this model and given by the quantum stochastic differential equation (40)
directly to the relation (22) defining the quantum stochastic evolution operator

VIQ',t¢.].

The stochastic equations (47) for the posterior state of an open system are more general
than the quantum filtering equation in quantum stochastic mechanics first introduced by
V.P.Belavkin [12-13] and describing the posterior evolution of an open system under
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continuous in time observation of diffusion type. The equations (47) coincide with the
stochastic equation given in [12-13] only if the initial state of a reservoir is vacuum and

R=1. The exact correlation between the operators in the equations (46), (47) for the
posterior state of an open system and the operators in the quantum stochastic differential
equation (40) is very important for further concrete calculations.

8. Concluding remarks

In this paper we present a clear and consistent approach to the description of continuous
in time measurements.

Our approach allows us to derive the most general results valid not only in the case of
the Markovian approximation.

As an example of application of our results to concrete quantum measurement models we
consider the special case of continuous in time indirect observation of diffusion type in
guantum stochastic mechanics.

In a forthcoming paper we shall consider the further application of our approach to the
description of other types of continuous in time indirect observations of an open system.
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