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is introduced, and can be though of as a Gibbs sampling algorithm beneath
the graph of the target density.

Perfect simulation is a way of running a Markov chain which ensures that
the terminal value of the implementation is an exact draw from the stationary
distribution of the chain. The idea was introduced by Propp and Wilson in
1996 [31]. Since then, the research area has become extremely active, see for
example [6, 10, 13, 15, 16, 18, 17, 19, 20, 25, 27, 28, 29, 38, 39]. The present
paper is an extension and revision of [24]. Perfect slice samplers for mixtures
of distributions have recently been studied in [5].

The paper is organised as follows. Section 2 contains a brief description
of the simple slice sampler, together with a discussion of its monotonicity
properties expressed in terms of a certain density ordering. Section 3 sur-
veys perfect simulation based on stochastic recursive sequences. Section 4 is
concerned with an explicit stochastic recursive sequence for the simple slice
sampler, which can easily be used for perfect simple slice sampling when there
exist a maximal and minimal state with respect to the density ordering. Ex-
tensions to cases where there is no maximal or minimal state are discussed
in Section 5. Various (mainly spatial) examples and further extensions using
more than one auxiliary variables are studied in Section 6. Section 7 contains
some concluding remarks.

2 Slice Sampler

Suppose �(x), x 2 X is an unnormalised integrable density with respect to
the measure � and let �� be the corresponding probability measure:

��(A) =

R
A
�(x)�(dx)R

X
�(x)�(dx)

for all measurable A. The simple slice sampler is an auxiliary variables sim-
ulation method that provides information about �(x) by running a Markov
chain that has �� as its unique stationary distribution.

The key idea behind the simple slice sampler is to introduce a latent
or auxiliary variable, u 2 U , and to construct the joint distribution of u
and x by taking the marginal distribution for x unchanged and de�ning the
conditional distribution of u given x in a convenient way. In particular we
take U = (0;1) and specify the conditional distribution of ujx to be uniform
over the interval (0; �(x)):
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An irreducible and aperiodic Markov chain is then set up over the en-
larged state space X � U having the probability measure corresponding to
�(x; u) / Ifu<�(x)g(x; u), as its unique stationary distribution, where IA(x)
is the indicator function of the set A. In particular it is customary to im-
plement the Markov chain by iteratively performing Gibbs updates on x and
u:

� vertical update: ujx is sampled uniformly over the interval (0; �(x));

� horizontal update: xju is sampled from the normalisation of the restric-
tion of � to the set

A�(u) = fx : �(x) > ug: (1)

The marginal chain fXng1n=0 is easily seen to have �� as its stationary
distribution, therefore, after a \su�ciently" long burn-in time, it can be
used to estimate the integral of a function g with respect to �, by taking the
average of the values that g takes over sample paths. Since at the end we
are only interested in the marginal x-chain we will focus our attention on it
and will regard the u-chain fUng1n=0 as an auxiliary construction.

In most applications considered in this paper, X is a subset of Rd and �
is absolutely continuous with respect to the Lebesgue or counting measure
restricted to X . Let Q�(u) = �[A�(u)]; if not strictly necessary we will omit
the subscript � in A�(u) and Q�(u). Then Q(u) � 1=u for any u > 0, and we
can assume that, with probability one, Q(Un) > 0 at each iteration of the u-
chain. Hence at the horizontal update considered above, xju is sampled from
Pu(A) = �(A \ A(u))=�(A(u)) where 0 < �(A(u)) <1. In the applications
to be considered in Section 6, Pu is often a uniform distribution over A(u),
so, for simplicity, we shall in general write the vertical and horizontal updates
as

ujx � U [(0; �(x))] ; xju � U [A(u)]

(even if the latter distribution is speci�ed with reference to a non-uniform
measure �).

In the case where X = Rd and � is the d-dimensional Lebesgue measure,
the simple slice sampler is shown to be uniformly ergodic if � is bounded and
the support of � has �nite Lebesgue measure, [23]. If the latter condition
is not met the simple slice sampler is still geometrically ergodic under ex-
tremely weak regularity conditions on Q [35]. Thus the simple slice sampler
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has robust ergodicity properties, making it an appealing algorithm from a
theoretical point of view. Furthermore, [23] shows that, given any indepen-
dence Metropolis-Hastings sampler, it is possible to construct a simple slice
sampler that performs better in the sense of reducing autocorrelation in the
realised chain on a sweep by sweep basis (Peskun ordering [30]).

It is easy to see that the transition kernel of the simple slice sampler
only depends on x through �(x). Therefore the projected chain �(X) is
also Markov in its own right. Moreover after at least one iteration of the
chain, it is clear that the distribution of Xj�(X) = c is \uniform" over
fx 2 X : �(x) = cg. As a consequence of this, the question of convergence
of X reduces to that of �(X) (see [35] for further details).

As noted in [35] (see also Section 6), the Markov chain generated via the
simple slice sampler is stochastically monotone with respect to the following
partial ordering de�ned on the X portion of the state space:

x � x0 if and only if �(x) � �(x0): (2)

Strictly speaking this is actually a total ordering on the projected space �(X ).
However it is notationally simple to allow X to inherit the ordering.

Stochastic monotonicity means that, for all �xed z 2 X , we have:

P (X1 � zjX0 = x) � P (X1 � zjX0 = x0) whenever x � x0:

Notice that this ordering can be naturally extended to an ordering on the
enlarged state space by simply disregarding the value of u, that is:

(x; u) � (x0; u0) if and only if x � x0:

3 Perfect Simulation

Coupling from the past (CFTP) takes a positive recurrent Markov chain and
simulates a realisation from the chain in a non-standard way. The simulation
is started at a negative time from all possible starting points (at least in
theory) until time 0. If all the chains are at the same state at time 0, (have
coalesced) then the simulation ceases, and this common value is distributed
according to the stationary distribution of the Markov chain. If there is more
than one terminal value at time 0, the start of the simulation needs to be
extended \backwards in time" until such time as the number of terminal
values is just one.
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Since it will rarely be possible in practice to simulate chains from all
possible starting values, it is important to exploit structure, in the state
space and in the transition kernel, that allows a smaller number of simulated
chains to be constructed. Stochastic monotonicity is crucial in this respect.
Furthermore, the description of perfect simulation above does not prescribe
the joint distribution of the di�erent chains. The freedom to choose this
dependence structure is important for the implementation of CFTP.

An important device for de�ning the dependence structure between chains
is the Stochastic Recursive Sequence (SRS) construction (see [4] and the
references on perfect simulation listed in Section 1). With an SRS we can
rewrite a Markov chain in terms of a measurable function, f : X�(0; 1)! X ,
and a doubly in�nite sequence of independent and identically distributed (iid)
random variables, fng

1
n=�1, with n � U [(0; 1)]. The function f has to be

chosen so that the following recursive formula holds:

X0 = x0; Xn+1 = f(Xn; n); n > 0; (3)

and the sequence fXng
1
n=0 has the transition probabilities speci�ed by the

Markov chain. To simplify the notation, in the previous formula only a
single doubly in�nite sequence of uniform random variates is explicitly used
but nothing prevents from de�ning the SRS in terms of more independent
sequences. Furthermore, in practice, every software that claims to generates
iid random variables with some speci�ed cumulative distribution function
(cdf) relies on the fact that there is a sequence of pseudo-random numbers
available (in theory an in�nite sequence, in practice the period of any random
number generator is �nite) and uses some algorithm, such as the inverse cdf
method, to produce the output. Thus, all generators of random numbers
(not uniform) can be rewritten in terms of an SRS constructions. Therefore,
without loss of generality, we can take the sequence fng

1
n=�1 to be any

sequence of (in theory) iid uniform random variables and then, if necessary,
think of the function f as obtained by composition of functions.

Perfect simulation is considerably easier to implement for Markov chains
that are stochastically monotone, since it turns out that we can often �nd
an SRS that is monotone in its �rst argument (realizable monotonicity [11]).
This allows the construction of a collection of Markov chains started at dif-
ferent states, which preserve their initial ordering [21]. Since the simple slice
sampler is stochastically monotone according to the ordering given in (2), it
turns out that we can in fact produce such an explicit SRS. Therefore, in
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the sequel we will restrict our attention to stochastically monotone chains
for which such an explicit SRS is available.

Having de�ned a partial order, it might be possible to �nd a maximal,
xmax, and minimal, xmin, state. This is always the case for �nite state spaces,
and for the time being we shall assume the existence of these states (though
in Section 5 we will show how this hypothesis can be eliminated). Notice
that in our context it is possible for more than one maximal state to exist.
However, since the set of maximal states is an atom in the sense of [22],
it is straightforward to produce an SRS which merges all chains started at
maximal states in a single iteration.

Let X
(x;T )
n be the value at time n of a chain started in x at time �T .

The perfect simulation algorithm works as follows. Choose a time T1 > 0:
Generate a stream of uniform random variables fng

�1
n=�T1

and let

X(xmax;T1)
�T1

= xmax; X(xmax;T1)
n+1 = f(X(xmax;T1)

n ; n); �T1 � n < 0; (4)

X
(xmin;T1)
�T1

= xmin; X
(xmin;T1)
n+1 = f(X(xmin;T1)

n ; n); �T1 � n < 0; (5)

where f is the SRS function chosen for the transition kernel of interest.
Notice that it is crucial to use the same stream of random innovations to
update both chains: this ensures that, if the two sample paths meet at some
time t0, that is X

(xmax;T1)
t0 = X

(xmin;T1)
t0 , then X

(xmax;T1)
t = X

(xmin;T1)
t for all

t > t0; i.e. they coalesce.
If X

(xmax;T1)
0 = X

(xmin;T1)
0 = X, that is if the maximal and minimal chain

have coalesced by time zero, then their random position at time zero, X, is
distributed according to the target distribution. A vertical backward coupling

time is de�ned to be T = supft : X(xmax;t)
0 = X

(xmin;t)
0 g. Following [13], if T

is almost surely �nite we call it a successful vertical backward coupling time.
Strictly speaking a vertical backward coupling time is a coalescing time for
the Markov chain starting from any x 2 X ; [13]. But clearly if the maximal
and minimal chain started at time �T have the same value by time zero,
then any chain started at time �T will also have that same value by time
zero because of the monotonicity property of the SRS function in its �rst
component.

If the paths started at time T1 have not coalesced by time zero, we choose
a new value T2 > T1 > 0 and restart our backward simulation from time
�T2. In this second stage, when running the simulation over the time range
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[�T1; 0], we need to reuse the same random numbers, fng
�1
n=�T1

, used in the
�rst stage of the simulation. Although any value of T2 would work, reasons
for taking Tk = 2k are given in [31]. Another strategy is Wilson's read-once
CFTP algorithm [38], which runs forwards in time, and never restarts at
previous times in the past.

4 An Explicit SRS for the Slice Sampler

In this section we give an explicit SRS for the simple slice sampler. Armed
with this construction, we can then carry out perfect simulation for the sim-
ple slice sampler. Assume for simplicity that a maximal and minimal state
with respect to the order given in (2) exist and let them be xmax and xmin

respectively; in fact, as explained at the end of this section, all we need to
assume is that �(X ) and supX � are both �nite. We will discuss cases where
these assumptions are further relaxed in Section 5.

We shall carry out the vertical slice �rst, followed by the horizontal slice.
This will be done in a way that preserves monotonicity. Then from the
construction, we will be able to extract the explicit SRS function.

We shall assume the existence of an in�nite sequence of independent
random variables at each stage of the recursion. Moreover, in order to ensure
that we can start the simple slice sampler in xmin (and hence in any state
x 2 X ), and since A(u) = X for u � U [(0; �(xmin)], we assume that �(X ) <
1.

For all t < 0 de�ne a vertical slice random variable, �t � U [(0; 1)]. Then,
for the Markov chain that, at time t, is in state x, set Ut(x) = �t�(x).

The horizontal slice is more complicated. At each time t < 0 construct
an in�nite sequence of random variables, Wt = fWt;j : j = 1; 2; : : :g by

Wt;1 � U [A(Ut(xmin))] (6)

and
Wt;j � U [A(�(Wt;j�1))] :

De�ne �t(x) by

�t(x) = inffj � 1 : �(Wt;j) � Ut(x)g ;

and set

f(x; (�t;Wt)) =Wt;�t(x) : (7)
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Now (�t;Wt) is a random innovation independent of x so that the above
is indeed an SRS representation for some Markov chain.

It is easy to see that �t(x) is almost surely �nite for all x 2 X : let
Fn denote the �-algebra generated by Ut(x);Wt;1; : : : ;Wt;n, then P (�t(x) =
nj�t > (n � 1)jFn�1) � Q(Ut(x))=Q(Ut(xmin)) since the sequence Wt;� is
non-decreasing with respect to the de�ned ordering (the region from which
the trial values are generated becomes a successively smaller superset of
A(Ut(x))).

It remains to check that the construction preserves the monotonicity prop-
erty and that it does indeed simulate the simple slice sampler Markov chain.

Theorem 1. The function in (7) is monotone in its �rst argument, so that

the Markov chain obtained using (7) as its SRS function is stochastically

monotone. Moreover, the Markov chain actually simulated is in fact a simple

slice sampler.

Proof. The monotonicity property follows from the fact that, for all t, Wt;�

and �t(�) are non-decreasing sequences (the W 's with respect to �) by con-
struction.

To prove that the SRS does indeed simulate a simple slice sampler, it is
enough to prove that Wt;�t(Xt�1) given Ut(Xt�1) = u is distributed as Pu (see
Section 2 for notation). However this is just an adaptive rejection sampling
scheme where the rejection region becomes more and more re�ned as the
simulation proceeds so that the result follows.

We can now de�ne a backward coupling for the simple slice sampler in
the following way. Suppose T1; T2; : : : is an increasing sequence of integers
which determine lengths of runs for simulations started back in time. As in
Section 3 we shall often assume something similar to Tk = 2k. However we
will just consider the general case here.

The algorithm can be written as follows:

1. Set i = 1.

2. Compute X
(xmax;Ti)
0 and X

(xmin;Ti)
0 from the SRS formulae (4) and (5),

using the explicit construction given in (7). If X
(xmax;Ti)
0 = X

(xmin;Ti)
0

then the algorithm is complete and we set I = i.

3. Otherwise increment i by 1 and go to 2.
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From the construction it follows that X
(xmax;TI)
0 is distributed according to

�. Notice that since �t(�) is non-decreasing, it will never be necessary to
increase the number of simulated Wt;js since sample paths started at time
point further back will be sandwiched in between sample paths started at
later times (funneling property).

Modi�cations on the algorithm are possible, some of them reducing the
computation needed. For instance for t 2 (�T1; 0) it is not necessary to
compute the sample path beginning at xmin at time t. A more e�cient
algorithm can be constructed by replacing xmin by X

(xmin;T1)
t in (5).

Finally we notice that existence of xmin and xmax is really not required as
long as �(X ) < 1 and supX � < 1: in (6) we actually generate Wt;1 from
�(�)=�(X ) for every t, and initially in step 2. above we have that, for all Ti,

X
(xmin;Ti)
Ti

= WTi;1

and

X
(xmax;Ti)
Ti

=WTi;max�Ti

where

max�t = inffj � 1 : �(Wt;j) � �t sup
X

�g (8)

is almost surely �nite.

5 Upper and Lower Process

Even if an ordering has been de�ned on the state space there are cases where
it is hard or impossible to �nd a maximal and/or a minimal state | or
just the value of supX � as used in (8) above. A number of truncation and
approximation schemes have been devised to circumvent this problem (see
for example [14, 16, 18, 19, 20, 25]). Note that in contrast to the situation
in Section 5 we do not require that the dominating measure � is �nite in the
sequel.

Following ideas used in [16, 18, 19, 25], it is possible to construct upper
and lower bounding stationary processes which allow us to de�ne upper and
lower starting values for our sandwiching algorithm.
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Assume, for the time being, that we are in the general setting of a stochas-
tically monotone Markov chain as in (3) with an SRS function f(x; ) which
is non-decreasing in x.

Suppose that we have upper and lower bounding processes with transition
probabilities P ub and P lb respectively, sandwiching the process of interest's
probabilities P , that is, for all �xed y 2 X

P lb
x (X1 � y) � Px(X1 � y) � P ub

x (X1 � y) :

In our simple slice sampler example, bounding processes can be constructed
out of simple slice samplers having di�erent stationary distributions, and we
shall implicitly construct SRS functions for the bounding processes, fub and
f lb, such that

f lb � f � fub

where the inequalities are assumed to hold pointwise for all values of the
arguments of the functions. These SRS constructions serve to guide the
simulation to preserve all the relevant monotonicities.

The algorithm simulates stationary versions of the upper and lower pro-
cesses, S and L respectively, backwards in time till time �T1, noting the
forward seeds, ��T1 ; : : : ; ��1. The maximal process X(xmax;T1) now starts at

X
(xmax;T1)
�T1

= S�T1 . The minimal process X(xmin;T1) now begins at X
(xmin;T1)
�T1

=
L�T1 .

If X(xmax;�T1)
0 = X(xmin;�T1)

0 , the algorithm ceases outputting the common
value. Otherwise, the upper and lower processes are extended backwards in
time to time �T2 and the procedure is repeated making sure to retain the
seeds from the original time interval. This whole construction is extended
back in time until we get a k such that X

(xmax;�Tk)
0 = X

(xmin;�Tk)
0 and the

common value is output. This value can be shown to be distributed as �, see
for example the arguments in [18, 19, 25].

Here we shall restrict attention to the case where � is bounded. This
means that according to the ordering �, xmax exists, but a lower bounding
process construction is needed. The ideas here readily extend to the case
where � is not bounded.

Here we will describe two ways of potentially exhibiting a bounding pro-
cess for the simple slice sampler. The �rst is probabilistically the most nat-
ural, since it is constructed entirely from the Q function itself (which com-
pletely characterises the algorithm, cf. Section 2). However, it turns out that
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the second method is easier to implement, and the example that we will give
exploits this second procedure.

5.1 Bounding processes for the simple slice sampler:

the Q method

In this section we assume that X = Rd and � is the Lebesgue measure. In
order to de�ne a minimal process for the simple slice sampler Markov chain
X induced by � we �nd an unnormalised density �2 such that the following
condition is veri�ed: �

Q0
�(u)

Q�(u)
�
Q0
�2
(u)

Q�2(u)

�
� 0: (9)

where Q0(u) = @Q(u)
@u

:

Theorem 2. Suppose that � and �2 are densities with corresponding Q func-

tions satisfying (9). Let X(2) be the simple slice sampler Markov chain in-

duced by �2. Then the Markov chains Y = �(X) and Y (2) = �2(X(2)), are
stochastically ordered in the sense that

P (Y1 � �jY0 = �) � P (Y (2)1 � �jY (2)0 = �)

for all �; � 2 R.

Proof. Writing �1 for �, Y (1) for Y , from [35], for i=1,2

P (Y (i)1 � �jY (i)0 = �) =
1

�

Z �

0

max

�
0; 1�

Q�i(�)

Q�i(z)

�
dz: (10)

However, (9) implies that for all z < �Z �

z

Q0
�1
(w)

Q�1(w)
dw �

Z �

z

Q0
�2
(w)

Q�2(w)
dw

so that for all z < �

1�
Q�1(�)

Q�1(z)
� 1�

Q�2(�)

Q�2(z)
:

Hence, the integrand in (10) for Y (1) dominates that for Y (2) and the result
follows.

Although this is a natural way to bound the process in principle, the prac-
tical implementation of it is hampered by the fact that explicit information
about Q0=Q is needed, and this is unlikely to be available in real problems.
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5.2 Bounding processes for the simple slice sampler:

the subset method

Let us consider a target distribution � which is bounded with xmax achieving
this supremum. Repeating the arguments at the end of Section 5 we see that
existence of xmax (or xmin) is really not needed in the following. Suppose
however, that there exists an unnormalised density �lb (again with reference
to �) such that for all x 2 X ; � 2 [0; 1],

A�lb(��
lb(x)) � A�(��(x)) : (11)

Notice that by taking � = 1, (11) implies that the partial orderings de�ned
on X by � and �lb are identical. Let X and X lb denote simple slice samplers
on the densities � and �lb respectively.

Lemma 1. X lb is stochastically dominated by X according to �.

We omit the proof of Lemma 1 since the SRS constructed below will serve
as a direct constructive proof by inspection. This lemma allowsX lb to be used
as a lower bounding process. The assumption is (in practice) that simulation
from �lb is feasible directly. The following is a coupling construction which
jointly constructs a stationary version of X lb together with versions of X
started at any starting point that dominates (in the sense de�ned in (2))
the starting point of the lower bounding process. The construction preserves
the almost sure order of the processes, and also respects (in an almost sure
sense) the stochastic monotonicity of X by preserving the order of processes
started at di�erent values.

Forward coupling. For the purpose of this construction we shall assume
that the simulation begins at time 0. Suppose thatX lb

n = x� and the position

at time n of the version of X started at x is denoted by X
(x;0)
n . We shall

only consider X(x;0)
n for x � X lb

0 and assume that X(x;0)
n is a non-decreasing

function of x. (This is ultimately veri�ed by induction.)
At each iteration, the algorithm proceeds as follows.

1. Choose �n+1 � U(0; 1). Set U lb
n+1 = �n+1�

lb(x�), and for X lb
0 � x �

xmax, set U
(x;0)
n+1 = �n+1�(X

(x;0)
n ).

2. De�ne a sequence of iid random variables ~Vn+1;1; ~Vn+1;2; : : : from U [A�lb(U
lb
n+1)].

Set X lb
n+1 = ~Vn+1;1.
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3. Let �n+1 = inffk : ~Vn+1;k 2 A�(U
(x�;0)
n+1 )g.

4. Set X
(x�;0)
n+1 = ~Vn+1;�n+1 = Wn+1;1. For i � 2, recursively de�ne Wn+1;i

to be drawn from U [A�(�(Wn+1;i�1))].

5. Set X
(x;0)
n+1 =Wn+1;�(n+1;x) where �(n+1; x) = inffi : Wn+1;i � Y

(x;0)
n+1 g.

Essentially, 1. and 2. construct the minimal process while 3. 4. and 5.
are adapted from the construction in Section 4. The following result is a
consequence of the fact that the horizontal sampling in the above algorithm
is just an elaborate adaptive rejection sampling scheme similar to that given
in Section 4.

Lemma 2. X(x;0) is a simple slice sampler for the density �.

In order to perform backwards simulation with the bounding process,
we shall need to construct the time reversed simple slice sampler for �lb.
Fortunately, by reversibility of the simple slice sampler, this is identical to
the forwards simple slice sampler if we reverse the order in which the vertical
and horizontal updates are done (see Section 2).

However we need to be careful in translating the backwards iterations to
the seeds needed to construct forward iterations for other processes | for this
we consider the conditional distribution of the forwards seeds �n; f ~Vn;ig; fWn;ig
needed at time n given (X lb

n�1; X
lb
n ) (these forwards seeds given (X lb

n�1; X
lb
n )

are conditionally independent of anything else in the \simulation past" of
the forwards simple slice sampler; see Section 3 in [19]).

Backwards simple slice for �lb. Given X lb
n � �lb, generate ��n�1 from

U(0; 1), and then generate X lb
n�1 from U [A�lb(�

�
n�1�

lb(X lb
n ))]. Reconstruct

the forward seeds as follows:

�n =
��n�1�

lb(X lb
n )

�lb(X lb
n�1)

; (12)

and

~Vn;1 = X lb
n : (13)

All other seeds (needed to perform steps 2. and 4.) can be chosen according
to the forward coupling construction.

It remains to give the full CFTP algorithm.
CFTP algorithm. Choose a sequence of increasing positive integers T1; T2; : : :

Generate X lb
0 from �lb. Set i = 1, T0 = 0.
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1. Construct the simple slice sampler on �lb backwards from�Ti�1 to �Ti,
noting the forward seeds from the backwards construction above. Call
this process X lb.

2. Using the forward seeds from 1. construct two simple slice samplers on
� started at xmax and X lb

�Ti
, from time �Ti to �Ti�1.

3. If X
(Xlb

�Ti
;Ti)

0 = X
(xmax;Ti)
0 , stop, reporting this value.

4. Otherwise, set i = i+ 1 and go to 1.

6 Examples and extensions

Example 1 below shows that for one-dimensional distributions other and
simpler perfect simulation methods such as rejection sampling may prove to
be at least as e�cient as perfect simple slice sampling. Another problem
which typically occurs for multivariate distributions is how to determine the
set A(u) used in the horizontal update; rejection sampling may here not be
feasible. However, [5] demonstrate that perfect slice sampling can be achieved
for realistic statistical models and not only for toy problems.

In Sections 6.1{6.2 we study various extensions of the perfect simple slice
sampler considered so far.

Example 1. Suppose we wish to generate iid observations from

�(x) / e�x(1 + x)�� x � 0 (14)

for some � > 0 and with reference to �, the Lebesgue measure restricted to
X = [0;1). We are in the situation where the target density is bounded but
its support is not. In this case there is a maximal state, namely xmax = 0,
but there is no minimal state. We thus construct a lower bounding process
following the theory given in Section 5.2. Let

�lb(x) / e�qx x � 0: (15)

For 0 < q � 1 condition (11) is veri�ed. We shall consider the case where
� = 1 and compare values for q varying between 0 and 1.

Implementing the perfect simple slice sampler using lower bounding sim-
ple slice sampler with target �lb with q = 1 required a backward simulation
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time T which took the values (1; 2; 4; 8; 16) with frequencies (407; 281; 225; 83; 4)
respectively in a simulations study of 1000 replicates of our perfect simulation
algorithm.

In Table 1 we report the running time in seconds (column labeled Time)
of two algorithms each returning 5 000 iid samples from �. The �rst column
refers to a rejection sampler, the second to a perfect simple slice sampler, and
the star indicates the winning strategy. As q ! 0 the lower bounding process
and the enveloping function become less tight. When sampling with rejection
this results in higher rejection probability. In the perfect simple slice sampler
we need to go further back in time to achieve coalescence of the maximal and
minimal chains. As a result the time needed to obtain a �xed number of iid
samples increases as q decreases in both cases but it seems that the negative
e�ect of using a non-optimal enveloping function (bounding process) is worse
for the rejection sampler.

Rejection Perfection
q Time Time
1 8.03* 40.01
0.9 10.07* 43.84
0.8 14.54* 45.15
0.7 17.45* 48.80
0.6 25.02* 53.37
0.5 37.10* 60.37
0.4 59.05* 65.96
0.3 105.51 77.41*
0.2 248.22 98.26*
0.1 1020.38 137.34*

Table 1: Comparing iid samplers (running times in seconds).

All the programs (for this and the other examples) are written in the
Xlispstat language. The simulations have been implemented on a Pentium
300 MHz under the Linux operating system.

6.1 Perfect product slice sampling

The product slice sampler [2, 8, 9, 23, 35, 37] is an extension of the simple
slice sampler where more than one auxiliary variable is introduced. Suppose
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that the target density can be factorised as

�(x) =
Y
i2I

�i(x) ; x 2 X ; (16)

where I is a �nite index set and each �i is a measurable non-negative function.
Then we can extend the slice sampler idea as follows:

� vertical update: ujx is sampled from U [
i2I(0; �i(x))];

� horizontal update: xju is sampled from the normalisation of the re-
striction of � to the set

A�(u) = fx : �i(x) > ui for all i 2 Ig (17)

with u = (ui : i 2 I).

The product slice sampler is stochastically monotone with respect to the
partial ordering given by

x � x0 if and only if �i(x) � �i(x
0) for all i 2 I: (18)

However the problem is to realise how to construct a monotone SRS for the
product slice sampler.

For any SRS construction of the product slice sampler, it seems natural
to use vertical slice variables �t = (�t;i : i 2 I) at time t, where the variables
�t;i � U [(0; 1)]; t 2 Z; i 2 I are independent. Then Xtj(�t; Xt�1) follows the
normalisation of � restricted to fx : �i(x) > �t;i�(Xt�1) for all i 2 Ig. This
is like in the SRS's for the simple slice sampler where I is a singleton. But,
as exempli�ed below, it is not straightforward to extend the coupling used
for horizontal updates in any of the perfect slice samplers in Sections 4 and
5 to a monotone SRS in the present setting (I not being a singleton), using
the ordering in (18).

Example 2: Ising and other random �eld models. Probably the
most famous example of a product slice sampler is the Swendsen-Wang al-
gorithm [37] which was introduced for tackling the critical slowing down
problems with ordinary Metropolis-Hastings algorithms for Ising and Potts
models. For the simplest case of the symmetric Ising model (no external
�eld and constant coupling parameters), I = E is the edge set of a �nite

16



non-oriented graph G = (V;E), � is counting measure on X = f0; 1gV , and
for i = fj; kg 2 E,

�i(x) = exp(��1[xj 6= xk]) :

Here � > 0 is some \coupling parameter" and 1[�] is the indicator function.
In the horizontal update, if we de�ne u-clusters C as the maximal connected
components in the subgraph G(u) = (V;E(u)) with the same vertex set as
G but edge set E(u) = fi 2 E : ui > exp(��)g, the xC = (xj : j 2 C) on
di�erent u-clusters C are conditionally independent given u = (ui : i 2 I).

Further, conditional on u, xj is constant on each u-cluster with the
common value drawn from a uniform distribution on f0; 1g. Note that
Swendsen and Wang's algorithm depends only on ui through the \bond"
zi = 1[ui > exp(��)], where zijx is 0 with probability exp(��1[xj 6= xk]).
The marginal equilibrium distribution for these bonds is a so-called random
cluster model.

Propp andWilson in [31] were unable to �nd monotonicity in the Swendsen-
Wang algorithm. It is illuminating to see why monotonicity cannot possibly
be present according to the partial ordering �. To see this simply note
that E(Xt;jjXt�1) = 1=2 for the Swendsen-Wang algorithm. Therefore the
Markov chain could only be stochastically monotone with respect to � if
its transition probabilities were independent of its current state, which is of
course impossible here.

The perfect CFTP algorithm used in [31, 32] is based on �rst generating a
perfect simulation of the random cluster model using Gibbs sampling, which
is monotone with respect to �, and secondly conditionally on this simulation
generating a perfect realisation of the symmetric Ising model.

Example 3: Modi�ed Swendsen-Wang. Here we introduce a modi-
�ed Swendsen-Wang algorithm for which we can actually obtain stochastic
monotonicity and in fact realisable monotonicity. The new method is also
somewhat more exible than the standard Swendson-Wang method, being
readily applicable in the case where there exists an external �eld, and we
shall introduce it in a slightly more general context.

Consider the Markov random �eld with density
Q

fj;kg2E exp(�j;kxjxk)

with respect to the dominating measure � = 
l2V �l = 
l2V B(pl) where
B(pl) is Bernoulli with mean pl. The only constraint we need to impose is
the positivity restriction 0 < pl < 1 and �j;k � 0. Note that the symmetric
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Ising model just sets �j;k = 2� for all fj; kg 2 E and log(pl=(1� pl)) = ���l
for all j, where �l = #fk; fk; lg 2 Eg. An Ising model with external �eld is
obtained if

�j;k � 2�; log(pj=(1� pj)) = (2yl � 1) log(c=(1� c))� ��l; (19)

where 0 < c < 1 and yl 2 f0; 1g. This is the posterior distribution determined
by a symmetric Ising prior and a likelihood for the yl given x speci�ed by
independent Bernoulli variates so that P (yl = xljx) = c. However our general
formulation allows not only an external �eld, but also the possibility that the
strength of the interaction parameter �j;k can vary spatially.

Now Xtj(�t;Xt�1) = (�;x) simply follows the distribution � restricted
to the set A(�;x) =

Q
l2V Al(�;x) where Aj(�;x) = f1g if both �j;k >

exp(��j;k) and xj = xk = 1 for some k with fj; kg 2 E, and Aj(�;x) =
f0; 1g otherwise. Hence it is possible to construct an explicit monotone SRS:
for the coupling at horizontal updates, generate independent Bernoulli vari-
ates Bt;l � �l; t 2 Z; l 2 V , and set

Xt;l = 1 if Al(�t;Xt�1) = f1g, Xt;l = Bt;l otherwise.

This is even monotone with respect to the usual partial ordering on f0; 1gV

(i.e. the ordering given by x � y if and only if xl � yl for all l 2 V ), which
in turn implies than the partial ordering de�ned in (18).

Based on this SRS construction and using xmin = (0; : : : ; 0) and xmax =
(1; : : : ; 1) as the minimal and maximal states, we obtain a perfect product
slice sampler similar to that in Section 4. This perfect simulation algorithm
is clearly simpler to implement than the perfect CFTP algorithm used in
[31, 32] for the symmetric Ising model. For the model (19), it would be
interesting to compare our perfect product slice sampler with perfect CFTP
based on Gibbs sampling, which is still monotone in the case of an external
�eld, and relate such a comparison to applications in image noise reduction
algorithms (see e.g. [12]).

In the experiments reported on below V � Z2 is rectangular, E is speci�ed
via nearest-neighbours in Z2, and �j;k = 2� for all fj; kg 2 E (i.e. no external
�eld, constant coupling parameter). All the running times are expressed in
seconds. We also report the index I of TI , the vertical backward coupling
time, following the notation in Section 4.

Table 2 shows the performance of the perfect slice sampler for the Ising
model with no external �elds as the value of �j;k varies from 0.2 to 1.1. All
the simulations results in this table are obtained for a square grid of size 20.
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Table 3 shows the performance of the perfect slice sampler for the Ising
model with no external �elds as the grid size increases. All the simulations
results in this table are obtained at the critical value of �j;k = 0:88.

�j;k 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.88 0.9 1.0 1.1
running
time 26 53 53 110 110 222 222 225 451 452 459
value
of I 3 4 4 5 5 6 6 6 7 7 7

Table 2: Comparing performance for di�erent values of �j;k on a 20�20 grid.

grid size 5 7 9 11 13 15 17 19 21 30
running
time 0.84 2.54 11.82 24.49 43.85 74.72 120 375 544 931
value
of I 5 5 6 6 6 6 6 7 7 8

Table 3: Comparing performance for di�erent grid sizes, �j;k = 0:88.

The Swendsen-Wang algorithm can easily be extended to other types of
random �elds with pairwise interaction than just the Ising model, but the
practical applications have often been somewhat disappointing, see e.g. [9].
We have yet not investigated to what extent we can construct useful perfect
product slice samplers for such models, but the discussion above for the Ising
model may indicate that it is not a simple task.

6.2 Perfect single-component slice sampling for multi-

variate distributions

In many applications we have that X =
Qd

j=1Xj is a product space furnished

with a product measure � =
Qd

j=1 �j, and we write x = (x1; : : : ; xd) with

xj 2 Xj being the jth variable or component. All models considered in
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the examples above can be presented in this way. In order to simplify the
horizontal update in the simple slice sampler, one obvious idea is to use
a single variable Gibbs sampling update instead: �rst chose j 2 f1; : : : ; dg
uniform at random or in some systematic way like scanning through 1; : : : ; d;
then use the conditional distribution xjj(x�j; u) to update the jth variable
given all the others x�j = (x1; : : : ; xj�1; xj+1; : : : ; xd) and the restriction to
the set

Aj(u;x�j) = fxj 2 Xj : �(x) > ug :

In other words, the vertical update is unchanged, but the horizontal is re-
placed by a horizontal single-component update:

ujx � U [(0; �(x))] ; xjj(x�j; u) � Uj[Aj(u;x�j)] ;

where Uj[A] denotes the normalisation of the restriction of �j to the set A �
Xj. The chain obtained by alternating between vertical and horizontal single-
component updates, using a random or systematic sequence fjtg10 so that at
the tth iteration the jtht variable is to be updated, is called a single-component
slice sampler. Ergodicity requires that we insist that #ft : jt = jg =1 for
all j 2 f1; : : : ; dg. In order to ensure irreducibility, weak regularity condition
need to be imposed on the target density. As long as � is everywhere �nite,
it is su�cient to impose the conditions that ensure the irreducibility of the
corresponding Gibbs sampler on � with the given parameterisation. Fairly
sharp conditions for this can be found in [36].

Using a notation as in Section 2 and integrating out the distribution of
Ut+1, we obtain the transition probability Pj of Xt+1 given that Xt = x and
jt+1 = j: for any z > 0 and x 2 X with �(x) > 0, setting Qj(zjx�j) =
�j(Aj(z;x�j)), we have that

Pj(�(Xn+1) < zjXn = x) =
1

�(x)

Z �(x)

0

maxf1�
Qj(zjx�j)

Qj(wjx�j)
; 0gdw :

This is an average over the interval (0; �(x)) of the function q(w) = maxf1�
Qj(zjx�j)

Qj(wjx�j)
; 0g, which is non-increasing, so Pj(�(Xn+1) < zjXn = x) is in fact a

non-increasing function of �(x). Hence the x-chain is seen to be stochastically
monotone with respect to the density ordering (2).

However, for d � 2 (if d = 1 we are just considering a simple slice sampler
as in Section 2) it still remains to realise how to construct a monotone SRS
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for the single-component slice sampler. The vertical update is naturally done
as in the simple slice sampler, but the horizontal single-component update is
more complicated because of the conditioning on variables x�j. This means
that the constructions in Sections 4{5 can not immediately be extended to
the present case.

As an illuminating example of the distinction between stochastic and re-
alisable monotonicity, consider the case where d = 2, �j is Lebesgue measure
restricted to Xj = [0; 1]; j = 1; 2, and �(x1; x2) = 1[minfjx1 � x2j; 1� jx1 �
x2jg < 1=4] (i.e. a hard core process with 2 points de�ned on the unit in-
terval wrapped on a circle). Obviously we have stochastic monotonicity as
Pj(�(Xn+1) � zjXn = x) = 1[z � 1], but this turns out not to be helpful
in trying to construct a monotone single-component slice sampler. x1j(x2; u)
follows a uniform distribution on A1(x2; u) = fx1 2 [0; 1] : jx1 � x2j � 1=4
or � 3=4g (and similarly for x2j(x1; u) if we exchange the roles of the indices
1 and 2). Now, it seems impossible to achieve realisable monotonicity. We
leave the details of this as an easy exercise for the reader.

However, as exempli�ed below, imposing further \structure" on the tar-
get density � it may be possible to construct perfect single-component slice
samplers even if the SRS is non-monotone.

Example 4: Ising and other auto-models. Consider the case where
each Xj � [0;1) and we have pairwise interactions as in

�(x1; : : : ; xd) = exp(
X

1�j<k�d

�j;kxjxk) ;

where the �j;k are real parameters chosen so that � is integrable with respect
to a speci�ed �. Examples include the Ising model and the following auto-
models ([3, 7]):

� auto-binomial: Xj = f0; : : : ; njg, �j is Binomial(nj; pj) with 0 < pj <
1, nj 2 N, and �j;k 2 R;

� auto-Poisson: Xj = f0; 1; : : : g, �j is Poisson(�j) with �j > 0 and
�j;k � 0;

� auto-gamma: Xj = [0;1), �j is Gamma(�j; �j) with �j > 0, �j > 0,
and �j;k � 0.
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Note that the symmetric Ising model in Example 2 and the extension studied
in Example 3 are particular cases of the auto-binomial model (taking all
nj = 1) except that we now allow for repulsive interaction (the case where
all �j;k � 0). Perfect simulation of such models based on Gibbs sampling
and extensions of Fill algorithms [10] are studied in [25, 27, 39].

Below we consider perfect single-component slice sampling in the case
when all �j(Xj) <1.

One SRS construction is the following modi�cation of that in Section 4.
For vertical updates we use, as before, Ut(x) = �t�(x) with �t � U [(0; 1)]. If
u = ��(x) and we set �k;j = �j;k and �j;j = 0, then

Aj(u;x�j) = Xj \ Jj(�;x)

where

Jj(�;x) = fyj � 0 : (yj � xj)
X
k

�j;kxk > log �g

is an interval. Now suppose jt = j and draw

Vt;1 � Uj[Xj] ; Vt;m � Uj[Xj \ (Vt;m�1;1)]; m = 2; 3; : : :

(setting Vt;m =1 if Xj \ (Vt;m�1;1) = ;). Then the SRS is given by

f(x; (�t; fVt;mg
1
m=1; j)) = �rst Vt;m with Vt;m 2 Jj(�t;x) : (20)

This is only monotone in the case of attractive �, i.e. when all �j;k � 0.

Furthermore, we de�ne recursively upper X
(xmax;Ti)
t and lower X

(xmin;Ti)
t

chains as follows, where we use again a notation as in Section 4 (though we do
not exactly require the existence of a maximal and a minimal state). Assume
�rst, for simplicity, that all �j;k � 0 (the attractive case) and that each space
Xj contains its upper bound cj = supXj <1 (this is usually needed in order
to ensure integrability). Then Jj(�;x) decreases as x increases with respect to
the natural ordering on Rd (which in the present attractive case is e�ectively
identical to the density ordering). So we use the same perfect simulation
algorithm as in Section 4 except that we now use the construction given in
(20) for X(xmax;Ti) and respectively X(xmin;Ti), and set c = (c1; : : : ; cn),

X
(xmax;Ti)
Ti

= �rst VTi;m with VTi;m 2 Jj(�Ti ; c) (j = jTi)
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and

X
(xmin;Ti)
Ti

= VTi;1 :

In the opposite repulsive case where all �j;k � 0, we have that Jj(�;x)
increases as xj increases, while Jj(�;x) still decreases as x�j increases (with
respect to the natural ordering on Rd�1). Notice that, as in the auto-Poisson
and auto-gamma models, we do not assume anymore that the cj are �nite.
However we now assume that 0 2 Xj; j = 1; : : : ; d and let 0 = (0; : : : ; 0) be
the maximal state. Then we can set

X
(xmax;Ti)
Ti

= �rst VTi;m with VTi;m 2 Jj(�Ti ; 0) (j = jTi) ;

X
xmin;Ti)
Ti

= VTi;1 ;

and use for t > Ti, j = jt and X
(xmin;Ti)
t�1 = x � X

(xmax;Ti)
t�1 = y a trick �rst

introduced in [18]:

X
(xmax;Ti)
t = �rst Vt;m with Vt;m 2 Jj(�t; (x1; : : : ; xj�1; yj; xj+1; : : : ; xd)) ;

X
(xmin;Ti)
t = �rst Vt;m with Vt;m 2 Jj(�t; (y1; : : : ; yj�1; xj; yj+1; : : : ; yd)) :

One can similarly handle the general case where the �j;k may have di�erent
signs.

7 Conclusion and discussion

Coupling techniques have been proven to be a very powerful tool in assessing
convergence of Monte Carlo Markov chains. In [33] for example, a conver-
gence diagnostic is obtained by running coupled chains from the present into
the future (while in perfect simulations the coupled chains evolve from the
past to the present). In [21] bounds on the distance to stationarity are pro-
vided by coupling two chains one of which is started in equilibrium. Shift
coupling [1] has been used in [34] to examine convergence of ergodic averages
of Markov chain distributions.

The present work provides procedures for the implementation of various
versions of slice sampling by perfect simulation. The algorithm for the simple
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slice sampler is quite general, however in the non-uniformly ergodic case, the
need to produce an appropriate bounding process does limit the applicability
of the result. Notice though that we only need to \bound" the tails of the
target distribution. As done in [15] we can partition the support of the target
distribution, use di�erent samplers on di�erent regions and then combine
them in a single CFTP algorithm. In particular, on bounded regions, where
we can �nd a minimal and maximal state, there is no need for a lower or
upper bounding process, we can simply proceed as in Section 4. We only
need to make sure that, when combining di�erent samplers, the monotonicity
property of the resulting SRS construction is preserved.

We started for simplicity with the case of the simple slice sampler (Sec-
tions 2{5). Example 1 and [5] demonstrate the applicability of perfect slice
sampling. However, as pointed out in Section 6, perfect product and single-
component slice samplers seem more relevant for many applications. The
techniques apply in theory on a certain range of models, but whether our
perfect samplers are useful in practice depends of course much on the prop-
erties of the particular models.

Like many other perfect samplers introduced so far in the literature, ours
may turn out to be successful for rather limited cases of models of \real"
interest. In our opinion perfect simulation has so far proved more successful
for problems in spatial statistics, stochastic geometry and statistical physics
(see e.g. [16, 18, 17, 19, 20, 25, 27, 31]) than in Bayesian statistics (see e.g. [5,
15, 26, 28, 29]); certainly, as perfect simulation is a rapidly developing area of
research, this view may be changed in the future. In the examples considered
we have also focused on spatial models. As indicated there exist alternative
perfect simulation procedures described elsewhere in the literature, but at
this exploratory stage we have only compared the various method in the case
of the Ising model with no external �eld. Possibly the perfect product and
single-component slice samplers for the Ising model with an external �eld
included may prove to be useful for problems in Bayesian image analysis.
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