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Ole E. Barndorff-Nielsen, Fred Espen Benth and Jens Ledet Jensen
Department of Theoretical Statistics,

Departments of Mathematical Sciences and MaPhySto∗,
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

Certain types of Markov jump processes x(t) with continuous state
space and one or more absorbing states are studied. Cases where the
transition rate in state x is of the form λ(x) = |x|δ in a neighbourhood
of the origin in Rd are considered, in particular. This type of problem
arises from quantum physics in the study of laser cooling of atoms, and
the present paper connects to recent work in the physics literature. The
main question addressed is that of the asymptotic behaviour of x(t) near
the origin for large t. The study involves solution of a renewal equation
problem in continuous state space.
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1 Introduction

Laser cooling of atoms is a recently developed field in physics of great current in-
terest, and the 1997 Nobel price in Physics was awarded for pathbreaking work in
this field. The most effective cooling techniques are capable of bringing down the
temperature to the astonishingly low order of about one nano-Kelvin. Stochas-
tic reasoning has played a significant role in understanding and improving the
effectiveness of the cooling procedures. We refer to Barndorff-Nielsen and Benth
(1999) for an account of this.

The quantum mechanical processes involved in the cooling are of great com-
plexity but, as explained in Bardou et al. (1999) (cf. also Bardou et al., 1994,
Bardou and Castin, 1998, and Barndorff-Nielsen and Benth (1999)), a key as-
pect for the understanding can be formulated in classical probabilistic terms as
follows. Consider a Markov jump process x(t) in a region B of Rd containing
the origin, let λ(x) denote the jump intensity in state x ∈ B and suppose that
λ is a smooth function of x and such that λ(0) = 0 while λ(x) > 0 for x 6= 0.
Her x(t) represents the momentum of the atom at time t. The problem consists
in mathematically describing the behaviour of x(t) near the origin, as t tends
to ∞, two main questions being how much of the total experimental time does
an atom spend in a small neighbourhood - the ‘trap’ - of 0 and, given that the
atom is in the trap, what is the distribution of its momentum. In analysing this
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problem the physicists made several simplifying Ansätze. An aim of the work re-
ported here has been to give an analysis of the situation, in order to see whether
the conclusions about the (first order) asymptotics stand without these Ansätze.
However, quite apart from the physical motivation, it would seem of interest to
study such Markov jump processes with a singularity.

In the present paper, we focus on the cases where λ is of the form λ(x) = |x|δ,
at least near the origin. Specifications of this type, in particular the cases δ = 2
or 4, rest on the basic (quantum) physical nature of the cooling methodology (see,
for instance, Barndorff-Nielsen and Benth (1999) and references given there).

Section 2 sets up the relevant Markov process model in its general form and
gives the solution to Kolmogorov’s forward equation in terms of the solution to a
generalized renewal equation. We have not, so far, been able to give a complete
rigorous treatment of the asymptotic behaviour for arbitrary jump transition
laws, but in Section 3 such a treatment is provided for the case where the tran-
sition law does not depend on present position. The main results are contained
in Proposition 3.2 which specifies the asymptotic behaviour of the law of x(t), in
terms of a confluent hypergeometric function. The asymptotic behaviour of the
time spent in the present state since the last jump to that state is also derived,
and several examples are given. It seems likely that the results obtained will hold
for general transition laws, as we argue in Section 5. However, since a complete
resolution is not presently available, to throw added light on the situation we
have, in Section 4, considered a discretized version of the model for which we
are able to treat state-dependent transitions. The concluding Section 6 briefly
discusses some related work, including a comparison with the results obtained
in Bardou et al. (1999), and indicates several possibilities for extensions of the
theory.

2 General model

We will consider a particle moving around in the region B in Rd. When the
particle is at position x it stays there for a period that is exponentially distributed
with mean λ(x)−1. When the particle jumps the distribution of the new point
has density p(·|x). A special case of some interest is p(y|x) = q(x)1(y ∈ Bx),
where Bx = B(x, r) ∩ B with B(x, r) a ball with center x and radius r and
q(x) = 1/|Bx|, that is q(x) is one divided by the volume of Bx. We assume that
the initial position x(0) of the particle is distributed according to the density a(x)
with respect to Lebesgue measure. We will make the assumptions that

p(y|x) ≤ k1 ∀ x, y ∈ B, and λ(x) ≤ Λ ∀ x ∈ B, (1)

for some constants k1 and Λ. From these assumptions we show in Appendix A
that x(t) has a density p(x, t) with respect to Lebesgue measure and that this
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density satisfies Kolmogorov’s forward equation

pt(x, t) = −λ(x)p(x, t) +
∫
B

λ(y)p(x|yp(y, t)dy, (2)

where pt(x, t) is the derivative of p(x, t) with respect to t. Define

h(x, t) =
∫
B

λ(y)p(x|y)p(y, t)dy, (3)

so that Kolmogorov’s forward equation (2) can be written

pt(x, t) = −λ(x)p(x, t) + h(x, t). (4)

If h(x, ·) is known the unique solution to (4) is given as

p(x, t) = a(x)e−tλ(x) +
∫ t

0
h(x, τ)e−(t−τ)λ(x)dτ. (5)

Direct checking shows that (5) is in fact a solution to (4). For given h(x, ·) it is
also the unique solution with p(x, 0) = a(x): if p1 and p2 are solutions we have
that m(x, t) = p1(x, t) − p2(x, t) satisfies the equation mt(x, t) = −λ(x)m(x, t),
or m(x, t) = c(x) exp(−tλ(x)) for some function c(x), but since m(x, 0) = 0 we
have c(x) = 0.

We will use (5) to establish the asymptotic form of p(x, t) for t → ∞ from
the asymptotic form of h(x, t). Note that

h(x, t) ≤ k1Λ and
∫
B

h(x, t)dx ≤ Λ.

To study h(x, t) we derive a renewal type equation. Define

f(x, y, s) = p(x|y)λ(y)e−sλ(y)

and
v(x, t) =

∫
B

a(y)f(x, y, t)dy.

From the definition (3) we get

h(x, t) =
∫
B

{
p(x|y)λ(y)p(y, t)− p(x|y)λ(y)a(y)e−tλ(y)

}
dy + v(x, t)

=
∫
B

{[
p(x|y)λ(y)p(y, t)e−(t−τ)λ(y)

]τ=t

τ=0

}
dy + v(x, t)

=
∫
B

∫ t

0

{
p(x|y)λ(y)pt(y, τ)e−(t−τ)λ(y) + p(x|y)λ(y)2p(y, τ)e−(t−τ)λ(y)

}
dτdy

+v(x, t)

Using (4) we find that

h(x, t) = v(x, t) +
∫
B

∫ t

0
h(y, t− w)f(x, y, w)dwdy, (6)
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As for the ordinary renewal equation we can write the solution to (6) explicitly
in terms of f . Define recursively, for x, y ∈ B,

fn∗(x, y, t) =
∫
B

∫ t

0
f (n−1)∗(z, y, t− w)f(x, z, w)dwdz (7)

with f 1∗(x, y, t) = f(x, y, t). Next define the (generalized) renewal density

u(x, y, t) =
∞∑
n=1

fn∗(x, y, t). (8)

Proposition 2.1 We have that the renewal density u(x, y, t) is bounded on B ×
B × [0, t] for any t > 0, and

h(x, t) = v(x, t) +
∫
B

∫ t

0
v(y, t− w)u(x, y, w)dwdy (9)

exists and solves (6). The solution is unique among all functions h̃ satisfying
h̃ ≥ 0 and sups≤t

∫
B h̃(x, s)dx <∞.

Proof. We first obtain a bound on fn∗(x, y, t). We have

fn∗(z0, zn, wn)

=
∫
B
· · ·

∫
B

∫ wn

0
· · ·

∫ w2

0

n∏
i=1

f(zi−1, zi, wi − wi−1)dzn−1 · · ·dz1dwn−1 · · ·dw1

=
∫
B
· · ·

∫
B

n∏
i=1

p(zi|zi−1)

×
(∫ wn

0
· · ·

∫ w2

0

n∏
i=1

λ(zi)e
−λ(zi)(wi−wi−1)dwn−1 · · ·dw1

)
dzn−1 · · ·dz1. (10)

For the inner integrals in (10) we have the bound

Λn
∫ wn

0
· · ·

∫ w2

0
dwn−1 · · ·dw1 =

Λnwn−1
n

(n− 1)!
≤ Λntn−1

(n− 1)!

for wn ≤ t. We then obtain for (10) the bound

fn∗(z0, zn, wn) ≤ ct(
1

2
)n
∫
B
· · ·

∫
B

n∏
i=1

p(zi−1|zi)dzn−1 · · ·dz1 =
Λntn−1

(n− 1)!
pn(z0|zn),

(11)
where pn(x|y) is the n-step transition density for a Markov chain with transition
density p(x|y). From (1) we have pn(x|y) ≤ k1 and we therefore obtain

u(x, y, s) ≤
∞∑
n=1

Λntn−1

(n− 1)!
pn(x|y) = k1ΛeΛt for s ≤ t, x, y ∈ B.
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This establishes the boundedness of u on B × B × [0, t] for any t > 0. Since∫
B v(y, s)dy is bounded by Λ the integral in (9) is less than (Λt)k1ΛeΛt and so the

right hand side of (9) is well defined. Furthermore, we find∫
B

∫
B

∫ t

0
v(y, t− w)u(x, y, w)dwdydx ≤

∫
B

∫ t

0
ΛeΛwv(y, t− w)dwdy

≤ Λ2
∫ t

0
eΛwdw

≤ ΛeΛt

so that sups≤t
∫
B h(x, s)dx ≤ Λ + ΛeΛt for h(x, t) defined in (9.

Let us denote the right hand side of (9) by h̃(x, t). That this is a solution to
(6) follows from∫
B

∫ t

0
h̃(y, t− w)f(x, y, w)dwdy + v(x, t)

=
∫
B

∫ t

0

(
v(y, t− w) +

∫
B

∫ t−w

0
v(z, t− w − ξ)u(y, z, ξ)dξdz

)
f(x, y, w)dwdy

+v(x, t)

=
∫
B

∫ t

0
v(y, t− w)

∞∑
n=1

fn∗(x, y, w)dwdy + v(x, t)

= h̃(x, t).

If h1 and h2 are two solutions to (6) we have

(h1 − h2)(x, t) =
∫
B

∫ t

0
(h1 − h2)(y, t− w)f(x, y, w)dwdy.

Iteration of this equation gives for any n

(h1 − h2)(x, t) =
∫
B

∫ t

0
(h1 − h2)(y, t− w)fn∗(x, y, w)dwdy,

and from (11) we therefore find

|h1(x, t)− h2(x, t)| ≤ k1
Λntn−1

(n− 1)!
tkt, (12)

where
kt = sup

s≤t

∫
B

h1(x, s)dx + sup
s≤t

∫
B

h2(x, s)dx.

Letting n tend to infinity in (12) we find h1 = h2 provided that kt is finite for
every t. 2

Thus, in summary, the density p(x, t) is given as the solution (5) to Kol-
mogorov’s forward equation and with the function h(x, t) given through (9). We
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return to the general setup of this section in Section 5 making a conjecture as to
the asymptotic behaviour of the solution to the equation (6). First, however, we
turn to the special case where p(y|x) does not depend on x. In that case we are
able to give a complete rigorous discussion of the (first order) asymptotics for the
physically motivated forms of λ(x) mentioned in the Introduction.

3 Simple model

In this section we consider the special case of the general model where a jump is
independent of the present position, that is, we assume that p(y|x) is a function
b(y) independent of x. In this situation the renewal equation (6) reduces to an
ordinary renewal equation for the function g(t) defined in (14) below and this
allows us to derive the asymptotic form of the function. From this we next
establish the asymptotic form of the density p(x, t).

We will assume that the density b is a bounded and continuous function. The
initial density a(·) is also assumed bounded and continuous. The Kolmogorov
forward equation (2) becomes for the special case considered here

pt(x, t) = −λ(x)p(x, t) + b(x)
∫
B

λ(y)p(y, t)dy. (13)

Define
g(t) =

∫
B

λ(y)p(y, t)dy. (14)

Then the function h(x, t) from the general case is given by h(x, t) = b(x)g(t).

3.1 Properties of g

We start by defining

v(t) =
∫
B

a(y)λ(y)e−tλ(y)dy and u(t) =
∫
B

b(y)λ(y)e−tλ(y)dy.

Similarly to the derivation of (6) we find

g(t) =
∫
B

{
λ(y)p(y, t)− a(y)λ(y)e−tλ(y)

}
dy + v(t)

=
∫
B

{[
λ(y)p(y, τ)e−(t−τ)λ(y)

]τ=t

τ=0

}
dy + v(t)

=
∫
B

∫ t

0

{
λ(y)pt(y, τ)e−(t−τ)λ(y) + λ(y)2p(y, τ)e−(t−τ)λ(y)

}
dτdy + v(t)

=
∫
B

∫ t

0
b(y)g(τ)λ(y)e−(t−τ)λ(y)dτdy + v(t)

= v(t) +
∫ t

0
g(t− s)u(s)ds,
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where in the fourth line we have used (13). Thus g satisfies the renewal equation

g(t) = v(t) +
∫ t

0
g(t− s)u(s)ds. (15)

According to Feller (1966, VI.6) the solution to the equation (15) is given by

g(t) =
∫ t

0
v(t− s)Q(ds), (16)

where Q(s) =
∑∞
n=0 Un∗(s) with U(s) =

∫ s
0 u(τ)dτ . The solution is unique among

functions that are bounded on bounded intervals.
We will study the asymptotic behaviour of g(t) as t→∞ from the properties

of u and v for large values of t. In Section 3.4 we show that for the physically
motivated choices of λ(x) we will have that u and v are asymptotically power
functions of t. In the next proposition we consider different cases according to
the value of α > 0 in u(t) ∼ ct−(1+α) for t→∞. We then have that

1− U(t) =
∫ ∞
t

u(τ)dτ ∼ c

α
t−α

and

m(t) =
∫ t

0
(1− U(τ))dτ ∼

{
c

α(1−α)
t1−α α < 1

c log(t) α = 1.
(17)

Furthermore, if α > 1 we have

µ = m(∞) =
∫ ∞

0
tu(t)dt =

∫ ∞
0

∫
B

b(y)tλ(y)e−tλ(y)dydt =
∫
B

b(y)

λ(y)
dy <∞ (18)

Proposition 3.1 Assume that u(t) ∼ ct−(1+α) and v(t) ∼ c1t
−(1+α) for t → ∞.

Then

(i) if α > 1 we have g(t)→ µ−1 for t→∞, where µ =
∫∞

0 τu(τ)dτ ;

(ii) if α = 1 we have g(t) ∼ {c log t}−1 for t→∞;

(iii) if 1
2

< α < 1 we have g(t) ∼ α{cΓ(α)Γ(1− α)}−1t−(1−α) for t→∞;

(iv) if 0 < α ≤ 1
2

we have G(t) =
∫ t
0 g(τ)dτ ∼ {cΓ(α)Γ(1− α)}−1tα for t→∞.

Proof. According to Feller (1966, XI.1, Theorem 2) we have in the case µ =∫∞
0 τu(τ)dτ <∞ that g(t)→ 1

µ

∫∞
0 v(t)dt, which proves (i).

The cases (ii) and (iii) are obtained from Erickson (1970, Theorem 3):

g(t) ∼ {Γ(α)Γ(2− α)}−1
(∫ ∞

0
v(t)dt

)
m(t)−1

7



with m(t) given in (17) above.
For case (iv) define Ĝ(s) =

∫∞
0 e−stg(t)dt, V̂ (s) =

∫∞
0 e−stv(t)dt, and Û(s) =∫∞

0 e−stu(t)dt. From the renewal equation (15) we have

Ĝ(s) = V̂ (s) + Ĝ(s)Û(s),

or

Ĝ(s) =
V̂ (s)

1− Û(s)
. (19)

From the assumption on u(·) we have that 1 − U(t) ∼ c
α
t−α. From Bingham,

Goldie and Teugels (1987, Corollary 8.1.7) we find that 1− Û(s) ∼ sα cΓ(1−α)
α

for
s→ 0, and from (19) we see that

Ĝ(s) ∼ s−α
α

cΓ(1− α)
for s→ 0.

Karamata’s Tauberian theorem (Bingham et.al., Theorem 1.7.1) finally gives

G(t) ∼ tα
α

cΓ(1− α)Γ(1 + α)
.

2

3.2 Properties of p(x, t)

Noting that h(x, t) = b(x)g(t) we have from (5) that the solution to Kolmogorov’s
equation (13) is given by

p(x, t) = e−tλ(x)
{
a(x) + b(x)

∫ t

0
g(τ)eτλ(x)dτ

}
. (20)

Define the function Ψ(z, β) to be

Ψ(z, β) =
∫ 1

0
(1− s)β−1e−szds (21)

for z ≥ 0 and 0 < β ≤ 1. Apart from a norming constant this is a type I confluent
hypergeometric function. Note that for β = 1 we have

Ψ(z, 1) =
1− e−z

z
.

Proposition 3.2 Assume that b is bounded. If

(i) g(t)→ c, 0 < c <∞, then

p(x, t)
1 + tλ(x)

t
= cb(x)(1 + tλ(x))Ψ(tλ(x), 1) + o(1)

and the o(1) term is uniform in x;
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(ii) g(t) ∼ c/ log t then

p(x, t)
1 + tλ(x)

t
log t = cb(x)(1 + tλ(x))Ψ(tλ(x), 1) + o(1)

and the o(1) term is uniform in x;

(iii) g(t) ∼ ct−γ, 0 < γ < 1, then

p(x, t)
1 + tλ(x)

t1−γ = cb(x)(1 + tλ(x))Ψ(tλ(x), 1− γ) + o(1)

and the o(1) term is uniform in x;

(iv) G(t) =
∫ t
0 g(τ)dτ ∼ ct1−γ/(1− γ), 0 < γ < 1, then

p(x, t)t−(1−γ) = cb(x)Ψ(tλ(x), 1− γ) + o(1)

and the o(1) term is uniform in x (note that in this case the error o(1) is
not a relative error for tλ(x) large).

Proof. We use formula (20) and write λ for λ(x). In case (i) we have

a(x)e−tλ
1 + tλ

t
= O(t−1) = o(1).

For the integral in (20) we consider the cases tλ ≥ 1 and tλ < 1 separately. In
the former case we write

1 + tλ

t

∫ t

0
g(τ)e−(t−τ)λdτ

=
1 + tλ

tλ

∫ tλ

0
g(t− y

λ
)e−ydy

=
1 + tλ

tλ

(∫ tλ(1−ε)

0
+
∫ t

tλ(1−ε)

)

=
1 + tλ

tλ

(∫ tλ(1−ε)

0
c(1 + o(1))e−ydy + O(εtλe−tλ(1−ε))

)

= c
1 + tλ

tλ

∫ tλ

0
e−ydy + o(1),

where ε is chosen so that ε→ 0 and tε→∞. For the case tλ < 1 we write
1 + tλ

t

∫ t

0
g(τ)e−(t−τ)λdτ

= (1 + tλ)
∫ 1

0
g(tw)e−(1−w)tλdw

= (1 + tλ)
(∫ ε

0
+
∫ 1

ε

)
= (1 + tλ)

(
O(ε) +

∫ 1

ε
c(1 + o(1))e−(1−w)tλdw

)
= c(1 + tλ)

∫ 1

0
e−(1−w)tλdw + o(1),
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with ε chosen as before.
In case (ii) we proceed exactly as above. In the situation with tλ ≥ 1 we get

a term O(log(t)εtλe−tλ(1−ε)) and therefore need that ε log(t) → 0. We can take
ε = (log t)−2 to achieve this. Furthermore, we use that

g(t− y

λ
) log t =

c log t

log t + log(1− y
tλ

)
(1 + o(1)) = c + o(1)

for y < tλ(1− ε).
In case (iii) the proof is also as before. For tλ ≥ 1 we find

1 + tλ

t1−γ

∫ t

0
g(τ)e−(t−τ)λdτ =

1 + tλ

tλ

(∫ tλ

0
c(1− y

tλ
)−γe−ydy + O(tγεtλe−tλ(1−ε))

)
and we must require that tγε→ 0.

For case (iv) the proof is slightly different. We rewrite the integral as

t−(1−γ)
∫ t

0
g(τ)e−(t−τ)λdτ

= t−(1−γ)
{
G(t)−

∫ t

0
G(τ)λe−(t−τ)λdτ

}
=

G(t)

t1−γ

{
1−

∫ tλ

0

G(t− y
λ
)

G(t)
e−ydy

}
,

and as before the integral is split into the two parts with 0 < y < tλ(1− ε) and
tλ(1− ε) < y < t. We then end up with

G(t)

t1−γ

{
(1− γ)

∫ 1

0
(1− s)−γe−stλds + o(1)

}
.

Since the integral tends to zero for tλ large the error is not relative in this limit.
2

Let us conclude this section with a discussion of case (i) in Proposition 3.2,
where the Markov process x(t) actually admits an invariant distribution. If we
let t→∞ in

∫
B p(x, t)dx = 1 we see from (i) in Proposition 3.2 that the constant

c is µ−1, in accordance with (i) in Proposition 3.1. In this case it follows from
(18) that

ω(x) =
b(x)

µλ(x)
.

is a probability density. If we take the initial density a(x) = ω(x) we see that
v(t) = µ−1

∫
B b(x) exp(−tλ(x))dx and U(t) =

∫
B b(x)[1 − exp(−tλ(x))]dx = 1 −

µv(t). It therefore follows that g(t) = µ−1 solves the renewal equation (15). From
(20) we then have

p(x, t) =
b(x)

µλ(x)
e−tλ(x) + b(x)µ−1(1− e−tλ(x))λ(x)−1 = ω(x),

10



that is, ω(x) is an invariant density. We can rewrite (i) in Proposition 3.2 in the
form

p(x, t) = ω(x)(1− e−tλ(x)) +
t

1 + tλ(x)
o(1),

which shows that p(x, t) converge to ω(x), but the convergence is not uniform
near λ(x) = 0.

3.3 Time spent in present state

It is of some interest to consider, together with the momentum at time t, that
is x(t), also the time spent in state x(t) since the last transition to that state.
Thus consider the pair of variables (x(t), u(t)), where u(t) is the time spent in the
present state x(t). Since the event {u(t) > u, x(t) = x} is the same as x(t−u) = x
and no jumps having taken place in the time interval from t−u to t, we have that
the density of x(t) constrained to the event u(t) > u is p(x, t − u) exp(−λ(x)u).
This shows that the conditional probability of u(t) > u given that x(t) = x is

P (u(t) > u|x(t) = x) =
p(x, t− u)

p(x, t)
e−λ(x)u. (22)

We will now consider the case where both t→∞ and t− u→∞. We then have
from Proposition 3.2

P (u(t) > u|x(t) = x) ∼


1−e−(t−u)λ(x)

1−e−tλ(x) e−λ(x)u case (i)
(1−e−(t−u)λ(x)) log(t)

(1−e−tλ(x)) log(t−u)
e−λ(x)u case (ii)

(1− u
t
)1−γ Ψ((t−u)λ(x),1−γ)

Ψ(tλ(x),1−γ)
e−λ(x)u case (iii).

Letting u and x be fixed we get in all three cases the limit

limP (u(t) > u|x(t) = x) = e−λ(x)u,

that is, we get an exponential distribution in the limit. However, if instead we
fix w = tλ(x), corresponding typically to x tending to zero, and at the same time
scale u by considering the new variable z = u/t we find

P (u(t) > tz|tλ(x(t)) = w) ∼


1−e−(1−z)w

1−e−w e−wz case (i)
(1−e−(1−z)w)

(1−e−w)
e−wz case (ii)

(1− z)1−γ Ψ((1−z)w,1−γ)
Ψ(w,1−γ)

e−wz case (iii).

Note that in case (ii) there is a non-uniformity in z since we have replaced (log(t)+
log(1− z))/ log t by one.
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3.4 Examples

Example 3.3 Assume that λ(x) = |x|δ for |x| ≤ c1 and λ(x) ≥ c2 for |x| > c1

for some positive constants c1 and c2. Assume also that b(0) > 0. Then we have

u(t) =
∫
B

b(y)λ(y)e−tλ(y)dx

=
∫
y∈B(0,c1)

b(y)λ(y)e−tλ(y)dx + O(Λe−tc2)

= t−(1+d/δ)
∫
t1/δB(0,c1)

b(wt−1/δ)|w|δe−|w|δdw + O(Λe−tc2)

∼ b(0)
Cd

t1+d/δ

∫ c1t1/δ

0
rd−1+δe−r

δ

dr

∼ b(0)
CdΓ(1 + d/δ)

δt1+d/δ
, (23)

where C1 = 2, C2 = 2π, and C3 = 4π. The same holds with u replaced by v
and b(0) replaced by a(0), assuming that a(0) > 0. This justifies the assumption
made in Proposition 3.1. 2

Example 3.4 Let λ(x) = |x|δ and let b(0) > 0 and a(0) > 0. From (23) we
have

u(t) ∼ b(0)
CdΓ(1 + d/δ)

δt1+d/δ

Define w = xt1/δ. If d/δ < 1 we have from (23) and Proposition 3.1 that G(t) ∼
c1t

d/δ. We then obtain from Proposition 3.2 that the density pw(w, t) of w is

pw(w, t) = p(
w

t1/δ
, t)t−d/δ → c2Ψ(|w|δ, d/δ),

where

c2 = δ{CdΓ(
d

δ
)2Γ(1− d

δ
)}−1.

If d/δ = 1 the situation is somewhat different. For illustration let us take
d = 1 and λ(x) = |x|. If we define

w = sign(x)
log(1 + t|x|)

log(t)

the density of w is from (ii) in Proposition 3.2

pw(w, t) = p(x, t)
1 + t|x|

t
log(t) = cb(x)t|w|Ψ(t|w| − 1, 1) + o(1)→ cb(0)

for |w| < 1.
Finally, if d/δ > 1 we have the invariant density ω(x) = b(x)/(µ|x|δ), and the

convergence of p(x, t) to the stationary density is given in (i) of Proposition 3.2.
2
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Example 3.5 Consider d = 1 and

λ(x) =

{
|x|α |x| < 1/4
(1− |x|)β 3/4 < |x| < 1,

with a smooth transition in between the two regions and with α, β ≥ 2. Then

u(t) ∼ c1t
−(1+1/α) + c2t

−(1+1/β) ∼ c3t
−(1+1/γ),

with γ = max{α, β}. From Proposition 3.1(iv) we obtain

G(t) ∼ c4t
1/γ .

Letting w = t1/αx we find from Propostion 3.2(iv) that the density of w is

pw(w, t) = p(
w

t1/α
, t)t−1/α

= t1/γ−1/αp(
w

t1/α
, t)t−1/γ

= t1/γ−1/α

{
c5b(

w

t1/α
)Ψ(wα,

1

γ
) + o(1)

}
for |w| <

√
t/4.

This shows that, conditionally on being in the trap |x| < 1/4, the density of w
converges to

c6Ψ(wα, 1/β).

In case β > α we have γ = β. Then the probability of being in the trap
|x| < 1/4 is asymptotically c7t

−(β−α)/(αβ). When β = α a finite fraction of the
atoms will be in the trap as t→ ∞ and when β < α the probability of being in
the trap will tend to one. 2

4 Discretized model

In this section we consider another special case of the general model where the
jump density p(y|x) depends on x only through which ‘box’ x belongs to. The
general renewal equation (6) is then turned into a finite set of coupled renewal
equations for the functions gi defined in (25) below. For the equations that
we obtain some results are already known in the literature. We first find the
asymptotic form of the functions gi and this can then be combined with the
analysis in Proposition 3.2 to obtain the asymptotic form of the density p(x, t).

Let the box Bi have side length ∆ and center at i∆, i ∈ Zd. Let S = {i ∈
Zd|Bi ∩ B 6= ∅}. We assume that p(y|x) = p(y; i) for x ∈ Bi and that the
support of p(y; i) is in ∪j∈JiBi, where Ji consists of i and its neighbours, and
where |Ji| ≤ k0 for some constant k0. Define Sm = {i ∈ S|m ∈ Ji}. A special
case is Ji = {j||j − i| < κ, j ∈ S} and p(y; i) = qi/∆

d with qi = 1/|Ji|.
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The Kolmogorov forward equation is, for the case with x ∈ Bm,

pt(x, t) = −λ(x)p(x, t) +
∑
j∈Sm

p(x; j)
∫
Bj

λ(y)p(y, t)dy

= −λ(x)p(x, t) +
∑
j∈Sm

p(x; j)gj(t), (24)

where
gj(t) =

∫
Bj

λ(y)p(y, t)dy. (25)

We can now proceed as in the proof of (15) and get a set of coupled renewal
equations for gi. Define

vi(t) =
∫
Bi

a(y)λ(y)e−tλ(y)dy and uij(t) =
∫
Bi

p(y; j)λ(y)e−tλ(y)dy,

where a(y) is the initial density. We then find that

gi(t) =
∫
Bi

{
λ(y)p(y, t)− a(y)λ(y)e−tλ(y)

}
+ vi(t)

=
∫
Bi

∫ t

0

d

dτ

{
λ(y)p(y, τ)e−(t−τ)λ(y)

}
dτdy + vi(t)

=
∑
j∈Si

∫
Bi

∫ t

0
gj(τ)p(y; j)λ(y)e−(t−τ)λ(y)dτdy + vi(t)

=
∑
j∈Si

∫ t

0
gj(t− τ)uij(τ)dτ + vi(t). (26)

We can write the equations in vector form as

g(t) = v(t) + (M ∗ g)(t), (27)

where M is the matrix with (i, j)’th entry given by 1(j ∈ Si)Uij, Uij(t) =∫ t
0 uij(s)ds, and (M ∗ g)i =

∑
j Mij ∗ gj with ∗ being ordinary convolution.

Our problem is now to analyze (26) in order to etablish the asymptotic form
of gi(t) for t→∞. We first divide the discussion into the two cases of a bounded
region B and an unbounded region B. For the bounded case we make a further
division into the case where all the functions uij admit a finite mean and the case
where at least one function uij has an infinite mean. For the case of a finite mean
we can use results from the literature.

Case I: B bounded. We start with the case where the region B is bounded so
that S is finite. According to Crump (1970a, Theorem 2.1) the solution to (27)
is

g(t) = (Q ∗ v)(t),

14



where Q(t) =
∑∞
n=0 Mn∗(t) with M1∗ = M and Mn∗(t)ij =

∑
l

∫ t
0 M (n−1)∗(t −

s)ljMil(s)ds. From Crump (1970a, Theorem 3.1, 1970b) we can also get informa-
tion on the limiting behaviour of gi(t) in certain cases. Since

∫∞
0 uij(t)dt = p(i|j),

with p(i|j) =
∫
Bi

p(y; j)dy, we have that Mij(∞) = 1(j ∈ Si)p(i|j). Thus the
column sums are equal to one and the largest eigenvalue of M(∞) is one, which
allow us to use Theorem 3.1 in Crump (1970a). The theorem states that

gi(t)→
∑
j∈S

αij

∫ ∞
0

vj(s)ds =
∑
j∈S

αij

∫
Bj

a(y)dy, (28)

where the αij ’s will be non-zero only if all the Uij ’s have a finite mean, that is, if∫∞
0 tuij(t)dt =

∫
Bi

p(y; j)λ(y)−1dy <∞ for all i, j, or
∫
B p(y; j)λ(y)−1dy <∞ for

all j.

Case IA:
∫∞
0 tuij(t)dt <∞ for all i, j. We now assume that

∫
B p(y; j)λ(y)−1dy <

∞ for all j so that gi(t)→ ci > 0 for all i. Our problem is now to determine the
constant ci. Letting t tend to infinity in (26) we get

ci =
∑
j∈Si

cj

∫
Bi

p(y; j)dy =
∑
j∈Si

cjp(i|j).

We therefore conclude that cj = cπj for some constant c, where π is the invariant
distribution corresponding to the transition probabilities p(i|j). For x ∈ Bi the
solution to (24) is

p(x, t) = a(x)e−tλ(x) +
∑
j∈Si

p(x, j)
∫ t

0
gj(t− τ)e−τλ(x)dτ, (29)

Integrating with respect to x and letting t→∞ we obtain

1 =
∑
j∈S

cj

∫
B

p(x; j)

λ(x)
dx,

which shows that

c =

∑
j∈S

πj

∫
B

p(x; j)

λ(x)
dx

−1

.

Case IB:
∫∞
0 tuij(t)dt =∞ for some i, j. When some of the Uij ’s have an infinite

mean, that is
∫
B p(y; j)λ(y)−1dy = ∞ for some j, we proceed as in case (iv) of

Proposition 3.1. Let Ĝi, V̂i, and Ûij be the respective Laplace transforms. Then
from (26)

Ĝi(θ) = V̂i(θ) +
∑
j∈Si

Ĝj(θ)Ûij(θ), (30)

or in matrix form (using column vectors)

Ĝ(θ) = V̂ (θ) + D(θ)AĜ(θ),
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where A is the matrix with (i, j)’th entry 1(j ∈ Si) and D is the matrix with
elements Ûij(θ). We thus have

Ĝ(θ) = (I −D(θ)A)−1V̂ (θ). (31)

Summing (30) we get∑
i

Ĝi(θ) =
∑
i

V̂i(θ) +
∑
i,j

1(i ∈ Sj)Ûij(θ)Ĝj(θ),

or
0 =

∑
i

V̂i(θ) +
∑
i,j

1(i ∈ Sj)(Ûij(θ)− p(i|j))Ĝj(θ). (32)

Since

Ûij(θ) =
∫
Bi

p(y; j)
λ(y)

λ(y) + θ
dy → p(i|j) for θ → 0

and ∑
i

V̂i(θ) =
∫
B

a(y)
λ(y)

λ(y) + θ
dy → 1

we see from equation (32) that there must be an i, j, i ∈ Sj so that Ĝj(θ) tends

to infinity with the rate (Ûij(θ)− p(i|j))−1. However, (30) shows that all the Ĝj

have to tend to infinity at the same rate. Returning then to (32) we must have
that none of the terms 1(i ∈ Sj)(Ûij(θ)− p(i|j))Ĝj(θ) must tend to infinity, and

therefore the rate at which Ĝj(θ) tends to infinity is given as the inverse of the

maximum of Ûij(θ)− p(i|j). Let us therefore consider the case

Ûij(θ) =
∫
Bi

p(y; j)
λ(y)

λ(y) + θ
dy = p(i|j)− cijθ

βij + o(θβij), (33)

where cij and βij are positive constants and at least one βij is less than one (since
we have assumed that some of the Uij ’s have infinite mean). Let β = minij βij .
The argument above shows that

Ĝi(θ) ∼ c̃iθ
−β , (34)

and Karamata’s Tauberian theorem (Bingham et.al., Theorem 1.7.1) finally gives

Gi(t) ∼ c̃it
β/Γ(1 + β). (35)

We can find c̃i from (30). Multiplying both sides by θβ and letting θ → 0 we get
from (34)

c̃i =
∑
j∈Si

p(i|j)c̃j.
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This shows that c̃i = cπi for some constant c. To find c we return to (32). Letting
θ → 0 in this equation we get

1 = c
∑

i,j:βij=β

1(i ∈ Sj)cijπi,

with the cij ’s defined in (33).
Combining (29) with (35) we get as in Proposition 3.2, case (iv), the asymp-

totic form of p(x, t).
When instead of (33) we have that p(i|j)− Ûij(θ) is of order O(θ) for i 6= 0,

say, and p(i|j) − Û0j(θ) ∼ cjθ/ log(θ) we get Ĝi(θ) ∼ c̃i log(θ)/θ. Karamata’s
Tauberian theorem then gives that G(t) ∼ c̃it/ log(t)

Case II: B unbounded. To illustrate what can be done when B is not bounded
we turn to the case d = 1 and B = R. We will consider the special case with
Ji = {j||j − i| < κ} and p(y; i) = q/∆d with q = 1/|J0|. We will assume that for
some R we have

λ(x) = λ0 and a(x) = 0 for |x| > R. (36)

For |i| > R + κ the equation (30) reads

Ĝi(θ) =
λ0

λ0 + θ
q
∑
j∈Si

Ĝj(θ), (37)

For i > R + κ we have a finite difference equation. The solution to this is
determined by the roots of the equation

λ0

λ0 + θ

1

2κ + 1

κ∑
s=−κ

zs − 1 = 0. (38)

Since Gi is real we are only interested in the real roots of (38). A root has to be
different from 1 when θ > 0 and therefore a root cannot be a multiple root since
this would imply

κ∑
s=−κ

szs = 0.

Since Gi is bounded we look for the roots that are less than 1. Write z = 1− ε.
In the limit θ → 0 we have ε→ 0 and (38) becomes

1 +
θ

λ0
=

1

2κ + 1

κ∑
s=−κ

(1− sε +
1

2
s(s− 1)ε2 + (ε3)).

This shows that
ε = c

√
θ + O(θ).

Putting together our observations we have that

Ĝi(θ) = (1− ε(θ))i−(R+2κ)A(θ), for i ≥ R + 2κ. (39)
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For i < −(R + 2κ) we have a similar statement with the same ε(θ). We now use
(39) together with (32). This gives

0 =
∑
i

V̂i(θ) +
λ0

λ0 + θ

∑
|j|≥R+2κ

Ĝj(θ) +
∑

|j|<R+2κ

Ĝj(θ)

q
∑
i∈Sj

(Ûi(θ)− 1)


=

∑
i

V̂i(θ) +
λ0

λ0 + θ

2

ε(θ)
A(θ) +

∑
|j|<R+2κ

Ĝj(θ)

q
∑
i∈Sj

(Ûi(θ)− 1)

 (40)

where Ûi(θ) = Ûii(θ)/q and we have used that Ûij(θ) = 1(j ∈ Si)Ûii(θ). From

(30) we have that all the Ĝj(θ) appearing in (40) have the same asymptotic form
for θ → 0. Also from (39) we see that the asymptotic form of A(θ) is the same
as that of Ĝj(θ). Let us now assume that{

λ(x) = |x|δ for |x| < r
λ(x) > c > 0 for |x| > r.

(41)

Then we have

1− Ûi(θ) =

{
c1θ

d/δ + O(θ) for i = 0
θ + O(θ2) for i 6= 0.

Returning to (40) we have terms of the order θA(θ)/ε(θ), θA(θ) and θd/δA(θ).
The conclusion is therefore that

Ĝj(θ) ∼
{

c2θ
−1/2 if d/δ ≥ 1

2

c2θ
−d/δ if d/δ < 1

2

(42)

From here we proceed as before to get the asymptotic form of p(x, t), that is,
Karamata’s Tauberian theorem gives the asymptotic form of Gj(t) for large t
and then Proposition 3.2(iv) gives the asymptotic form of p(x, t).

In summary, the conclusion of this section parallels the conclusions from the
simple model in Section 3. Since our analysis shows that all the functions gi
appearing in (24) have the same asymptotic form they will give rise to the term
Ψ(tλ(x), β) in the asymptotic form of the density p(x, t). The difference is that
the function b(x) appearing in the results of Proposition 3.2 is replaced by∑

j∈Si
p(x, j)πj, for x ∈ Bi.

5 General case revisited

We now return to the general setup of Section 2. Our problem is to find the
asymptotic form of h(x, t) for t → ∞. To this end we transform (6) into an
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equation for the Laplace transform of h(x, t). We are not able at present to give a
completely rigorous analysis of this equation. Instead we indicate, non-rigorously,
what kind of asymptotic behaviour to expect for the Laplace transform, and then
by Karamata’s Tauberian theorem, what to expect for h(x, t) itself.

Let Ĥ(x, θ) =
∫∞
0 e−θth(x, t)dt be the Lapace transform of h(x, t). Since, by

(1), h(x, t) is clearly bounded we have that Ĥ(x, θ) is finite for θ > 0. From (6)
we find

Ĥ(x, θ) =
∫
B

a(y)p(x|y)
λ(y)

λ(y) + θ
dy +

∫
B

Ĥ(y, θ)p(x|y)
λ(y)

λ(y) + θ
dy. (43)

Define φ(θ) = supx∈B Ĥ(x, θ). Since φ(θ) → ∞ for θ → 0 we obtain from (43)
that

Ĥ(x, θ)

φ(θ)
=

V̂ (x, θ)

φ(θ)
+
∫
B

Ĥ(y, θ)

φ(θ)
p(x|y)

λ(y)

θ + λ(y)
dy

∼
∫
B

Ĥ(y, θ)

φ(θ)
p(x|y)dy,

for θ → 0. This shows that as θ tends to zero the function Ĥ(x, θ)/φ(θ) ap-
proaches an invariant function for the transition density p(x|y). Thus let κ(x) be
the solution to

κ(x) =
∫
B

κ(y)p(x|y)dy ∀ x ∈ B,

normalized so that supx κ(x) = 1. The above argument indicates that

Ĥ(x, θ) ∼ κ(y)φ(θ) for θ→ 0. (44)

In the special case where p(x|y) = 1(x ∈ By)q(y) with By = B ∩ B(y, r) and
q(y) = 1/|By| we get κ(y) = cq(y)−1.

To find the asymptotic form of φ(θ) we will assume that B is bounded, in
which case it seems plausible that the convergence in (44) is uniform in x. Inte-
grating (43) with respect to x we get

∫
B

Ĥ(y, θ)

φ(θ)

θ

θ + λ(y)
dy =

1

φ(θ)

∫
B

a(y)
λ(y)

θ + λ(y)
dy.

In the limit θ → 0 this gives us the relation∫
B

κ(y)
θ

θ + λ(y)
dy ∼ 1

φ(θ)
,

or

θφ(θ) ∼
(∫

B
κ(y)

1

θ + λ(y)
dy

)−1

. (45)
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If λ(y)−1 is integrable we immediately get that the right hand side of (45) con-
verges to (

∫
B κ(y)λ(y)dy)−1. To study the remaining cases we need to specify

λ(y). We will assume that λ(y) = |y|δ for |y| ≤ c1 and λ(y) ≥ c2 for |y| > c1.
The non-integrability of λ(y)−1 implies that d ≤ δ. We first note that

∫
B(0,c1)

|y|k
θ + |y|δdy = Cd

∫ c1

0

rk+d−1

θ + rδ
dr

= Cdθ
(k+d)/δ−1

∫ c1θ−1/δ

0

zk+d−1

1 + zδ
dz

∼ Cdθ
(k+d)/δ−1


∫∞
0

zk+d−1

1+zδ
dz k + d− δ < 0

log(θ−1)/δ k + d− δ = 0
(θ−1/δc1)

k+d−δ k + d− δ > 0.

Using this together with∫
B(0,c1)

κ(y)
1

θ + λ(y)
dy = κ(0)

∫
B(0,c1)

1

θ + λ(y)
dy + O

(∫
B(0,c1)

|y|
θ + λ(y)

dy

)

we find that the first term here dominates as θ tend to zero. Furthermore, the
integral for |y| > c1 is bounded, and we therfore end up with

φ(θ) ∼


θ−d/δ(Cdκ(0)

∫∞
0

zk+d−1

1+zδ
dz)−1 d < δ

δ/(Cdκ(0)θ log(θ−1)) d = δ(
θ
∫
B
κ(y)
λ(y)

dy
)−1

d > δ.

(46)

Using now Karamata’s Tauberian theorem we find

H(x, t) ∼



td/δκ(x)

Γ(1+d/δ)Cdκ(0)
∫∞

0
zk+d−1

1+zδ
dz

d < δ

t log(t)δκ(x)
Γ(2)Cdκ(0)

d = δ
tκ(x)

Γ(2)
∫
B

κ(y)
λ(y)

dy
d > δ.

(47)

With this result we can find the asymptotic form of p(x, t) as in Propostion 3.2.
When d > δ we have an invariant distribution with density ω(x) = cκ(x)/λ(x).

6 Concluding remarks

An equation similar to (6) has been considered in Mode (1971,1972). Using L2

theory the existence and the uniqueness of the solution is proved under conditions
that are satisfied in the set up here as long as the region B is bounded and λ(·)
is bounded. Mode (1971) study the equation (43) for the Laplace transform via
Fredholm theory in order to obtain an asymptotic form for θ → 0. An equation
for the Laplace transform of the renewal density u(x, y, t) is established which
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involves the Fredholm determinant. To study the latter Mode (1972) makes an
assumption that in our case translates into

∫
B

∫
B

p(x|y)2

λ(y)2
dxdy <∞.

This condition will typically not be satisfied in the cases of interest to us. It is
an interesting question, though, whether the Fredholm theory used by Mode can
still be used, via some other approach, to study the Fredholm determinant.

Schumitzky and Wenska (1975) have also studied an equation similar to (43).
They require that the integral operator in (43) is analytic in θ. Seemingly, to
apply this theory we need that the integral operator in (43) can be expanded
around θ = 0, which is not possible in our setup.

For the case of a finite set of coupled renewal equations, as in Section 4, we
have used results (Crump, 1970 a,b) for the case of a finite mean. We have not
been able to find similar results for the case of an infinite mean, that is it seems
to be an open question whether the result of Erickson (1970) for the ordinary
renewal equation can be generalized to the case of coupled renewal equations.

A number of generalizations to the model discussed here can be physically
motivated. For example it is of interest to consider a modification of λ to the form
λ(x) = c+|x|δ with c small. If c is kept fixed this is a trivial model, instead we can
imagine that c = c(t) with c(t)→ 0 for t→∞. Another generalization concerns
the waiting time distribution. For laser cooling the exponential distribution is an
approximation. A better approximation is obtained by letting the waiting time
be a sum, with a small number of terms, of exponentially distributed variables.
This can be incorporated into the model by including an extra discrete state
variable. These generalizations are discussed in Barndorff-Nielsen, Benth, and
Jensen (2000).

As demonstrated in Examples 3.4 and 3.5 when rescaling x by an appropriate
power of t we get a limiting distribution with a density proportional to Ψ(|w|δ, β).
This is in accordance with the findings in Bardou et al. (1999) and has further-
more being experimentally verified in Saubaméa, Leduc and Cohen-Tannoudji
(1999) for the case δ = 2 and β = 1/2. A difference between the treatment here
and the one given in Bardou et al. (1999) is that we are able to treat the time
spent in the present state and we are able to give a more complete description of
the case where an invariant distribution exists.

7 Appendix

In this appendix we verify that x(t) has a density with respect to Lebesgue
measure and we derive Kolmogorov’s forward equation for the density.

Let p(A, t, y) be the probability that the process is in the set A at time t given
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that it starts at y at time zero. We can write this probability as follows

p(A, t, y) = 1(y ∈ A)e−tλ(y) +
∞∑
i=1

∫
A

p(x, i, t|y)dx, (48)

where

p(x, i, t|y) =
∫
B
· · ·

∫
B

∫ t

0

∫ t

w1

· · ·
∫
wi−1

i∏
j=1

p(zi|zi−1)e
−λ(x)(t−wi)

×
i∏

j=1

λ(zj−1)e
−λ(zj−1)(wj−wj−1)dzi−1 · · ·dz1dw1 · · ·dwi, (49)

with zi = x, z0 = y and w0 = 0. Since x(0) has a density a(y) we see from (48)
that x(t) has a density p(x, t) given by

p(x, t) = e−tλ(x)a(x) +
∞∑
i=1

∫
B

p(x, i, t|y)a(y)dy.

We can use (48) also to establish Kolmogorov’s forward equation. We have that

p(x, t + δ) = e−δλ(x)p(x, t) +
∞∑
i=1

∫
B

p(x, i, δ|y)p(y, t)dy. (50)

From the assumption (1) we see that

p(x, i, δ|y) ≤ k1λ
i δ
i

i!
,

which implies the bound
∞∑
i=2

p(x, i, δ|y) ≤ k1(1− eδλ − δλeδλ) ≤ k2δ
2.

Furthermore,

p(x, 1, δ|y) =
∫ t

0
p(x|y)e−λ(x)(δ−w1)λ(y)e−λ(y)w1dw1 = p(x|y)λ(y)δ + O(δ2).

Returning to (50) we find

p(x, t + δ) = e−δλ(x)p(x, t) + δ
∫
B

λ(y)p(x|y)p(y, t)dy + ωk3δ
2,

where |ω| ≤ 1 and k3 is a constant. Rearranging and letting δ tend to zero we
obtain

pt(x, t) = −λ(x)p(x, t) +
∫
B

λ(y)p(x|y)p(y, t)dy,

where pt(x, t) is the derivative of p(x, t) with respect to t.
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72, 203-206.

Bardou, F. and Castin, Y. (1998): Le refroidissement laser subrecul: fonctions
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