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Abstract

We construct self-adjoint extensions of Dirac operators on manifolds with cor-
ners of codimension 2, which generalize the Atiyah-Patodi-Singer boundary con-
dition. The boundary conditions are related to geometric constructions, which
convert problems on manifolds with corners into problems on manifolds with
boundary and wedge singularities. In the case, where the Dirac bundle is a
super-bundle, we prove two general index theorems, which differ by the split-
ting formula for n-invariants. Further we work out the de Rham, signature and
twisted spin complex in closer detail. Finally we give a new proof of the splitting
formula for the n-invariant.

Ams subject classification: 35F15, 58A14, 58G10, 58G11, 58G20.
Keywords: Manifolds with Corners, Manifolds with Wedges, Index Theory,
Boundary value problems, Eta-Invariants.

Contents

0

1

Introduction

A Boundary Value Problem.

1.1 Geometric Constructions Related to a Manifold with Corners.
1.2 Analysis on a Cone. .

1.3 Analysis on a Wedge.

1.4  Characterization of D*!.

University of Bonn, funded by the SFB 256.

6
6
13
19
22

*This work was supported by MaPhySto — Centre for Mathematical Physics and Stochastics, funded

by a grant from the Danish National Research Foundation. Parts of this work was done at the



0 INTRODUCTION 2

2 Globally defined Augmentations. 24
2.1 The General Construction . . . . . .. ... ... ... ... ...... 24
2.2 Manifolds with Boundaries and Wedge Singularities. . . . . . . . .. .. 27

3 A Self-Adjoint Extension of D. 29
3.1 Self-Adjoint Boundary Conditions. . . . .. .. ... ... .. ..... 29
3.2 Extensions of Hilbert Spaces. . . . . . ... .. ... ... ... 32
3.3 The de Rham and Signature Complexes. . . . . .. ... ... .. ... 35

4 Computation of the Index. 42
4.1 Heat Kernel Estimates. . . . . . .. .. ... .. oL 42
4.2 Localized Index Contributions. . . . . . . . . .. ... ... ... .. .. 44

5 Another Approach to Index Theory. 47
5.1 Boundary Conditions on M'. . . . . . . ... .. .. ... .. ... ... 48

6 Special Cases and Applications. 55
6.1 The twisted Spin Complex.. . . . . .. ... ... 55
6.2 The de Rham and Signature Complex. . . . .. .. ... ... .. ... 56
6.3 The Splitting Formula for n-Invariants. . . . .. ... .. ... ... .. 58

0 Introduction

Let M be a Riemannian manifold with boundary and product structure around the
boundary. Further let £+ M be a Dirac bundle over M (Definition 1.1.13) respecting
the product structure. In [2], Atiyah, Patodi and Singer introduced global boundary
conditions. If the dimension of M is even and a superstructure on £ = E, & E_ is
fixed, these boundary conditions give rise to the Atiyah-Patodi-Singer index theorem:

1 1
ap — 577(A+, 0) + —tr (S+) (001)

Index(Dy) = / 5

M
Here D, is the part of Dirac operator D associated to F mapping sections of £, into
sections of £_. A is the induced Dirac operator on the boundary, A, is the part of
A mapping sections of E, to sections of £, and ap are local formulas defined in the
interior of M. The n-function n( Ay, s) is the analytic continuation of

n(Ass)= > sign(V)A

Aéspec(A4)\{0}

from the part of C where the sum is convergent to all of C. It is regular in 0 for all Dirac
type operators on closed manifolds [16, Section 3.8]. The last term, 1tr (S4), depends
on the augmentation of D, i.e. on the choice of boundary conditions in ker(A). Here
we have stated it for a canonical choice given by the scattering matrix, introduced by
Werner Miiller in [31]. The Atiyah-Patodi-Singer (from now on APS) index theorem

distinguishes itself by giving the correct index formula for special cases like the signature
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complex and by providing an index invariant Z(£) := Index(Dy) — $tr (S4), which is
additive under gluing of manifolds along common boundaries.

For manifolds with corners much less is known. In particular nobody has so far given
boundary conditions for manifolds with corners, which generalize the APS boundary
conditions. However, for manifolds with corners of codimension 2 a number of special
index theorems are known. We mention the Gaul-Bonnét theorem for surfaces with
corners [12]. Further, for the signature complex the Wall non-additivity formula [42],
which is a gluing formula for the signature independent of analytic index theory, is
known. More recently Hassel-Mazzeo-Melrose [22] and Werner Miiller [32] have proved
index theorems for manifolds with corners. Both of the approaches build on an ex-
tension of M to a complete Riemannian manifold without boundary. The technical
difficulty with that approach is that the continuous spectrum of the involved operators
close to 0 has infinite multiplicity and is very difficult to study. The index theorems
in [22] and [32] are equivalent to special cases of the index theorems in this paper.
The vanishing of a term in the splitting formula for the n-invariant for the signature
complex though only follows by combining the results of this paper with those of [22].

In this paper we take a different approach to index theory for manifolds with corners.
Let in the following M be manifold with corners of codimension 2 and product structure
in a neighborhood of the boundary and corners.

Figl: A manifold M with boundary Z and corner Y.

A study of the structure of Z close to the corners shows that Z can be given
a canonical smooth structure induced by the Riemannian metric. Next we form a
cylinder 7 x [0,1] and attach Z x {0} to M using the identity map on Z. This gives
a Riemannian manifold M with a smooth boundary and wedge singularities.

If £ — M is a Dirac bundle over M we prove in Lemma 1.1.14 that there always
exists at least one extension of £ to a Dirac bundle £ — M. Let D be the Dirac
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operator associated to E. Self-adjoint boundary conditions for D generalizing the
APS boundary conditions can now be constructed in two steps. First we impose APS
boundary conditions at Z x {1} and ideal boundary conditions in the wedge singularity
of M in order to get a self-adjoint extension of D. Next we use the self-adjointness
of D and an extension property of certain sections of E to construct a self-adjoint
extension of D, which coincides with the APS extension if there are in fact no corners.
The extension of D is further such that ker(D) is canonically isomorphic to ker(D).
We remark that this self-adjoint extension of D is by no means the only generalization
of the APS boundary conditions. Different gluings of £ and different choices of ideal
boundary conditions for D give other extensions. In Section 5 we give a completely

different extension based on a similar construction.

) = /

Fig2: The extension M of M.

Since ker(D) = ker(D) we can proceed with the index theory by proving an index
theorem for D. This can widely be done using standard methods and results from
2], [8], [9]. Working directly with D must be expected to be much harder since
the complications from the boundary and the corner both appear in the same point,
whereas they can be treated separately for D. The main results for general Dirac
bundles are Theorem 4.2.3, Theorem 5.1.5 and its refinement Theorem 5.1.10. In
Section 6.3 we further apply those theorems in order to give a new proof of the splitting
formula for n-invariants.

In Section 3.3 we consider the de Rham and signature complexes. Like it is the
case for manifolds with boundary, a well understood subspace kero(D) of ker(D) is
isomorphic to the image of the relative cohomology in the absolute cohomology of M
and the orthogonal complement of kero(D) gives a vanishing contribution to the index.
In particular the right hand side of the index theorem is the Euler characteristic and
the signature, respectively. For those cases we can further work out some of the terms
on the left hand side, and specializations of the index theorems give the well know
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GaufB-Bonnet theorem (Theorem 6.2.2)

(M) = /Me + ; (”_Tjr(yv \(Y), (0.0.2)

where Y runs over the corners and o(Y") denotes the interior angle at Y. Also the
following formula for the signature for a manifold with corners, Theorem 6.2.1, is
worked out

sign(M) = /ML— %U(Aﬂ,()). (0.0.3)

If all angles at the corners are 7 this formula can be compared to the index formula of
[22]. The only difference (except from a high number of different conventions) is that
the n-invariant is split in [22] and together the theorems imply that the integer valued
term in the splitting formula for the n-invariant vanishes in the case of the signature
complex of an odd-dimensional boundary.

Another example, which covers all Dirac bundles, is a local twisted spin bundle.
This example corresponds to the universal gluing of E to be introduced in Lemma 1.1.14.
For this example not much can be said about the right hand side, but the contribution
to the index from the corner vanishes, and in this way Theorem 4.2.3 can be refined. In
the case of the de Rham and signature complexes this index theorem differs from the
GauB-Bonnet and the signature theorems by a cut and paste formula for n-invariants.

Much of this work has appeared as preprints [37], [38]. In addition to the correction
of some mistakes a number of changes in the theory have been done. The first and
most noticeable change is that scattering theory on a manifold with cylindrical ends has
been replaced by Section 2. In Section 2 what corresponds to the scattering matrix in
0 for a Dirac operator on a manifold with cylindrical ends is constructed for a manifold
with boundary and wedge singularities. The advantage of this construction is that it
does not use scattering theory and therefore the presentation becomes simpler. More
important is however that it treats boundaries and wedge singularities equally. That
means that we can make use of the trivial but important observation that a boundary is
the special case of a wedge singularity, where the conic part has a 0-dimensional base.
Where the ideal boundary conditions chosen in [37], [38] were somewhat arbitrary,
we now have completely canonical boundary conditions determined by that they have
to be a generalization of the APS boundary conditions as well as of slow-growing
ideal boundary conditions (given by including the slowest growing local solutions of
D*f = —f in the domain of D) for a cone, and that the augmentation has to be
given by the scattering matrix. This has tremendous advantages, the first of which
is that the time-consuming process of considering different augmentations has now
been made redundant. The most important is however that it gives a domain which
is preserved by all operators, which satisfy commutation relations with certain under-
defined realizations of D, and that it gives a self-adjoint extension at all in the case
of odd-dimensional manifolds. In the generalization of APS boundary conditions to
manifolds with corners of codimension 3 and 4, this gives a considerably increased
performance, and already in this paper it leads to simplifications.
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When we consider a wedge with product structure as a generalization of a boundary
with product structure, it is natural to look for a generalization of the geometric ope-
ration of attaching a cylinder. In the case of a wedge it can not be done geometrically,
but it can still be done operator theoretically. We do so in Section 3.2. In Section 3.3,
where we work out the de Rham and signature complexes, the geometric extension still
plays an important role. The significance of the operator theoretical extension will be
clear when we consider manifolds with corners of codimension 3 and 4 and theory from
this paper has to be iterated. What happens is that operator theoretical extensions
are locally conjugate to Dirac operators on spaces with simpler singularity structure.
Thus they can be used for specifying self-adjoint extensions similar to those appearing
in this paper and for proving the corresponding index theorems. It turns out that the
main approach to index theory in this paper and the approach given in Section 5 melt
together in the sense that both are in use for specifying the same boundary conditions
from a certain level of complication of corners and singularities.

Theorem 5.1.10 differs from Theorem 4.2.3 by that the n-invariant is split in Theo-
rem 5.1.10. Depending on whether one holds the two index theorems together or not,
the contribution from the corner in Theorem 5.1.10 can be considered either as the m-
term in the splitting formula for the np-invariant independent of the angle or as a term
depending on the angle, which measures the dislocation of the scattering matrices from
the various boundary components. The formula corresponds to that of [22] modulo Z
in the case of the signature complex and angles 7. The index term in Theorem 5.1.10
can not be interpreted cohomologically for the signature complex since it is not clear,
whether harmonic sections are closed. Thus the comparison can only be carried out
modulo Z.

This approach generalizes to give index theorems for manifolds with corners of
codimension 3 and 4. In codimension 4 we have though only worked it out in the
case of the universal gluing of vector-bundles. Other gluings give rise to additional
problems. The main result, which is proved so far, is an index theorem for manifolds
with corners of codimension 3 and an associated splitting formula for n-invariants of
odd-dimensional closed manifolds or manifolds with singularities into n-invariants of
manifolds with corners. These results, both proved in [37], go further than the results
obtained with other approaches.

1 A Boundary Value Problem.

1.1 Geometric Constructions Related to a Manifold with Cor-

ners.

First we will give our definition of a manifold with corners. The definition has been cho-
sen such that it fits the methods used in this paper. More general definitions extending
the definitions below to higher codimension have been given in [37]. Compared to [37]
we have allowed ourselves to make more intensive use of group actions and covering
spaces than it is possible in higher codimension. This leads to some simplifications. We
will repeatedly use the fact that isometric homeomorphisms of Riemannian manifolds
are automatically smooth [21, Theorem 11.1] and in this way reduce most proofs to
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proofs involving metric spaces only.
Let

R% = R*\ {0},

considered as a Riemannian manifold. We denote the universal covering by RQX Then

RQX is a Riemannian manifold isometrically diffeomorphic to (0, 00) x R supplied with
the Riemannian metric

g = dr?® + r?db>.

There are two natural group actions on RQX The cone structure and the lift of the
group of rotations of R? given by

o)) = (r04s) ; sER.
The group action p acts by isometries.

Definition 1.1.1. A model corner of dimension 2, codimension 2 and product struc-
ture is the completion of a subset of R% of the form

C° = {(r,0) € (0,00) x R | a < § < b} (1.1.1)

for some a,b € R with b > a. The angle of C' is the number b —a € R,. The interior of
C is the set C° defined in (1.1.1). A model corner C' x Y of dimension n, codimension
2 and product structure is the completion of a Riemannian manifold of the form

C° xY,

where C' is a model corner of dimension 2, codimension 2 and product structure, and
Y is a closed manifold. The angle of €' x Y is the angle of C.

The category of model corners will be considered as a sub-category of the category
of metric spaces with a cone structure. In particular isomorphisms of corners are
isometric homeomorphisms.

Example 1.1.2. An intersection of dimension 2 of two different half-planes in R? is a
model corner of codimension 2 and angle smaller than w. One half-plane in R? is also
a corner of codimension 2 and angle m. Notice that with Definition 1.1.1 there is no
particular distinction between corners with angles smaller than 7, equal to © or greater
than m, whereas the spaces of smooth functions for the three cases are very different.
This is our main reason for not working with smooth or C* functions at all. Of the
same reason we have chosen not to make use of the groupoid structure of a corner since
it mainly captures phenomena, which will turn out to be irrelevant for our purposes.

Definition 1.1.3. The boundary components of a model corner of codimension 2 are
the completions of the subsets {# = a} and {0 = b}, where a and b are like in Defini-
tion 1.1.1.
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Lemma 1.1.4. Let Cy XY and Cy XY be model corners and let C be the space arising
by identifying the image of a boundary component of Cy with the image of a boundary
component of Cy (using the unique isometric homeomorphism). Then C XY is a model
corner.

Proof: This is trivial with the definitions given. O

Definition 1.1.5. A closed model corner of codimension 1 is a space of the form
7 x [0, 00),
where Z is a closed Riemannian manifold.

Definition 1.1.6. A closed model cone C' of dimension 2, angle ¢ and product struc-
ture is the completion of a Riemannian manifold of the form

C° =R%/ps.
where p, is the Z-action on E’QX given by
po(k)(r,0) =(r,0 +0k) ; k€Z.
A closed model wedge of codimension 2 is a space of the form
C xY,

where (' is a closed model cone of codimension 2 and Y is a closed Riemannian manifold.

Definition 1.1.7. A compact manifold M with corners and product structure around
the boundary and corners is a compact connected metric space, such that for each
m € M, an open neighborhood U, of m is isometrically homeomorphic to an open
subset of a smooth Riemannian manifold, a model corner of codimension 1 or a model
corner of codimension 2.

Remark 1.1.8. With Definition 1.1.7 the model space at a corner of a manifold with
corners is a bundle of model corners over a closed manifold, supplied with a local
product metric. Since, however, a model corner of codimension 2 allows only one self-
isometry, which is orientation reversing, this bundle is trivial if M is orientable, such
that in fact a neighborhood of a corner is isometric to a neighborhood of {0} x YV in a
model corner €' x Y.

Definition 1.1.9. Let M be a compact manifold with corners of codimension 2 and
product structure around the boundary and corners. Then:

An open boundary component N° of M is a maximal connected subset, such that
a neighborhood of each m € N° is isometrically homeomorphic to a neighborhood of
{0} x {z} in a model corner [0,00) X Z of codimension 1.

An intrinsic boundary component is the completion of an open boundary component
with respect to the induced Riemannian metric.

An extrinsic boundary component is the closure of an open boundary component in

M.
The boundary OM of M is the union in M of the extrinsic boundary components.
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Lemma 1.1.10. Let M be a compact manifold with corners and product structure
around the boundary and corners. Then the boundary Z of M has a canonical smooth
structure such that Z is a smooth Riemannian manifold with the Riemannian metric
given by the extension by continuity of the Riemannian metric induced on the open
boundary components of M.

Proof: An atlas is given on the open boundary components of M, so it suffices to
consider the corners of codimension 2. If C' x Y is a model corner, dC is the union
of two half-lines with Riemannian metrics. Gluing those half-lines together gives that
dC x Y is homeomorphic to R x Y, where R is considered as a Riemannian manifold.
Further the homeomorphism is uniquely determined by the demand that its restriction
to each half-line is an isometry. The smooth structure on R can now be pulled back
to a smooth structure on dC and the pullback of the Riemannian metric on R is the
extension by continuity of the Riemannian metrics on the boundary components of C.

Using the above, dC' x Y is identified with the smooth manifold R x Y. Further
these identifications extend the atlas on the open boundary components of M to all of

oM. O

Definition 1.1.11. A compact manifold with boundary, closed wedge singularities
and product structure around the boundary and the wedge singularities is a compact
connected metric space such that some open neighborhood of each m € M is isometri-
cally homeomorphic to an open subset of either a Riemannian manifold, a model corner
of codimension 1 or a closed model wedge.

Lemma 1.1.12. Let M be a compact manifold with corners of codimension 2. Then
the space

M:=MUz Z x[0,1] (1.1.2)

is a compact manifold with boundary, closed wedge singularities of codimension 2 and
product structure. The corners of M stand in bijective correspondence to the wedge
singularities of M and if a corner of M has angle o, the corresponding wedge singularity
has angle o + 7.

Proof: Clearly Z x {1} is a smooth boundary. Further the product structure gives
that points in the open boundary components of M are mapped to interior points
of M. Now consider a subset of M isometrically homeomorphic to C. x Y, where
C.={(r,0) € C' | r < e} for a model corner C' = {(r,0) € R% | « < § < b}. The image
of {0} x Y in Z x [0,1] has a neighborhood of the form [0,£) x (—¢,e) x Y. Further,
a neighborhood of {0} x {0} x Y C [0,¢) x (—¢,¢) X YV is isometrically homeomorphic
to a neighborhood of {0} x Y in €’ x Y, where C' is the model corner

C'={(r,0) eRL|b< 0 <b+r).

Further the identifications are such that {(r,0) € C' | § = b} is identified with {(r,8) €
C'"| 0 =0} and {(r,0) € C | 0 = a} is identified with {(r,0) € C" | 0 = b+ n}. This
space is isometrically homeomorphic to Ri/,ob_a_m, so {0} x Y is mapped to a closed
wedge singularity. The remaining statements are clear from that. 0
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We notice that the interior of a model corner of dimension 2 and codimension 2
has trivial holonomy. In particular any tangent vector in a point can be extended to a
globally defined parallel vector field on a model corner. If (' is a model corner defined
by (1.1.1) a number of tangent vectors are canonically given:

0 0

0 1= — i 0y = ——
! arw:b,r:l ? arw:a,r:l7

0 0
v = — DUy = —— .
! 89|9:b,r:1 ’ ? 89|9:a,r:1

Fig3: A corner C' C R2

In the following we will assume that I/ +— M is a Dirac bundle over M. We recall
the definition:

Definition 1.1.13. A vector bundle £ — M supplied with a Hermitian structure h
and a Hermitian connection V is a Dirac bundle if it is a module over the Clifford
bundle Cliff(T'M), such that if ¢ denotes the structure of Clifford multiplication we
have for all vector-fields X, Y and all smooth sections s; and s, of F

Vye(X)s1 = ¢(X)Vsy + ¢(Vy X)sy, (1.1.3)
h(c(X)s1,82) = —h(s1,¢(X)sg). (1.1.4)

If £ is a Dirac bundle the associated Dirac operator is given by the composition
D:=cog oV, (1.1.5)
where g € C®(End(TM,T*M)) is the Riemannian structure on M.

Further we will assume that F respects the structure near the boundary and the
corners. That means that the local pullbacks of £/ to the model corners of codimension
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I and 2 are pullbacks of the restriction of F|; and FE)ys, respectively. And that the
connection V in F is of the form du% + V72 and dr% + d@% + VY, respectively.

A bundle TZ'=1& TZ is given on Z. The trivial factor is mapped to the inward
pointing normal on the open boundary components of M, such that over each open
boundary component N° of M, TZ|’N0 = T'M|no canonically. In the corners T'Z' is
glued using the “gluing operator”, which sends 5 into é; and v5 into 1.

Since the gluing operators for T'Z’ are unitary, they induce canonical gluing ope-
rators for the Clifford bundle Cliff(T'Z’). We will construct gluing operators for £z
at the corners, and in this way construct a vector-bundle F' +— Z, which is equal to ¥
over each open boundary component, and which is a bundle of Clifford modules over
CIiff(T'Z’). Such gluing operators are not necessarily uniquely determined. There is
however a canonical choice.

Lemma 1.1.14. Let V be a finite-dimensional real vector-space with an inner product
(.,.). Let U CV be a two-dimensional subspace, § C U be a unit vector and let

W = {52 el | |52| =1 and <51,52> > —1}

Then there exists a function, which we will denote by \/—d102 , defined on W and with
values in Spin(V') C Cliff(V'), such that the following holds:

1) \/=d105 is continuous with respect to dy and \/—d101 = 1.
2) (V=818,)" = =8,6, for all 5, € W.
3) 51\/—5152 — \/—5152 52.

4) For e in the orthogonal complement of U in 'V we have

6\/—5152 = \/—5152 c.

The function /—d162 takes its values in Spin(U) C Spin(V') and is uniquely determined
by the properties 1), 2), 3) and 4). Further, it satisfies the following extra conditions:

5) \/—0102 commutes with §vy.

6) The eigenspaces of \/—10y coincide with the eigenspaces of 61v1. The eigenvalues
of \/—0109 are given by

{ €2 ;on the i eigenspace of 8114 }
b

- T—0
—1

€2 :onthe — 1 eigenspace of 6,14

where o denotes the angle between &, and —d,.

We call \/—61d5 the universal gluing operator.
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Proof: If we write
§1 = cos(m — 0)dq + sin(m — o)va,
it follows that
—0109 = cos(m — o) — sin(m — 0)120y = e~ (T=)r2dz
Consequently, for m — o € (—m,7) a canonical square root of —d;d, is given by

=010y 1= e~ T 0 = T (1.1.6)

Computations similar to above give that

/=016, = — {cos(” 5 76, + sin(Z 5 ”)Vz} 85 € Spin(U) C Spin(V).

The properties 1), 2), 3) and 4) are now easily checked. It remains to prove the unique-
ness part: Assume that w € Spin(V) is another element satisfying 3) and 4). Then
conjugation by w™'\/—=3;8, induces the identity on U+ & span(d;). Since conjugation
by elements of Spin(V') give rise to unitary operators with determinant 1 it follows that
conjugation by w™ty/—8,8; induces the identity on V. But then w™'\/—=§,4, is in the
centre of Cliff(V'). Since w™'v/—d,d, also belongs to Spin(U/), which has centre +1, it
follows that w = +v/—0102. The uniqueness now follows from 1).

The claims 5) and 6) are satisfied by construction of \/—d;d5. This proves the

lemma. O

Remark 1.1.15. We define /=410 by (1.1.6) for o € (0,00). With this convention
1), 2), 3), 4), 5) and 6) remain valid. What is not true is that \/—0:1d2 is a globally

defined function of §; and d5. Instead it must be considered as a function of .

Denote by R : Spin(R") — SO(R™) the covering homomorphism. We notice that
R(\/—0162) is the identification map for T'Z" at the corner, which identifies §; with d
and vy with 11. We can now in the same way construct the restriction of a bundle F
over Z by at each corner identifying w € FEjfo,a)1xy With V—=d102w € Ejgop)xy. Then

the computation

ROV 0852 (0)V 0 = /g (V705:) v/ hdae (1.1.7)
= /—=d16500 (1.1.8)

shows that F' is a bundle of Clifford modules over T'Z’. Since the connection commutes
with Clifford multiplication, F' can also be given the connection from FE. Notice that

when F'is considered as a Clifford bundle over Cliff(T'7Z), rather than over CIliff(7'Z"),
the structure b of Clifford multiplication is given by b(y) = v, where v denotes the

inward pointing normal at dM.
In neighborhoods of small open subsets of each open boundary component Z; of Z,
D takes the form

d d
D = _Va_u —|— DZ,‘ = _V(a_u —|— A)
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Here A = v Dy, is the Dirac operator on F' — Z coming from the structure of I as a
Clifford module over T'Z. There is no globally defined Dirac operator on £ — Z, but
by construction of F', the Dirac operators Dy, glue together to a Dirac operator Dy on
F — Z. By construction of F' the operator of Clifford multiplication by v is a smooth
section in End(F'), which anti-commutes with Dz. Thus also the operator A :=vDy
is well defined as an operator on F'— Z.

There is an extension of F to a Clifford-bundle £ on M by letting E|ZX[071] be
the pullback of F. The connection and the Hermitian structure extend by the product
structure. Finally, Clifford multiplication in the direction of the last variable is provided
by the operator —v.

1.2 Analysis on a Cone.

In this section we will consider a number of different Sobolev spaces over two-dimensional
cones.

Let V' +— X be a Hermitian vector-bundle over a Riemannian manifold supplied
with a connection V. Then we define

WEHX V)= {f € LA(X,V) |Vi=0,...,k:V'fc L}X,(T"M)* @ V)},
WZH(X, V) := Closure of C&(X, V) in W2F(X, V).
If V is further a Dirac bundle and D is the associated Dirac operator, we may define
HMX, V) :={f e LA(X,V)|Vi=0,... . k:D'f e L*(X,V)},
HE(X,V) := Closure of C5°(X, V) in H*(X, V).
The following inclusions are standard:

Lemma 1.2.1. We have

Wk (X, V) C WX, V),
HE(X,V) C HMX,V),

WM (X, V) C HE(X,V),

WX, V) C HYX, V)

If the curvature term R occurring in the Weizenbock formula s bounded, we further
have

Wl (X, V) = Hy(X, V).

Proof: The first two inclusions hold by definition. The next two by the expression
D = cg™ 'V, where c is the structure of Clifford multiplication and ¢ is the metric. In
the last equation the inclusion C is already clear. The other follows by the Weizenbock
formula in the following way: For f,g € C§°(X,V)

[V, Vg)l = |<V*Vf, >|

[((D* = R)f.9)|

|<Df,D9>|+ 1B]leo [(f59)]-
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This implies equivalence of the norms on W' and H. O

Now let R%7 = R2/p,, where p, is defined in Definition 1.1.6. Let £ be a Clifford
module over Cliff(R?) and let & be the corresponding Clifford bundle over fx’zx, arising
by trivializing fo)zx by the trivial holonomy of E’QX The bundle & is a Dirac bundle
over E’QX if it is supplied with the pullback of the trivial connection d:z;% + dy% to E’QX

Let U be a unitary operator on &€ such that £ /(p,r7) is a Dirac bundle over RQXJ. Here
pou 18 given by

,007[](]6)((7“, 0, 6)) = (T, 0 + ko, Uke)
We denote the resulting Dirac bundle & /(p,r) by E.
Lemma 1.2.2. We have

Wol (R, B) = WHH(RY, E).

Proof: First consider £ in the case o = 27. In this case Euclidean coordinates (z,y)
are globally well-defined.

First we prove that W#*(R2, E)NL>~(R?%, F) is dense in W*'(R%, E). Let vy,... v,
be an orthonormal basis of eigenvectors of U. Then an orthogonal basis of eigenvectors
of the operator —i% on L*(S', Ejs1) is given by {e”kvqevq}q:17...7m;kez for some discrete
sequences {sy, brez of eigenvalues. Every section f € W#'(R2, F') can be split into a
W2 orthogonal sum

F(r,0) =3 fra(r)eseto,
kg

By orthogonality each term f; ,(r)e®*’v, belongs to W' and the sum is W%l
convergent. It thus suffices to prove that each section of the form fj, ,(r)e**e’v, can
be approximated by bounded W?!-sections with respect to the W%!mnorm.

The function f,, belongs to W21°¢((0, 00)) and is therefore continuous, such that
in particular it is everywhere defined. Now define for n € N:

Jrgn(r) ;= max{min{Re(fr,(r)),n}, —n} + ¢ max{min{Im(fx ,(r)),n}, —n}.
Then

fk,q,n(r)ei%qevq — fk,q(r)ei%qevq

with respect to || - ||w2.1.
Let ¢ € C§°(R) be a function, which is identically equal to 1 in a neighborhood of
0. Further, let f € W*YR2, E) N L>(R2, E). The estimate

42<£ﬁ«nwﬁ+ﬂo>fWW){%<£f<n ﬁ+y§>f@w)
= [ ZEE N (/)
R2 T Y

2

dxdy

2
|f(z,y)* dedy < Cj
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and some trivial estimates shows that {¢(n+/2? 4+ y?)f}aen is bounded in W?2! for
n — oo. Further, for g € W*(R2, E) N L=(R2, E) we get

/Rz (%@("mo <f($7y)79($,y)>dxdy‘ <

/]1%2 /7:1;2+y2 @’(n\/ﬁ—l—y?)

Thus {¢(ny/22 + y?)f}aen is a bounded sequence in W' converging weakly towards
zero with respect to a dense subset of W21, It follows that it is in fact weakly convergent
towards zero. Consequently

|f (@ y)| lg(x, y)| dedy — 0.

<1 —p(nya? + y2)> f(z,y)

converges W?1l-weakly towards f for n — oco. Now, sections with support away from 0
can be approximated in W?! by sections in C§°(R%, E). It follows that the W*!-weak
closure of C§°(R%, E) is all of W*!(R2, E). But the weak and the strong closure of a
subspace always coincide. This proves the lemma in the special case.

Now, R%” is diffeomorphic to R? through a diffeomorphism, whose differential and
inverse differential are bounded. From that it follows that the spaces W' and Wy
are preserved. Thus the lemma holds for all o. O

In the special case o = 27w, U = 1 we know that the Dirac operator is self-adjoint on
the domain W2 (R%7, E) = W2(R2 C™). This is not so in general. Instead we will
have to introduce ideal boundary conditions in order to get a self-adjoint extension.

Consider the restriction F, of E to the circle N, = r - (¢Z \ R). We write N for
N;j. Let v denote the operator of Clifford multiplication by % and let § denote the
operator of Clifford multiplication by %. Operators

0 1
and
™ = s (1.2.2)
T

are defined in L*(N,, E,). Ty is the canonical involution on N, given by a multiple of
the image of the volume form in the Clifford bundle. It is at the same time equal to
—Tg2e, where the orientation on R%” has been taken such that (%, %) is an ordered
frame of TR%”. In particular it is parallel with respect to the connections on both N
and R%’, and the dimensions of the +1 eigenspaces of 7y are both equal to dimQ(E).
The operators By, U and 7y commute. Thus By and 7y preserve the eigenspaces
of U. Let o € S vary over the eigenvalues of U. Then E, splits into eigenbundles F,,
to the o eigenvalues of U. Let vq,...,v, be an orthonormal basis of eigenvectors of Ty

in the a-eigenspace of U. Then

{ €V5 2mwk+ilog(a) 0

o

1.2.3
Uq}qzl,...,p;kez ( )
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2mk+1log(«) 1
2

This basis is independent on the branch of the logarithm used, though the indexing
depends on the branch of the logarithm. Let

is an orthonormal basis of eigenvectors for By to the eigenvalues {

5o = 2Tk A ilogla) (1.2.4)
o
Then {si .} are the eigenvalues of By + %
Remark: %BN is the induced Dirac operator on the sub-manifold N,. It anti-
commutes with v. Since 7y commutes with By and anti-commutes with v we see that
Ty maps ker(By) to itself and that v gives a symplectic structure on ker(By), for
which ker(7y — 1) is a Lagrangian subspace.

Definition 1.2.3. If s;, # % for all k£ and a, let oy,...,0, be the values of s, for
which sz, € (0, %), counted with multiplicity and let ¢y,...,¢, be a corresponding
orthonormal basis of eigensections. Then we set

D*Y(R%%, E) := W*YR27, ) & span {ng(r)c,oj l7=1,... ,q} , (1.2.5)

where K, denotes the s'th K-Bessel function.
If some sy, equals I, i.e. ker(By) # 0, let W be a Lagrangian subspace of ker(B),

which is a direct sum of subspaces of the eigenspaces of 7. Let ¢1,... ,¢,and oy,... , 0,
be like above, let ¢ 41,... , ¢, be a basis of W and let oy = -+ =0y = % We set
DENRE, B) = WH(RE, B) @ span{Ky (g | = 1o} (1.2.6)

We will use the terminology that we augment with respect to a Lagrangian subspace
if we take that subspace as W and that we augment with respect to a self-adjoint
involution p, if we take W = ker(p — 1).

It will often be convenient to write Di;' instead of D?' also when ker(By) = {0}.
In this case W = {0}. We will prove that D is self-adjoint on D3 (R%, E). In the case,
where ¢ = 27 and U = 1, By + 5 has no eigenvalues in [—1,0) U (0, 3], D*! = W>!

L
and we already know that D is self-adjoint on W*!(R? E). The general case requires

that we compute the defect indices of (D,, W1 (R%7, E)).
Assume that we have a solution f € L*(R%7, I¥) of the equation

(D" +i)f =0.
Then it follows
(D) +1)f = (D Fi) (D" +0)f = 0.
Thus we have the distributional equation
(A+1)f =0,

where A = D?. In polar coordinates (r,6), A takes the form A = —% — %% — r%%.

Now assume f is a L2-solution of the equation

(A+X)f=0
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for some A € C\ {0}. Since A commutes with /' we may consider the components f,
of f, which take their values in COO(RZX’U, E.), separately. It follows by local elliptic
regularity that f, € C*(R%7, I,) and thus that f, has an expansion of the form

Z Z Ghg (T yéska Vg, (1.2.7)

q=0 k=—c0

where the sum is convergent in the C'**-topology and the coefficient functions gy, are
smooth. The coefficient functions are solutions of the ordinary differential equations

#* 19 | s
<_W oy e >gk7q(r) — 0. (1.2.8)

Let @4 be a solution of the equation

ror r

7 1090 s

Then we may compute

(=00 = 00+ (5 +1) i) ) 0.

It follows that @, (Ar) is a solution of (1.2.8) if s* = s} ,. The equation (1.2.9) is known
to have the two-dimensional solution space spanned by the Bessel functions I;(r) and
K(r). In the following we will concentrate on the special case where A = 1.

For r — oo, I4(r) has the following asymptotic expansion [14]

L(r) = e 2% (ir) ~ e7'2% | — cos(ir — gs — %)

The other solution, Ky, is known to have the asymptotic expansion [43, 7.23]

\/ér_%e_r ;T — 00,
Ko(r) ~ 261 (|shr=ll 5 =0 for s # 0, (1.2.10)

Ko(r) ~ —log(r) ;r—0.

By the asymptotic behaviour for r — oo it follows that the I, component of gy,
must vanish in order for f to be in L*(R%7, F). Further, for |s| € [1,00) the integral
fol r= 2l dyr = fol r1=2sldr is divergent. Thus gx, = 0 for all k such that |sy.| € [1,00).
In particular the sum (1.2.7) is finite.
By [43, 3.71] we have for all s:
d s

%[(5(7“) = —;Ks(r) — Ks_1(r).
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Thus we may compute

* a 1 a - vés
(D fa)(r, 0) =V (E — ;I/(S@) (Z Z Ckyq[XSk,a (T)e § kV‘ﬁvq)
kg

= —1/{ g g ck7qKsk7a_1(r)e”‘gskya@vq} .
k q

By orthogonality and the identity K_;(r) = K (r) [43, 3.71] we see that for this to
be a solution to (D* +14)f, = 0 we must have that whenever

Vs o0

€ Uy

is an eigensection of By + % to the eigenvalue s, then —peVOskal

v, 1s an eigensection
of By + % to the eigenvalue 1 — s . Since v anti-commutes with By this is indeed so
for all v,. It follows by orthogonality that the solutions to (D* +1¢)g = 0 are spanned

by vectors of the form
K, (r)e”éskvaevq Tk, (r)e”éskvael/vq. (1.2.11)

This excludes s;, € (—1,0] since for sg o € (—=1,0], 1 — s5o > 1, so that s;, can not
give rise to an L?-solution of (D* £1)g = 0 of the type (1.2.11). Thus we are left with
Sk € (0,1). In this case (1.2.11) is indeed a L*-solution to (D* +1)g = 0. Further we
see that dim(ker(D* +¢)) = dim(ker(D* — 7)), so that D has self-adjoint extensions.
Each self-adjoint extension is given by adding a Lagrangian subspaces of the symplectic
form

(D*f,g) —(f, D"g)
on ker(D* — i) @ ker(D* + ¢) to D(D). The identity

(D" f,9) = (f,D"g) = hg%/N (fva)

gives that this is exactly the Lagrangian subspaces for the quadratic form (v f,g). We
observe that the space

Wy := span {KSM (r)e”éskvaevq}

5k7a€(07%)
is a Lagrangian subspace for the restriction of v to the space

Spa‘n {[X]Sk,a (r)eyéskvo‘evq }Sk,ae(&%)u(%’l) ‘
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If a Lagrangian subspace W of ker(By) is added to Wy, W & Wy is a Lagrangian
subspace of ker(D* — 1) & ker(D* + ¢). This proves that D is self-adjoint on DIQ/{,I.

We will end this discussion by noticing that since vé commutes with any super-
structure on E, the domain D%/I’,l is compatible with any superstructure on E if and
only if W is compatible with the superstructure.

We state the main results, which are well known from [8], [9], as a lemma:

Lemma 1.2.4. Let D be the Dirac operator on a cone over S*. Then D is self-adjoint
on D%/{,I(RZX’U, E). Further, for any superstructure £ = £, & FE_ into +1 eigenspaces of
an involution p anti-commuting with Clifford multiplication, (D,Dlz/{,l) anti-commutes
with p if and only if W splits into W = W, & W_, where W, C C*(Fy) and W_ C
C>(E-). O

We remark that Lemma 1.2.4 holds with minimal modifications on a cone over any
closed manifold.

1.3 Analysis on a Wedge.

In the following Y will denote a closed Riemannian manifold supplied with a Hermitian
vector-bundle £y and a Hermitian connection VY on Ey.

A vector bundle F is defined on RQX x Y by taking the pullback through the pro-
jection on the second component of the product.

The connection, metric and Hermitian structure on RQX x Y is given by the product
structure. For the structure of Clifford multiplication we will assume that there is a
structure on F as a Dirac bundle. The associated Dirac operator we will denote by D.

In polar coordinates (r,8), D can be written:

DZV%—I—%(S%—I—DY:I/<%—|-%BN—I-%—I-B)/>, (1.3.1)
where Dy is a Dirac operator on L)y defined with respect to the structure of Clifford
multiplication on RQX’U. The operators By and By are the induced Dirac operators on
N and Y with respect to the structure of Clifford multiplication induced on N x Y
from the structure of Clifford multiplication on R%” x Y.

Let U € C*(End(LE)y)) be a unitary section and let p, and py, be given by:

po(k)(r.0,y) = (r,0 + ok,y) k€L,
puo(E)(r,0,y),€) = ((r,0 + ok,y),Ute) k€ Z.
A vector bundle E over R2” x Y is defined by E := PUs \ E. We will assume that U
is such that F is a Dirac bundle. Let D denote the Dirac operator on F.

Since &, v and U commute with By, for each u € spec(By), a Dirac bundle Fz
over R%7 is given as the direct sum of the eigenspaces

Fpo=FE,®E_,,
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where F, is the eigenspace of By to the eigenvalue p, supplied with the Hermitian
structure induced by the inner product on L*(Y, Ejy). Further, By acts by an element
B, of End(F,2) of operator norm .

The restriction D,z of D to F,2 is of the form

D,» = Do+ B,

where Dy is an operator of the form from Lemma 1.2.4. Thus Dg is self-adjoint
on D%/{,I(RZX’U, F,2). Since B, is bounded and symmetric, also D is self-adjoint on
D3R, F,)

For p? # 0 the operator By gives a canonical choice of augmentation for D,,.
We exploit this to define self-adjoint ideal boundary conditions for D up to the finite
dimensional space ker(By) N ker( By ).

Definition 1.3.1. Let p be a self-adjoint involution defined on the space ker(By) N
ker(By), which anti-commutes with the restriction of v to ker(Bn) N ker(By). Let
Wo = ker(p — 1). Further, for p? # 0 let W2 := ker(ﬁBﬂz — 1) and let

DX (R < Y, B)
be the closure of

@ D%/I}ig (RiU? E)

12 Espec(B%)

in HY(R%” x Y, E).
If an involution p is not given we let Wy = {0} and define D> (R%7, I) like above.

Proposition 1.3.2. The Dirac operator D defined on DZJ(RZX’U xY, F) is self-adjoint.

If p s not giwen, the realization of D on the domain Di’iln(]Ri’g x Y, E) is a closed
symmetric operator with finite defect indices.

Proof: (D, DZJ(RZX’U x Y, E)) is by definition the closure of an orthogonal sum of self-
adjoint operators, and is therefore self-adjoint. If p is not given (D, DX (R27 x Y, E))

min

is the closure of the Direct sum of symmetric operators with finite defect indices, of
which only finitely many are not self-adjoint. O

Definition 1.3.3. If p is given and D is given the domain D' we say that slow-
growing ideal Atiyah-Patodi-Singer boundary conditions augmented with respect to p
are imposed on D.

If p is not given and D is given the domain D>

min

we say that minimal slow-growing
ideal Atiyah-Patodi-Singer boundary conditions are imposed on D.

Remark 1.3.4. If the dimension of Y is odd it does occur that no p like in Defini-
tion 1.3.1 exists. This is part of our motivation for the construction of the scattering
matrix in Section 2.

Lemma 1.3.5. Assume H is a Hilbert space, A € B(H) and that A*A is compact.
Then A and A* are compact.
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Proof: If A*A is compact, for every bounded net { f\} ea converging weakly towards
0, |A*Af,\|| = 0 for A — oo. Thus

AL = (<A*Af/\7f/\>)% — 0

for A — oco. This implies that A is compact. Thus also A* is compact, and the proof
is complete. O

Lemma 1.3.6. Let o € C(RY7) be a function depending only on r, such that VXS
C=(RY), @(r,0) =1 for r <1 and o(r,0) =0 for r > 2. Let M, be the operator of
multiplication by . Further, let D be the Dirac operator on RY7x Y and let (D* —\)~*
be the analylic continuation in X of the operator (D* — X)™* defined for A € (—o0,0)
by the spectral theorem. Then, for A € C\ Ry and s > 0, the operator

Mw(Dz - )‘)_S
15 compact.

Proof: First notice that by multiplicativity, Lemma 1.3.5 and the fact that the com-
pact operators make up a closed *-ideal in the Banach algebra of bounded operators,
we may take s = 1 without exception. Next notice that by the first resolvent equation,
we may take A = —1. First we consider the restriction of D to the orthogonal comple-
ment of ker(By). On this space we have the following two important properties of the
domain:

e D(D) is independent of By.
e For each u? eigenspace of By we have D((Do + B,2)?) = D(Dj).

Splitting D)y (g2, into the eigenspaces of B gives that
D*=@ D= D+ i
g w?
and thus that the sum

My(D* +1)™" = @ M (D§ + p* + 1) (1.3.2)

(2

is convergent in operator norm (not necessarily absolutely convergent, but the ortho-
gonality of the terms makes up for that). It thus suffices to prove that each term in
(1.3.2) is compact. Again by the first resolvent equation we may assume g = 0 without
loss of generality.

Let szc; = {[(r,0)] € RZ” | » < 2} and let D} be the operator in LQ(RZX’Z, E,)
given by imposing Dirichlet boundary conditions at r = 2. Le. DiD is the Friedrich’s
extension of D? restricted to the domain

Dop = {f € D' | supp(f) CR%, and Df € D>'}.
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Then since
My(D*+ 1) =M 5(Dh + )7 (D + )M 5(D* +1)7)
and the operator
(D*+ )M z(D* +1)7"

is bounded, we may consider M (D7, + 1)~ instead.
Also the operator (D7, 4+ 1)~ can be decomposed with respect to the eigenspaces
of B+ % The operator estimate
219 st 2 19 s
—_— R D R S |
or? r6r+ r? = or? r6r+ 22 T
which holds for |sj .| >
C§°, implies

%, where both operators are the Friedrich’s extensions from

92 10 szﬂ | - < 0> 190 S?a | !
o o e ) | ST ra e
From that it follows that the sum
_ ? 19 sh. N\

kEZ

is convergent in norm, and thus it again suffices to consider each term separately.

Now the domain of D7, is such that each term in (1.3.3) is a bounded operator from
L*((0,00),rdr) to WY((0,00),rdr) &V, where dim(V') < co. By Rellichs lemma and
since dim(V') < oo it follows that each term is compact.

The restriction of D to ker(By) is conjugate to a Dirac operator on (0,00) x Y
with Atiyah-Patodi-Singer boundary conditions (by the operator of multiplication by
r%) Thus it is well known that the compactness result also holds on this space.

This finishes the proof of the lemma. O

1.4 Characterization of D*!,

It will be convenient to have an abstract characterization of DZ’l and Di’iln, respectively.

If ker(By) = 0 or p is not given, set W = {0}. Otherwise let Wy := ker(p — 1) and
let W C ker(By) be the Hz-closure of the direct sum of Wy and the negative spectral
subspace of By in ker(By). Let £ be a smooth function on C' x Y depending only on
r, such that {(r) = 0 for r > 2 and &(r) = r=z for 0 < r < 1. We realize that the
closure in H! of the space

2ma
D = {fc H' |limsupr/ |f(r,0)]?d0 = 0} B EW (1.4.1)
r—0 0

contains Di’l, and that D, is symmetric on D*!. Since every self-adjoint operator is
maximally symmetric it follows that D' = D%/{,I. Next notice that W' = W' = Hj.
Thus W2 is a closed subspace of H' contained in D*1!.

Let L = (0,R) x {6y} x Y be a “line segment” in R%7 x Y.
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Lemma 1.4.1. Ifker(By) = {0}, D> (R*? x Y, E) is the only extension of W' such

min

that D s self-adjoint on Di’iln and the restriction

DX s L(L, Blp)

min

is well defined and bounded.
If ker(By) # 0, the domains D3y satisfy that D is self-adjoint on D' and that the

restriction
—e Y,a,U
Di’l — W2 (L,E|L ) (1.4.2)

is well defined and bounded for all ¢ > 0. For e = 0 the restriction (1.4.2) is not well
defined for any p.

Proof: The space of sections in ker((D* — D3 )*+1) is spanned by sections of the form
K (r)erfv. If s # % for all s, the restriction of a vector in this span to N is in L?
if and only if only basis elements with s < % occur. The norm on D*! restricted to

HY(R%", F2) is given by i
1520 = (Do + Bu)f, (Do + Bu) )+ (f. ]) -

Since Dy and B, anti-commute and B, is bounded and preserves the domain of Dy,
this can be rewritten

<D0f7D0f>+<Buvauf>+<f7f>'

Thus convergence in || - |[p21 implies convergence in the norm || - || given by

Let DZ’l be the completion of DZJ(RZX’U x Y, E') with respect to || - ||L. The orthogonal
complement of W21 in D*! is the closed span of the functions Ksj(r)eisﬂec,ow in D?1,
Since there are at most finitely many different s;, the restriction from the orthogo-
nal complement of W2! to L*(L, E) is bounded. The completion of W*! in D?! is
contained in the space W2 (R%7, L2(Y, Ejy)). The restriction to L*(L, Ej;,) from this
space is bounded, as it can be seen by splitting

WHNRE, LY, Ey)) = @ W (RY", LY, E,))
n
and using the standard restriction W' — W23,
For the second part, if s = % occurs, we realize that the restriction to W27¢ is well

defined and bounded for ¢ > 0 but a priori not for ¢ = 0. The proof is like the proof
of the first part. On the other hand a section of the form

Z aj](%(r)e%”éevj = K%(T)e%l’w Z a;vj,
J J

restricts to L*(L, Ejz) if and only if it vanishes. This proves that the restriction to
L*(L, Ey1) is not well-defined. O
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2 Globally defined Augmentations.

If M is a manifold with boundary and product structure around the boundary, D is a
Dirac operator on a Dirac bundle £ +— M respecting the product structure and A is the
induced Dirac operator on dM, a canonical choice of augmentation for D is given by the
scattering matrix in 0, denoted by S. See [30], where it is denoted by C'(0). In [30] the
scattering matrix is constructed (or more precisely, its properties are deduced) using
the spectral resolution of a Dirac operator on a manifold with cylindrical ends. The
purpose of this section is to give an alternative construction, which works directly on
compact manifolds. This construction further gives scattering matrices for manifolds
with both wedge singularities and boundaries, which mix the various spaces, which
have to be augmented.

2.1 The General Construction

In the following £ +— X will denote a Dirac bundle over an open Riemannian manifold
X° with completion X. Let Dy be the associated Dirac operator, defined on some
domain D(Dy) satisfying the following:

Assumption 2.1.1.

a) Dy is densely defined, closed and symmetric on D(Dy).
b) D(D§)/D(Dy) is of finite dimension and the restriction of the projection map
ker(DGD§) — D(D§)/D(Dy) is surjective.

¢) There exists an exhaustion {X.}ocece, 0of X° such that each X. has a smooth
boundary, X. C Xo fore > ¢ and for every f € D(Dg), the limit

(fi[)o:=1im [ (f(x), f(z))dx

e—0 X,

exists and satisfies that if (f, ), =0 then f € D(Dy).

Remark 2.1.2. Often X. will be a manifold with corners rather than a manifold with
smooth boundary. What matters is that (2.1.2) below is satisfied.

Let £ be the orthogonal complement of ker(DjDy) in ker(D§Dg) with respect to
the inner product on L?*(X, E). The restriction of (-,-), to £ is an inner product by
the assumptions above. We define an operator ¢ : £ — L by

(eafsg)yi=lim | (e(v)f(z), g(x)) dx. (2.1.1)

e—0 X,

where ¢(v.) denotes the inward pointing normal at dX.. The formula

(/<Dﬁﬂmf%ﬂDwMJx=/m<d%ﬁ@%%@mdr (2.1.2)

e 29X,
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proves that cs is well defined and that

<C3fvg>8 = <D8fvg> - <f7 Dég> .

Using (2.1.1) it follows that ¢ = —cjs. Further, if {¢;} is an orthonormal basis for £
with respect to (-,-), we may compute

<Caf, C8f>a = Z <C8f7 <C8f7 €j> €j>8
= Z cafs €, (Caf i),
= le_r}% C I/E)f, €]>L2(8XE,E) mL2(8XE,E)

= 3 i (el () )

L2(0X..E)

Because (-, '>L2(8X5 B) — (-,)5 as a family of quadratic forms on £ this gives:

= lim (e(ve) [, e(v:)f + o(1)) 2 ax. )
=ty { (7. o,y + 1)}

:<f7f>8‘

This proves that c3 is an isometry. We immediately conclude that in fact ¢5 is unitary
and anti-self-adjoint.

Lemma 2.1.3. Let ker(Dy)*/ ker(Dy) v ker(DjD})/ ker(Dy) denote the map of in-

clusion. Then we have

i) If Assumption 2.1.1 holds, the sequence

0 s ker(D5)/ ker(Do) s ker( Dz D)/ ker(Do) 2 ker(Dg)/ ker(Do) v 0 (2.1.3)
s exact.
ii) Let
Lo={f€eL]|Dif =0}
Then Lo is a Lagrangian subspace of £ with respect to ca and (-,-).

Proof: We identify ker(DjD5)/ ker(Dy) with £ and ker(Df)/ ker(Dg) with Ly. Since
for g € ker(Dy), f € ker(D§Dg) we have

<D8fvg> = <f7D0.g> = 07
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we also have that D§ maps £ to Ly, so the sequence (2.1.3) is isomorphic to the
sequence

05 Loty L8 L0 0.

That ¢ is injective and that Im(z) = Lo = ker((Dj)|z) are both obvious. We need to
show that Dj : £ — Lg is surjective. We will use a dimension argument. First notice
that the exactness of

0 Loy £ 28 L,
implies that we have the inequality
dim(£) < 2dim(L). (2.1.4)
Next we notice that for f,g € Lo,
(caf,g) = (D5f,g) — ([, D5g) = 0.

Thus ¢j is an injective operator mapping Ly to its orthogonal complement. It follows
that

1
dim(Ly) < §d1m(£)
Together with (2.1.4) this proves that dim(£Lo) = dim(L), so Djj : £ — Ly is surjective.
The same arguments also prove ii). O

Corollary 2.1.4. Let D be the restriction of Dg to D(Do)@BLo. Then D is self-adjoint.
Proof: Let fi, fo € D(Dy) and let g1, g2 € Lo. Then

(D(fi +a1), f2 + g2) = (Do fi, fo + g2) = (f1, Do (fa + 92)) = (f1, Do fa) .

In the same way it follows

(fi+ 91, D(fo + g2)) = (Do f1, f2) = (f1, Do f2) .

Consequently D is symmetric. Since Dy C D and D is symmetric we have D C

D* C Dj. Now assume that there exists f € D(D*)\ D(D). Then f is of the form
fs + f1, where f5 € D(D) and f4 belongs to the orthogonal complement of Ly in L.
Consequently D fq € Lo\ {0} C D(D). We check

(Do fas D™(fs+ fa)) = (D5 f1, D f3) + (Dg fa, D5 f4)
= (D3 Dg f1, f3) + (D fa, DG f4)

On the other hand
(D(D3 f1), fs + fa) = (D3DG fu, 3+ f1) = 0.

This is a contradiction against fs + f4 € D(D*), so D is self-adjoint. O
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Definition 2.1.5. We consider £ as a Hilbert space with the inner product (,-),.
The scattering matriz S : L — L is the operator 2P — 1, where P is the orthogonal
projection on Ly. We say that the operator D defined in Corollary 2.1.4 is augmented
with respect to S.

Lemma 2.1.6. Let T be a bounded normal operator on L*(X, E) such that
1) T* preserves D(Dy).
2) T*Dg = DoT* or T*Dy = —DoT™.

Then T preserves L and Lo and in particular, T commutes with S.

Proof: Assume f € D(Dj). Then for g € D(Dy)

[ (Dog. Tf) | = [(T"Dag, f) | = | £ (DoT"g, f) |-
Since Df f is well defined and T*¢g € D(Dy) this is equal to
| £ (T, Dgf)y | < [T - llgll - DG f1]-

Thus T'f € D(Dy). Further T D = +D{T by calculations like above, so in particular
T preserves ker(Dg). Further, for f € D(D§Dg) it follows DEDGT f = £ DS(TDSf) =
TD3DSf, so T also preserves ker(D§Dg). Since ker(DgDg) is finite dimensional, T' is
normal and T preserves ker(Dg) it follows that T preserves £, Ly and the orthogonal
complement of Ly in £. This proves the lemma. O

Corollary 2.1.7. We have
o 5 respects every superstructure on E respected by Dy.

o Assume that E is the restriction of a Clifford bundle E — N x X to {a} x X,
where N x X s supplied with a product metric and product connection. If Clifford
multiplication by any tangent vector v € T,N preserves D(Dy), then v sends L
into L and vS = S~.

2.2 Manifolds with Boundaries and Wedge Singularities.

We will now apply the above to the Dirac operator D on the extended manifold M,
where M is an oriented manifold with corners of codimension 2 and product structure
around the corners. M is a manifold with wedge singularities and a boundary. Let X
be the sub-manifold of interior points of My. At the boundary Atiyah-Patodi-Singer
boundary conditions can be imposed except for in ker(A), where A is the induced Dirac
operator at the boundary. Thus we require sections to have restrictions to the boundary
in the strictly positive spectral subspace for A. Similarly, in the wedge singularities
minimal slow-growing ideal Atiyah-Patodi-Singer boundary conditions can be imposed.
This gives a closed symmetric realization Dy of D.

Lemma 2.2.1. Assumption 2.1.1 is satisfied for D.
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Proof: a) is obvious. Further, D(DS)/D(DO) is finite dimensional since
D(D;)/D(Do) = ker(A) & @D ker(By) M ker(By) =: V,

where the direct sum is over the wedge singularities. Now consider the operator D(*) De.
Essentially by the proof of Lemma 1.3.6 it follows that D(*)Do is a Fredholm operator.
To each ¢ € ker(A) and to each ¢ € ker(By)Nker(By ), where N and Y are associated
to a wedge singularity, we may associate an element h € D(DS)\D(DO) with support in
a small neighborhood of the boundary or singularity. Further & may be taken such that
Dih e D(D*) On the other hand each f € D(D*) \ D(Do) is asymptotic to a sum of
such elements up to D(Do) Further, D*D*h is orthogonal to ker(Do) = ker(D*Do)

h — (D*Do) Y(DgDgh) is an element of ker(D*D*) which differs from A by an element
in D(Do) This gives that the map ker(D*D*)/ ker(Do) > D(D*)/D(Do) is surjective.

In order to prove c) take
X, :={z € M |dist(z,0M) > &}.

For small € this is a manifold with boundary and the family X, exhausts X. Further,
by the asymptotics of elements of D(D*), it follows that (-,-) is well defined and that
it does not vanish on elements of D(Dg) \ D(Dy).

This proves the lemma.

O

~ By Lemma 2.2.1 and Corollary 2.1.4 there is a canonical self-adjoint extension of
Dy, which we (with a slight abuse of notation) denote by D.

Definition 2.2.2. When D is given the domain defined above we say that D is given
slow-growing Atiyah-Patodi-Singer boundary conditions augmented with respect to the
scattering matrix.

The significance of the slow-growing ideal Atiyah-Patodi-Singer boundary condi-
tions is that

e They are always well-defined, also for odd dimensional manifolds, and they are
canonical inside the class of all generalized compatible Dirac operators on mani-
folds with boundary and closed wedge singularities of codimension 2.

o They satistfy Lemma 2.1.6 and Corollary 2.1.7. This is crucial for the iteration of
the theory to more complicated singularities. In Section 5 a simple example of
this is given.

e As soon as we relate D back to a self-adjoint realization of D in Section 3, the
mixing of boundary conditions in the various boundaries occurs anyway. Conse-
quently this mixing is not a particular draw-back by the boundary conditions, as
it could appear by a first sight.

e They give rise to a canonical joint generalization of the Atiyah-Patodi-Singer
boundary conditions on manifolds with boundary and slow-growing ideal bound-
ary conditions on manifolds with cones.
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We will end up by remarking that if augmentations are given in some singularities
or boundary pieces of M, Dy can be replaced by a corresponding symmetric extension
of Dy and we get a scattering matrix involving the remaining singularities. The ex-
tension of this theory to wedge singularities of higher codimension is also completely
straightforward.

3 A Self-Adjoint Extension of D.

In this section we return to the original manifold M. The theory developed for M
turns out to be suitable for defining global boundary conditions on M, generalizing
the Atiyah-Patodi-Singer boundary conditions. In all of this section M will thus be a
manifold with corners of codimension 2 and product structure around the corners, M
will be the extension of M defined by (1.1.2) and Z will be the smoothened boundary
of M. It £ — M is a Dirac bundle respecting the product structure, E — M will be
an extension of E respecting the product structure. The bundle £ need not be glued
using the canonical gluing operator. In Section 3.3 the gluing will in fact be the gluing
associated to the signature complex, which does not coincide with the canonical gluing
operator.

Let D be the Dirac operator associated to £ +— M. The operator D — M will be
given slow-growing Atiyah-Patodi-Singer boundary conditions augmented with respect
to the scattering matrix, where the scattering matrix can possibly be defined relative
to an augmentation of some of the wedge singularities and boundary components.

3.1 Self-Adjoint Boundary Conditions.

Let D be the Dirac operator on M. A first naive attempt of constructing a Sobolev
space on M associated to D is to define:

Definition 3.1.1. Let
D*'(M,E)={fa | f € D(D)}.

The space D*'(M, E) is not a Hilbert space under the H'-norm. Let D*'(M, E)
denote the completion of D**(M, E) with respect to the H'-norm. For each ¢ > 0
there is an unbounded trace operator defined on all of D*!'(M, E), which we denote by

R:
R: D* (M, E) = W>™(Z, F) & @) ker(Bx) Nker(By),

where the direct sum is over the wedge singularities. The first component of R is
restriction to M. See Lemma 1.4.1. The second component is obtained by first
taking the projection onto ker( By ), then taking the leading term with asymptotics like
r_%, where r is the distance to the corner, and finally exploiting that an element of
ker(By) is uniquely determined by its restriction to M. The image of the trace R is
not dense unless ker(By) Nker(By) = 0 for all NV,Y since the second component is a
function of the first.
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We recall that on Z x (0,1], D has the decomposition

~ 0
D=—-v(—+A),
du
where A is a self-adjoint Dirac operator on Z with a discrete point spectrum with
eigenvalues of finite multiplicity. Let II;, II_ and Ily denote the projections on the
positive, negative and zero spectral subspaces for A. All of those operators are defined

on L*(Z,F) and extend by continuity to W#~¢(Z, F').

Definition 3.1.2. The domain of the Dirac operator D on M is given by
D(D)={f€ D*(M,E) | lI_fiz = 0 and (Ilofi7, R f) € ker(S — 1)}.

Here R, denotes the second component of R.

Lemma 3.1.3. If f € H'Y(M, E) vanishes identically on M then of € W' (M, E) for
every smooth function @, which is constant in a neighborhood of each wedge singularity
and vanishes on Z x (1 — e, 1] for some ¢ > 0.

Proof: The orthogonal complement H of WOZ’I(M, E) in HI(M,E) consists of the
distributional solutions of the equation D*f = —f, which are in L% Let {@ua} be
an orthogonal basis of common eigenvectors for Bj to the eigenvalues u* and the
identification operator U at the corner to the eigenvalue a. Developing the restriction

of f to aneighborhood of ¥ with respect to this basis, we get a sum, which is orthogonal
on the level of L*(Y, Ejy)

flr0,y) = Z fra(r0)pualy),

where f, . is a L*-solution to the equation

(Dz,oz —I_ /uz)fu,oz = _fu,oz-

This gives that each f, , is of the form

Fua(r0) = foualr,0)+ Z au,a,kKskya(\//,ﬂi—l-lr)e”‘gsk,aé’?

Skyae(—l,l)

where fg ., 1s the restriction of a section in WOZ’I(M, E) From that it is not difficult
to see that all terms, which are not restrictions of sections in W02’1, have to vanish
identically if fjps = 0. O

Lemma 3.1.4. Fvery o € D(D) has an extension $ € D(D) such that D@ vanishes
on 7 x (0,1].

The restriction of @ to Z x (0, 1] only depends on the restriction of p to Z. Further,
Jor all ¢ > 0 the operator Rey ~: W™ (Z,F) — HY(Z x (0,1],E) is a compact
operator. Here Rey denotes the operator of restriction to Z x (0,1] and ~ is the
operator @ — Q.
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Proof: The restriction of ¢ to Z is a W2~ *-convergent sum

dim(ker(A)Nker(7—1))

p(z,0) = aipi(2) + Y arpa(z)

=1 A>0

for some orthonormal basis {@A}AGU(A) of eigensections for A, eigenvalues counted with
multiplicity. It follows that ¢ can be continued to a solution @ of D@ =0 on Z x [0, 1]
by

dim(ker(A)Nker(r—1))

P(z,u) = a;ioi(z) + Z ayxe Mor(2). (3.1.1)

=1 A>0

For v > 0 this sum is convergent in W?#(Z, F'). Further, the condition (z,0) €
W?2~¢(Z, F) suffices to ensure that ¢ € L%

By definition of D*'(M, E), ¢ also has an extension f € D(D) and by Lemma 3.1.3,
f—@islocally in W' close to at wedge singularities. This proves that ¢ € D%{,l(M, E)
That R ~ only depends on ¢z and is compact follows immediately by construction. [J

Lemma 3.1.5. D is closed and symmetric on D(D).

Proof: By Lemma 1.4.1 there exists a constant ' depending on ¢ > 0 such that for
all f € D(D),

I hzlwez.m) < CUF e + 1 g zxon.5)-

This follows since there is a continuous restriction HI(M, E) — W3™5(Z, F). Since
Rey1 ~ is compact, for f|7 in some subspace with finite dimensional complement, there
is an estimate

x 1
HfHHl(Zx(o,1],E) < %HfIZHW?v—E(Z,F)-
These two estimates together give

HfIZHw2v—E(Z,F) < 2CHfHHl(M,E)- (3.1.2)

This proves that restriction to Z is continuous. Thus also ¢ — ¢ is H'— H' continuous,
and it follows from the closedness of D that D is closed.

That D is symmetric follows by applying Greens formula to the extensions of sec-
tions defined in Lemma 3.1.4 on M Uy (Z x [0, ]) and letting § — 0. O

Theorem 3.1.6. There are maps, given by extension and restriction, respectively

O, ker(D)err(D), (3.1.3)
o, ker(D)err(D).

The maps ®, and O, are inverse of each other.
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Proof: Like in the start of the proof of Lemma 3.1.4 we see that elements of ker(D)
can be extended as claimed.

On the other hand, if ¢ € ker(D), expanding it on Z x (0,1] gives that it has an
expansion like (3.1.1). Further the restriction of every element of ker(D) satisfies the
condition (Ilyfiz,Ra2f) € ker(S — 1). Consequently the restriction belongs to D(D)
and thus to ker(D).

That &, and ®, are inverse of each other is clear. O

Lemma 3.1.7. The operator D is self-adjoint on the domain given in Definition 3.1.2.
D has a discrete point spectrum with eigenvalues of finite multiplicity.

Proof: By Lemma 3.1.5 we have that D is closed and symmetric.

Let P be the projection on the kernel of D and let R be the operator of restriction
of sections in F to sections in E. Then the adjoint R* of R is the operator of extension
by 0. The operator D 4+ P has an inverse, given by

(D+P)'f=Pf+(1—-P)RD'R*(1 - P)/f.

Since ker(D) consists of extensions of elements of ker(D) it follows that (1 — P)f is

orthogonal to ker(D). Thus D™'R*(1 — P)f exists and belongs to L?(M, ). Further,

since it satisfies the equation
DD'R*(1 - P)f = R*(1 — P)f,

it follows like in the proof of Theorem 3.1.6 that the restriction of D_lR*(l — P)f to
7 belongs to the non-negative eigenspace of A and that the component in ker(A) is
constant on the cylinder. Since it further belongs to D(D) it follows that RD~" R*(1 —
P)f € D(D). It follows that (D+ P)~! is a right inverse of D+ P. Further, (D+ P)™! is
by construction everywhere defined. Since its graph is contained in the transpose of the
graph of the injective symmetric operator D + P, it is closeable. But an everywhere
defined closeable operator is closed, so (D + P)~' is bounded by the closed graph
theorem. A symmetric operator with a bounded right inverse is always self-adjoint.
This proves that D + P is self-adjoint and thus also that D is self-adjoint.

That D has a discrete point spectrum with eigenvalues of finite multiplicity follows
since P has finite rank and (D + P)™! is compact by the compactness of D1 O

Remark 3.1.8. All the main results of this section hold with only minor changes if
S is replaced with another augmentation. In particular Lemma 3.1.7 holds in the case
where some of the wedge singularities are augmented using local augmentations and
the scattering matrix is changed to the corresponding relative scattering matrix.

3.2 Extensions of Hilbert Spaces.

The Atiyah-Patodi-Singer boundary conditions are closely related to the extension of a
manifold with boundary and product structure in a neighborhood of the boundary to a
manifold with cylindrical ends. This was observed and used already in [2] and has since
then been an important starting point for generalizations of the Atiyah-Patodi-Singer
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boundary conditions. See for example [22] and [31]. Also the approach of this paper is
based on an extension, though we have chosen consistently to make use of boundary
conditions rather than of open ends.

When we imposed ideal slow-growing Atiyah-Patodi-Singer boundary conditions on
a wedge singularity we used that the restriction of the Dirac operator on R27 x Y to
ker(By) is conjugate to a boundary value problem and imposed Atiyah-Patodi-Singer
boundary conditions. There is however no natural geometric extension of R>7 x Y
corresponding to those boundary conditions.

What we can do is to extend the Hilbert space L*(R%7 x Y, I) together with some
spaces of sections and functions. This kind of extensions will turn out to play a crucial
role in the generalization of this theory to manifolds with corners of codimension 3
and arbitrary gluings or to manifolds with corners of codimension 4 and the canonical
gluing. In this paper we will use it as a technique for studying the signature complex in
Section 3.3. In the relevant cases in this paper only geometric cylinders are attached.

Let

H = [*(M, E). (3.2.1)

Definition 3.2.1. Let DSlOW’maX be the realization of D defined on the domain

1

D(Dslow,max) = {f - Hl(M, E) | \V/N . },E%Hf(r)HL%NXY,E) == O(T_E)}. (322)

Deﬁnition 3.2.2. We say that an element f € LQ(M, E) is smooth if for all k € N,
f S D( slow max)

Then we may define
Hp=H& L*(Zx[1,R+1],F)s @ L*(Y x [~ R, 0], ker(By)), (3.2.3)
Hoo :=H @ LHZ x [1,00), F) @ @ LAY x (—00,0], ker( By)). (3.2.4)

The Hilbert space Ho, is related to the non-smooth space

M., := MUz (Z x [1,00)) Uyuewy, (ViU ---UY3) x (—o0,0]),

where Y7,... .Y, runs over the spaces Y at the various corners. M., is in a natural
way a o-compact Hausdorff space with a Borel measure. Further the pointwise squared
norm,

| Hoo — LY M)

is well defined. The space H.. is however not in any natural way the space of L?-sections
in a bundle over M.

Definition 3.2.3. Let f € H... The support of f, supp(f) is given by

supp(f) := OO\U{U € M., | U is open and / |f|?(z)dz = 0}.

We say that f has compact support if supp(f) is compact.
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Definition 3.2.4. The space C*(H,) of smooth sections in H., is the subspace of
f € Ho such that each of the components of f in (3.2.4) are smooth, such that f
extends to a smooth section in the extension of £ to M Uy (Z x [1,00)) and such that
for each wedge singularity, if we let Pi,(g,) be the projection on ker(By ), defined in a

neighborhood of the singularity, the sections T%Pker(BN)f(ry -) and the restriction of f to
L*(Y x(—00, 0], ker( By)) glue together to a smooth section in L*(Y x(—oc, ), ker(By))
for some ¢ > 0.

Definition 3.2.5. Let Pr be the orthogonal projection on Hg in H.,. The space
C*>(Hg) of smooth sections in Hp is given by

C%(Hp) = PRO®(Hoy).

Definition 3.2.6. The space C5°(H) is the subspace of C°(H,,) of elements with
compact support. It can be supplied with an inductive limit topology using H*-norms
of sections with fixed support. The space D'(H,) of currents with values in H™ is the

dual space of C5°(Heo)-

Definition 3.2~.7. The Dirac operator D, o defined on C§°(H..) is the Direct sum of
the operators Dgiow max,

’y(% + A) ; defined on L*(Z x [1,0), F),

and the operators

I/(ag + By) ; defined on L*(Y x (—o0,0], ker(By)).

7

The operator Dprg is the restriction of Dy, o to C(Hg).
Lemma 3.2.8. The operator D, o is essentially self-adjoint.

Proof: This follows by constructing the resolvent using the resolvent of D and of Dirac
operators on the cylinders, cut-off operators and analytic perturbation theory. O

Let Do, be the unique self-adjoint extension of D, o. We denote the domain of D,
by D(D.,). Further we let ker,, (D, ) be the space of smooth sections of H.., such that
the restriction to each cylinder (but not to M) is bounded and such that D, f = 0.
Finally we let

Doo(Doo) := D(Do) + ket (Do), (3.2.5)
D (D2) := D(D2) + keroo (D). (3.2.6)

It now follows exactly like for a manifold with boundary that
D(D) = {fii7 | f € Dec(Do) and Do f € H}.

A section f € D(D) can be extended uniquely to a section fe Do (Do) satisfying
that D, f € H. This holds because D is augmented with respect to the scattering
matrix.
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Lemma 3.2.9. Let f € H., be a section with compact support, which is orthogonal to
kero,(Doo). Then there exists g € D(Dy) such that Doog = f.

Proof: Let R be such that f € Hr. We may impose APS boundary conditions
augmented with respect to the scattering matrix on Dpg. The resulting self-adjoint
operator Dp has a discrete point spectrum and ker(Dpg) = kere (Do), where the
isomorphism is by unique extension and restriction. Consequently f is contained in
ker(Dg)*t. Thus there exists gr € D(Dg) with Drgr = f. Now, gr may be extended
t0 goo € Doo(Do) such that Doge € Hp. Thus Dege = f.

Finally, the limit value of g., corresponds to the limit value of a harmonic section
w. Thus ¢ := g, — w satisfies the claims of the lemma. O

3.3 The de Rham and Signature Complexes.
In this section £ will be the bundle A*(T*M © C) supplied with the Levi-Civita con-

nection and the canonical Hermitian structure induced by the Riemannian metric on
M.

The vector-bundle £ will be the bundle of differential forms on M. Notice that
since functions are glued trivially in the corners, this bundle is not glued using the
gluing from Lemma 1.1.14. This follows from point 6) of Lemma 1.1.14. In all of this
section we will assume:

Assumption 3.3.1. Fach angle o; at the corners belongs to the interval (0,3m).

Lemma 3.3.2. The projection on p-forms preserves D(Dsjowmax) for p = 0,... ,n.
Further, for each N we have ker(By) = {0}.

Proof: Locally, in a neighborhood of a wedge singularity, £ may be decomposed
E={NY)BviNY)} B —w)A(Y)} & {(0 +w)A"(Y)}. (3.3.1)

Clearly the projection on p-forms preserves this decomposition. The gluing operator
U is of the form A(V'), where V is a rotation with angle 7 — o in the plane spanned by
v and 4. Explicitly,

Uv = cos(m — o)v + sin(r — 0)d,

U§ = cos(m — 0)d — sin(m — o).
Explicit computation now shows that (3.3.1) is a decomposition into eigenspaces of U,
with eigenvalues 1,e=*"=%) and ¢ , respectively. The operators By and Bj send

each of the terms in (3.3.1) into itself. In particular (3.3.1) respects D(D).
For the 1-eigenspace we see that for k& € Z:

T—0)

2mk 4+ 1
o= mk + ilog(1) c s 7
’ o+ o+

Since o < 3r it follows that |s;i| € (0,3] does not occur. Thus on this space,

D(Dslowmax) = W21 It immediately follows that it can be split into p-forms.
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For the other eigenspaces we notice that By and BE preserve both spaces and that
1/(% + 1By) commutes with the projection on (p — 1)-forms in A*(Y"). Further a local
complement of W21 is spanned by solutions of 1/(% + %BN)c,o = 0, so it can be split
into p-forms. It thus follows that the projection on p-forms preserves D(Dslowmax).

Finally we notice that for o € (0,37) also §; .~i=-0) # 3 and s, im—o) # 3 for any
k. Thus ker(By) = {0} and there is no augmentation in the wedge singularities. [

Let in the following M., be like in Section 3.2. Then, since ker(Bx) = {0} for all
wedge singularities, M., 1s a manifold with cylindrical ends and wedge singularities.
In addition to the objects defined in Section 3.2 we let d., and d7_ denote the exterior
differential and its adjoint on M.

Lemma 3.3.3. Fach of the operators d., and d7, are defined on Do (Ds,). Further,
dewDoo (Do) is orthogonal to d5 Doo(Deo).

Proof: By Lemma 3.3.2 it is enough to check that if w € D, (Ds) is a form of pure
degree, then d. w and d7 w both belong to H.,. But this is clear since Dw € H
and d., and d%, map w to forms of different degrees. In order to check that the images
of do, and d7 are orthogonal to each other it is enough to check that the images of
D..(D?) are orthogonal. This follows since D(D? ) is a core for D.,. For w € D, (D2),
W' € Do (D)

n—2

(doow,d’ W'y = <doowp, d;w;+2>
p=0
n—2

(]

(Deotwpy Doowyy)

T
[\ en]

<D<2>owpvw/ >

p+2

Il
=]

Il
o

The last equation holds since D% preserves the degree of forms. The integration by

parts did not course a contribution from oo because D, maps Do (Do) into Heo. O
Let in the following D(M, E) = CSO(MO, E) and let D’(M, E) be the dual space of
D(M, E).
Lemma 3.3.4. For every closed form h € D(Dslow’max) there exists £ € WQ’I(M,E)
and n € D'(M, E) such that n vanishes on (3,1] x Z and
h=¢+dn.

Further, for every co-closed form h' € D(Dslow’max) there exists £ € WQ’I(M, E) and
n € D'(M,E) such that v vanishes on [£,1] x Z and

2

h/ — 5/ + J*n’.
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Proof: Let a = 0 + 7. We decompose

H.(RY" < V,C) = Hy(R%",C) @ H.(Y,C) & H,(R%*,C) @ H.(Y,C),
H*(R%Y" x Y,C) = H(R%",C) @ H*(Y,C) & H(R%",C) @ H*(Y,C).

By the de Rham isomorphism, the elements of H°(R%®, C) @ H*(Y) are exactly the
cohomology classes [w] such that

(o,w) =10

for all o € Hy(R%*,C) @ H.(Y). By the growth condition o(r,0) = O(r_%), holding
for all ¢ € D(Dslowmax) it follows that all closed elements of D(Dslowmax) are locally
cohomologous to elements of the form 1 A hy, where hy is a harmonic form on Y.
The first part of the lemma now follows by using suitable cutoff functions.
The second part of the lemma follows by the first and Hodge duality. O

Theorem 3.3.5. There is a direct sum decomposition

Heoo = ker(D2) @ Im(do ) @ Im(dx,). (3.3.2)
All harmonic forms in Doo(Da), D(D) and D(D) are closed and co-closed.
Proof: By self-adjointness of D, it follows that
Hoo = ker(D2) & Im(Dy,). (3.3.3)

Combining this with Lemma 3.3.3 gives (3.3.2). Now assume w € D, (D) is a har-
monic p-form. If f € C5°(Heo)

<w7d00f> = <w7d00fp—1> = <W7D00fp—1> = 0.

Since all harmonic forms can be split into harmonic forms of pure degree it follows that
for w an arbitrary harmonic form

(w,deo f) =0 and (w,d’_f)=0.

This implies that dw = d*w = 0. By the extension properties, also harmonic forms in

D(D) and D(D) are closed and co-closed. O

Lemma 3.3.6. Let [ be a closed form in Ho,. Then there is a decomposition

f = fO + 6%77
where fo € ker(Dy,) and n € D'(Heo).

Proof: For R > 0, let Pr be the orthogonal projection on Hp and let (Jr be the
orthogonal projection on ker(Dg)* in Hr. By Lemma 3.2.9 there exists g..(R) €
D(Dw) such that Do.geo(R) = QrPrf.
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Let V' be the annihilator of ker,, (D) in C5°(He). For ¢ € V| pick R' < R big
enough such that ¢ € Hp C Hp. By Lemma 3.2.9 there exists v € D(Dy,) with
D = . Thus

<997900(R)> = <D00¢7900(R)>'

Using symmetry of D, gives

= <¢7 DOOQOO(R)> = <¢7 QRPRf> .

Now, QrPrf € Prf 4+ Prkeroo(Ds) and ||QrPrflln. < ||flln.- In particular the
Hpr-norm of the error term in Pgker.,(Ds,) is bounded for fixed R" and R — oo. Since
kero, (Do) is finite dimensional this proves that Pr/QrPrf has an accumulation point
for R — oo. Thus there exists a sequence R, such that for all ¢ € H.., (¢, Qr,, Pr,. )
is convergent. It follows that also the sequence {(p, goo (R ))} is convergent. Conse-
quently the sequence {g.. (R, )} is convergent in the dual space V* of V. We notice
that a complement of V' in C§°(H) can be given and is a finite dimensional space of
dimension dim(kers,(Ds,)).

The split exact sequence
0= Vi O (He) = C7(Heo)/V — 0
gives rise to a split exact sequence
0= (C5¥(Hoo)/ V) = D'(He) — V0.

Thus the dual of C§°(Hs)/V is canonically identified with the annihilator of V in
D'(Heoo). Since a complement of V' is finite dimensional and has ker., (D, ) as dual, the
annihilator of V' in D'(H,) can be canonically identified with ker,, (D, ). Consequently
the limit

lim geo( Rin)

m—00

is well defined in D'(Ho.) up to an element of ker.,(D..). Let n € D'(Ho,) be such an
element. Then D, n = (). f. Further, since f is closed we get

Thus in fact f = fo + dn, as claimed. O

As in [2] an important step is to find the relation between harmonic forms in the
domain of D? and the cohomology of M.
Let o > 0 be given. The diffeomorphism x : RZ7T™ s R2\ {0} given by

o= (15055 )

rsin 21~

extends by continuity to a homeomorphism & from the completion of R271™ to R2
Using k we may thus give M a canonical differentiable structure. Let M; denote the
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smoothened version of M. Let ¢; be an arbitrary smooth Riemannian metric on M;
such that the inclusion M — M is an isometry on [2,1]x Z. Then (M, g1) is a smooth
Riemannian manifold with boundary and product structure in a neighborhood of the
boundary.

Now let M be the extension of M; to a manifold with cylindrical ends and let
E + M be the bundle of differential forms on M. Finally let d, d* and D be the
operators of exterior differentiation, its adjoint and the Dirac operator D = d + d*,
defined on M.

Let

ker(D)o := {f € ker(D) | fiz € ker(A)*}.
There are maps

2 H (M) — H*(M),

[[]: ker(D)o > H*(MO)

Here the first map is pullback and the second is the association of a cohomology class
to a harmonic form. All cohomology spaces are taken to have complex coefficients.

Lemma 3.3.7. The image of [-] coincides with *H?, (M). Here H (M) is the

comp comp
cohomology with compact support.

Proof: Since M is a manifold with cylindrical ends homotopy equivalent to M, by [2,

Proposition 4.9] it suffices to prove, that the image of the space ker(D)o in H*(M) is
isomorphic to the image of the space ker(D) in H*(M). Here D is the Dirac operator
on M.

First assume that @ € ker(D)o. Then d = 0 by Lemma 3.3.5 and by Lemma 3.3.4,

@ is cohomologous to a form & € WZ’I(M, E), which is equal to @ on [}, 1]. The inclusion

1 : M — M induces an isomorphism 1* : W2 My, E) WZ’I(M, E) Thus (+*)7(¢)
is a closed L?-form in W%'(M;, E). Further this form extends harmonically to a form
70(@) on M. Let h be the harmonic component of 75(@). By a theorem of de Rham and
Kodeira [11, Theorem 25], there exists a current ¢, such that jo(@) = h + d¢. Pulling
back and using that the cohomology can be computed from the space of currents, we
get that ¢*(h) induces the same cohomology class as @.

On the other hand any harmonic L?-form @ on M can be pulled back to a closed
W2 form & on M. The harmonic component of & then induces the same cohomology
class as the pullback of @ by Lemma 3.3.6.

This completes the proof of the lemma. O
Theorem 3.3.8. The space ker(D)y is canonically isomorphic to the image of H% (M)

comp

Proof: By Lemma 3.3.7 it suffices to prove that the restriction of the pullback ¢* :

H*(M) — H*(M°) to H, (M) is injective. That means that it suffices to prove that

comp
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if some f € C°(A*(M)) satisfies that :*(f) = dg for some g € COO(A*(MO)), then for
some ¢’ € C°(A*(M)), f = dg'.

To this end notice that there exists a diffeomorphism ¢ of M homotopic to the
identity such that the support of ¢*(f) is contained in the interior of M. Further there
exists a diffeomorphism ¢’ between the interior M° of M and M such that ¢ = ¢’

on the support of f’. Thus f is cohomologous to some f’ with support in M°. TIf
C(f) =dg, also f=((¢)")*(f) = d((¢)"H)*(d'), so f is cohomologous to zero. [

Corollary 3.3.9. For the signature complex we have

Indexo(D) = sign(M) (3.3.4)
and for the de Rham complex we have

Indexo(D) = y(M). (3.3.5)

Proof: The identity (3.3.4) holds because the signature is by definition the signature
of (r-,-) on the image of H*(M,Z7) in H*(M), which is isomorphic to the image of

H* (M) in H*(M). For (3.3.5) we notice that since 7 is a closed manifold of odd

comp
dimension, x(Z) = 0. Thus x(M) = x(M,Z)) + x(Z) = x((M, Z)). Now the long

exact sequence
H*(M,Z)— H* (M) — H*(Z)
gives that
0 = x(2) = x(Im(H"(M) = H*(2))) + x(Im(H*(Z)) = H"(M, Z)).

By averaging over two ways to compute Index(D)o we get

Index(D)y =

=
=
*

(M) = x(Im(H*(M) = H*(Z))))

_|_

(X(H™(M, Z)) = x(Im(H*(Z) = H*(M, 7))

(X(M) + x(M, Z) — x(Z))

Ol e R

E

O

The signature and de Rham complexes allow the same analysis as in [2] to be carried
out.

Lemma 3.3.10. For the signature and de Rham complezes we have

dim(ker(Sy — 1)) = %dimH*(Y).
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Proof: In this proof we use + for the signature complex and ev/odd for the de Rham
complex. Since the involutions corresponding to the two complexes commute, any
combitation can be taken.
The Lefschetz duality theorem [15, Section 28] gives that the diagram
= HTY M) HNZ) S HUM,Z) - HIZ) e
(1t (6ony dnd i (3.3.6)
s Hogn (M, Z) 5 Ha_o(Z) & Hof(M) — H,_,(M,Z)

is commutative and that the vertical arrows are isomorphisms. The horizontal maps
make up exact sequences. Here ( is the fundamental class of M, the horizontal maps
are induced by inclusions and restrictions, and ¢ and d are the connecting homomor-
phisms. The integer ¢ runs from 0 to dim(M). A diagram chase shows that (6¢)N is
an isomorphism between Im(j) and its orthogonal complement. In particular

dim(Im(j)) < %dim(H*(Z)). (3.3.7)

Every ¢ € ker(Ay4) is of the form ¢ = w 4 7w, where w € A*(Z). Thus the pullback w
of ¢ vanishes if and only if ¢ vanishes. Since restrictions of harmonic sections on M
to Z factors through j it follows

dim(ker(Sy — 1)) < %dim(H*(Z)), (3.3.8)

1
dim(ker(S- — 1)) < §dim(H*(Z)). (3.3.9)
On the other hand ker(S; — 1) & ker(S_ — 1) is a Lagrangian subspace for v, so

dim(ker(Sy — 1) @ ker(S- — 1)) = dim (ker(S; — 1) & v ker(5; + 1))
= dim(ker(A4))
= dim(H"(Z)).

Combining this with (3.3.8) and (3.3.9) immediately gives
1
dimker(S; — 1) = dimker(Sy + 1) = §dim(H*(Z)). (3.3.10)

This proves the lemma for the signature complex. In order to handle the de Rham
complex, notice that we may split A*(M) into the direct sum of two Clifford bundles

A (M) = (AT(M) & AM(M)) & (A™V(M) & ATeY(M). (3.3.11)

Now, 7 is injective on each of the f-spaces and maps the odd/ev spaces to comple-
mentary subspaces of H*(Y'). It thus follows like above

dim kex(Syey — 1) + dim ker(S_oaq — 1) = %dim(H*(Z)), (3.3.12)
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dimker(Syodaa — 1) + dimker(S_ey — 1) = %dim(H*(Z)). (3.3.13)

Now since j(Im(S4 —1)) = y(Im(S- — 1)) it follows that jJIm(S ey — 1) = JIm(S_ey — 1).

Further, since j is injective on each of those spaces it follows that
dimker(Syey — 1) = dimker(S_ey — 1).

Thus dim(ker(Seqq — 1)) = %dim ker(H*(Z)), and the lemma follows for the de Rham

complex also. O
From Lemma 3.3.10 we conclude

Corollary 3.3.11. For the de Rham and signature complexes we have

tr(S4) = 0.

4 Computation of the Index.

Let in the following £ — M be a Dirac bundle over an even-dimensional Riemannian
manifold M with boundary, product structure around the boundary and wedge singu-
larities of codimension 2. Let D be the self-adjoint realization of the associated Dirac
operator with slow-growing ideal Atiyah-Patodi-Singer boundary conditions augmented
with respect to the scattering matrix.

We will assume that E is a super bundle, i.e. that a parallel self-adjoint involution

7 € C®(End(F)), which anti-commutes with Clifford multiplication and which pre-
serves D(D), is given. With respect to the +1 eigenspaces of 7, D has the following

decomposition
. 0 D_
D=1 =« : 4.0.1
<D+ 0 > (4.01)

The index, we will compute, is that of D_|_.

4.1 Heat Kernel Estimates.

Lemma 4.1.1. The operator e~tD? s of trace class. For each t > 0 we have
Index(Dy) = tr (Te_tDZ)) = /~ tr (Te_tD2(:1;, x))d. (4.1.1)
M
In particular
Index(Dy) =lim [ tr (Te_tD2(:1;, x))d. (4.1.2)

t—0 M
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—tD?

Proof: By the semi-group property of e it suffices to prove that e~tD* is a Hilbert-

Schmidt operator for each ¢t > 0. Let for some small ¢ > 0:
U.:={z e M|Jawedge Y :dist(x,Y) < ¢ or dist(z, Z) < £}.
For z € M \ U, and v* € E*x, let &, @ v* be the distribution with values in E* given by

(0, @ 0") () = (p(2),07) .

By elliptic regularity and self-adjointness of e_tDZ), etD? maps distributions of the form

0, @ v into LQ(M, E), and there is an estimate

le=" (8 @ v ) p2giry < Cle Dl

E* .
|z

This immediately gives that the component of et mapping L*(M \ U., E) into
LQ(M, E) is a Hilbert Schmidt operator. By symmetry of the heat kernel, also the
component mapping LQ(M, E) into LQ(M \ U, E) is a Hilbert Schmidt operator. Like
above it also follows that for any differential operator P with smooth coefficients, the
component of Pe~*P” mapping LQ(M \ Us, E) to LQ(M, E) is a Hilbert Schmidt oper-
ator. )

It remains to prove that the component of e~2’ mapping U, into U, is a Hilbert
Schmidt operator. Take £ small enough such that Uy can be identified with a disjoint
union of neighborhoods of ) in closed model wedges and neighborhoods of the boundary
of half-cylinders. Let X be the union of those closed model wedges and half-cylinders
and let Ex be the extension by the product structure to X of E|U|4E. Let Dx be the
associated Dirac operator on X.

Now let p € C5°(R) be a function such that ¢(r) =1 for r € [0,&], ¢(r) = 0 for
r > 2¢ and let ¢» € C*°(R) be a function such that ¢ (r) = 1 for r € supp(p) and such
that ¢(r) = 0 for » > 3e. Let M, and M, denote the operators of multiplication by
@ and 1, respectively, (either in M or in X). By Duhamels principle it follows

1
- P 0 2 2
Moe P M, — M e PX M, = / M@_ase_SD Mye==9P% M ds (4.1.3)
0

¢ B ~ 2
— / M, e=D? <D2M¢ . M¢D§(> e=(=9D% M dis
0
(4.1.4)

Since D2M¢ — My D% is a differential operator with compact support away from
the boundary it follows that (4.1.3) is a Hilbert Schmidt operator. Thus it suffices to
prove that Mwe_tDiZXM@ is a Hilbert Schmidt operator. This can be done by splitting
D% into a direct sum of operators on the eigenspaces of B{ and exploiting that the
gluing operator has only finitely many eigenvalues. This gives that e *PX is a direct
sum of the type e_t“2e_tDﬂ2, where j runs over a finite index set and Zu et s

convergent. Further each D; is a Dirac operator on a cone, so that Mwe_tD? M, is a
Hilbert Schmidt operator.
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Since D has a discrete point spectrum with eigenvalues of finite multiplicity and
because D) commutes with D? and anti-commutes with 7, the restriction of D to each
eigenspace of D? anti-commutes with the restriction of 7, and except for in ker(D) this
gives that each eigenvalue of D? contributes with a zero to (4.1.1). Finally ker(D?)
contributes to (4.1.1) with Index(Dy). O

4.2 Localized Index Contributions.

Using finite propagation speed or Duhamels principle it follows that the limit (4.1.2)
can be split into two contributions:

a) The interior contribution Il given by

Lint ::/ ap(z)dz, (4.2.1)

M

where ap(x) is the zero order term in the local heat trace expansion

dim(M)

_tD2(:1;,:1;)~ Z ak(:zj)t_g.

k=—c0

€

The term ap(x) is the same as in the local index formula for closed manifolds.
See for example [3].

b) A joint contribution coming from the various boundaries and wedge singularities.
This contribution is further the same as the boundary contribution coming from
a Dirac operator on the disjoint union of the corresponding model spaces. Notice
that since the scattering matrix .S mixes contributions from the various boundary
components, each boundary component or wedge singularity can not be treated
separately.

We will consider each boundary component as a wedge with Y = 7, N = {0} and
By = 0. We notice that on the model space LR, x N x Y, the Dirac operator splits
into a sum of Dirac operators on € ker(By) N ker(By ), and (P ker(By) Nker(By))*.
Further the mixing of boundary conditions from various boundary components only
takes place in € ker(By) N ker(By). On @ ker(By) N ker(By) the index contribu-
tion from the boundary is the same as for an operator of the form ’y— defined on
L*((—o0,0], P ker(By) Nker(By)) with the restriction of 7 as involution and the scat-
tering matrix as boundary condition. This contribution is well known [31] and is given

by
1
[scat = §tr (S+), (422)

where S, is the restriction of S to ker(r — 1).
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On the space (P ker(By) N ker(By))*t the boundary conditions do not mix the
various components, so we can consider each N XY separately. If Y = Z is a boundary
component, the boundary contribution to the index is known from [2] and is given by

1
[bd = —577(Az+,0), (423)

where Ay is the induced Dirac operator on Z, Az, denotes the restriction of Az, to
ker(t — 1) and n(Az,,0) denotes the y-invariant of Az, .

On the wedges we again split the contribution to the index into contributions from
ker(By) N ker( By )*, ker(By)* Nker(By ) and ker(By)* N ker(By ).

Lemma 4.2.1 and Lemma 4.2.2 have been stated separately because Lemma 4.2.1
holds in high generality, whereas Lemma 4.2.2 relies on the fact that dim(Y') is even.

Lemma 4.2.1. The index contribution from ker(Bx)* N ker(By )t vanishes.

Proof: We notice that the Dirac operator is locally of the form

0 1 1
D=v|{—+-Bv+—+5By].
or r 2r

Further, D can be decomposed into eigenspaces of 7:

0 D_
D = :
( Dy 0 )
This operator decomposes into a Direct sum of operators on the eigenspaces of BZ. On
each of those eigenspaces a small computation shows that the operator v By conjugates
D, D_ into D_D,. Further, on an eigenspace of Bi, vBy commutes with By and
preserves the growth rate of sections. Consequently the operator v By |By|™! preserves

the domain of D and D? and interchanges D, D_ and D_D,. Let P be the projection
on ker(By)* Nker(By)*. Tt follows that

/N/Ytr(Te—tD2)((r,n,y),(r7n7y))dydn:
[ (PP ) (o)) = (€ P () ) =0

This proves the lemma. O
Lemma 4.2.2. The contribulion to the index from ker(By) N ker(By )t vanishes.

Proof: Let By, and By_ be the restrictions of By to the £1 eigenspaces of 7. Let 7y
be the canonical involution on Y with respect to some orientation of Y and the structure
of Clifford multiplication from F. Then 7y commutes with 7 and anti-commutes with
By. Thus the spectra of By and By_ are symmetric. On the other hand the operator
v of Clifford multiplication in the radial direction at the singularity conjugates By,
into —By_. This gives that By, and By_ are conjugate. Consequently, after having
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locally conjugated the restriction of D to ker(By) into a Dirac operator on a piece of

d ? d?
(I/(——I—By)> = + B

a cylinder, we get

du Ou?

On the non-zero spectrum of By, the restrictions of this operator to the the +1
eigenspaces of 7 are thus conjugate and further have conjugate boundary conditions.
This gives that the difference of the heat kernels vanishes to all orders for ¢t — 0, so
the contribution to the index vanishes. 0

Finally we consider the contribution /yeqge from the space ker(By)* N ker(By).
Here we notice that ker(By) is a Clifford module over Ry x N with respect to the
Clifford module structure on Ry x N x Y. We will fix some orientation on Ry x N
and let 7 be the image of the volume form in the Clifford algebra with respect to that
orientation.

The action of the gluing operator Uyeyp,) on ker(By) — R4 x N is further the
restriction of the gluing operator on E, considered as an operator in L*(Y, Eyy), to
ker(By). Uker(By) commutes with 7 and 7, and v. Now let ¢ be a joint eigensection of
By, 7 and 7y. Then V := span {¢, v¢} is preserved by By, 7, 7v and v. Thus this is a
subspace of ker(By) invariant under v, 7y, and thereby under Clifford multiplication,
and Uyer(y). Parallel transport of V' in the radial direction gives a Dirac sub-bundle
of ker(By). Thus also V* is a Dirac sub-bundle of ker(By). In this way the Dirac
operator D decomposes to a Direct sum of Dirac operators in 2-dimensional vector
bundles V;,... Vi over Ry x N. We decompose V; = V;; & V,_ into the 1 eigenspaces
of .

Since 7 and 7x are commuting self-adjoint involutions in two dimensional bundles
and both anti-commute with v it follows that on each V;, either 7 = 75 or 7 = —7n.

We write this as 7 = tr (T|Vl.+)TN. Let D; be the Dirac operator on V;. Then it
follows

tr (re~P)((r,n), (r,n)) = tr (7w, )tr (rve ™ P9)((r,0), (7, 0)). (4.2.4)

Now, except from that ker(By) Nker(By) has been removed and By is not necessarily
a spin operator, the last term is exactly as in [9], and the same computation goes

through. See also [36]. It follows
1
[Wedge = _§Ztr (T|V,'+)77(BN,Z',—I—7O)- (425)

Here By, + is the restriction of By to Vi Nker(my — 1).

Another way to write (4.2.5) is to label By ;4 according to the eigenvalues of
Uker(By)- If we fix Vi, Ujker(By) has complex eigenvalues ay and a_ in the +1 and —1
eigenspaces of 7y, respectively. We notice that By, 4 depends only on a+ and write
By i+ = Ba,. In the following we denote by V,,, the bundle ker(By) Nker(U —ay)N
ker(ry — 1). It follows

1
[Wedge - _§ Z tr (T|Va+)77(Boz+70)- (426)

ot ESPeC(Uker(BY) |ker(ry—1))
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We have proved:

Theorem 4.2.3. Let M be a Riemannian manifold with boundary and isolated wedge
singularities of codimension 2 such that M has product structure in a neighborhood of
the boundary and of the wedge singularities. Further let E be a Dirac bundle over M
respecting the product structure and let D be the realization of the associated Dirac ope-
rator given by imposing slow-growing ideal Atiyah-Patodi-Singer boundary conditions.
If T is a parallel self-adjoint involution in COO(M E) anti-commuting with Clifford
multiplication and D_|_ is the restriction of D to ker(t — 1) then

Index(Dy) = / ap(x)dx — %U(A+,O) + %tr (54)

> tr (v, )17(Bas, 0).  (4.2.7)

M
a+espeC(Uker(By) |ker(7—N— 1))

[N

The terms are defined around (4.2.1), (4.2.2), (4.2.3) and (4.2.6), respectively.

In the case where M is the extension of a manifold M with corners we use the
extension and restriction properties of elements of ker(D) to prove an index theorem
for manifolds with corners of codimension 2.

Corollary 4.2.4. Let M be a manifold with corners of codimension 2 and product
structure in a neighborhood of the boundary and corners. Further let E — M be a Dirac
bundle respecting the product structure and let D be the realization of the associated
Dirac operator with the generalized Atiyah-Patodi-Singer boundary conditions defined
by (3.1.2). If T is a parallel self-adjoint involution in C°°(M, End(E)) anti-commuting
with Clifford multiplication we have:

Index(Dy) = /M plx)dx — l n(A4,0) + %tr (54)

Z tr (7jv.,, )1(Bay,0). (4.2.8)

a4 espeC(Uker(By) |ker(7—N—1))

[N

Proof: This follows by Theorem 4.2.3 since ker(D) = ker(D). Because M \ M has
product structure, ap vanishes identically on M \ M. O

5 Another Approach to Index Theory.

The way we have proceeded in order to construct boundary conditions on a manifold
with corners, which give rise to a good index theorem, is by no means unique. It is
just the simplest one to handle. In this section we present another construction, which
is just as natural.
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5.1 Boundary Conditions on M'.

In the proof of the self-adjointness of D we made essential use of the self-adjointness
of D and the extension property of harmonic sections. Further the extension property
of harmonic sections on M to M was important for proving the index theorem. These
two important properties can however be obtained in other ways. Below we will define
another extension M’ of M by gluing on a piece of a cylinder over each boundary
component. This extension also allows an extension £’ of E. A self-adjoint Dirac
operator D’ on M’ can be constructed using boundary conditions, which are not local,
but more local than the boundary conditions on M.

We will restrict attention to the case, where the boundary has a decomposition into
two manifolds Z; and Z; with boundary, which intersect in their boundaries only, such
that none of Z; and Z; have self-intersections at the boundary. This was an irrelevant
assumption in the other case, but here it will simplify things. In the end of this section
we explain how to proceed without this assumption.

Oq
D ——
\Y -0
1 2

Vo

|
%,

o

Figs: A neighborhood of a corner component in M.

In the following let

M’ = M Uz, (Z1 % [0,1]) Uz, (Z2 x [0,1]) (5.1.1)

and let £’ be the obvious extension of E to a vector-bundle on M’, supplied with
the product connection, Hermitian structure and structure of Clifford multiplication.
To each Z; there is an associated Dirac operator A; = v;D;, which is a self-adjoint
operator with Atiyah-Patodi-Singer boundary conditions augmented with respect to
the scattering matrix. This augmentation has the crusial property that it commutes
both with 7 and v;. This follows from Lemma 2.1.6. Consequently 7 and v preserve the
domain of A; since they commute with the induced Dirac operators at the boundaries
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of each Z;, and therefore also preserve the positive and negative spectral subspaces for
the induced Dirac operators.

For most other augmentations the finer details of the analysis of D break down
because v; does not preserve the domain of A;. Let in the following @;+ be the
projection on the strictly positive spectral subspace for A;. Further let F; be the
restriction of £’ to Z; x[0,1]. We also write F; for the extension of F; by the product
structure to Z; x R.

We may define a domain Dy(D’) by

Do(D') := {f € W (M, E') | Vj,u> 0 fiz,xp € D(A;) and (1—-Q;4) fiz, <1y = 0}
Lemma 5.1.1. D’ is symmetric on Dy.

Proof: It suffices to prove that the domain

Doo(D') :={f € W' (M', E') | Vj,u>0: fizqy € DA;), (1=Qix) fiz;x i1y =0
and Ja neighborhood U of the corners of M : fiir = 0}.

is dense in Dy. This can be proved by decomposing into the eigenspaces of B in a
neighborhood of the corners and proceeding like in Lemma 1.2.2. O

Lemma 5.1.2. On Z; xR the norms ||-||gz1 and ||-||w21 are equivalent on the domain:
D:={feW>(Z; xR, E;) |VueR: f(u,-) € D(A;)}.

Proof: Let D, be the domain
Do:={f e W**(Z; xR, E;) | Yu e R: f(u,-) € D(A})}.

Then Dy is dense in D with respect to the H'-norm. This can be seen by decomposing
sections into eigenspaces of A? and approximating the components with smooth func-
tions. Consequently it suffices to show that the norms dominate each other on Dy. By
Lemma 1.2.1 we have that || - ||gz: < C|| - ||w21, so it suffices to prove the opposite
inequality.

Let D; be the Dirac operator in F;. Then D; is of the form D; = ’y(aa—u + Aj). If
f € ker(y £ 1) this gives for some ¢ > 0

0
1DFIP = N5 1P+ I = VAP = 1 (5.1.2)

If now f € Dy we may decompose f = fi + f_ into the components of f € ker(y £ 1).
Then

1D FI? = (D2 £) = (D2f_ f2) + (D fy f1)

= [ D; f-I* + 1D f+II*.

Together with (5.1.2) this proves the lemma. O
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Again we can use polar coordinates around the corners. We get the operators € By
and € By, defined on | [(Y x [0,0 + 7]). By is given the same Atiyah-Patodi-Singer
boundary conditions as @]‘ A;. First we notice that on the orthogonal complement
of @ ker(By) each corner can be handled separately and the analysis goes through
exactly like for the operator D. A lemma, which requires some care is though:

Lemma 5.1.3. Let F' be a Dirac bundle respecting the product structure on a model
corner C' x'Y. On the domain

={feW* (CxY,F)|(1-Q4)fjsc =0},

the W21 and H*'-norms are equivalent. Here Q4 is the projection on the positive
spectral subspace for —d Dy, where § is the outward-pointing normal at the boundary.

Proof: It is enough to prove the lemma for sections in W2%(C' x Y, F'), which in
addition vanish in the corner and have vanishing normal derivatives at the boundary.
If f is such a section we may compute

VAP = IV AP+ IV 1P

(VYY) +CUBy FIP+ 1AIP)
(L+C) (D f, £) + IFIIP)
(1+

CY(IDFII? = (=D fy Facwy + IIFIIP) -

Since ((—=0Dy)f, f), scxyy = 0 this term can be dropped and the desired Sobolev
inequality holds. O

IA A

Like for D, D' is given slow-growing ideal Atiyah-Patodi-Singer boundary conditions
augmented with respect to the scattering matrix. In @ ker( By ) the scattering matrices
S; mix the boundary conditions at different corners. This does not affect the self-
adjointness of the restriction of the operator € By to ) ker( By ), nor does it affect that
P Bn has a discrete point spectrum with eigenvalues of finite multiplicity. It however
means that when we impose slow-growing ideal boundary conditions, asymptotics of
sections in D(D’) at the various corners are not independent.

Finally the space @ ker(A;) @ ker(€p By ) Nker(Ep By ) is augmented with respect
to the scattering matrix S defined exactly like in Section 2. This gives a self-adjoint
realization D'

Definition 5.1.4. We say that D’ is given slow-growing Atiyah-Patodi-Singer bound-
ary conditions of level 2 augmented with respect to the scattering matrices.

It follows like for D that D’ has a discrete point spectrum, that e~tD) s a trace
class operator for all ¢ > 0, that if dim(M) is even, D’ has a decomposition like (4.0.1)
and that Index(D’ ) can be computed using (4.1.2).

Theorem 5.1.5. Let M be an even dimensional manifold with corners of codimension
2 and product structure around the boundary and corners and let E — M be a Dirac
bundle over M respecting the product structure. Let E' — M’ be the the extension



5 ANOTHER APPROACH TO INDEX THEORY. 51

of E — M given by (5.1.1) and the product structure. Finally let D' be the self-
adjoint realization of the Dirac operator associated to E', given slow-growing Atiyah-
Patodi-Singer boundary conditions of level 2 augmented with respect to the scattering
matrices. Let 7 be a parallel self-adjoint involution in E' anti-commuting with Clifford
multiplication and let Dfl_ be the restriction of D' to ker(r —1). Further let Ty = —ivé
and let v = 7nT. Then we have the following index theorem:

. 1 1
Index(D’) = /M ap(x)dx — 5 Z n(Az+,0) + §tr (54)

J

1

_§U(TYBN+|GBker(BY),O). (5.1.3)

Proof: By (4.1.2) we get that the index can be split into an interior contribution, a
contribution from the boundary and a contribution from the corners (except from the
augmentation, which mixes corners and boundaries). Because of the product structure,
on the cylinders the interior contribution as well as the contribution from boundary
components of the form d7; x [0, 1] vanish. Further the boundary components of the
form Z; x {1} can be treated exactly like an Atiyah-Patodi-Singer boundary in [2]. This
gives that the contribution from the non-zero spectrum of A; is —1n(A;4,0) as claimed.
Lemma 4.2.1 and Lemma 4.2.2 hold with the same proofs as for D. Consequently the
contribution from the corners of M comes from ker(By ) alone. The contribution from
ker( By ) Nker(Bx)* is the same as from a cone except from that the super-structure is
different. Thus the results of [9] gives the claimed contribution. Finally ker(€D By ) N
ker(D Bn) & @ ker(A;) gives the contribution ttr (S) because the restriction to D
and 7 to this space is conjugate to the corresponding contribution for an Atiyah-Patodi-
Singer boundary. This proves the theorem. O

We proceed by computing the contribution from the corners explicitly. For each
corner C' x Y with associated Dirac operator By we define an operator Ty on ker( By )
by letting 7y be multiplication by o + m, where o is the angle of /. Let T be the
direct sum of the Ty. Then T is self-adjoint and commutes with the operator vd, but
in general 7' need not satisfy commutation relations with S; and 5.

The operator By is given by By = —1/5% — % Consequently solutions of Byu = Au
are locally of the form
U = e(A+%)ey5@
for some ¢ € ker(By ). Further the boundary conditions give that
Sip =g, (5.1.4)
SZG(H%)TV% _ e(/\-l—%)TuSSO‘ (5.1.5)
In particular
Sle_(A"'%)T”éSge(A"'%)T”écp = . (5.1.6)

On the other hand, if (5.1.6) is satisfied we notice that the solution space for ¢ for
fixed X has the solution space of (5.1.4) and (5.1.5) as a Lagrangian subspace for vd.
This follows by the following general lemma.



5 ANOTHER APPROACH TO INDEX THEORY. 52

Lemma 5.1.6. Assume that U and V are unitary and self-adjoint operators on a
Hilbert space and that , is unitary, anti-self-adjoint and anti-commutes with both U

and V. Then ker(U — 1) Nker(V — 1) is a Lagrangian subspace of ker(UV —1).

Proof: The equation UV = ¢ gives that Uy = Vi since U is unitary and self-
adjoint. Consequently the space W := span{p, Vp} is closed under application of
U and V. Further UVVe = Up = Vi, so W is contained in ker(UV — 1). So is
W 4+, W since , commutes with UV. Since , interchanges the +1 eigenspaces for U
it follows that ker(UU — 1) N (W 4, W) is a Lagrangian subspace for W 4+, W. But
ker(U — 1) Nker(UV — 1) = ker(U — 1) N ker(V — 1). The lemma follows since ¢ can
be an arbitrary element of ker(UV — 1). O

The above immediately gives the general result

Corollary 5.1.7. The spectrum of By is given by
spec(By) ={A€R|Jp #0: Spe~ DTV g (Ot Tws , — ©}.

Further the multiplicity of X € spec(Bn) is given by

1 . 1
mul(A) = Zdimker <51€—(A+5)Tu552€u+5)m B 1) .

If T commutes with S5, Corollary 5.1.7 can be refined to give
spec(By) = {A € R | Jp # 01 545,V — o1, (5.1.7)

If T further commutes with Sy, (5.1.7) decomposes into the eigenspaces for 51.52. For
each eigenspace of 519, it further decomposes into eigenspaces for T' such that we get
a union of spectra corresponding to the elementary case that 15y = ¢’I and T' = al
are multiples of the identity. In this case we get

Spec((BN)|ker(5152—eiﬁ)ﬁker(T—a)ﬂker(US:ti)) = {)\ | (2)\ + 1)@ € :Fﬁ + QWZ}
Explicitly

6 1 7
Spec((BN)|ker(Sl52—eiﬁ)ﬁker(T—a)ﬂker(US:ti)) = :F% - 5 + EZ (518)

The operator 7y commutes with 5153 and T, so (5.1.8) suffices to compute the contri-
bution from the corner. We will however not do so before we have reached a deeper
understanding of the corner term, such that we can write it up in a senseful way.

The condition that T' commutes with S; and S5 is satisfied in the applications in
this paper, but is still completely unreasonable. We here give a lemma that reduces
the general case to the case, where T' commutes with 57 and S;. First we notice that

the operator of application of e~ 58 conjugates By into the operator Bjy := —1/5%

with boundary Lagrangians ker(S; —1) and ker(e_%T”‘gSQe%T”‘g —1). In a neighborhood
of the boundary # = 0 this is a Dirac type operator. Further this conjugation of
Sy corresponds to that we identify the copies of ker(By) seen from each boundary
component at the corner using the universal gluing operator defined in Lemma 1.1.14.
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Lemma 5.1.8. The n-invariant n(ty Bn1,0) is equal to the n-invariant of the Dirac
type operator —Tyy(s% defined in ker(By) — [0,27] and augmented with respect to Sy

L

1
and S} := "2V G, ez TVs,

2

Proof: Let By = By(T') be the Dirac type operator —1/5% defined on sections of
the bundle @ ker(By ) — [0,7"(Y)], where 7" is defined like 7', and is the operator of
multiplication by 7"(Y") on each ker(By ).

In a neighborhood of § = 0, B}, is locally like a Dirac type operator on a piece of
a cylinder over a point. By the same proof as in [30, Section 2], it follows that the
n-invariant does not depend on the length of the attached cylinder modulo Z for fixed
boundary conditions. Further the dimension of the kernel of B remains constant under
variation of the length of the cylinder, since by Corollary 5.1.7, it is simply half the
dimension of ker(Sle_%T”‘gSze%T”‘g —1). Thus the n-invariant remains constant under
variation of the length of the attached cylinder. Further the n-invariant is invariant
under scaling of all angles simultaneously, (with fixed boundary conditions, which do
not depend on the scaling), since this just changes the spectrum by a factor. Thus the
n-invariant is constant under any combination of scalings and prolongnations of the
cylindrical piece. Consequently we may compute

T+ 27s

S

07y By, 0) = n(ry By(T)),0) = lim 57y By ( ):0) = n(ry By (271),0).

This proves the lemma. O

Remark 5.1.9. The question, whether one should consider the contribution from the
corner as a function of Sy or of e=37%9G,e377? depends on, whether one has glued
E\; at the corners or not. If Ejz is glued using the canonical gluing. The correct
identification of the spaces in which 57 and S live has already been made, and the
contribution morally does not depend on the angles. If however we consider the corner
from the inside of M, the spaces where 57 and 55 live are differently identified, and the

corner contribution depends on the angles through the eigenvalues of S1e=3Tv G, e3 Vs,

In what follows we will use the notation

pe{ e

The n-invariant of an operator with periodic spectrum is well known [26] and [16,
Example 1.13.1]. If an operator @) has spectrum

p(B+7Z)
then
n(Q,0) = _71[2ﬁ+7r]. (5.1.10)

In the case of the operator 7 Byy, Lemma 5.1.8 gives that we may replace T by 27
and Sy by S} and still get the same p-invariant. Further in this case (5.1.7) gives

spec(By) = {A € R | Jp # 0 : 55527+, — o1, (5.1.11)
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On ker(ry — 1) Nker(r — 1) we have that v§ = ¢. Thus this simplifies to
NER| T #0: 5,55 = p}.

Thus A is in the spectrum if and only if €™ = e™*7, where ¢ is an eigenvalue of 5;.55.

Expressed differently, 47\ is of the form —(3 — 7) + 27Z, where ¢'? is an eigenvalue
of —51.5). It follows that the spectrum of By on ker(7y — 1) N ker(r — 1) is the union
over €'¥ € spec(—S15;) of

1 1 1 1
——W(ﬁ—w)—l-—Z: — <—§(ﬁ—7r)—|—7TZ>. (5.1.12)
Now, S7 anti-commutes with 7 and 7y and v anti-commutes with 7y but commutes
with 7y. Finally v commutes with 5757, so it follows that

Thus the spectrum of —S51.5), on ker(ry — 1) Nker(ry + 1) is the adjoint of the spectrum
of =515 on ker(ry — 1) N ker(ry — 1). This courses —(8 — m) to change sign, so it
follows that the spectrum of By on ker(7y — 1) Nker(7y 4 1) is the negative of (5.1.12).
Thus the np-invariant has the opposite sign. The factor of 7y in 7 By makes up for
that, so it follows

U(TYBN+70) = 277(BN++70)7

where By, is the restriction of By to ker(r — 1) N ker(ry — 1). Further, by (5.1.12)
and (5.1.10) we get

B 0= Y (5.1.14)

mo
etPespec(—S144 Sé_l__l_)

The last factor of % is because of the multiplicity part of Corollary 5.1.7. Now we may

refine the index theorem for Dfl_

Theorem 5.1.10. Let M be an even dimensional manifold with corners of codimen-
ston 2 and product structure around the boundary and corners and let F — M be a
Dirac bundle over M respecting the product structure. Let B/ — M’ be the the extension
of E'— M given by (5.1.1) and the product structure. Finally let D' be the self-adjoint
realization of the Dirac operator associated to E', given slow-growing Atiyah-Patodi-
Singer boundary conditions of level 2 augmented with respect to the scattering matrices.
Let 7 be a parallel self-adjoint involution in E' anti-commuting with Clifford multipli-
cation and let Dfl_ be the restriction of D' to ker(t — 1). Then we have the following
index theorem:

J

. 1 1
tudex(D}) = [ ap(e)de =5 3 40,00+ 5t (S4)

+ % > 8], (5.1.15)

1 1
B€spec((—S1++ 6_§TU652++65TU6)| ker(7—1)Nker(ty—1))



6 SPECIAL CASES AND APPLICATIONS. 55

Remark 5.1.11. If the boundary components of M have self-intersections, we can
still prove self-adjointness of D’ and prove an index formula. In this case there is
(morally) only one scattering matrix S;. We can however get an additional one by
imposing boundary conditions in the middle of each angle interval corresponding to
the condition that sections should be continuous. In this way the construction of
boundary conditions and computation of the index contribution becomes equivalent to
what we have done above, just on a space of twice the dimension.

Remark 5.1.12. The class of operators By on ker(By ) is unitarily equivalent to the
class of operators Q% on L*([—m, 7], ker(By)), where @) is antisymmetric and the
boundary conditions are arbitrary self-adjoint boundary conditions. The spectrum
of Q% can be computed directly and is a union of shifted periodic spectra. Conse-
quently this conjugation gives a more direct way to compute the n-invariant of parts

of BN.

6 Special Cases and Applications.

In this section we work out the corner contribution in Theorem 4.2.3 in some special
cases. The methods are the same as in Section 5 and we maintain a lot of notation
from Section 5. The cases are however simpler and instead of scattering matrices we
have gluing operators.

6.1 The twisted Spin Complex.

We recall that the corner contribution from Theorem 4.2.3 is given by

—% > tr (Tag )( Bag, 0). (6.1.1)

oy €spec(Uker(By) lker(ty —1))

Further we have from (1.2.4) that the spectrum of the operator B,, in question is
given by

2 iloglay) o4
spec(Ba+)—U+7T< 5 ~— + 77 ). (6.1.2)

Thus (5.1.10) gives that, with notation from (5.1.9), we have

—1

. o+ m
N(Ba,,0) = — {z log(ay) —

s

- w} . (6.1.3)

By (6) of Lemma 1.1.14 we see that for the universal gluing operator, the only value

of ay is ay = ¢z . Thus

1 [o—
n(Ba“O):—[UQW—U;WH] = 0. (6.1.4)

s

We have proved:
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Lemma 6.1.1. If £ — M is glued using the universal gluing operator, the contribution
from (ker(Bx) Nker(By)*) from the corner vanishes.

The universal gluing operator corresponds to the twisted spin bundle, where the
twisting bundle is glued trivially around the singularities.

6.2 The de Rham and Signature Complex.

Also the deRham and signature complexes are relevant examples to work out. We only
consider the case o € (0,37), for which the results from Section 3.3 are valid.

Lemma 6.2.1. The contribution from the corner for the signature complex vanishes.
In particular we have for a manifold with corners of codimension 2

sgn(M1) = [ 1= Falzs.0),

where Azy is the induced Dirac operator on the boundary.

Proof: Let (r,0) be polar coordinates on C, let § be Clifford multiplication by %%
and let v be Clifford multiplication by %.
By the proof of Lemma 3.3.2 we know that the decomposition

ANOCxY)=({0+vH)NY) & (-1 dvdH)A(Y) @ (6§ —iv)A" (V) & (6 + iv)A*(Y)
(6.2.1)

is a decomposition of A*(C' x Y') into joint elgenspaces of the gluing operator U and
8 to the eigenvalues 1,1,e=4"7=9) (™= and i, —i, 1, respectively. This gives that
the restriction Uy of U to ker(7y — 1) = ker(vd — @) has two eigenvalues, 1 and e/(7=)
each occurring with the same multiplicity. We compute using (1.2.4) and (5.1.10)

—1. o+
(B0 = T g (6.2
—1|lo—m
U(B[ei(fr—c)],()) == 7 |: 2 :| . (623)
Since —% + 7= —% + % = — (%) it follows that the sum of those n-invariants

vanishes. Further 7y acts identically on each of those spaces since it commutes with v
and 4. Consequently the corner contribution vanishes.

By Corollary 3.3.9 and the fact that the Scattering matrix anti-commutes with v
the index theorem for the signature complex can be rewritten

sign(M) 4 tr (Sy) = /M L—— (AZ_|_,O) + %tr (54). (6.2.4)

Since by Corollary 3.3.11 the scattering term vanishes, we are done. O
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Theorem 6.2.2. (The Gauf-Bonnet theorem) Assume o € (0,37) for all angles at
the corners. Then the corner contribution from the de Rham complex is given by

1 [ o+

—x(Y) 5+ W] ,

where y denotes the Fuler characteristic and o runs over the angles. Furthern(Az;,0) =
0 in this case and the scattering term vanishes. Thus we have

(M) = /Me—l— (Nz; %;(N)) (V). (6.2.5)

In particular, if iim(M) = 2 and all angles are in the interval (0,2m) we recover the
Gauss-Bonnet theorem [12]:

(M) :/Me+2”2;”. (6.2.6)

Proof: The de Rham complex is handled like the signature complex. The gluing
operator U is the same, 7 is replaced by the parity involution p, 7y = —ir/d is preserved
and 7y is given by the convention 7y := 7yp. In this case, however, p is the parity
operator on A*(Y) on (¢ + v§)A*(Y') and minus the parity operator on A*(Y) on (§ +
iw)A*(Y). Consequently (6.2.2) and (6.2.3) must be subtracted rather than added so

_% Z tr (TIVQ+)77(Ba+7O) = _% x 2x(Y)n( B, 0)

O“l'espeC(Uker(By) |ker(7—N— 1))

= () [—U;”T +7r].

This is the claimed contribution from the corner.

That the n-invariant of Z vanishes in this case follows since the the parity operator
on A*(Z) commutes with the parity operator and anti-commutes with Az. Thus Az
has a symmetric spectrum and a vanishing 5-invariant.

The scattering term vanishes by Corollary 3.3.11. Thus IndeX(D) = IndeXO(D) and
the scattering term on the right hand side vanishes. O

Remark 6.2.3. The same trick as in [16, Section 2.7.7] can be applied to extend the
GauB-Bonnet theorem to the case where there is no product structure on the boundaries
away from the corners. Passing to the limit of such problems gives the Gau-Bonnet
theorem for manifolds with corners with the restriction on the structure close to the
corners that the angles along the corners must be constant.

Remark 6.2.4. If 0M splits into two components without self-intersections, a global
proof giving the vanishing of the corner contribution for the signature complex from
the fact that the signature of a boundary vanishes, applies. In the general case this
proof can though not be applied.
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6.3 The Splitting Formula for n-Invariants.

The splitting formula for n-invariants of closed manifolds into n-invariants of manifolds
with boundary and product structure around the boundary is well-known. Different
proofs have been given by Bunke [5], Briining & Lesch [4], Wojciechowski [13], [44],
[45], Mazzeo & Melrose [27], [28] and Miiller [31]. It is also well-known how the -
invariant behaves under variation of the boundary conditions. The case, where only
the augmentation is varied, is handled in [26] and [30]. A case of very general pseudo-
differential boundary conditions is handled in [46].

Subtracting Theorem 4.2.3 from Theorem 5.1.10 gives a new proof of the splitting
formula. Like for all other proofs, an integer valued term, given in terms of indices
and scattering matrices, which is not very accessible, remains. We here give another
construction, which is a rather direct proof of the splitting formula for the n-invariant,
here given in a setup compatible with the index theorem.

Let Z be a closed odd-dimensional manifold and let £ — Z x (—o0, 00) be a Dirac
bundle over an infinite cylinder over Z respecting the product structure. Let D be the
Dirac operator associated to . Then D has the usual product decomposition:

d

If further E is a super-bundle we may define A as usual. Now assume that Z has a
decomposition Z = Z; Uy Z; into manifolds with product structure in a neighborhood
of the boundary. We set

M' =7 x [-2,0] Uzuz, ((Z1 U Zy) x [0,1]).
The pullback of E to M’ is a Dirac bundle on M’ respecting the local product structure.
Further M’ is a special case of the manifold M’ from Section 5. Therefore we also denote
the Dirac operator on M’ by I’. The induced Dirac operators on Z; we denote by A;
and the corresponding scattering matrices we denote by 5;. The scattering matrix of
D' we denote by S. With this notation we have:

Theorem 6.3.1. We have

N(A4,0) = n(Aiy,0) = ( Az, 0) = 2Index(D}y ) — tr (54(0)) — % >, 5]

etfespec(—S144 S244)

Proof: This is an immediate consequence of Theorem 5.1.10. The local formulas
vanish because of the local product structure everywhere and the np-invariants appear
with different signs because of the different orientations at the boundaries. 0

This splitting formula corresponds to the known splitting formulae modulo Z. The
integer-valued terms we are not able to compare. It would be desirable to find another
way to compute the index in order to get more information about the integer-valued
term. This however seems to be difficult since the ideal boundary conditions in the
corner are not compatible with relevant algebraic operations. The most troublesome
part of the problems comes from the space ker(By) Nker(By)t, which gives rise to an
infinite dimensional space of possible singularities not accounted for in the scattering
matrix.
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