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0 Introduction

Let M be a Riemannian manifold with boundary and product structure around the
boundary. Further let E 7!M be a Dirac bundle overM (De�nition 1.1.13) respecting
the product structure. In [2], Atiyah, Patodi and Singer introduced global boundary
conditions. If the dimension of M is even and a superstructure on E = E+ � E� is
�xed, these boundary conditions give rise to the Atiyah-Patodi-Singer index theorem:

Index(D+) =

Z
M

aD � 1

2
�(A+; 0) +

1

2
tr (S+): (0.0.1)

Here D+ is the part of Dirac operator D associated to E mapping sections of E+ into
sections of E�. A is the induced Dirac operator on the boundary, A+ is the part of
A mapping sections of E+ to sections of E+ and aD are local formulas de�ned in the
interior of M . The �-function �(A+; s) is the analytic continuation of

�(A+; s) =
X

�2spec(A+)nf0g
sign(�)j�j�s

from the part of C where the sum is convergent to all of C . It is regular in 0 for all Dirac
type operators on closed manifolds [16, Section 3.8]. The last term, 1

2tr (S+), depends
on the augmentation of D, i.e. on the choice of boundary conditions in ker(A). Here
we have stated it for a canonical choice given by the scattering matrix, introduced by
Werner M�uller in [31]. The Atiyah-Patodi-Singer (from now on APS) index theorem
distinguishes itself by giving the correct index formula for special cases like the signature
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complex and by providing an index invariant I(E) := Index(D+) � 1
2
tr (S+), which is

additive under gluing of manifolds along common boundaries.
For manifolds with corners much less is known. In particular nobody has so far given

boundary conditions for manifolds with corners, which generalize the APS boundary
conditions. However, for manifolds with corners of codimension 2 a number of special
index theorems are known. We mention the Gau�-Bonn�et theorem for surfaces with
corners [12]. Further, for the signature complex the Wall non-additivity formula [42],
which is a gluing formula for the signature independent of analytic index theory, is
known. More recently Hassel-Mazzeo-Melrose [22] and Werner M�uller [32] have proved
index theorems for manifolds with corners. Both of the approaches build on an ex-
tension of M to a complete Riemannian manifold without boundary. The technical
di�culty with that approach is that the continuous spectrum of the involved operators
close to 0 has in�nite multiplicity and is very di�cult to study. The index theorems
in [22] and [32] are equivalent to special cases of the index theorems in this paper.
The vanishing of a term in the splitting formula for the �-invariant for the signature
complex though only follows by combining the results of this paper with those of [22].

In this paper we take a di�erent approach to index theory for manifolds with corners.
Let in the followingM be manifold with corners of codimension 2 and product structure
in a neighborhood of the boundary and corners.

M

Z

Y

Fig1: A manifold M with boundary Z and corner Y .

A study of the structure of Z close to the corners shows that Z can be given
a canonical smooth structure induced by the Riemannian metric. Next we form a
cylinder Z � [0; 1] and attach Z � f0g to M using the identity map on Z. This gives
a Riemannian manifold ~M with a smooth boundary and wedge singularities.

If E 7! M is a Dirac bundle over M we prove in Lemma 1.1.14 that there always
exists at least one extension of E to a Dirac bundle ~E 7! ~M . Let ~D be the Dirac
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operator associated to ~E. Self-adjoint boundary conditions for D generalizing the
APS boundary conditions can now be constructed in two steps. First we impose APS
boundary conditions at Z�f1g and ideal boundary conditions in the wedge singularity
of ~M in order to get a self-adjoint extension of ~D. Next we use the self-adjointness
of ~D and an extension property of certain sections of E to construct a self-adjoint
extension of D, which coincides with the APS extension if there are in fact no corners.
The extension of D is further such that ker(D) is canonically isomorphic to ker( ~D).
We remark that this self-adjoint extension of D is by no means the only generalization
of the APS boundary conditions. Di�erent gluings of ~E and di�erent choices of ideal
boundary conditions for ~D give other extensions. In Section 5 we give a completely
di�erent extension based on a similar construction.

Fig2: The extension ~M of M .

Since ker(D) �= ker( ~D) we can proceed with the index theory by proving an index
theorem for ~D. This can widely be done using standard methods and results from
[2], [8], [9]. Working directly with D must be expected to be much harder since
the complications from the boundary and the corner both appear in the same point,
whereas they can be treated separately for ~D. The main results for general Dirac
bundles are Theorem 4.2.3, Theorem 5.1.5 and its re�nement Theorem 5.1.10. In
Section 6.3 we further apply those theorems in order to give a new proof of the splitting
formula for �-invariants.

In Section 3.3 we consider the de Rham and signature complexes. Like it is the
case for manifolds with boundary, a well understood subspace ker0( ~D) of ker( ~D) is
isomorphic to the image of the relative cohomology in the absolute cohomology of M
and the orthogonal complement of ker0( ~D) gives a vanishing contribution to the index.
In particular the right hand side of the index theorem is the Euler characteristic and
the signature, respectively. For those cases we can further work out some of the terms
on the left hand side, and specializations of the index theorems give the well know
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Gau�-Bonnet theorem (Theorem 6.2.2)

�(M) =

Z
M

e+
X
Y

�
� � �(Y )

2�

�
�(Y ); (0.0.2)

where Y runs over the corners and �(Y ) denotes the interior angle at Y . Also the
following formula for the signature for a manifold with corners, Theorem 6.2.1, is
worked out

sign(M) =

Z
M

L� 1

2
�(AZ+; 0): (0.0.3)

If all angles at the corners are �
2
this formula can be compared to the index formula of

[22]. The only di�erence (except from a high number of di�erent conventions) is that
the �-invariant is split in [22] and together the theorems imply that the integer valued
term in the splitting formula for the �-invariant vanishes in the case of the signature
complex of an odd-dimensional boundary.

Another example, which covers all Dirac bundles, is a local twisted spin bundle.
This example corresponds to the universal gluing of ~E to be introduced in Lemma 1.1.14.
For this example not much can be said about the right hand side, but the contribution
to the index from the corner vanishes, and in this way Theorem 4.2.3 can be re�ned. In
the case of the de Rham and signature complexes this index theorem di�ers from the
Gau�-Bonnet and the signature theorems by a cut and paste formula for �-invariants.

Much of this work has appeared as preprints [37], [38]. In addition to the correction
of some mistakes a number of changes in the theory have been done. The �rst and
most noticeable change is that scattering theory on a manifold with cylindrical ends has
been replaced by Section 2. In Section 2 what corresponds to the scattering matrix in
0 for a Dirac operator on a manifold with cylindrical ends is constructed for a manifold
with boundary and wedge singularities. The advantage of this construction is that it
does not use scattering theory and therefore the presentation becomes simpler. More
important is however that it treats boundaries and wedge singularities equally. That
means that we can make use of the trivial but important observation that a boundary is
the special case of a wedge singularity, where the conic part has a 0-dimensional base.
Where the ideal boundary conditions chosen in [37], [38] were somewhat arbitrary,
we now have completely canonical boundary conditions determined by that they have
to be a generalization of the APS boundary conditions as well as of slow-growing
ideal boundary conditions (given by including the slowest growing local solutions of
~D2f = �f in the domain of ~D) for a cone, and that the augmentation has to be
given by the scattering matrix. This has tremendous advantages, the �rst of which
is that the time-consuming process of considering di�erent augmentations has now
been made redundant. The most important is however that it gives a domain which
is preserved by all operators, which satisfy commutation relations with certain under-
de�ned realizations of ~D, and that it gives a self-adjoint extension at all in the case
of odd-dimensional manifolds. In the generalization of APS boundary conditions to
manifolds with corners of codimension 3 and 4, this gives a considerably increased
performance, and already in this paper it leads to simpli�cations.
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When we consider a wedge with product structure as a generalization of a boundary
with product structure, it is natural to look for a generalization of the geometric ope-
ration of attaching a cylinder. In the case of a wedge it can not be done geometrically,
but it can still be done operator theoretically. We do so in Section 3.2. In Section 3.3,
where we work out the de Rham and signature complexes, the geometric extension still
plays an important role. The signi�cance of the operator theoretical extension will be
clear when we consider manifolds with corners of codimension 3 and 4 and theory from
this paper has to be iterated. What happens is that operator theoretical extensions
are locally conjugate to Dirac operators on spaces with simpler singularity structure.
Thus they can be used for specifying self-adjoint extensions similar to those appearing
in this paper and for proving the corresponding index theorems. It turns out that the
main approach to index theory in this paper and the approach given in Section 5 melt
together in the sense that both are in use for specifying the same boundary conditions
from a certain level of complication of corners and singularities.

Theorem 5.1.10 di�ers from Theorem 4.2.3 by that the �-invariant is split in Theo-
rem 5.1.10. Depending on whether one holds the two index theorems together or not,
the contribution from the corner in Theorem 5.1.10 can be considered either as the m-
term in the splitting formula for the �-invariant independent of the angle or as a term
depending on the angle, which measures the dislocation of the scattering matrices from
the various boundary components. The formula corresponds to that of [22] modulo Z
in the case of the signature complex and angles �

2 . The index term in Theorem 5.1.10
can not be interpreted cohomologically for the signature complex since it is not clear,
whether harmonic sections are closed. Thus the comparison can only be carried out
modulo Z.

This approach generalizes to give index theorems for manifolds with corners of
codimension 3 and 4. In codimension 4 we have though only worked it out in the
case of the universal gluing of vector-bundles. Other gluings give rise to additional
problems. The main result, which is proved so far, is an index theorem for manifolds
with corners of codimension 3 and an associated splitting formula for �-invariants of
odd-dimensional closed manifolds or manifolds with singularities into �-invariants of
manifolds with corners. These results, both proved in [37], go further than the results
obtained with other approaches.

1 A Boundary Value Problem.

1.1 Geometric Constructions Related to a Manifold with Cor-

ners.

First we will give our de�nition of a manifold with corners. The de�nition has been cho-
sen such that it �ts the methods used in this paper. More general de�nitions extending
the de�nitions below to higher codimension have been given in [37]. Compared to [37]
we have allowed ourselves to make more intensive use of group actions and covering
spaces than it is possible in higher codimension. This leads to some simpli�cations. We
will repeatedly use the fact that isometric homeomorphisms of Riemannian manifolds
are automatically smooth [21, Theorem 11.1] and in this way reduce most proofs to
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proofs involving metric spaces only.
Let

R
2
� = R2 n f0g;

considered as a Riemannian manifold. We denote the universal covering by ~R2
�. Then

~R2
� is a Riemannian manifold isometrically di�eomorphic to (0;1)�R supplied with

the Riemannian metric

g = dr2 + r2d�2:

There are two natural group actions on ~R2
�. The cone structure and the lift of the

group of rotations of R2 given by

�(s)(r; �) = (r; � + s) ; s 2 R:

The group action � acts by isometries.

De�nition 1.1.1. A model corner of dimension 2, codimension 2 and product struc-
ture is the completion of a subset of ~R2

� of the form

C� = f(r; �) 2 (0;1)�R j a < � < bg (1.1.1)

for some a; b 2 R with b > a. The angle of C is the number b�a 2 R+. The interior of
C is the set C� de�ned in (1.1.1). A model corner C � Y of dimension n, codimension
2 and product structure is the completion of a Riemannian manifold of the form

C� � Y;

where C is a model corner of dimension 2, codimension 2 and product structure, and
Y is a closed manifold. The angle of C � Y is the angle of C.

The category of model corners will be considered as a sub-category of the category
of metric spaces with a cone structure. In particular isomorphisms of corners are
isometric homeomorphisms.

Example 1.1.2. An intersection of dimension 2 of two di�erent half-planes in R2 is a
model corner of codimension 2 and angle smaller than �. One half-plane in R2 is also
a corner of codimension 2 and angle �. Notice that with De�nition 1.1.1 there is no
particular distinction between corners with angles smaller than �, equal to � or greater
than �, whereas the spaces of smooth functions for the three cases are very di�erent.
This is our main reason for not working with smooth or Ck functions at all. Of the
same reason we have chosen not to make use of the groupoid structure of a corner since
it mainly captures phenomena, which will turn out to be irrelevant for our purposes.

De�nition 1.1.3. The boundary components of a model corner of codimension 2 are
the completions of the subsets f� = ag and f� = bg, where a and b are like in De�ni-
tion 1.1.1.
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Lemma 1.1.4. Let C1�Y and C2�Y be model corners and let C be the space arising
by identifying the image of a boundary component of C1 with the image of a boundary
component of C2 (using the unique isometric homeomorphism). Then C�Y is a model
corner.

Proof: This is trivial with the de�nitions given.

De�nition 1.1.5. A closed model corner of codimension 1 is a space of the form

Z � [0;1);

where Z is a closed Riemannian manifold.

De�nition 1.1.6. A closed model cone C of dimension 2, angle � and product struc-
ture is the completion of a Riemannian manifold of the form

C� = ~R2
�=��;

where �� is the Z-action on ~R2
� given by

��(k)(r; �) = (r; � + �k) ; k 2Z:
A closed model wedge of codimension 2 is a space of the form

C � Y;

whereC is a closed model cone of codimension 2 and Y is a closed Riemannianmanifold.

De�nition 1.1.7. A compact manifoldM with corners and product structure around
the boundary and corners is a compact connected metric space, such that for each
m 2 M , an open neighborhood Um of m is isometrically homeomorphic to an open
subset of a smooth Riemannian manifold, a model corner of codimension 1 or a model
corner of codimension 2.

Remark 1.1.8. With De�nition 1.1.7 the model space at a corner of a manifold with
corners is a bundle of model corners over a closed manifold, supplied with a local
product metric. Since, however, a model corner of codimension 2 allows only one self-
isometry, which is orientation reversing, this bundle is trivial if M is orientable, such
that in fact a neighborhood of a corner is isometric to a neighborhood of f0g � Y in a
model corner C � Y .

De�nition 1.1.9. Let M be a compact manifold with corners of codimension 2 and
product structure around the boundary and corners. Then:

An open boundary component N� of M is a maximal connected subset, such that
a neighborhood of each m 2 N� is isometrically homeomorphic to a neighborhood of
f0g � fzg in a model corner [0;1)� Z of codimension 1.

An intrinsic boundary component is the completion of an open boundary component
with respect to the induced Riemannian metric.

An extrinsic boundary component is the closure of an open boundary component in
M .

The boundary @M of M is the union in M of the extrinsic boundary components.
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Lemma 1.1.10. Let M be a compact manifold with corners and product structure
around the boundary and corners. Then the boundary Z of M has a canonical smooth
structure such that Z is a smooth Riemannian manifold with the Riemannian metric
given by the extension by continuity of the Riemannian metric induced on the open
boundary components of M .

Proof: An atlas is given on the open boundary components of M , so it su�ces to
consider the corners of codimension 2. If C � Y is a model corner, @C is the union
of two half-lines with Riemannian metrics. Gluing those half-lines together gives that
@C � Y is homeomorphic to R� Y , where R is considered as a Riemannian manifold.
Further the homeomorphism is uniquely determined by the demand that its restriction
to each half-line is an isometry. The smooth structure on R can now be pulled back
to a smooth structure on @C and the pullback of the Riemannian metric on R is the
extension by continuity of the Riemannian metrics on the boundary components of C.

Using the above, @C � Y is identi�ed with the smooth manifold R� Y . Further
these identi�cations extend the atlas on the open boundary components of M to all of
@M .

De�nition 1.1.11. A compact manifold with boundary, closed wedge singularities
and product structure around the boundary and the wedge singularities is a compact
connected metric space such that some open neighborhood of each m 2M is isometri-
cally homeomorphic to an open subset of either a Riemannian manifold, a model corner
of codimension 1 or a closed model wedge.

Lemma 1.1.12. Let M be a compact manifold with corners of codimension 2. Then
the space

~M :=M [Z Z � [0; 1] (1.1.2)

is a compact manifold with boundary, closed wedge singularities of codimension 2 and
product structure. The corners of M stand in bijective correspondence to the wedge
singularities of ~M and if a corner ofM has angle �, the corresponding wedge singularity
has angle � + �.

Proof: Clearly Z � f1g is a smooth boundary. Further the product structure gives
that points in the open boundary components of M are mapped to interior points
of ~M . Now consider a subset of M isometrically homeomorphic to C" � Y , where

C" = f(r; �) 2 C j r < "g for a model corner C = f(r; �) 2 ~R2� j a < � < bg. The image
of f0g � Y in Z � [0; 1] has a neighborhood of the form [0; ")� (�"; ")� Y . Further,
a neighborhood of f0g � f0g � Y � [0; ")� (�"; ")� Y is isometrically homeomorphic
to a neighborhood of f0g � Y in C 0 � Y , where C 0 is the model corner

C 0 := f(r; �) 2 ~R2� j b < � < b+ �g:
Further the identi�cations are such that f(r; �) 2 C j � = bg is identi�ed with f(r; �) 2
C 0 j � = bg and f(r; �) 2 C j � = ag is identi�ed with f(r; �) 2 C 0 j � = b + �g. This
space is isometrically homeomorphic to ~R2

�=�b�a+� , so f0g � Y is mapped to a closed
wedge singularity. The remaining statements are clear from that.
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We notice that the interior of a model corner of dimension 2 and codimension 2
has trivial holonomy. In particular any tangent vector in a point can be extended to a
globally de�ned parallel vector �eld on a model corner. If C is a model corner de�ned
by (1.1.1) a number of tangent vectors are canonically given:

�1 :=
@

@r j�=b;r=1
; �2 := � @

@r j�=a;r=1
;

�1 :=
@

@� j�=b;r=1
; �2 := � @

@� j�=a;r=1
:

All of those tangent vectors extend to globally de�ned parallel vector �elds.

1 ν

δ

2
σ

C

1 2δ

ν

Fig3: A corner C � R2.

In the following we will assume that E 7! M is a Dirac bundle over M . We recall
the de�nition:

De�nition 1.1.13. A vector bundle E 7! M supplied with a Hermitian structure h
and a Hermitian connection r is a Dirac bundle if it is a module over the Cli�ord
bundle Cli�(TM), such that if c denotes the structure of Cli�ord multiplication we
have for all vector-�elds X;Y and all smooth sections s1 and s2 of E

rY c(X)s1 = c(X)rs1 + c(rYX)s1; (1.1.3)

h(c(X)s1; s2) = �h(s1; c(X)s2): (1.1.4)

If E is a Dirac bundle the associated Dirac operator is given by the composition

D := c � g�1 � r; (1.1.5)

where g 2 C1(End(TM;T �M)) is the Riemannian structure on M .

Further we will assume that E respects the structure near the boundary and the
corners. That means that the local pullbacks of E to the model corners of codimension
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1 and 2 are pullbacks of the restriction of EjZ and EjY 0, respectively. And that the
connection r in E is of the form du @

@u
+rZ and dr @

@r
+ d� @

@�
+rY , respectively.

A bundle TZ 0 = 1� TZ is given on Z. The trivial factor is mapped to the inward
pointing normal on the open boundary components of M , such that over each open
boundary component N� of M , TZ 0

jN�
�= TMjN� canonically. In the corners TZ 0 is

glued using the \gluing operator", which sends �2 into �1 and �2 into �1.
Since the gluing operators for TZ 0 are unitary, they induce canonical gluing ope-

rators for the Cli�ord bundle Cli�(TZ 0). We will construct gluing operators for EjZ
at the corners, and in this way construct a vector-bundle F 7! Z, which is equal to E
over each open boundary component, and which is a bundle of Cli�ord modules over
Cli�(TZ 0). Such gluing operators are not necessarily uniquely determined. There is
however a canonical choice.

Lemma 1.1.14. Let V be a �nite-dimensional real vector-space with an inner product
h:; :i. Let U � V be a two-dimensional subspace, �1 � U be a unit vector and let

W = f�2 2 U j j�2j = 1 and h�1; �2i > �1g:

Then there exists a function, which we will denote by
p��1�2 , de�ned on W and with

values in Spin(V ) � Cli�(V ), such that the following holds:

1)
p��1�2 is continuous with respect to �2 and

p��1�1 = 1.

2)
�p��1�2�2 = ��1�2 for all �2 2 W .

3) �1
p��1�2 =

p��1�2 �2.
4) For e in the orthogonal complement of U in V we have

e
p
��1�2 =

p
��1�2 e:

The function
p��1�2 takes its values in Spin(U) � Spin(V ) and is uniquely determined

by the properties 1), 2), 3) and 4). Further, it satis�es the following extra conditions:

5)
p��1�2 commutes with �1�1.

6) The eigenspaces of
p��1�2 coincide with the eigenspaces of �1�1. The eigenvalues

of
p��1�2 are given by(

ei
���
2 ; on the i eigenspace of �1�1

e�i
���
2 ; on the � i eigenspace of �1�1

)
;

where � denotes the angle between �1 and ��2.
We call

p��1�2 the universal gluing operator.
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Proof: If we write

�1 = cos(� � �)�2 + sin(� � �)�2;

it follows that

��1�2 = cos(� � �)� sin(� � �)�2�2 = e�(���)�2�2:

Consequently, for � � � 2 (��; �) a canonical square root of ��1�2 is given byp
��1�2 := e�

���
2 �2�2 = e

���
2 �1�1 : (1.1.6)

Computations similar to above give that

p
��1�2 = �

�
cos(

� � �

2
)�2 + sin(

� � �

2
)�2

�
�2 2 Spin(U) � Spin(V ):

The properties 1), 2), 3) and 4) are now easily checked. It remains to prove the unique-
ness part: Assume that ! 2 Spin(V ) is another element satisfying 3) and 4). Then
conjugation by !�1

p��1�2 induces the identity on U? � span(�2). Since conjugation
by elements of Spin(V ) give rise to unitary operators with determinant 1 it follows that
conjugation by !�1

p��1�2 induces the identity on V . But then !�1
p��1�2 is in the

centre of Cli�(V ). Since !�1
p��1�2 also belongs to Spin(U), which has centre �1, it

follows that ! = �p��1�2. The uniqueness now follows from 1).
The claims 5) and 6) are satis�ed by construction of

p��1�2. This proves the
lemma.

Remark 1.1.15. We de�ne
p��1�2 by (1.1.6) for � 2 (0;1). With this convention

1), 2), 3), 4), 5) and 6) remain valid. What is not true is that
p��1�2 is a globally

de�ned function of �1 and �2. Instead it must be considered as a function of �.

Denote by R : Spin(Rn) 7! SO(Rn) the covering homomorphism. We notice that
R(
p��1�2) is the identi�cation map for TZ 0 at the corner, which identi�es �2 with �1

and �2 with �1. We can now in the same way construct the restriction of a bundle F
over Z by at each corner identifying ! 2 Ejf(0;a)g�Y with

p��1�2 ! 2 Ejf(0;b)�Y . Then
the computation

R(
p
��1�2)(v)

p
��1�2! =

p
��1�2 v

�p
��1�2

��1p
��1�2! (1.1.7)

=
p
��1�2v! (1.1.8)

shows that F is a bundle of Cli�ord modules over TZ 0. Since the connection commutes
with Cli�ord multiplication, F can also be given the connection from E. Notice that
when F is considered as a Cli�ord bundle over Cli�(TZ), rather than over Cli�(TZ 0),
the structure b of Cli�ord multiplication is given by b(
) = �
, where � denotes the
inward pointing normal at @M .

In neighborhoods of small open subsets of each open boundary component Zi of Z,
D takes the form

D = �� @
@u

+DZi = ��( @
@u

+A):
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Here A = �DZi is the Dirac operator on F 7! Z coming from the structure of F as a
Cli�ord module over TZ. There is no globally de�ned Dirac operator on E 7! Z, but
by construction of F , the Dirac operators DZi glue together to a Dirac operator DZ on
F 7! Z. By construction of F the operator of Cli�ord multiplication by � is a smooth
section in End(F ), which anti-commutes with DZ. Thus also the operator A := �DZ

is well de�ned as an operator on F 7! Z.
There is an extension of E to a Cli�ord-bundle ~E on ~M by letting ~EjZ�[0;1] be

the pullback of F . The connection and the Hermitian structure extend by the product
structure. Finally, Cli�ord multiplication in the direction of the last variable is provided
by the operator ��.

1.2 Analysis on a Cone.

In this section we will consider a number of di�erent Sobolev spaces over two-dimensional
cones.

Let V 7! X be a Hermitian vector-bundle over a Riemannian manifold supplied
with a connection r. Then we de�ne

W 2;k(X;V ) := ff 2 L2(X;V ) j 8i = 0; : : : ; k : rif 2 L2(X; (T �M)
i 
 V )g;
W 2;k

0 (X;V ) := Closure of C1
0 (X;V ) in W 2;k(X;V ):

If V is further a Dirac bundle and D is the associated Dirac operator, we may de�ne

Hk(X;V ) := ff 2 L2(X;V ) j 8i = 0; : : : ; k : Dif 2 L2(X;V )g;
Hk

0 (X;V ) := Closure of C1
0 (X;V ) in Hk(X;V ):

The following inclusions are standard:

Lemma 1.2.1. We have

W 2;k
0 (X;V ) �W 2;k(X;V );

Hk
0 (X;V ) � Hk(X;V );

W 2;k
0 (X;V ) � Hk

0 (X;V );

W 2;k(X;V ) � Hk(X;V ):

If the curvature term R occurring in the Weizenb�ock formula is bounded, we further
have

W 2;1
0 (X;V ) = H1

0 (X;V ):

Proof: The �rst two inclusions hold by de�nition. The next two by the expression
D = cg�1r, where c is the structure of Cli�ord multiplication and g is the metric. In
the last equation the inclusion � is already clear. The other follows by the Weizenb�ock
formula in the following way: For f; g 2 C1

0 (X;V )

jhrf;rgij = jhr�rf; gij
=
��
(D2 �R)f; g

���
� jhDf;Dgij+ kRk1 jhf; gij :
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This implies equivalence of the norms on W 2;1
0 and H1

0 .

Now let R2;�
� = ~R2

�=��, where �� is de�ned in De�nition 1.1.6. Let E be a Cli�ord

module over Cli�(R2) and let E1 be the corresponding Cli�ord bundle over ~R2
�, arising

by trivializing T ~R2
� by the trivial holonomy of ~R2

�. The bundle E1 is a Dirac bundle

over ~R2
� if it is supplied with the pullback of the trivial connection dx @

@x
+ dy @

@y
to ~R2

�.
Let U be a unitary operator on E such that E1=(��;U ) is a Dirac bundle over R2

�;�. Here
��;U is given by

��;U (k)((r; �; e)) = (r; �+ k�; Uke):

We denote the resulting Dirac bundle E1=(��;U ) by E.
Lemma 1.2.2. We have

W 2;1
0 (R2;�

� ; E) = W 2;1(R2;�
� ; E):

Proof: First consider E in the case � = 2�. In this case Euclidean coordinates (x; y)
are globally well-de�ned.

First we prove thatW 2;1(R2
�; E)\L1(R2

�; E) is dense inW
2;1(R2

�; E). Let v1; : : : ; vm
be an orthonormal basis of eigenvectors of U . Then an orthogonal basis of eigenvectors
of the operator �i @

@�
on L2(S1; EjS1) is given by

�
eisk;q�vq

	
q=1;::: ;m;k2Zfor some discrete

sequences fsk;qgk2Zof eigenvalues. Every section f 2 W 2;1(R2
�; E) can be split into a

W 2;1-orthogonal sum

f(r; �) =
X
k;q

fk;q(r)e
isk;q�vq:

By orthogonality each term fk;q(r)e
isk;q�vq belongs to W 2;1 and the sum is W 2;1-

convergent. It thus su�ces to prove that each section of the form fk;q(r)eisk;q�vq can
be approximated by bounded W 2;1-sections with respect to the W 2;1-norm.

The function fk;q belongs to W 2;1;loc((0;1)) and is therefore continuous, such that
in particular it is everywhere de�ned. Now de�ne for n 2 N:

fk;q;n(r) := maxfminfRe(fk;q(r)); ng;�ng+ imaxfminfIm(fk;q(r)); ng;�ng:
Then

fk;q;n(r)e
isk;q�vq

n!1�! fk;q(r)e
isk;q�vq

with respect to k � kW 2;1 .
Let ' 2 C1

0 (R) be a function, which is identically equal to 1 in a neighborhood of
0. Further, let f 2 W 2;1(R2

�; E) \ L1(R2
�; E). The estimate

Z
R2

����
�
@

@x
'
�
n
p
x2 + y2

��
f(x; y)

����
2

+

����
�
@

@y
'
�
n
p
x2 + y2

��
f(x; y)

����
2

dxdy

= n2
Z
R2

x2 + y2

x2 + y2

���'0 �npx2 + y2
����2 jf(x; y)j2 dxdy � Cf;'
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and some trivial estimates shows that f'(n
p
x2 + y2)fgn2N is bounded in W 2;1 for

n!1. Further, for g 2 W 2;1(R2
�; E) \ L1(R2

�; E) we get����
Z
R2

�
@

@x
'(n

p
x2 + y2)

�
hf(x; y); g(x; y)idxdy

���� �Z
R2

����� nxp
x2 + y2

�����
���'0(npx2 + y2)

��� jf(x; y)j jg(x; y)j dxdy! 0:

Thus f'(n
p
x2 + y2)fgn2N is a bounded sequence in W 2;1 converging weakly towards

zero with respect to a dense subset ofW 2;1. It follows that it is in fact weakly convergent
towards zero. Consequently �

1 � '(n
p
x2 + y2)

�
f(x; y)

converges W 2;1-weakly towards f for n!1. Now, sections with support away from 0
can be approximated in W 2;1 by sections in C1

0 (R2
�; E). It follows that the W

2;1-weak
closure of C1

0 (R2
�; E) is all of W

2;1(R2
�; E). But the weak and the strong closure of a

subspace always coincide. This proves the lemma in the special case.
Now, R2;�

� is di�eomorphic to R2
� through a di�eomorphism, whose di�erential and

inverse di�erential are bounded. From that it follows that the spaces W 2;1 and W 2;1
0

are preserved. Thus the lemma holds for all �.

In the special case � = 2�, U = 1 we know that the Dirac operator is self-adjoint on
the domain W 2;1(R2;�

� ; E) = W 2;1(R2; Cm). This is not so in general. Instead we will
have to introduce ideal boundary conditions in order to get a self-adjoint extension.

Consider the restriction Er of E to the circle Nr = r � (�Zn R). We write N for
N1. Let � denote the operator of Cli�ord multiplication by @

@r
and let � denote the

operator of Cli�ord multiplication by @
@�
. Operators

BN := ��� @
@�

� 1

2
(1.2.1)

and

�N := � i
r
�� (1.2.2)

are de�ned in L2(Nr; Er). �N is the canonical involution on Nr given by a multiple of
the image of the volume form in the Cli�ord bundle. It is at the same time equal to
��
R
2;�
�
, where the orientation on R2;�

� has been taken such that ( @
@r
; @
@�
) is an ordered

frame of TR2;�
� . In particular it is parallel with respect to the connections on both N

and R2;�
� , and the dimensions of the �1 eigenspaces of �N are both equal to dim(E)

2 .
The operators BN , U and �N commute. Thus BN and �N preserve the eigenspaces

of U . Let � 2 S1 vary over the eigenvalues of U . Then Er splits into eigenbundles E�
to the � eigenvalues of U . Let v1; : : : ; vp be an orthonormal basis of eigenvectors of �N
in the �-eigenspace of U . Thenn

e��
2�k+i log(�)

�
�vq

o
q=1;::: ;p;k2Z

(1.2.3)
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is an orthonormal basis of eigenvectors for BN to the eigenvalues
n

2�k+i log(�)
�

� 1
2

o
.

This basis is independent on the branch of the logarithm used, though the indexing
depends on the branch of the logarithm. Let

sk;� =
2�k + i log(�)

�
: (1.2.4)

Then fsk;�g are the eigenvalues of BN + 1
2
.

Remark: 1
r
BN is the induced Dirac operator on the sub-manifold Nr. It anti-

commutes with �. Since �N commutes with BN and anti-commutes with � we see that
�N maps ker(BN ) to itself and that � gives a symplectic structure on ker(BN), for
which ker(�N � 1) is a Lagrangian subspace.

De�nition 1.2.3. If sk;� 6= 1
2 for all k and �, let �1; : : : ; �q be the values of sk;� for

which sk;� 2 (0; 1
2
), counted with multiplicity and let '1; : : : ; 'q be a corresponding

orthonormal basis of eigensections. Then we set

D2;1(R2;�
� ; E) :=W 2;1(R2;�

� ; E)� span
�
K�j (r)'j j j = 1; : : : ; q

	
; (1.2.5)

where Ks denotes the s0th K-Bessel function.
If some sk;� equals 1

2
, i.e. ker(BN) 6= 0, let W be a Lagrangian subspace of ker(B),

which is a direct sum of subspaces of the eigenspaces of � . Let '1; : : : ; 'q and �1; : : : ; �q
be like above, let 'q+1; : : : ; 'q0 be a basis of W and let �q+1 = � � � = �q0 =

1
2 . We set

D2;1
W (R2;�

� ; E) := W 2;1(R2;�
� ; E)� spanfK�j (r)'j j j = 1; : : : ; q0g: (1.2.6)

We will use the terminology that we augment with respect to a Lagrangian subspace
if we take that subspace as W and that we augment with respect to a self-adjoint
involution �, if we take W = ker(� � 1).

It will often be convenient to write D2;1
W instead of D2;1, also when ker(BN) = f0g.

In this caseW = f0g. We will prove that D is self-adjoint on D2;1
W (R2;�

� ; E). In the case,
where � = 2� and U = 1, BN + 1

2 has no eigenvalues in [�1
2; 0) [ (0; 12], D

2;1 = W 2;1

and we already know that D is self-adjoint on W 2;1(R2; E). The general case requires
that we compute the defect indices of (D�;W

2;1(R2;�
� ; E)).

Assume that we have a solution f 2 L2(R2;�
� ; E) of the equation

(D� � i)f = 0:

Then it follows

((D�)2 + 1)f = (D� � i)(D� � i)f = 0:

Thus we have the distributional equation

(� + 1)f = 0;

where � = D2. In polar coordinates (r; �), � takes the form � = � @2

@r2
� 1

r
@
@r
� 1

r2
@2

@�2
.

Now assume f is a L2-solution of the equation

(� + �2)f = 0
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for some � 2 C n f0g. Since � commutes with U we may consider the components f�
of f , which take their values in C1(R2;�

� ; E�), separately. It follows by local elliptic
regularity that f� 2 C1(R2;�

� ; E�) and thus that f� has an expansion of the form

f�(r; �) =

pX
q=0

1X
k=�1

gk;q(r)e
��sk;��vq ; (1.2.7)

where the sum is convergent in the C1-topology and the coe�cient functions gk;q are
smooth. The coe�cient functions are solutions of the ordinary di�erential equations�

� @2

@r2
� 1

r

@

@r
+
s2k;�
r2

+ �2
�
gk;q(r) = 0: (1.2.8)

Let 's be a solution of the equation�
� @2

@r2
� 1

r

@

@r
+
s2

r2
+ 1

�
's(r) = 0: (1.2.9)

Then we may compute�
� @2

@r2
� 1

r

@

@r
+
s2

r2
+ �2

�
's(�r) =

�2
�
�'00s(�r) �

1

�r
'0s(�r) +

�
s2

�2r2
+ 1

�
's(�r)

�
= 0:

It follows that 's(�r) is a solution of (1.2.8) if s2 = s2k;�. The equation (1.2.9) is known
to have the two-dimensional solution space spanned by the Bessel functions Is(r) and
Ks(r). In the following we will concentrate on the special case where � = 1.

For r!1, Is(r) has the following asymptotic expansion [14]

Is(r) = e�i
�
2
sJs(ir) � e�i

�
2
s

r
2

�r
cos(ir � �

2
s� �

4
):

The other solution, Ks, is known to have the asymptotic expansion [43, 7.23]

Ks(r) � p
�
2r

� 1
2 e�r ; r!1;

Ks(r) � 2jsj�1�(jsj)r�jsj ; r! 0 for s 6= 0;

K0(r) � � log(r) ; r! 0:

(1.2.10)

By the asymptotic behaviour for r ! 1 it follows that the Is component of gk;q
must vanish in order for f to be in L2(R2;�

� ; E). Further, for jsj 2 [1;1) the integralR 1

0 r
�2jsjrdr =

R 1

0
r1�2jsjdr is divergent. Thus gk;q = 0 for all k such that jsk;�j 2 [1;1).

In particular the sum (1.2.7) is �nite.
By [43, 3.71] we have for all s:

d

dr
Ks(r) = �s

r
Ks(r)�Ks�1(r):
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Thus we may compute

(D�f�)(r; �) = �

�
@

@r
� 1

r
��

@

@�

� X
k

X
q

ck;qKsk;�(r)e
��sk;��vq

!

= �

(X
k

X
q

ck;q

�
@Ksk;�(r)

@r
+
sk;�
r
Ksk;� (r)

�
e��sk;��vq

)

= ��
(X

k

X
q

ck;qKsk;��1(r)e
��sk;��vq

)
:

By orthogonality and the identity K�s(r) = Ks(r) [43, 3.71] we see that for this to
be a solution to (D� � i)f� = 0 we must have that whenever

e��sk;��vq

is an eigensection of BN + 1
2
to the eigenvalue sk;� then ��e��sk;��vq is an eigensection

of BN + 1
2 to the eigenvalue 1� sk;�. Since � anti-commutes with BN this is indeed so

for all vq. It follows by orthogonality that the solutions to (D� � i)g = 0 are spanned
by vectors of the form

Ksk;�(r)e
��sk;��vq � iK1�sk;�(r)e

��sk;���vq: (1.2.11)

This excludes sk;� 2 (�1; 0] since for sk;� 2 (�1; 0], 1 � sk;� � 1, so that sk;� can not
give rise to an L2-solution of (D� � i)g = 0 of the type (1.2.11). Thus we are left with
sk;� 2 (0; 1). In this case (1.2.11) is indeed a L2-solution to (D� � i)g = 0. Further we
see that dim(ker(D� + i)) = dim(ker(D� � i)), so that D has self-adjoint extensions.
Each self-adjoint extension is given by adding a Lagrangian subspaces of the symplectic
form

hD�f; gi � hf;D�gi

on ker(D� � i)� ker(D� + i) to D(D). The identity

hD�f; gi = hf;D�gi � lim
r!0

Z
Nr

hf; �gi

gives that this is exactly the Lagrangian subspaces for the quadratic form h�f; gi. We
observe that the space

W0 := span
�
Ksk;�(r)e

��sk;��vq
	
sk;�2(0; 12 )

is a Lagrangian subspace for the restriction of � to the space

span
�
Ksk;� (r)e

��sk;��vq
	
sk;�2(0; 12 )[( 12 ;1)

:
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If a Lagrangian subspace W of ker(BN) is added to W0, W � W0 is a Lagrangian
subspace of ker(D� � i)� ker(D� + i). This proves that D is self-adjoint on D2;1

W .
We will end this discussion by noticing that since �� commutes with any super-

structure on E, the domain D2;1
W is compatible with any superstructure on E if and

only if W is compatible with the superstructure.
We state the main results, which are well known from [8], [9], as a lemma:

Lemma 1.2.4. Let D be the Dirac operator on a cone over S1. Then D is self-adjoint
on D2;1

W (R2;�
� ; E). Further, for any superstructure E = E+�E� into �1 eigenspaces of

an involution � anti-commuting with Cli�ord multiplication, (D;D2;1
W ) anti-commutes

with � if and only if W splits into W = W+ �W�, where W+ � C1(E+) and W� �
C1(E�).

We remark that Lemma 1.2.4 holds with minimal modi�cations on a cone over any
closed manifold.

1.3 Analysis on a Wedge.

In the following Y will denote a closed Riemannian manifold supplied with a Hermitian
vector-bundle EjY and a Hermitian connection rY on EjY .

A vector bundle ~E is de�ned on ~R2
� � Y by taking the pullback through the pro-

jection on the second component of the product.
The connection, metric and Hermitian structure on ~R2

��Y is given by the product
structure. For the structure of Cli�ord multiplication we will assume that there is a
structure on ~E as a Dirac bundle. The associated Dirac operator we will denote by ~D.

In polar coordinates (r; �), ~D can be written:

~D = �
@

@r
+
1

r
�
@

@�
+DY = �

�
@

@r
+
1

r
BN +

1

2r
+BY

�
; (1.3.1)

where DY is a Dirac operator on EjY de�ned with respect to the structure of Cli�ord

multiplication on R2;�
� . The operators BN and BY are the induced Dirac operators on

N and Y with respect to the structure of Cli�ord multiplication induced on N � Y
from the structure of Cli�ord multiplication on R2;�

� � Y .
Let U 2 C1(End(EjY )) be a unitary section and let �� and �U;� be given by:

��(k)(r; �; y) = (r; �+ �k; y) ; k 2Z;
�U;�(k)((r; �; y); e) = ((r; �+ �k; y); Uke) ; k 2Z:

A vector bundle E over R2;�
� � Y is de�ned by E := �U;� n ~E. We will assume that U

is such that E is a Dirac bundle. Let D denote the Dirac operator on E.
Since �, � and U commute with B2

Y , for each � 2 spec(BY ), a Dirac bundle F�2
over R2;�

� is given as the direct sum of the eigenspaces

F�2 := E� � E��;
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where E� is the eigenspace of BY to the eigenvalue �, supplied with the Hermitian
structure induced by the inner product on L2(Y;EjY ). Further, BY acts by an element
B� of End(F�2) of operator norm �.

The restriction D�2 of ~D to F�2 is of the form

D�2 = D0 +B�2 ;

where D0 is an operator of the form from Lemma 1.2.4. Thus D0 is self-adjoint
on D2;1

W (R2;�
� ; F�2). Since B�2 is bounded and symmetric, also D�2 is self-adjoint on

D2;1
W (R2;�

� ; F�2).
For �2 6= 0 the operator BY gives a canonical choice of augmentation for D�.

We exploit this to de�ne self-adjoint ideal boundary conditions for D up to the �nite
dimensional space ker(BN) \ ker(BY ).

De�nition 1.3.1. Let � be a self-adjoint involution de�ned on the space ker(BN) \
ker(BY ), which anti-commutes with the restriction of � to ker(BN ) \ ker(BY ). Let
W0 = ker(�� 1). Further, for �2 6= 0 let W�2 := ker(�1j�jB�2 � 1) and let

D2;1
� (R2;�

� � Y;E)

be the closure of M
�22spec(B2

Y )

D2;1
W
�2
(R2;�

� ; E)

in H1(R2;�
� � Y;E).

If an involution � is not given we let W0 = f0g and de�ne D2;1
min(R

2;�
� ; E) like above.

Proposition 1.3.2. The Dirac operator D de�ned on D2;1
� (R2;�

� �Y;E) is self-adjoint.
If � is not given, the realization of D on the domain D2;1

min(R
2;�
� � Y;E) is a closed

symmetric operator with �nite defect indices.

Proof: (D;D2;1
� (R2;�

� �Y;E)) is by de�nition the closure of an orthogonal sum of self-

adjoint operators, and is therefore self-adjoint. If � is not given (D;D2;1
min(R

2;�
� � Y;E))

is the closure of the Direct sum of symmetric operators with �nite defect indices, of
which only �nitely many are not self-adjoint.

De�nition 1.3.3. If � is given and D is given the domain D2;1
� we say that slow-

growing ideal Atiyah-Patodi-Singer boundary conditions augmented with respect to �
are imposed on D.

If � is not given and D is given the domain D2;1
min we say that minimal slow-growing

ideal Atiyah-Patodi-Singer boundary conditions are imposed on D.

Remark 1.3.4. If the dimension of Y is odd it does occur that no � like in De�ni-
tion 1.3.1 exists. This is part of our motivation for the construction of the scattering
matrix in Section 2.

Lemma 1.3.5. Assume H is a Hilbert space, A 2 B(H) and that A�A is compact.
Then A and A� are compact.
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Proof: If A�A is compact, for every bounded net ff�g�2� converging weakly towards
0, kA�Af�k ! 0 for �!1. Thus

kAf�k = (hA�Af�; f�i)
1
2 ! 0

for � ! 1. This implies that A is compact. Thus also A� is compact, and the proof
is complete.

Lemma 1.3.6. Let ' 2 C1(R2;�
� ) be a function depending only on r, such that

p
' 2

C1(R2;�
� ), '(r; �) = 1 for r � 1 and '(r; �) = 0 for r � 2. Let M' be the operator of

multiplication by '. Further, let D be the Dirac operator on R2;�
� �Y and let (D2��)�s

be the analytic continuation in � of the operator (D2 � �)�s de�ned for � 2 (�1; 0)
by the spectral theorem. Then, for � 2 C nR+ and s > 0, the operator

M'(D
2 � �)�s

is compact.

Proof: First notice that by multiplicativity, Lemma 1.3.5 and the fact that the com-
pact operators make up a closed �-ideal in the Banach algebra of bounded operators,
we may take s = 1 without exception. Next notice that by the �rst resolvent equation,
we may take � = �1. First we consider the restriction of D to the orthogonal comple-
ment of ker(BN). On this space we have the following two important properties of the
domain:

� D(D) is independent of BY .

� For each �2 eigenspace of B2
Y we have D((D0 +B�2)

2) = D(D2
0).

Splitting Dj ker(B2
N)? into the eigenspaces of B2

Y gives that

D2 =
M
�

D2
� =

M
�2

D2
0 + �2

and thus that the sum

M'(D
2 + 1)�1 =

M
�2

M'(D
2
0 + �2 + 1)�1 (1.3.2)

is convergent in operator norm (not necessarily absolutely convergent, but the ortho-
gonality of the terms makes up for that). It thus su�ces to prove that each term in
(1.3.2) is compact. Again by the �rst resolvent equation we may assume � = 0 without
loss of generality.

Let R2;�
�;2 = f[(r; �)] 2 R

2;�
� j r < 2g and let D2

D be the operator in L2(R2;�
�;2; E�)

given by imposing Dirichlet boundary conditions at r = 2. I.e. D2
�;D is the Friedrich's

extension of D2
� restricted to the domain

D0;D = ff 2 D2;1
� j supp(f) � R2;�

�;2 and Df 2 D2;1
� g:
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Then since

M'(D
2 + 1)�1 =Mp

'(D
2
D + 1)�1

�
(D2 + 1)Mp

'(D
2 + 1)�1

�
and the operator

(D2 + 1)Mp
'(D

2 + 1)�1

is bounded, we may consider Mp
'(D2

D + 1)�1 instead.
Also the operator (D2

D + 1)�1 can be decomposed with respect to the eigenspaces
of B + 1

2
. The operator estimate

� @2

@r2
� 1

r

@

@r
+
s2k;�
r2

+ 1 � � @2

@r2
� 1

r

@

@r
+
s2k;�
22

+ 1;

which holds for jsk;�j > 1
2
, where both operators are the Friedrich's extensions from

C1
0 , implies






�
� @2

@r2
� 1

r

@

@r
+
s2k;�
r2

+1

��1




 �






�
� @2

@r2
� 1

r

@

@r
+
s2k;�
22

+1

��1




 :
From that it follows that the sum

Mp
'(D

2
D + 1)�1 =

M
k2Z

Mp
'

�
� @2

@r2
� 1

r

@

@r
+
s2k;�
r2

+ 1

��1
(1.3.3)

is convergent in norm, and thus it again su�ces to consider each term separately.
Now the domain of D2

D is such that each term in (1.3.3) is a bounded operator from
L2((0;1); rdr) to W 2;1((0;1); rdr)� V , where dim(V ) <1. By Rellichs lemma and
since dim(V ) <1 it follows that each term is compact.

The restriction of D to ker(BN) is conjugate to a Dirac operator on (0;1) � Y
with Atiyah-Patodi-Singer boundary conditions (by the operator of multiplication by

r
1
2 ). Thus it is well known that the compactness result also holds on this space.
This �nishes the proof of the lemma.

1.4 Characterization of D2;1.

It will be convenient to have an abstract characterization ofD2;1
� and D2;1

min, respectively.
If ker(BN ) = 0 or � is not given, set W = f0g. Otherwise let W0 := ker(� � 1) and

let W � ker(BN ) be the H
1
2 -closure of the direct sum of W0 and the negative spectral

subspace of BY in ker(BN). Let � be a smooth function on C � Y depending only on

r, such that �(r) = 0 for r > 2 and �(r) = r�
1
2 for 0 < r < 1. We realize that the

closure in H1 of the space

D2;1
W := ff 2 H1 j lim sup

r!0
r

Z 2�a

0

jf(r; �)j2d� = 0g � �W (1.4.1)

contains D2;1
� , and that D� is symmetric on D2;1. Since every self-adjoint operator is

maximally symmetric it follows that D2;1
W = D2;1

W . Next notice that W 2;1 =W 2;1
0 = H1

0 .
Thus W 2;1 is a closed subspace of H1 contained in D2;1.

Let L = (0; R) � f�0g � Y be a \line segment" in R2;�
� � Y .
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Lemma 1.4.1. If ker(BN) = f0g, D2;1
min(R

2;��Y;E) is the only extension of W 2;1 such
that D is self-adjoint on D2;1

min and the restriction

D2;1
min 7! L2(L;EjL)

is well de�ned and bounded.
If ker(BN) 6= 0, the domains D2;1

W satisfy that D is self-adjoint on D2;1
� and that the

restriction

D2;1
� 7!W 2;�"(L;EY;a;U

jL ) (1.4.2)

is well de�ned and bounded for all " > 0. For " = 0 the restriction (1.4.2) is not well
de�ned for any �.

Proof: The space of sections in ker((D2�D2
Y )

�+1) is spanned by sections of the form
Ks(r)e��s�v. If s 6= 1

2
for all s, the restriction of a vector in this span to N is in L2

if and only if only basis elements with s < 1
2 occur. The norm on D2;1 restricted to

H1(R2;a
� ; F�2) is given by

kfk2D2;1 = h(D0 +B�)f; (D0 +B�)fi + hf; fi :
Since D0 and B� anti-commute and B� is bounded and preserves the domain of D0,
this can be rewritten

hD0f;D0fi + hB�f;B�fi + hf; fi :
Thus convergence in k � kD2;1 implies convergence in the norm k � k? given by

kfk2? := hD0f;D0fi+ hf; fi :
Let �D2;1

� be the completion of D2;1
� (R2;�

� � Y;E) with respect to k � k?. The orthogonal
complement of W 2;1 in �D2;1 is the closed span of the functions Ksj (r)e

isj�'�;j in D2;1.
Since there are at most �nitely many di�erent sj, the restriction from the orthogo-
nal complement of W 2;1 to L2(L;E) is bounded. The completion of W 2;1 in �D2;1 is
contained in the space W 2;1(R2;�

� ; L2(Y;EjY )). The restriction to L2(L;EjL) from this
space is bounded, as it can be seen by splitting

W 2;1(R2;a
� ; L

2(Y;EjY )) =
M
�

W 2;1(R2;a
� ; L

2(Y;E�))

and using the standard restriction W 2;1 7! W 2; 1
2 .

For the second part, if s = 1
2 occurs, we realize that the restriction to W 2;�" is well

de�ned and bounded for " > 0 but a priori not for " = 0. The proof is like the proof
of the �rst part. On the other hand a section of the formX

j

ajK 1
2
(r)e

1
2 ���vj = K 1

2
(r)e

1
2���

X
j

ajvj;

restricts to L2(L;EjL) if and only if it vanishes. This proves that the restriction to
L2(L;EjL) is not well-de�ned.
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2 Globally de�ned Augmentations.

If M is a manifold with boundary and product structure around the boundary, D is a
Dirac operator on a Dirac bundle E 7!M respecting the product structure and A is the
induced Dirac operator on @M , a canonical choice of augmentation forD is given by the
scattering matrix in 0, denoted by S. See [30], where it is denoted by C(0). In [30] the
scattering matrix is constructed (or more precisely, its properties are deduced) using
the spectral resolution of a Dirac operator on a manifold with cylindrical ends. The
purpose of this section is to give an alternative construction, which works directly on
compact manifolds. This construction further gives scattering matrices for manifolds
with both wedge singularities and boundaries, which mix the various spaces, which
have to be augmented.

2.1 The General Construction

In the following E 7! X will denote a Dirac bundle over an open Riemannian manifold
X� with completion X. Let D0 be the associated Dirac operator, de�ned on some
domain D(D0) satisfying the following:

Assumption 2.1.1.

a) D0 is densely de�ned, closed and symmetric on D(D0).

b) D(D�
0)=D(D0) is of �nite dimension and the restriction of the projection map

ker(D�
0D

�
0) 7! D(D�

0)=D(D0) is surjective.

c) There exists an exhaustion fX"g0<"<"0 of X� such that each X" has a smooth
boundary, X" � X"0 for " � "0 and for every f 2 D(D�

0), the limit

hf; fi@ := lim
"!0

Z
@X"

hf(x); f(x)i dx

exists and satis�es that if hf; fi@ = 0 then f 2 D(D0).

Remark 2.1.2. Often X" will be a manifold with corners rather than a manifold with
smooth boundary. What matters is that (2.1.2) below is satis�ed.

Let L be the orthogonal complement of ker(D�
0D0) in ker(D�

0D
�
0) with respect to

the inner product on L2(X;E). The restriction of h�; �i
@
to L is an inner product by

the assumptions above. We de�ne an operator c@ : L 7! L by

hc@f; gi@ := lim
"!0

Z
@X"

hc(�")f(x); g(x)i dx; (2.1.1)

where c(�") denotes the inward pointing normal at @X". The formulaZ
X"

hD�
0f; gijx � hf;D�

0gijx dx =
Z
@X"

hc(�")f(x); g(x)ijx dx (2.1.2)
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proves that c@ is well de�ned and that

hc@f; gi@ = hD�
0f; gi � hf;D�

0gi :

Using (2.1.1) it follows that c�@ = �c@. Further, if fejg is an orthonormal basis for L
with respect to h�; �i

@
we may compute

hc@f; c@fi@ =
X
j



c@f; hc@f; eji@ ej

�
@

=
X
j

hc@f; eji@ hc@f; eji@

=
X
j

lim
"!0

hc(�")f; ejiL2(@X";E) hc(�")f; ejiL2(@X";E)

=
X
j

lim
"!0

D
c(�")f; hc(�")f; ejiL2(@X";E) ej

E
L2(@X";E)

:

Because h�; �iL2(@X";E) ! h�; �i@ as a family of quadratic forms on L this gives:

= lim
"!0

hc(�")f; c(�")f + o(1)i
L2(@X";E)

= lim
"!0

n
hf; fiL2(@X";E) + o(1)

o
= hf; fi@ :

This proves that c@ is an isometry. We immediately conclude that in fact c@ is unitary
and anti-self-adjoint.

Lemma 2.1.3. Let ker(D0)�= ker(D0)
{7! ker(D�

0D
�
0)= ker(D0) denote the map of in-

clusion. Then we have

i) If Assumption 2.1.1 holds, the sequence

0
{7! ker(D�

0)= ker(D0) 7! ker(D�
0D

�
0)= ker(D0)

D�
07! ker(D�

0)= ker(D0) 7! 0 (2.1.3)

is exact.

ii) Let

L0 := ff 2 L j D�
0f = 0g:

Then L0 is a Lagrangian subspace of L with respect to c@ and h�; �i.

Proof: We identify ker(D�
0D

�
0)= ker(D0) with L and ker(D�

0)= ker(D0) with L0. Since
for g 2 ker(D0), f 2 ker(D�

0D
�
0) we have

hD�
0f; gi = hf;D0gi = 0;
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we also have that D�
0 maps L to L0, so the sequence (2.1.3) is isomorphic to the

sequence

0 7! L0
{7! L D�

07! L0 7! 0:

That { is injective and that Im({) = L0 = ker((D�
0)jL) are both obvious. We need to

show that D�
0 : L 7! L0 is surjective. We will use a dimension argument. First notice

that the exactness of

0 7! L0
{7! L D�

07! L0

implies that we have the inequality

dim(L) � 2dim(L0): (2.1.4)

Next we notice that for f; g 2 L0,

hc@f; gi = hD�
0f; gi � hf;D�

0gi = 0:

Thus c@ is an injective operator mapping L0 to its orthogonal complement. It follows
that

dim(L0) � 1

2
dim(L):

Together with (2.1.4) this proves that dim(L0) =
1
2
dim(L), soD�

0 : L 7! L0 is surjective.
The same arguments also prove ii).

Corollary 2.1.4. Let D be the restriction of D�
0 to D(D0)�L0. Then D is self-adjoint.

Proof: Let f1; f2 2 D(D0) and let g1; g2 2 L0. Then

hD(f1 + g1); f2 + g2i = hD0f1; f2 + g2i = hf1;D�
0(f2 + g2)i = hf1;D0f2i :

In the same way it follows

hf1 + g1;D(f2 + g2)i = hD0f1; f2i = hf1;D0f2i :
Consequently D is symmetric. Since D0 � D and D is symmetric we have D �
D� � D�

0. Now assume that there exists f 2 D(D�) n D(D). Then f is of the form
f3 + f4, where f3 2 D(D) and f4 belongs to the orthogonal complement of L0 in L.
Consequently D�

0f4 2 L0 n f0g � D(D). We check

hD�
0f4;D

�(f3 + f4)i = hD�
0f4;Df3i + hD�

0f4;D
�
0f4i

= hD�
0D

�
0f4; f3i+ hD�

0f4;D
�
0f4i

= hD�
0f4;D

�
0f4i 6= 0:

On the other hand

hD(D�
0f4); f3 + f4i = hD�

0D
�
0f4; f3 + f4i = 0:

This is a contradiction against f3 + f4 2 D(D�), so D is self-adjoint.
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De�nition 2.1.5. We consider L as a Hilbert space with the inner product h�; �i@.
The scattering matrix S : L 7! L is the operator 2P � 1, where P is the orthogonal
projection on L0. We say that the operator D de�ned in Corollary 2.1.4 is augmented
with respect to S.

Lemma 2.1.6. Let T be a bounded normal operator on L2(X;E) such that

1) T � preserves D(D0).

2) T �D0 = D0T
� or T �D0 = �D0T

�.

Then T preserves L and L0 and in particular, T commutes with S.

Proof: Assume f 2 D(D�
0). Then for g 2 D(D0)

j hD0g; Tfi j = j hT �D0g; fi j = j � hD0T
�g; fi j:

Since D�
0f is well de�ned and T �g 2 D(D0) this is equal to

j � hT �g;D�
0fi j � kT �k � kgk � kD�

0fk:

Thus Tf 2 D(D�
0). Further TD

�
0 = �D�

0T by calculations like above, so in particular
T preserves ker(D�

0). Further, for f 2 D(D�
0D

�
0) it follows D

�
0D

�
0Tf = �D�

0(TD
�
0f) =

TD�
0D

�
0f , so T also preserves ker(D�

0D
�
0). Since ker(D

�
0D

�
0) is �nite dimensional, T is

normal and T � preserves ker(D0) it follows that T preserves L, L0 and the orthogonal
complement of L0 in L. This proves the lemma.

Corollary 2.1.7. We have

� S respects every superstructure on E respected by D0.

� Assume that E is the restriction of a Cli�ord bundle ~E 7! N � X to fag � X,
where N�X is supplied with a product metric and product connection. If Cli�ord
multiplication by any tangent vector 
 2 TaN preserves D(D0), then 
 sends L
into L and 
S = S
.

2.2 Manifolds with Boundaries and Wedge Singularities.

We will now apply the above to the Dirac operator ~D on the extended manifold ~M ,
where M is an oriented manifold with corners of codimension 2 and product structure
around the corners. ~M is a manifold with wedge singularities and a boundary. Let X
be the sub-manifold of interior points of ~M0. At the boundary Atiyah-Patodi-Singer
boundary conditions can be imposed except for in ker(A), where A is the induced Dirac
operator at the boundary. Thus we require sections to have restrictions to the boundary
in the strictly positive spectral subspace for A. Similarly, in the wedge singularities
minimal slow-growing ideal Atiyah-Patodi-Singer boundary conditions can be imposed.
This gives a closed symmetric realization ~D0 of ~D.

Lemma 2.2.1. Assumption 2.1.1 is satis�ed for ~D0.
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Proof: a) is obvious. Further, D( ~D�
0)=D( ~D0) is �nite dimensional since

D( ~D�
0)=D( ~D0) �= ker(A)�

M
ker(BN) \ ker(BY ) =: V;

where the direct sum is over the wedge singularities. Now consider the operator ~D�
0
~D0.

Essentially by the proof of Lemma 1.3.6 it follows that ~D�
0
~D0 is a Fredholm operator.

To each ' 2 ker(A) and to each  2 ker(BN )\ker(BY ), where N and Y are associated
to a wedge singularity, we may associate an element h 2 D( ~D�

0)nD( ~D0) with support in
a small neighborhood of the boundary or singularity. Further h may be taken such that
~D�
0h 2 D( ~D�

0). On the other hand each f 2 D( ~D�
0) n D( ~D0) is asymptotic to a sum of

such elements up to D( ~D0). Further, ~D�
0
~D�
0h is orthogonal to ker( ~D0) = ker( ~D�

0
~D0), so

h� ( ~D�
0
~D0)�1( ~D�

0
~D�
0h) is an element of ker( ~D�

0
~D�
0), which di�ers from h by an element

in D( ~D0). This gives that the map ker( ~D�
0
~D�
0)= ker( ~D0) 7! D( ~D�

0)=D( ~D0) is surjective.
In order to prove c) take

X" := fx 2 ~M j dist(x; @ ~M) � "g:
For small " this is a manifold with boundary and the family X" exhausts X. Further,
by the asymptotics of elements of D( ~D�

0), it follows that h�; �i is well de�ned and that
it does not vanish on elements of D( ~D�

0) n D( ~D0).
This proves the lemma.

By Lemma 2.2.1 and Corollary 2.1.4 there is a canonical self-adjoint extension of
~D0, which we (with a slight abuse of notation) denote by ~D.

De�nition 2.2.2. When ~D is given the domain de�ned above we say that ~D is given
slow-growing Atiyah-Patodi-Singer boundary conditions augmented with respect to the
scattering matrix.

The signi�cance of the slow-growing ideal Atiyah-Patodi-Singer boundary condi-
tions is that

� They are always well-de�ned, also for odd dimensional manifolds, and they are
canonical inside the class of all generalized compatible Dirac operators on mani-
folds with boundary and closed wedge singularities of codimension 2.

� They satisfy Lemma 2.1.6 and Corollary 2.1.7. This is crucial for the iteration of
the theory to more complicated singularities. In Section 5 a simple example of
this is given.

� As soon as we relate ~D back to a self-adjoint realization of D in Section 3, the
mixing of boundary conditions in the various boundaries occurs anyway. Conse-
quently this mixing is not a particular draw-back by the boundary conditions, as
it could appear by a �rst sight.

� They give rise to a canonical joint generalization of the Atiyah-Patodi-Singer
boundary conditions on manifolds with boundary and slow-growing ideal bound-
ary conditions on manifolds with cones.
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We will end up by remarking that if augmentations are given in some singularities
or boundary pieces of ~M , ~D0 can be replaced by a corresponding symmetric extension
of ~D0 and we get a scattering matrix involving the remaining singularities. The ex-
tension of this theory to wedge singularities of higher codimension is also completely
straightforward.

3 A Self-Adjoint Extension of D.

In this section we return to the original manifold M . The theory developed for ~M
turns out to be suitable for de�ning global boundary conditions on M , generalizing
the Atiyah-Patodi-Singer boundary conditions. In all of this section M will thus be a
manifold with corners of codimension 2 and product structure around the corners, ~M
will be the extension of M de�ned by (1.1.2) and Z will be the smoothened boundary
of M . If E 7! M is a Dirac bundle respecting the product structure, ~E 7! ~M will be
an extension of E respecting the product structure. The bundle ~E need not be glued
using the canonical gluing operator. In Section 3.3 the gluing will in fact be the gluing
associated to the signature complex, which does not coincide with the canonical gluing
operator.

Let ~D be the Dirac operator associated to ~E 7! ~M . The operator ~D 7! ~M will be
given slow-growing Atiyah-Patodi-Singer boundary conditions augmented with respect
to the scattering matrix, where the scattering matrix can possibly be de�ned relative
to an augmentation of some of the wedge singularities and boundary components.

3.1 Self-Adjoint Boundary Conditions.

Let ~D be the Dirac operator on ~M . A �rst naive attempt of constructing a Sobolev
space on M associated to ~D is to de�ne:

De�nition 3.1.1. Let

D2;1(M;E) = ffjM j f 2 D( ~D)g:

The space D2;1(M;E) is not a Hilbert space under the H1-norm. Let �D2;1(M;E)
denote the completion of D2;1(M;E) with respect to the H1-norm. For each " > 0
there is an unbounded trace operator de�ned on all of D2;1(M;E), which we denote by
R:

R : D2;1(M;E) 7!W 2;�"(Z;F )�
M

ker(BN ) \ ker(BY );

where the direct sum is over the wedge singularities. The �rst component of R is
restriction to @M . See Lemma 1.4.1. The second component is obtained by �rst
taking the projection onto ker(BY ), then taking the leading term with asymptotics like

r�
1
2 , where r is the distance to the corner, and �nally exploiting that an element of

ker(BN) is uniquely determined by its restriction to M . The image of the trace R is
not dense unless ker(BN) \ ker(BY ) = 0 for all N;Y since the second component is a
function of the �rst.
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We recall that on Z � (0; 1], ~D has the decomposition

~D = ��( @
@u

+A);

where A is a self-adjoint Dirac operator on Z with a discrete point spectrum with
eigenvalues of �nite multiplicity. Let �+, �� and �0 denote the projections on the
positive, negative and zero spectral subspaces for A. All of those operators are de�ned
on L2(Z;F ) and extend by continuity to W 2;�"(Z;F ).

De�nition 3.1.2. The domain of the Dirac operator D on M is given by

D(D) = ff 2 D2;1(M;E) j ��fjZ = 0 and (�0fjZ;R2f) 2 ker(S � 1)g:
Here R2 denotes the second component of R.
Lemma 3.1.3. If f 2 H1( ~M; ~E) vanishes identically onM then 'f 2 W 2;1

0 ( ~M; ~E) for
every smooth function ', which is constant in a neighborhood of each wedge singularity
and vanishes on Z � (1 � "; 1] for some " > 0.

Proof: The orthogonal complement H of W 2;1
0 ( ~M; ~E) in H1( ~M; ~E) consists of the

distributional solutions of the equation ~D2f = �f , which are in L2. Let f'�;�g be
an orthogonal basis of common eigenvectors for B2

Y to the eigenvalues �2 and the
identi�cation operator U at the corner to the eigenvalue �. Developing the restriction
of f to a neighborhood of Y with respect to this basis, we get a sum, which is orthogonal
on the level of L2(Y;EjY )

f(r; �; y) =
X
�;�

f�;�(r; �)'�;�(y);

where f�;� is a L2-solution to the equation

(D2
a;� + �2)f�;� = �f�;�:

This gives that each f�;� is of the form

f�;�(r; �) = f0;�;�(r; �) +
X

sk;�2(�1;1)
a�;�;kKsk;� (

p
�2 + 1 r)e��sk;��;

where f0;�;� is the restriction of a section in W 2;1
0 ( ~M; ~E). From that it is not di�cult

to see that all terms, which are not restrictions of sections in W 2;1
0 , have to vanish

identically if fjM = 0.

Lemma 3.1.4. Every ' 2 D(D) has an extension ~' 2 D( ~D) such that ~D ~' vanishes
on Z � (0; 1].

The restriction of ~' to Z�(0; 1] only depends on the restriction of ' to Z. Further,
for all " > 0 the operator Rcyl �: W 2;�"(Z;F ) 7! H1(Z � (0; 1]; ~E) is a compact
operator. Here Rcyl denotes the operator of restriction to Z � (0; 1] and � is the
operator ' 7! ~'.
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Proof: The restriction of ' to Z is a W 2;�"-convergent sum

'(z; 0) =

dim(ker(A)\ker(��1))X
i=1

ai'i(z) +
X
�>0

a�'�(z)

for some orthonormal basis f'�g�2�(A) of eigensections for A, eigenvalues counted with
multiplicity. It follows that ' can be continued to a solution ~' of D ~' = 0 on Z � [0; 1]
by

~'(z; u) =

dim(ker(A)\ker(��1))X
i=1

ai'i(z) +
X
�>0

a�e
��u'�(z): (3.1.1)

For u > 0 this sum is convergent in W 2;1(Z;F ). Further, the condition '(z; 0) 2
W 2;�"(Z;F ) su�ces to ensure that ~' 2 L2.

By de�nition of D2;1(M;E), ' also has an extension f 2 D( ~D) and by Lemma 3.1.3,
f� ~' is locally inW 2;1

0 close to at wedge singularities. This proves that ~' 2 D2;1
W ( ~M; ~E).

ThatR � only depends on 'jZ and is compact follows immediately by construction.

Lemma 3.1.5. D is closed and symmetric on D(D).
Proof: By Lemma 1.4.1 there exists a constant C depending on " > 0 such that for
all f 2 D(D),

kfjZkW 2;�"(Z;E) � C(kfkH1(M;E) + k ~fkH1(Z�(0;1]; ~E)):

This follows since there is a continuous restriction H1( ~M; ~E) 7! W 2;�"(Z;F ). Since
Rcyl � is compact, for fjZ in some subspace with �nite dimensional complement, there
is an estimate

k ~fkH1(Z�(0;1]; ~E) �
1

2C
kfjZkW 2;�"(Z;F ):

These two estimates together give

kfjZkW 2;�"(Z;F ) � 2CkfkH1(M;E): (3.1.2)

This proves that restriction to Z is continuous. Thus also ' 7! ~' isH1�H1 continuous,
and it follows from the closedness of ~D that D is closed.

That D is symmetric follows by applying Greens formula to the extensions of sec-
tions de�ned in Lemma 3.1.4 on M [Z (Z � [0; �]) and letting �! 0.

Theorem 3.1.6. There are maps, given by extension and restriction, respectively

�1 : ker(D) 7! ker( ~D); (3.1.3)

�2 : ker( ~D) 7! ker(D): (3.1.4)

The maps �1 and �2 are inverse of each other.
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Proof: Like in the start of the proof of Lemma 3.1.4 we see that elements of ker(D)
can be extended as claimed.

On the other hand, if ' 2 ker( ~D), expanding it on Z � (0; 1] gives that it has an
expansion like (3.1.1). Further the restriction of every element of ker( ~D) satis�es the
condition (�0fjZ;R2f) 2 ker(S � 1). Consequently the restriction belongs to D(D)
and thus to ker(D).

That �1 and �2 are inverse of each other is clear.

Lemma 3.1.7. The operator D is self-adjoint on the domain given in De�nition 3.1.2.
D has a discrete point spectrum with eigenvalues of �nite multiplicity.

Proof: By Lemma 3.1.5 we have that D is closed and symmetric.
Let P be the projection on the kernel of D and let R be the operator of restriction

of sections in ~E to sections in E. Then the adjoint R� of R is the operator of extension
by 0. The operator D + P has an inverse, given by

(D + P )�1f = Pf + (1� P )R ~D�1R�(1� P )f:

Since ker( ~D) consists of extensions of elements of ker(D) it follows that R�(1� P )f is
orthogonal to ker( ~D). Thus ~D�1R�(1� P )f exists and belongs to L2( ~M; ~E). Further,
since it satis�es the equation

~D ~D�1R�(1� P )f = R�(1 � P )f;

it follows like in the proof of Theorem 3.1.6 that the restriction of ~D�1R�(1 � P )f to
Z belongs to the non-negative eigenspace of A and that the component in ker(A) is
constant on the cylinder. Since it further belongs to D( ~D) it follows that R ~D�1R�(1�
P )f 2 D(D). It follows that (D+P )�1 is a right inverse ofD+P . Further, (D+P )�1 is
by construction everywhere de�ned. Since its graph is contained in the transpose of the
graph of the injective symmetric operator D + P , it is closeable. But an everywhere
de�ned closeable operator is closed, so (D + P )�1 is bounded by the closed graph
theorem. A symmetric operator with a bounded right inverse is always self-adjoint.
This proves that D + P is self-adjoint and thus also that D is self-adjoint.

That D has a discrete point spectrum with eigenvalues of �nite multiplicity follows
since P has �nite rank and (D + P )�1 is compact by the compactness of ~D�1.

Remark 3.1.8. All the main results of this section hold with only minor changes if
S is replaced with another augmentation. In particular Lemma 3.1.7 holds in the case
where some of the wedge singularities are augmented using local augmentations and
the scattering matrix is changed to the corresponding relative scattering matrix.

3.2 Extensions of Hilbert Spaces.

The Atiyah-Patodi-Singer boundary conditions are closely related to the extension of a
manifold with boundary and product structure in a neighborhood of the boundary to a
manifold with cylindrical ends. This was observed and used already in [2] and has since
then been an important starting point for generalizations of the Atiyah-Patodi-Singer
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boundary conditions. See for example [22] and [31]. Also the approach of this paper is
based on an extension, though we have chosen consistently to make use of boundary
conditions rather than of open ends.

When we imposed ideal slow-growing Atiyah-Patodi-Singer boundary conditions on
a wedge singularity we used that the restriction of the Dirac operator on R2;�

� � Y to
ker(BN) is conjugate to a boundary value problem and imposed Atiyah-Patodi-Singer
boundary conditions. There is however no natural geometric extension of R2;�

� � Y
corresponding to those boundary conditions.

What we can do is to extend the Hilbert space L2(R2;�
� � Y;E) together with some

spaces of sections and functions. This kind of extensions will turn out to play a crucial
role in the generalization of this theory to manifolds with corners of codimension 3
and arbitrary gluings or to manifolds with corners of codimension 4 and the canonical
gluing. In this paper we will use it as a technique for studying the signature complex in
Section 3.3. In the relevant cases in this paper only geometric cylinders are attached.

Let

H := L2( ~M; ~E): (3.2.1)

De�nition 3.2.1. Let ~Dslow;max be the realization of ~D de�ned on the domain

D( ~Dslow;max) := ff 2 H1( ~M; ~E) j 8N : lim
r!0

kf(r)kL2(N�Y; ~E) = O(r�
1
2 )g: (3.2.2)

De�nition 3.2.2. We say that an element f 2 L2( ~M; ~E) is smooth if for all k 2 N,
f 2 D( ~Dk

slow;max).

Then we may de�ne

HR := H� L2(Z � [1; R+ 1]; F )�
M

L2(Y � [�R; 0]; ker(BN )); (3.2.3)

H1 := H� L2(Z � [1;1); F )�
M

L2(Y � (�1; 0]; ker(BN)): (3.2.4)

The Hilbert space H1 is related to the non-smooth space

~M1 := ~M [Z (Z � [1;1)) [Y1t���tYk ((Y1 t � � � t Yk)� (�1; 0]) ;

where Y1; : : : ; Yk runs over the spaces Y at the various corners. ~M1 is in a natural
way a �-compact Hausdor� space with a Borel measure. Further the pointwise squared
norm,

j � j2 : H1 7! L1( ~M1)

is well de�ned. The spaceH1 is however not in any natural way the space of L2-sections
in a bundle over ~M1.

De�nition 3.2.3. Let f 2 H1. The support of f , supp(f) is given by

supp(f) := ~M1 n
[
fU 2 ~M1 j U is open and

Z
U

jf j2(x)dx = 0g:

We say that f has compact support if supp(f) is compact.
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De�nition 3.2.4. The space C1(H1) of smooth sections in H1 is the subspace of
f 2 H1 such that each of the components of f in (3.2.4) are smooth, such that f
extends to a smooth section in the extension of ~E to ~M [Z (Z � [1;1)) and such that
for each wedge singularity, if we let Pker(BN) be the projection on ker(BN ), de�ned in a

neighborhood of the singularity, the sections r
1
2Pker(BN)f(r; �) and the restriction of f to

L2(Y�(�1; 0]; ker(BN)) glue together to a smooth section in L2(Y �(�1; "); ker(BN ))
for some " > 0.

De�nition 3.2.5. Let PR be the orthogonal projection on HR in H1. The space
C1(HR) of smooth sections in HR is given by

C1(HR) := PRC
1(H1):

De�nition 3.2.6. The space C1
0 (H1) is the subspace of C1(H1) of elements with

compact support. It can be supplied with an inductive limit topology using Hk-norms
of sections with �xed support. The space D0(H1) of currents with values in H1 is the
dual space of C1

0 (H1).

De�nition 3.2.7. The Dirac operator D1;0 de�ned on C1
0 (H1) is the Direct sum of

the operators ~Dslow;max,


(
@

@u
+A) ; de�ned on L2(Z � [1;1); F );

and the operators

�(
@

@r
+BY ) ; de�ned on L2(Y � (�1; 0]; ker(BN )):

The operator DR;0 is the restriction of D1;0 to C1(HR).

Lemma 3.2.8. The operator D1;0 is essentially self-adjoint.

Proof: This follows by constructing the resolvent using the resolvent of ~D and of Dirac
operators on the cylinders, cut-o� operators and analytic perturbation theory.

Let D1 be the unique self-adjoint extension of D1;0. We denote the domain of D1
by D(D1). Further we let ker1(D1) be the space of smooth sections of H1, such that
the restriction to each cylinder (but not to ~M ) is bounded and such that D1f = 0.
Finally we let

D1(D1) := D(D1) + ker1(D1); (3.2.5)

D1(D2
1) := D(D2

1) + ker1(D1): (3.2.6)

It now follows exactly like for a manifold with boundary that

D( ~D) = ffj ~M j f 2 D1(D1) and D1f 2 Hg:

A section f 2 D( ~D) can be extended uniquely to a section ~f 2 D1(D1) satisfying
that D1 ~f 2 H. This holds because ~D is augmented with respect to the scattering
matrix.
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Lemma 3.2.9. Let f 2 H1 be a section with compact support, which is orthogonal to
ker1(D1). Then there exists g 2 D(D1) such that D1g = f .

Proof: Let R be such that f 2 HR. We may impose APS boundary conditions
augmented with respect to the scattering matrix on DR;0. The resulting self-adjoint
operator DR has a discrete point spectrum and ker(DR) �= ker1(D1), where the
isomorphism is by unique extension and restriction. Consequently f is contained in
ker(DR)?. Thus there exists gR 2 D(DR) with DRgR = f . Now, gR may be extended
to g1 2 D1(D1) such that D1g1 2 HR. Thus D1g1 = f .

Finally, the limit value of g1 corresponds to the limit value of a harmonic section
!. Thus g := g1 � ! satis�es the claims of the lemma.

3.3 The de Rham and Signature Complexes.

In this section E will be the bundle ��(T �M 
 C ) supplied with the Levi-Civita con-
nection and the canonical Hermitian structure induced by the Riemannian metric on
M .

The vector-bundle ~E will be the bundle of di�erential forms on ~M . Notice that
since functions are glued trivially in the corners, this bundle is not glued using the
gluing from Lemma 1.1.14. This follows from point 6) of Lemma 1.1.14. In all of this
section we will assume:

Assumption 3.3.1. Each angle �j at the corners belongs to the interval (0; 3�).

Lemma 3.3.2. The projection on p-forms preserves D( ~Dslow;max) for p = 0; : : : ; n.
Further, for each N we have ker(BN ) = f0g.
Proof: Locally, in a neighborhood of a wedge singularity, E may be decomposed

E = f��(Y )� ����(Y )g � f(� � i�)��(Y )g � f(� + i�)��(Y )g : (3.3.1)

Clearly the projection on p-forms preserves this decomposition. The gluing operator
U is of the form �(V ), where V is a rotation with angle ��� in the plane spanned by
� and �. Explicitly,

U� = cos(� � �)� + sin(� � �)�;

U� = cos(� � �)� � sin(� � �)�:

Explicit computation now shows that (3.3.1) is a decomposition into eigenspaces of U ,
with eigenvalues 1; e�i(���) and ei(���), respectively. The operators BN and B2

Y send
each of the terms in (3.3.1) into itself. In particular (3.3.1) respects D( ~D).

For the 1-eigenspace we see that for k 2Z:

sk;1 =
2�k + i log(1)

� + �
2 2�

� + �
Z:

Since � < 3� it follows that jsk;1j 2 (0; 12 ] does not occur. Thus on this space,

D( ~Dslow;max) = W 2;1. It immediately follows that it can be split into p-forms.
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For the other eigenspaces we notice that BN and B2
Y preserve both spaces and that

�( @
@r
+ 1

r
BN ) commutes with the projection on (p� 1)-forms in ��(Y ). Further a local

complement of W 2;1 is spanned by solutions of �( @
@r

+ 1
r
BN)' = 0, so it can be split

into p-forms. It thus follows that the projection on p-forms preserves D( ~Dslow;max).
Finally we notice that for � 2 (0; 3�) also sk;e�i(���) 6= 1

2
and sk;ei(���) 6= 1

2
for any

k. Thus ker(BN) = f0g and there is no augmentation in the wedge singularities.

Let in the following M1 be like in Section 3.2. Then, since ker(BN) = f0g for all
wedge singularities, M1 is a manifold with cylindrical ends and wedge singularities.
In addition to the objects de�ned in Section 3.2 we let d1 and d�1 denote the exterior
di�erential and its adjoint on M1.

Lemma 3.3.3. Each of the operators d1 and d�1 are de�ned on D1(D1). Further,
d1D1(D1) is orthogonal to d�1D1(D1).

Proof: By Lemma 3.3.2 it is enough to check that if ! 2 D1(D1) is a form of pure
degree, then d1! and d�1! both belong to H1. But this is clear since D1! 2 H1
and d1 and d�1 map ! to forms of di�erent degrees. In order to check that the images
of d1 and d�1 are orthogonal to each other it is enough to check that the images of
D1(D2

1) are orthogonal. This follows sinceD(D2
1) is a core for D1. For ! 2 D1(D2

1),
!0 2 D1(D2

1)

hd1!; d�1!0i =
n�2X
p=0



d1!p; d�1!

0
p+2

�

=
n�2X
p=0



D1!p;D1!0p+2

�

=
n�2X
p=0



D2
1!p; !

0
p+2

�
= 0:

The last equation holds since D2
1 preserves the degree of forms. The integration by

parts did not course a contribution from 1 because D1 maps D1( ~D1) into H1.

Let in the following D( ~M; ~E) = C1
0 ( ~M�; ~E) and let D0( ~M; ~E) be the dual space of

D( ~M; ~E).

Lemma 3.3.4. For every closed form h 2 D( ~Dslow;max) there exists � 2 W 2;1( ~M; ~E)
and � 2 D0( ~M; ~E) such that � vanishes on (12 ; 1]� Z and

h = � + ~d�:

Further, for every co-closed form h0 2 D( ~Dslow;max) there exists �0 2 W 2;1( ~M; ~E) and
�0 2 D0( ~M; ~E) such that �0 vanishes on [12; 1]� Z and

h0 = �0 + ~d��0:
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Proof: Let a = � + �. We decompose

H�(R
2;a
� � Y; C ) = H0(R

2;a
� ; C ) 
H�(Y; C ) �H1(R

2;a
� ; C ) 
H�(Y; C );

H�(R2;a
� � Y; C ) = H0(R2;a

� ; C ) 
H�(Y; C ) �H1(R2;a
� ; C ) 
H�(Y; C ):

By the de Rham isomorphism, the elements of H0(R2;a
� ; C ) 
 H�(Y ) are exactly the

cohomology classes [!] such that

h�; !i = 0

for all � 2 H1(R
2;a
� ; C ) 
 H�(Y ). By the growth condition '(r; �) = O(r�

1
2 ), holding

for all ' 2 D( ~Dslow;max) it follows that all closed elements of D( ~Dslow;max) are locally
cohomologous to elements of the form 1 ^ hY , where hY is a harmonic form on Y .

The �rst part of the lemma now follows by using suitable cuto� functions.
The second part of the lemma follows by the �rst and Hodge duality.

Theorem 3.3.5. There is a direct sum decomposition

H1 = ker(D2
1)� Im(d1)� Im(d�1): (3.3.2)

All harmonic forms in D1(D1), D(D) and D( ~D) are closed and co-closed.

Proof: By self-adjointness of D1 it follows that

H1 = ker(D2
1)� Im(D1): (3.3.3)

Combining this with Lemma 3.3.3 gives (3.3.2). Now assume ! 2 D1(D1) is a har-
monic p-form. If f 2 C1

0 (H1)

h!; d1fi = h!; d1fp�1i = h!;D1fp�1i = 0:

Since all harmonic forms can be split into harmonic forms of pure degree it follows that
for ! an arbitrary harmonic form

h!; d1fi = 0 and h!; d�1fi = 0:

This implies that d! = d�! = 0. By the extension properties, also harmonic forms in
D( ~D) and D(D) are closed and co-closed.

Lemma 3.3.6. Let f be a closed form in H1. Then there is a decomposition

f = f0 + ~d�;

where f0 2 ker(D1) and � 2 D0(H1).

Proof: For R > 0, let PR be the orthogonal projection on HR and let QR be the
orthogonal projection on ker(DR)? in HR. By Lemma 3.2.9 there exists g1(R) 2
D(D1) such that D1g1(R) = QRPRf .
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Let V be the annihilator of ker1(D1) in C1
0 (H1). For ' 2 V , pick R0 < R big

enough such that ' 2 HR0 � HR. By Lemma 3.2.9 there exists  2 D(D1) with
D1 = '. Thus

h'; g1(R)i = hD1 ; g1(R)i :
Using symmetry of D1 gives

= h ;D1g1(R)i = h ;QRPRfi :
Now, QRPRf 2 PRf + PR ker1(D1) and kQRPRfkH1 � kfkH1. In particular the
HR-norm of the error term in PR ker1(D1) is bounded for �xed R0 and R!1. Since
ker1(D1) is �nite dimensional this proves that PR0QRPRf has an accumulation point
for R!1. Thus there exists a sequence Rm such that for all  2 H1, h ;QRmPRmfi
is convergent. It follows that also the sequence fh'; g1(Rm)ig is convergent. Conse-
quently the sequence fg1(Rm)g is convergent in the dual space V � of V . We notice
that a complement of V in C1

0 (H1) can be given and is a �nite dimensional space of
dimension dim(ker1(D1)).

The split exact sequence

0 7! V 7! C1
0 (H1) 7! C1

0 (H1)=V 7! 0

gives rise to a split exact sequence

0 7! (C1
0 (H1)=V )

� 7! D0(H1) 7! V � 7! 0:

Thus the dual of C1
0 (H1)=V is canonically identi�ed with the annihilator of V in

D0(H1). Since a complement of V is �nite dimensional and has ker1(D1) as dual, the
annihilator of V in D0(H1) can be canonically identi�ed with ker1(D1). Consequently
the limit

lim
m!1

g1(Rm)

is well de�ned in D0(H1) up to an element of ker1(D1). Let � 2 D0(H1) be such an
element. Then D1� = Q1f . Further, since f is closed we get

hf; d��i = lim
m!1

hf; d�g1(Rm)i = 0:

Thus in fact f = f0 + d�, as claimed.

As in [2] an important step is to �nd the relation between harmonic forms in the
domain of ~D2 and the cohomology of M .

Let � > 0 be given. The di�eomorphism � : R2;�+�
� 7! R2 n f0g given by

�([r; �]) =

�
r cos 2��

�+�

r sin 2��
�+�

�

extends by continuity to a homeomorphism �� from the completion of R2;�+�
� to R2.

Using �� we may thus give ~M a canonical di�erentiable structure. Let M1 denote the
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smoothened version of ~M . Let g1 be an arbitrary smooth Riemannian metric on M1

such that the inclusion ~M 7!M1 is an isometry on [1
2; 1]�Z. Then (M1; g1) is a smooth

Riemannian manifold with boundary and product structure in a neighborhood of the
boundary.

Now let �M be the extension of M1 to a manifold with cylindrical ends and let
�E 7! �M be the bundle of di�erential forms on �M . Finally let �d, �d� and �D be the
operators of exterior di�erentiation, its adjoint and the Dirac operator �D = �d + �d�,
de�ned on �M .

Let

ker( ~D)0 := ff 2 ker( ~D) j fjZ 2 ker(A)?g:

There are maps

{� : H�( �M) 7! H�( ~M );

[�] : ker( ~D)0 7! H�( ~M�):

Here the �rst map is pullback and the second is the association of a cohomology class
to a harmonic form. All cohomology spaces are taken to have complex coe�cients.

Lemma 3.3.7. The image of [�] coincides with {�H�
comp( �M). Here H�

comp( �M ) is the
cohomology with compact support.

Proof: Since �M is a manifold with cylindrical ends homotopy equivalent to M , by [2,
Proposition 4.9] it su�ces to prove, that the image of the space ker( ~D)0 in H�( ~M) is
isomorphic to the image of the space ker( �D) in H�( ~M). Here �D is the Dirac operator
on �M .

First assume that ~! 2 ker( ~D)0. Then ~d~! = 0 by Lemma 3.3.5 and by Lemma 3.3.4,
~! is cohomologous to a form � 2 W 2;1( ~M; ~E), which is equal to ~! on [12; 1]. The inclusion

{ : ~M 7! �M induces an isomorphism {� : W 2;1(M1; �E) 7! W 2;1( ~M; ~E). Thus ({�)�1(�)
is a closed L2-form in W 2;1(M1; �E). Further this form extends harmonically to a form
|0(~!) on �M . Let h be the harmonic component of |0(~!). By a theorem of de Rham and
Kodeira [11, Theorem 25], there exists a current �, such that |0(~!) = h+ ~d�. Pulling
back and using that the cohomology can be computed from the space of currents, we
get that {�(h) induces the same cohomology class as ~!.

On the other hand any harmonic L2-form �! on �M can be pulled back to a closed
W 2;1-form ~! on ~M . The harmonic component of ~! then induces the same cohomology
class as the pullback of �! by Lemma 3.3.6.

This completes the proof of the lemma.

Theorem 3.3.8. The space ker( ~D)0 is canonically isomorphic to the image ofH�
comp(M)

in H�(M).

Proof: By Lemma 3.3.7 it su�ces to prove that the restriction of the pullback {� :
H�(M) 7! H�( ~M�) to H�

comp(M ) is injective. That means that it su�ces to prove that
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if some f 2 C1
0 (��(M)) satis�es that {�(f) = dg for some g 2 C1(��( ~M�)), then for

some g0 2 C1(��(M)), f = dg0.
To this end notice that there exists a di�eomorphism � of M homotopic to the

identity such that the support of ��(f) is contained in the interior ofM . Further there
exists a di�eomorphism �0 between the interior M� of M and M such that � = �0

on the support of f 0. Thus f is cohomologous to some f 0 with support in M�. If
{�(f 0) = ~dg0, also f = ((�0)�1)�(f 0) = �d((�0)�1)�(g0), so f is cohomologous to zero.

Corollary 3.3.9. For the signature complex we have

Index0( ~D) = sign(M) (3.3.4)

and for the de Rham complex we have

Index0( ~D) = �(M): (3.3.5)

Proof: The identity (3.3.4) holds because the signature is by de�nition the signature
of h� �; �i on the image of H�(M;Z) in H�(M), which is isomorphic to the image of
H�

comp( �M) in H�( �M). For (3.3.5) we notice that since Z is a closed manifold of odd
dimension, �(Z) = 0. Thus �(M) = �((M;Z)) + �(Z) = �((M;Z)). Now the long
exact sequence

H�(M;Z) 7! H�(M) 7! H�(Z)

gives that

0 = �(Z) = �(Im(H�(M) 7! H�(Z))) + �(Im(H�(Z)) 7! H�(M;Z)):

By averaging over two ways to compute Index(D)0 we get

Index(D)0 =
1

2
(�(H�(M))� �(Im(H�(M) 7! H�(Z))))

+
1

2
(�(H�(M;Z))� �(Im(H�(Z) 7! H�(M;Z))

=
1

2
(�(M) + �(M;Z)� �(Z))

= �(M):

The signature and de Rham complexes allow the same analysis as in [2] to be carried
out.

Lemma 3.3.10. For the signature and de Rham complexes we have

dim(ker(S� � 1)) =
1

2
dimH�(Y ):
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Proof: In this proof we use � for the signature complex and ev=odd for the de Rham
complex. Since the involutions corresponding to the two complexes commute, any
combitation can be taken.

The Lefschetz duality theorem [15, Section 28] gives that the diagram

7! Hq�1(M)
j7! Hq�1(Z) �7! Hq(M;Z) 7! Hq(Z) 7!

(�1)q�1�\ # (��)\ # �\ # �\ #
7! Hn�q+1(M;Z)

@7! Hn�q(Z)
j�7! Hn�q(M) 7! Hn�q(M;Z) 7!

(3.3.6)

is commutative and that the vertical arrows are isomorphisms. The horizontal maps
make up exact sequences. Here � is the fundamental class of M , the horizontal maps
are induced by inclusions and restrictions, and � and @ are the connecting homomor-
phisms. The integer q runs from 0 to dim(M). A diagram chase shows that (��)\ is
an isomorphism between Im(j) and its orthogonal complement. In particular

dim(Im(j)) � 1

2
dim(H�(Z)): (3.3.7)

Every ' 2 ker(A�) is of the form ' = ! � �!, where ! 2 ��(Z). Thus the pullback !
of ' vanishes if and only if ' vanishes. Since restrictions of harmonic sections on ~M
to Z factors through j it follows

dim(ker(S+ � 1)) � 1

2
dim(H�(Z)); (3.3.8)

dim(ker(S� � 1)) � 1

2
dim(H�(Z)): (3.3.9)

On the other hand ker(S+ � 1)� ker(S� � 1) is a Lagrangian subspace for �, so

dim(ker(S+ � 1)� ker(S� � 1)) = dim(ker(S+ � 1) � � ker(S+ + 1))

= dim(ker(A+))

= dim(H�(Z)):

Combining this with (3.3.8) and (3.3.9) immediately gives

dimker(S+ � 1) = dimker(S+ + 1) =
1

2
dim(H�(Z)): (3.3.10)

This proves the lemma for the signature complex. In order to handle the de Rham
complex, notice that we may split ��(M) into the direct sum of two Cli�ord bundles

��(M) =
�
�+ev(M)� ��odd(M)

�� ���ev(M) ��+odd(M)
�
: (3.3.11)

Now, j is injective on each of the �-spaces and maps the odd=ev spaces to comple-
mentary subspaces of H�(Y ). It thus follows like above

dimker(S+ev � 1) + dimker(S�odd � 1) =
1

2
dim(H�(Z)); (3.3.12)
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dimker(S+odd � 1) + dimker(S�ev � 1) =
1

2
dim(H�(Z)): (3.3.13)

Now since |(Im(S+�1)) = |(Im(S��1)) it follows that |Im(S+ev�1) = |Im(S�ev�1).
Further, since | is injective on each of those spaces it follows that

dimker(S+ev � 1) = dimker(S�ev � 1):

Thus dim(ker(Sodd � 1)) = 1
2dimker(H�(Z)), and the lemma follows for the de Rham

complex also.

From Lemma 3.3.10 we conclude

Corollary 3.3.11. For the de Rham and signature complexes we have

tr (S+) = 0:

4 Computation of the Index.

Let in the following ~E 7! ~M be a Dirac bundle over an even-dimensional Riemannian
manifold ~M with boundary, product structure around the boundary and wedge singu-
larities of codimension 2. Let ~D be the self-adjoint realization of the associated Dirac
operator with slow-growing ideal Atiyah-Patodi-Singer boundary conditions augmented
with respect to the scattering matrix.

We will assume that ~E is a super bundle, i.e. that a parallel self-adjoint involution
� 2 C1(End( ~E)), which anti-commutes with Cli�ord multiplication and which pre-
serves D( ~D), is given. With respect to the �1 eigenspaces of � , ~D has the following
decomposition

~D =

�
0 ~D�
~D+ 0

�
: (4.0.1)

The index, we will compute, is that of ~D+.

4.1 Heat Kernel Estimates.

Lemma 4.1.1. The operator e�t ~D
2
is of trace class. For each t > 0 we have

Index( ~D+) = tr (�e�t
~D2

) =

Z
~M

tr (�e�t
~D2

(x; x))dx: (4.1.1)

In particular

Index( ~D+) = lim
t!0

Z
~M

tr (�e�t
~D2

(x; x))dx: (4.1.2)
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Proof: By the semi-group property of e�t ~D
2
it su�ces to prove that e�t ~D

2
is a Hilbert-

Schmidt operator for each t > 0. Let for some small " > 0:

U" := fx 2 ~M j 9 a wedge Y : dist(x; Y ) < " or dist(x;Z) < "g:

For x 2 ~M nU" and v� 2 ~E�
jx, let �x
 v� be the distribution with values in ~E� given by

(�x 
 v�)(') = h'(x); v�i :

By elliptic regularity and self-adjointness of e�t ~D
2
, e�t ~D

2
maps distributions of the form

�x 
 v into L2( ~M; ~E), and there is an estimate

ke�t ~D2
(�x 
 v�)kL2( ~M; ~E) � C("; t)kvk ~E�

jx
:

This immediately gives that the component of e�t ~D
2
mapping L2( ~M n U"; ~E) into

L2( ~M; ~E) is a Hilbert Schmidt operator. By symmetry of the heat kernel, also the
component mapping L2( ~M; ~E) into L2( ~M nU"; ~E) is a Hilbert Schmidt operator. Like
above it also follows that for any di�erential operator P with smooth coe�cients, the
component of Pe�t ~D

2
mapping L2( ~M n U"; ~E) to L2( ~M; ~E) is a Hilbert Schmidt oper-

ator.
It remains to prove that the component of e�t ~D

2
mapping U" into U" is a Hilbert

Schmidt operator. Take " small enough such that U4" can be identi�ed with a disjoint
union of neighborhoods of 0 in closed model wedges and neighborhoods of the boundary
of half-cylinders. Let X be the union of those closed model wedges and half-cylinders
and let EX be the extension by the product structure to X of ~EjUj4". Let DX be the
associated Dirac operator on X.

Now let ' 2 C1
0 (R) be a function such that '(r) = 1 for r 2 [0; "], '(r) = 0 for

r > 2" and let  2 C1(R) be a function such that  (r) = 1 for r 2 supp(') and such
that  (r) = 0 for r � 3". Let M' and M denote the operators of multiplication by
' and  , respectively, (either in ~M or in X). By Duhamels principle it follows

M'e
�t ~D2

M' �M'e
�tD2

XM' =

Z t

0

M'

@

@s
e�s

~D2

M e
�(t�s)D2

XM'ds (4.1.3)

= �
Z t

0

M'e
�s ~D2

�
~D2M �M D

2
X

�
e�(t�s)D

2
XM'ds

(4.1.4)

Since ~D2M �M D
2
X is a di�erential operator with compact support away from

the boundary it follows that (4.1.3) is a Hilbert Schmidt operator. Thus it su�ces to
prove that M'e

�tD2
XM' is a Hilbert Schmidt operator. This can be done by splitting

D2
X into a direct sum of operators on the eigenspaces of B2

Y and exploiting that the
gluing operator has only �nitely many eigenvalues. This gives that e�tD

2
X is a direct

sum of the type
L

e�t�
2
e�tD

2
j , where j runs over a �nite index set and

P
�
e�t�

2
is

convergent. Further each Dj is a Dirac operator on a cone, so that M'e
�tD2

jM' is a
Hilbert Schmidt operator.



4 COMPUTATION OF THE INDEX. 44

Since ~D has a discrete point spectrum with eigenvalues of �nite multiplicity and
because ~D commutes with ~D2 and anti-commutes with � , the restriction of ~D to each
eigenspace of ~D2 anti-commutes with the restriction of � , and except for in ker( ~D) this
gives that each eigenvalue of ~D2 contributes with a zero to (4.1.1). Finally ker( ~D2)
contributes to (4.1.1) with Index( ~D+).

4.2 Localized Index Contributions.

Using �nite propagation speed or Duhamels principle it follows that the limit (4.1.2)
can be split into two contributions:

a) The interior contribution Iint given by

Iint :=

Z
~M

aD(x)dx; (4.2.1)

where aD(x) is the zero order term in the local heat trace expansion

e�t
~D2
(x; x) �

dim( ~M)X
k=�1

ak(x)t
� k

2 :

The term aD(x) is the same as in the local index formula for closed manifolds.
See for example [3].

b) A joint contribution coming from the various boundaries and wedge singularities.
This contribution is further the same as the boundary contribution coming from
a Dirac operator on the disjoint union of the corresponding model spaces. Notice
that since the scattering matrix S mixes contributions from the various boundary
components, each boundary component or wedge singularity can not be treated
separately.

We will consider each boundary component as a wedge with Y = Z, N = f0g and
BN = 0. We notice that on the model space tR+� N � Y , the Dirac operator splits
into a sum of Dirac operators on

L
ker(BN )\ ker(BY ), and (

L
ker(BN) \ ker(BY ))?.

Further the mixing of boundary conditions from various boundary components only
takes place in

L
ker(BN ) \ ker(BY ). On

L
ker(BN ) \ ker(BY ) the index contribu-

tion from the boundary is the same as for an operator of the form 
 @
@u

de�ned on
L2((�1; 0];

L
ker(BN)\ ker(BY )) with the restriction of � as involution and the scat-

tering matrix as boundary condition. This contribution is well known [31] and is given
by

Iscat :=
1

2
tr (S+); (4.2.2)

where S+ is the restriction of S to ker(� � 1).
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On the space (
L

ker(BN ) \ ker(BY ))? the boundary conditions do not mix the
various components, so we can consider each N�Y separately. If Y = Z is a boundary
component, the boundary contribution to the index is known from [2] and is given by

Ibd := �1

2
�(AZ+; 0); (4.2.3)

where AZ is the induced Dirac operator on Z, AZ+ denotes the restriction of AZ+ to
ker(� � 1) and �(AZ+; 0) denotes the �-invariant of AZ+.

On the wedges we again split the contribution to the index into contributions from
ker(BN) \ ker(BY )?, ker(BN)? \ ker(BY )? and ker(BN )? \ ker(BY ).

Lemma 4.2.1 and Lemma 4.2.2 have been stated separately because Lemma 4.2.1
holds in high generality, whereas Lemma 4.2.2 relies on the fact that dim(Y ) is even.

Lemma 4.2.1. The index contribution from ker(BN )? \ ker(BY )? vanishes.

Proof: We notice that the Dirac operator is locally of the form

D = �

�
@

@r
+
1

r
BN +

1

2r
+BY

�
:

Further, D can be decomposed into eigenspaces of � :

D =

�
0 D�
D+ 0

�
:

This operator decomposes into a Direct sum of operators on the eigenspaces of B2
Y . On

each of those eigenspaces a small computation shows that the operator �BY conjugates
D+D� into D�D+. Further, on an eigenspace of B2

Y , �BY commutes with BN and
preserves the growth rate of sections. Consequently the operator �BY jBY j�1 preserves
the domain of D and D2 and interchanges D+D� and D�D+. Let P be the projection
on ker(BN)? \ ker(BY )?. It follows thatZ

N

Z
Y

tr (�e�tD
2
)((r; n; y); (r; n; y))dydn=Z

N

Z
Y

tr (e�tD�D+)((r; n; y); (r; n; y))� tr (e�tD+D�)((r; n; y); (r; n; y))dydn = 0:

This proves the lemma.

Lemma 4.2.2. The contribution to the index from ker(BN) \ ker(BY )? vanishes.

Proof: Let BY+ and BY � be the restrictions of BY to the �1 eigenspaces of � . Let �Y
be the canonical involution on Y with respect to some orientation of Y and the structure
of Cli�ord multiplication from ~E. Then �Y commutes with � and anti-commutes with
BY . Thus the spectra of BY+ and BY� are symmetric. On the other hand the operator
� of Cli�ord multiplication in the radial direction at the singularity conjugates BY+

into �BY�. This gives that BY+ and BY� are conjugate. Consequently, after having
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locally conjugated the restriction of ~D to ker(BN) into a Dirac operator on a piece of
a cylinder, we get �

�(
@

@u
+BY )

�2

= � @2

@u2
+B2

Y :

On the non-zero spectrum of BY , the restrictions of this operator to the the �1
eigenspaces of � are thus conjugate and further have conjugate boundary conditions.
This gives that the di�erence of the heat kernels vanishes to all orders for t ! 0, so
the contribution to the index vanishes.

Finally we consider the contribution Iwedge from the space ker(BN)? \ ker(BY ).
Here we notice that ker(BY ) is a Cli�ord module over R+ � N with respect to the
Cli�ord module structure on R+ � N � Y . We will �x some orientation on R+ � N
and let �N be the image of the volume form in the Cli�ord algebra with respect to that
orientation.

The action of the gluing operator Uker(BY ) on ker(BY ) 7! R+ � N is further the

restriction of the gluing operator on ~E, considered as an operator in L2(Y;EjY ), to
ker(BY ). Uker(BY ) commutes with � and �N and �. Now let ' be a joint eigensection of
BN , � and �N . Then V := span f'; �'g is preserved by BN , � , �N and �. Thus this is a
subspace of ker(BY ) invariant under �, �N , and thereby under Cli�ord multiplication,
and Uker(BY ). Parallel transport of V in the radial direction gives a Dirac sub-bundle
of ker(BY ). Thus also V ? is a Dirac sub-bundle of ker(BY ). In this way the Dirac
operator D decomposes to a Direct sum of Dirac operators in 2-dimensional vector
bundles V1; : : : ; Vk over R+�N . We decompose Vi = Vi+�Vi� into the �1 eigenspaces
of �N .

Since � and �N are commuting self-adjoint involutions in two dimensional bundles
and both anti-commute with � it follows that on each Vi, either � = �N or � = ��N .

We write this as � = tr (�jVi+)�N . Let Di be the Dirac operator on Vi. Then it
follows

tr (�e�tD
2
i )((r; n); (r; n)) = tr (�jVi+)tr (�Ne

�tD2
i )((r; n); (r; n)): (4.2.4)

Now, except from that ker(BN)\ ker(BY ) has been removed and BN is not necessarily
a spin operator, the last term is exactly as in [9], and the same computation goes
through. See also [36]. It follows

Iwedge = �1

2

X
i

tr (�jVi+)�(BN;i;+; 0): (4.2.5)

Here BN;i;+ is the restriction of BN to Vi \ ker(�N � 1).
Another way to write (4.2.5) is to label BN;i;+ according to the eigenvalues of

Uker(BY ). If we �x Vi, Ujker(BY ) has complex eigenvalues �+ and �� in the +1 and �1
eigenspaces of �N , respectively. We notice that BN;i;+ depends only on �+ and write
BN;i;+ = B�+. In the following we denote by V�+ the bundle ker(BY ) \ ker(U � �+) \
ker(�N � 1). It follows

Iwedge = �1

2

X
�+2spec(Uker(BY )jker(�N�1))

tr (�jV�+ )�(B�+; 0): (4.2.6)
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We have proved:

Theorem 4.2.3. Let ~M be a Riemannian manifold with boundary and isolated wedge
singularities of codimension 2 such that ~M has product structure in a neighborhood of
the boundary and of the wedge singularities. Further let ~E be a Dirac bundle over ~M
respecting the product structure and let ~D be the realization of the associated Dirac ope-
rator given by imposing slow-growing ideal Atiyah-Patodi-Singer boundary conditions.
If � is a parallel self-adjoint involution in C1( ~M; ~E) anti-commuting with Cli�ord
multiplication and ~D+ is the restriction of ~D to ker(� � 1) then

Index( ~D+) =

Z
~M

aD(x)dx� 1

2
�(A+; 0) +

1

2
tr (S+)

� 1

2

X
�+2spec(Uker(BY )jker(�N�1))

tr (�jV�+)�(B�+; 0): (4.2.7)

The terms are de�ned around (4.2.1), (4.2.2), (4.2.3) and (4.2.6), respectively.

In the case where ~M is the extension of a manifold M with corners we use the
extension and restriction properties of elements of ker( ~D) to prove an index theorem
for manifolds with corners of codimension 2.

Corollary 4.2.4. Let M be a manifold with corners of codimension 2 and product
structure in a neighborhood of the boundary and corners. Further let E 7!M be a Dirac
bundle respecting the product structure and let D be the realization of the associated
Dirac operator with the generalized Atiyah-Patodi-Singer boundary conditions de�ned
by (3.1.2). If � is a parallel self-adjoint involution in C1(M;End(E)) anti-commuting
with Cli�ord multiplication we have:

Index(D+) =

Z
M

aD(x)dx� 1

2
�(A+; 0) +

1

2
tr (S+)

� 1

2

X
�+2spec(Uker(BY )jker(�N�1))

tr (�jV�+ )�(B�+; 0): (4.2.8)

Proof: This follows by Theorem 4.2.3 since ker(D) �= ker( ~D). Because ~M nM has
product structure, aD vanishes identically on ~M nM .

5 Another Approach to Index Theory.

The way we have proceeded in order to construct boundary conditions on a manifold
with corners, which give rise to a good index theorem, is by no means unique. It is
just the simplest one to handle. In this section we present another construction, which
is just as natural.
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5.1 Boundary Conditions on ~M 0.

In the proof of the self-adjointness of D we made essential use of the self-adjointness
of ~D and the extension property of harmonic sections. Further the extension property
of harmonic sections on M to ~M was important for proving the index theorem. These
two important properties can however be obtained in other ways. Below we will de�ne
another extension ~M 0 of M by gluing on a piece of a cylinder over each boundary
component. This extension also allows an extension ~E0 of E. A self-adjoint Dirac
operator ~D0 on ~M 0 can be constructed using boundary conditions, which are not local,
but more local than the boundary conditions on M .

We will restrict attention to the case, where the boundary has a decomposition into
two manifolds Z1 and Z2 with boundary, which intersect in their boundaries only, such
that none of Z1 and Z2 have self-intersections at the boundary. This was an irrelevant
assumption in the other case, but here it will simplify things. In the end of this section
we explain how to proceed without this assumption.

2

1

σ

2
−δ1ν

1

2

δ

ν

δ
δ

Fig5: A neighborhood of a corner component in ~M .

In the following let

~M 0 =M [Z1 (Z1 � [0; 1]) [Z2 (Z2 � [0; 1]) (5.1.1)

and let ~E0 be the obvious extension of E to a vector-bundle on ~M 0, supplied with
the product connection, Hermitian structure and structure of Cli�ord multiplication.
To each Zj there is an associated Dirac operator Aj = �jDj , which is a self-adjoint
operator with Atiyah-Patodi-Singer boundary conditions augmented with respect to
the scattering matrix. This augmentation has the crusial property that it commutes
both with � and �j. This follows from Lemma 2.1.6. Consequently � and � preserve the
domain of Aj since they commute with the induced Dirac operators at the boundaries
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of each Zj , and therefore also preserve the positive and negative spectral subspaces for
the induced Dirac operators.

For most other augmentations the �ner details of the analysis of ~D break down
because �j does not preserve the domain of Aj. Let in the following Qj+ be the
projection on the strictly positive spectral subspace for Aj. Further let Ej be the
restriction of ~E0 to Zj � [0; 1]. We also write Ej for the extension of Ej by the product
structure to Zj �R.

We may de�ne a domain D0( ~D0) by

D0( ~D
0) := ff 2 W 2;1( ~M 0; ~E0) j 8j; u > 0 : fjZj�fug 2 D(Aj) and (1�Qj+)fjZj�f1g = 0g:

Lemma 5.1.1. ~D0 is symmetric on D0.

Proof: It su�ces to prove that the domain

D00( ~D
0) := ff 2 W 2;1( ~M 0; ~E0) j 8j; u > 0 : fjZj�fug 2 D(Aj), (1�Qj+)fjZj�f1g = 0

and 9 a neighborhood U of the corners of M : fjU = 0g:

is dense in D0. This can be proved by decomposing into the eigenspaces of B2
Y in a

neighborhood of the corners and proceeding like in Lemma 1.2.2.

Lemma 5.1.2. On Zj�R the norms k�kH2;1 and k�kW 2;1 are equivalent on the domain:

D := ff 2 W 2;1(Zj �R; Ej) j 8u 2 R : f(u; �) 2 D(Aj)g:
Proof: Let D0 be the domain

D0 := ff 2 W 2;2(Zj �R;Ej) j 8u 2 R : f(u; �) 2 D(A2
j )g:

Then D0 is dense in D with respect to the H1-norm. This can be seen by decomposing
sections into eigenspaces of A2

j and approximating the components with smooth func-
tions. Consequently it su�ces to show that the norms dominate each other on D0. By
Lemma 1.2.1 we have that k � kH2;1 � Ck � kW 2;1 , so it su�ces to prove the opposite
inequality.

Let Dj be the Dirac operator in Ej. Then Dj is of the form Dj = 
( @
@u

+ Aj). If
f 2 ker(
 � i) this gives for some c > 0

kDjfk2 = k @
@u
fk2 + kAjfk2 � ckrfk2 � kfk2: (5.1.2)

If now f 2 D0 we may decompose f = f+ + f� into the components of f 2 ker(
 � i).
Then

kDjfk2 =


D2
jf; f

�
=


D2
jf�; f�

�
+


D2
j f+; f+

�

= kDjf�k2 + kDjf+k2:

Together with (5.1.2) this proves the lemma.
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Again we can use polar coordinates around the corners. We get the operators
L
BN

and
L

BY , de�ned on
F
(Y � [0; � + �]). BN is given the same Atiyah-Patodi-Singer

boundary conditions as
L

j Aj. First we notice that on the orthogonal complement
of
L

ker(BY ) each corner can be handled separately and the analysis goes through
exactly like for the operator ~D. A lemma, which requires some care is though:

Lemma 5.1.3. Let F be a Dirac bundle respecting the product structure on a model
corner C � Y . On the domain

D0 = ff 2 W 2;1(C � Y; F ) j (1�Q+)fj@C = 0g;

the W 2;1 and H2;1-norms are equivalent. Here Q+ is the projection on the positive
spectral subspace for ��DY , where � is the outward-pointing normal at the boundary.

Proof: It is enough to prove the lemma for sections in W 2;2(C � Y; F ), which in
addition vanish in the corner and have vanishing normal derivatives at the boundary.
If f is such a section we may compute

krfk2 = krCfk2 + krY fk2
� 
(rC)�rCf; f

�
+ C(kBY fk2 + kfk2)

� (1 + C)
�

D2f; f

�
+ kfk2�

= (1 + C)
�kDfk2 � h(��DY )f; fi@C�Y + kfk2� :

Since h(��DY )f; fi@(C�Y ) � 0 this term can be dropped and the desired Sobolev
inequality holds.

Like for ~D, ~D0 is given slow-growing ideal Atiyah-Patodi-Singer boundary conditions
augmented with respect to the scattering matrix. In

L
ker(BY ) the scattering matrices

Sj mix the boundary conditions at di�erent corners. This does not a�ect the self-
adjointness of the restriction of the operator

L
BN to

L
ker(BY ), nor does it a�ect thatL

BN has a discrete point spectrum with eigenvalues of �nite multiplicity. It however
means that when we impose slow-growing ideal boundary conditions, asymptotics of
sections in D( ~D0) at the various corners are not independent.

Finally the space
L

ker(Aj)� ker(
L

BN ) \ ker(
L

BY ) is augmented with respect
to the scattering matrix S de�ned exactly like in Section 2. This gives a self-adjoint
realization ~D0.

De�nition 5.1.4. We say that ~D0 is given slow-growing Atiyah-Patodi-Singer bound-
ary conditions of level 2 augmented with respect to the scattering matrices.

It follows like for ~D that ~D0 has a discrete point spectrum, that e�t( ~D
0)2 is a trace

class operator for all t > 0, that if dim(M) is even, ~D0 has a decomposition like (4.0.1)
and that Index( ~D0

+) can be computed using (4.1.2).

Theorem 5.1.5. Let M be an even dimensional manifold with corners of codimension
2 and product structure around the boundary and corners and let E 7! M be a Dirac
bundle over M respecting the product structure. Let ~E0 7! ~M 0 be the the extension
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of E 7! M given by (5.1.1) and the product structure. Finally let ~D0 be the self-
adjoint realization of the Dirac operator associated to ~E0, given slow-growing Atiyah-
Patodi-Singer boundary conditions of level 2 augmented with respect to the scattering
matrices. Let � be a parallel self-adjoint involution in ~E0 anti-commuting with Cli�ord
multiplication and let ~D0

+ be the restriction of ~D0 to ker(� � 1). Further let �N = �i��
and let �Y = �N� . Then we have the following index theorem:

Index( ~D0
+) =

Z
M

aD(x)dx� 1

2

X
j

�(AZj+; 0) +
1

2
tr (S+)

� 1

2
�(�YBN+j�ker(BY ); 0): (5.1.3)

Proof: By (4.1.2) we get that the index can be split into an interior contribution, a
contribution from the boundary and a contribution from the corners (except from the
augmentation, which mixes corners and boundaries). Because of the product structure,
on the cylinders the interior contribution as well as the contribution from boundary
components of the form @Zj � [0; 1] vanish. Further the boundary components of the
form Zj�f1g can be treated exactly like an Atiyah-Patodi-Singer boundary in [2]. This
gives that the contribution from the non-zero spectrum of Aj is �1

2�(Aj+; 0) as claimed.

Lemma 4.2.1 and Lemma 4.2.2 hold with the same proofs as for ~D. Consequently the
contribution from the corners of M comes from ker(BY ) alone. The contribution from
ker(BY )\ ker(BN )

? is the same as from a cone except from that the super-structure is
di�erent. Thus the results of [9] gives the claimed contribution. Finally ker(

L
BY ) \

ker(
L
BN ) �

L
ker(Aj) gives the contribution

1
2tr (S+) because the restriction to ~D0

and � to this space is conjugate to the corresponding contribution for an Atiyah-Patodi-
Singer boundary. This proves the theorem.

We proceed by computing the contribution from the corners explicitly. For each
corner C � Y with associated Dirac operator BY we de�ne an operator TY on ker(BY )
by letting TY be multiplication by � + �, where � is the angle of C. Let T be the
direct sum of the TY . Then T is self-adjoint and commutes with the operator ��, but
in general T need not satisfy commutation relations with S1 and S2.

The operator BN is given by BN = ��� @
@�
� 1

2
. Consequently solutions of BNu = �u

are locally of the form

u = e(�+
1
2
)���'

for some ' 2 ker(BY ). Further the boundary conditions give that

S1' = '; (5.1.4)

S2e
(�+ 1

2 )T��' = e(�+
1
2 )T��': (5.1.5)

In particular

S1e
�(�+ 1

2 )T��S2e
(�+ 1

2 )T��' = ': (5.1.6)

On the other hand, if (5.1.6) is satis�ed we notice that the solution space for ' for
�xed � has the solution space of (5.1.4) and (5.1.5) as a Lagrangian subspace for ��.
This follows by the following general lemma.
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Lemma 5.1.6. Assume that U and V are unitary and self-adjoint operators on a
Hilbert space and that � is unitary, anti-self-adjoint and anti-commutes with both U
and V . Then ker(U � 1) \ ker(V � 1) is a Lagrangian subspace of ker(UV � 1).

Proof: The equation UV ' = ' gives that U' = V ' since U is unitary and self-
adjoint. Consequently the space W := spanf'; V 'g is closed under application of
U and V . Further UV V ' = U' = V ', so W is contained in ker(UV � 1). So is
W + �W since � commutes with UV . Since � interchanges the �1 eigenspaces for U
it follows that ker(U � 1) \ (W + �W ) is a Lagrangian subspace for W + �W . But
ker(U � 1) \ ker(UV � 1) = ker(U � 1) \ ker(V � 1). The lemma follows since ' can
be an arbitrary element of ker(UV � 1).

The above immediately gives the general result

Corollary 5.1.7. The spectrum of BN is given by

spec(BN) = f� 2 R j 9' 6= 0 : S1e
�(�+ 1

2 )T��S2e
(�+ 1

2 )T��' = 'g:
Further the multiplicity of � 2 spec(BN ) is given by

mult(�) =
1

2
dimker

�
S1e

�(�+ 1
2
)T��S2e

(�+ 1
2
)T�� � 1

�
:

If T commutes with S2, Corollary 5.1.7 can be re�ned to give

spec(BN ) = f� 2 R j 9' 6= 0 : S1S2e
(2�+1)T��' = 'g: (5.1.7)

If T further commutes with S1, (5.1.7) decomposes into the eigenspaces for S1S2. For
each eigenspace of S1S2 it further decomposes into eigenspaces for T such that we get
a union of spectra corresponding to the elementary case that S1S2 = ei�I and T = aI
are multiples of the identity. In this case we get

spec((BN )j ker(S1S2�ei� )\ker(T�a)\ker(���i)) = f� j (2� + 1)a 2 �� + 2�Zg:
Explicitly

spec((BN )jker(S1S2�ei�)\ker(T�a)\ker(���i)) = � �

2a
� 1

2
+
�

a
Z: (5.1.8)

The operator �Y commutes with S1S2 and T , so (5.1.8) su�ces to compute the contri-
bution from the corner. We will however not do so before we have reached a deeper
understanding of the corner term, such that we can write it up in a senseful way.

The condition that T commutes with S1 and S2 is satis�ed in the applications in
this paper, but is still completely unreasonable. We here give a lemma that reduces
the general case to the case, where T commutes with S1 and S2. First we notice that
the operator of application of e�

�
2 �� conjugates BN into the operator B 0

N := ��� @
@�

with boundary Lagrangians ker(S1�1) and ker(e�
1
2
T��S2e

1
2
T���1). In a neighborhood

of the boundary � = 0 this is a Dirac type operator. Further this conjugation of
S2 corresponds to that we identify the copies of ker(BY ) seen from each boundary
component at the corner using the universal gluing operator de�ned in Lemma 1.1.14.
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Lemma 5.1.8. The �-invariant �(�YBN+; 0) is equal to the �-invariant of the Dirac
type operator ��Y �� @

@�
de�ned in ker(BY ) 7! [0; 2�] and augmented with respect to S1

and S02 := e�
1
2T��S2e

1
2T��.

Proof: Let B0
N = B0

N(T
0) be the Dirac type operator ��� @

@�
de�ned on sections of

the bundle
L

ker(BY ) 7! [0; T 0(Y )], where T 0 is de�ned like T , and is the operator of
multiplication by T 0(Y ) on each ker(BY ).

In a neighborhood of � = 0, B0
N is locally like a Dirac type operator on a piece of

a cylinder over a point. By the same proof as in [30, Section 2], it follows that the
�-invariant does not depend on the length of the attached cylinder modulo Zfor �xed
boundary conditions. Further the dimension of the kernel of B0

N remains constant under
variation of the length of the cylinder, since by Corollary 5.1.7, it is simply half the
dimension of ker(S1e�

1
2T��S2e

1
2T�� � 1). Thus the �-invariant remains constant under

variation of the length of the attached cylinder. Further the �-invariant is invariant
under scaling of all angles simultaneously, (with �xed boundary conditions, which do
not depend on the scaling), since this just changes the spectrum by a factor. Thus the
�-invariant is constant under any combination of scalings and prolongnations of the
cylindrical piece. Consequently we may compute

�(�YBN+; 0) = �(�YB
0
N (T ); 0) = lim

s!1
�(�YB

0
N+(

T + 2�s

s
); 0) = �(�YB

0
N+(2�I); 0):

This proves the lemma.

Remark 5.1.9. The question, whether one should consider the contribution from the
corner as a function of S2 or of e�

1
2T��S2e

1
2T�� depends on, whether one has glued

EjZ at the corners or not. If EjZ is glued using the canonical gluing. The correct
identi�cation of the spaces in which S1 and S2 live has already been made, and the
contribution morally does not depend on the angles. If however we consider the corner
from the inside ofM , the spaces where S1 and S2 live are di�erently identi�ed, and the
corner contribution depends on the angles through the eigenvalues of S1e�

1
2T��S2e

1
2T��.

In what follows we will use the notation

[�] =

�
� � 2�k ;� � 2�k 2 (��; �)
0 ;� 2 � + 2�Z

; (5.1.9)

The �-invariant of an operator with periodic spectrum is well known [26] and [16,
Example 1.13.1]. If an operator Q has spectrum

p (� + �Z)

then

�(Q; 0) =
�1
�

[2� + �] : (5.1.10)

In the case of the operator �YBN+, Lemma 5.1.8 gives that we may replace T by 2�
and S2 by S02 and still get the same �-invariant. Further in this case (5.1.7) gives

spec(BN ) = f� 2 R j 9' 6= 0 : S1S
0
2e

2�(2�+1)��' = 'g: (5.1.11)
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On ker(�N � 1) \ ker(� � 1) we have that �� = i. Thus this simpli�es to

f� 2 R j 9' 6= 0 : S1S
0
2e

4��i' = 'g:
Thus � is in the spectrum if and only if e4�i� = e�i
 , where ei
 is an eigenvalue of S1S

0
2.

Expressed di�erently, 4�� is of the form �(� � �) + 2�Z, where ei� is an eigenvalue
of �S1S02. It follows that the spectrum of BN on ker(�N � 1) \ ker(� � 1) is the union
over ei� 2 spec(�S1S2) of

� 1

4�
(� � �) +

1

2
Z=

1

2�

�
�1

2
(� � �) + �Z

�
: (5.1.12)

Now, S1 anti-commutes with �N and �Y and � anti-commutes with �N but commutes
with �Y . Finally � commutes with S1S

0
2, so it follows that

�S1(�S1S 02)S1(��) = �S02S1 = �(S1S02)�: (5.1.13)

Thus the spectrum of �S1S02 on ker(�N �1)\ker(�Y +1) is the adjoint of the spectrum
of �S1S02 on ker(�N � 1) \ ker(�Y � 1). This courses �(� � �) to change sign, so it
follows that the spectrum of BN on ker(�N �1)\ker(�Y +1) is the negative of (5.1.12).
Thus the �-invariant has the opposite sign. The factor of �Y in �YBN makes up for
that, so it follows

�(�YBN+; 0) = 2�(BN++; 0);

where BN++ is the restriction of BN to ker(� � 1) \ ker(�N � 1). Further, by (5.1.12)
and (5.1.10) we get

�(BN++; 0) =
�1
2�

X
ei�2spec(�S1++S

0
2++)

[�] : (5.1.14)

The last factor of 1
2 is because of the multiplicity part of Corollary 5.1.7. Now we may

re�ne the index theorem for ~D0
+:

Theorem 5.1.10. Let M be an even dimensional manifold with corners of codimen-
sion 2 and product structure around the boundary and corners and let E 7! M be a
Dirac bundle overM respecting the product structure. Let ~E0 7! ~M 0 be the the extension
of E 7!M given by (5.1.1) and the product structure. Finally let ~D0 be the self-adjoint
realization of the Dirac operator associated to ~E0, given slow-growing Atiyah-Patodi-
Singer boundary conditions of level 2 augmented with respect to the scattering matrices.
Let � be a parallel self-adjoint involution in ~E0 anti-commuting with Cli�ord multipli-
cation and let ~D0

+ be the restriction of ~D0 to ker(� � 1). Then we have the following
index theorem:

Index( ~D0
+) =

Z
M

aD(x)dx� 1

2

X
j

�(AZj+; 0) +
1

2
tr (S+)

+
1

2�

X
�2spec((�S1++e

� 1
2T��S2++e

1
2 T��)jker(��1)\ker(�N�1))

[�] : (5.1.15)
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Remark 5.1.11. If the boundary components of M have self-intersections, we can
still prove self-adjointness of ~D0 and prove an index formula. In this case there is
(morally) only one scattering matrix S1. We can however get an additional one by
imposing boundary conditions in the middle of each angle interval corresponding to
the condition that sections should be continuous. In this way the construction of
boundary conditions and computation of the index contribution becomes equivalent to
what we have done above, just on a space of twice the dimension.

Remark 5.1.12. The class of operators BN on ker(BY ) is unitarily equivalent to the
class of operators Q @

@t
on L2([��; �]; ker(BY )), where Q is antisymmetric and the

boundary conditions are arbitrary self-adjoint boundary conditions. The spectrum
of Q @

@t
can be computed directly and is a union of shifted periodic spectra. Conse-

quently this conjugation gives a more direct way to compute the �-invariant of parts
of BN .

6 Special Cases and Applications.

In this section we work out the corner contribution in Theorem 4.2.3 in some special
cases. The methods are the same as in Section 5 and we maintain a lot of notation
from Section 5. The cases are however simpler and instead of scattering matrices we
have gluing operators.

6.1 The twisted Spin Complex.

We recall that the corner contribution from Theorem 4.2.3 is given by

�1

2

X
�+2spec(Uker(BY )jker(�N�1))

tr (��+)�(B�+; 0): (6.1.1)

Further we have from (1.2.4) that the spectrum of the operator B�+ in question is
given by

spec(B�+) =
2

� + �

�
i log(�+)

2
� � + �

4
+ �Z

�
: (6.1.2)

Thus (5.1.10) gives that, with notation from (5.1.9), we have

�(B�+; 0) =
�1
�

�
i log(�+)� � + �

2
+ �

�
: (6.1.3)

By (6) of Lemma 1.1.14 we see that for the universal gluing operator, the only value

of �+ is �+ = ei
���
2 . Thus

�(B�+; 0) =
�1
�

�
� � �

2
� � + �

2
+ �

�
= 0: (6.1.4)

We have proved:
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Lemma 6.1.1. If ~E 7! ~M is glued using the universal gluing operator, the contribution
from (ker(BN ) \ ker(BY )?) from the corner vanishes.

The universal gluing operator corresponds to the twisted spin bundle, where the
twisting bundle is glued trivially around the singularities.

6.2 The de Rham and Signature Complex.

Also the deRham and signature complexes are relevant examples to work out. We only
consider the case � 2 (0; 3�), for which the results from Section 3.3 are valid.

Lemma 6.2.1. The contribution from the corner for the signature complex vanishes.
In particular we have for a manifold with corners of codimension 2

sign(M) =

Z
M

L� 1

2
�(AZ+; 0);

where AZ+ is the induced Dirac operator on the boundary.

Proof: Let (r; �) be polar coordinates on C, let � be Cli�ord multiplication by 1
r
@
@�

and let � be Cli�ord multiplication by @
@r
.

By the proof of Lemma 3.3.2 we know that the decomposition

��(C � Y ) = (i+ ��)��(Y ) � (�i� ��)��(Y )� (� � i�)��(Y )� (� + i�)��(Y )
(6.2.1)

is a decomposition of ��(C � Y ) into joint eigenspaces of the gluing operator U and
�� to the eigenvalues 1; 1; e�i(���); ei(���) and i;�i;�i; i, respectively. This gives that
the restriction U+ of U to ker(�N � 1) = ker(��� i) has two eigenvalues, 1 and ei(���),
each occurring with the same multiplicity. We compute using (1.2.4) and (5.1.10)

�(B[1]; 0) =
�1
�
[�� + �

2
+ �]; (6.2.2)

�(B[ei(���)]; 0) =
�1
�

�
� � �

2

�
: (6.2.3)

Since ��+�
2 + � = ��

2 +
�
2 = � ����2 � it follows that the sum of those �-invariants

vanishes. Further �Y acts identically on each of those spaces since it commutes with �
and �. Consequently the corner contribution vanishes.

By Corollary 3.3.9 and the fact that the Scattering matrix anti-commutes with �
the index theorem for the signature complex can be rewritten

sign(M) + tr (S+) =

Z
M

L� 1

2
�(AZ+; 0) +

1

2
tr (S+): (6.2.4)

Since by Corollary 3.3.11 the scattering term vanishes, we are done.
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Theorem 6.2.2. (The Gau�-Bonnet theorem) Assume � 2 (0; 3�) for all angles at
the corners. Then the corner contribution from the de Rham complex is given by

1

�
�(Y )

�
�� + �

2
+ �

�
;

where � denotes the Euler characteristic and � runs over the angles. Further �(AZ+; 0) =
0 in this case and the scattering term vanishes. Thus we have

�(M) =

Z
M

e+

 X
N�Y

� � �(N)

2�

!
�(Y ): (6.2.5)

In particular, if dim(M) = 2 and all angles are in the interval (0; 2�) we recover the
Gauss-Bonnet theorem [12]:

�(M) =

Z
M

e+
X
�

� � �

2�
: (6.2.6)

Proof: The de Rham complex is handled like the signature complex. The gluing
operator U is the same, � is replaced by the parity involution �, �N = �i�� is preserved
and �Y is given by the convention �Y := �N�. In this case, however, � is the parity
operator on ��(Y ) on (i+ ��)��(Y ) and minus the parity operator on ��(Y ) on (� +
i�)��(Y ). Consequently (6.2.2) and (6.2.3) must be subtracted rather than added so

�1

2

X
�+2spec(Uker(BY )jker(�N�1))

tr (�jV�+)�(B�+; 0) = �1

2
� 2�(Y )�(B1; 0)

=
1

�
�(Y )

�
�� + �

2
+ �

�
:

This is the claimed contribution from the corner.
That the �-invariant of Z vanishes in this case follows since the the parity operator

on ��(Z) commutes with the parity operator and anti-commutes with AZ. Thus AZ+

has a symmetric spectrum and a vanishing �-invariant.
The scattering term vanishes by Corollary 3.3.11. Thus Index( ~D) = Index0( ~D) and

the scattering term on the right hand side vanishes.

Remark 6.2.3. The same trick as in [16, Section 2.7.7] can be applied to extend the
Gau�-Bonnet theorem to the case where there is no product structure on the boundaries
away from the corners. Passing to the limit of such problems gives the Gau�-Bonnet
theorem for manifolds with corners with the restriction on the structure close to the
corners that the angles along the corners must be constant.

Remark 6.2.4. If @M splits into two components without self-intersections, a global
proof giving the vanishing of the corner contribution for the signature complex from
the fact that the signature of a boundary vanishes, applies. In the general case this
proof can though not be applied.
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6.3 The Splitting Formula for �-Invariants.

The splitting formula for �-invariants of closed manifolds into �-invariants of manifolds
with boundary and product structure around the boundary is well-known. Di�erent
proofs have been given by Bunke [5], Br�uning & Lesch [4], Wojciechowski [13], [44],
[45], Mazzeo & Melrose [27], [28] and M�uller [31]. It is also well-known how the �-
invariant behaves under variation of the boundary conditions. The case, where only
the augmentation is varied, is handled in [26] and [30]. A case of very general pseudo-
di�erential boundary conditions is handled in [46].

Subtracting Theorem 4.2.3 from Theorem 5.1.10 gives a new proof of the splitting
formula. Like for all other proofs, an integer valued term, given in terms of indices
and scattering matrices, which is not very accessible, remains. We here give another
construction, which is a rather direct proof of the splitting formula for the �-invariant,
here given in a setup compatible with the index theorem.

Let Z be a closed odd-dimensional manifold and let E 7! Z � (�1;1) be a Dirac
bundle over an in�nite cylinder over Z respecting the product structure. Let D be the
Dirac operator associated to E. Then D has the usual product decomposition:

D = �

�
@

@u
+A

�
:

If further E is a super-bundle we may de�ne A+ as usual. Now assume that Z has a
decomposition Z = Z1 [Y Z2 into manifolds with product structure in a neighborhood
of the boundary. We set

~M 0 = Z � [�2; 0] [Z1tZ2 ((Z1 t Z2)� [0; 1]) :

The pullback of E to ~M 0 is a Dirac bundle on ~M 0 respecting the local product structure.
Further ~M 0 is a special case of the manifold ~M 0 from Section 5. Therefore we also denote
the Dirac operator on ~M 0 by ~D0. The induced Dirac operators on Zi we denote by Ai

and the corresponding scattering matrices we denote by Si. The scattering matrix of
~D0 we denote by S. With this notation we have:

Theorem 6.3.1. We have

�(A+; 0)� �(A1+; 0) � �(A2+; 0) = 2Index( ~D0
+)� tr (S+(0))� 1

�

X
ei�2spec(�S1++S2++)

[�] :

Proof: This is an immediate consequence of Theorem 5.1.10. The local formulas
vanish because of the local product structure everywhere and the �-invariants appear
with di�erent signs because of the di�erent orientations at the boundaries.

This splitting formula corresponds to the known splitting formulae moduloZ. The
integer-valued terms we are not able to compare. It would be desirable to �nd another
way to compute the index in order to get more information about the integer-valued
term. This however seems to be di�cult since the ideal boundary conditions in the
corner are not compatible with relevant algebraic operations. The most troublesome
part of the problems comes from the space ker(BN )\ ker(BY )?, which gives rise to an
in�nite dimensional space of possible singularities not accounted for in the scattering
matrix.
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