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1 Introduction

A path integral formulation of quantum gravity includes in its simplest version
an integration over all four-dimensional geometries of a given �xed topology, the
weight of each geometry being the Boltzmann weight of a suitable action. An
attempt to implement such a path integral representation is known as dynamical

triangulation. The integration over geometries is approximated by a summation
over all triangulations constructed from equilateral simplices of side-length a, and
the continuum limit is obtained by letting a! 0 for a suitable choice of bare coupling
constants in the action [1, 2].

This model has been analyzed in a series of papers, both with and without cou-
pling to scalar �elds. Originally the hope was that an observed second order phase
transition could be used to de�ne a non-perturbative theory of quantum gravity,
but a closer examination revealed that the transition was (weakly) �rst order [3].
Motivated by an e�ective theory of quantum gravity, which showed that the gauge
�elds coupled very strongly to the infrared sector of gravity [4], the coupling between
Abelian gauge �elds and simplicial quantum gravity was introduced and studied us-
ing the non-compact version of the gauge �eld [5]. We shall refer to this version of
the model as AGM (Abelian gauge model). Indeed, for the �rst time a signi�cant
coupling between matter and gravity was observed, and a new phase, named the
\crinkled" phase was observed. It appeared to be di�erent from the so-called \crum-
pled" and \elongated" phases observed that far, and which both seemed irrelevant
for a continuum limit of quantum gravity. The crinkled phase had a negative en-
tropy exponent  and a fractal dimension dH � 4. However, it was later shown that
most of the properties of this new phase could be obtained by a simple change in the
measure of the path integral [6], and since such a change is of ultra-local nature it is
unlikely to provide a faithful representation of the ideas relating the trace anomaly
to the infrared behaviour of quantum gravity, assuming conformal invariance.

While the change in measure seems to capture most of the gravitational physics
associated with the coupling of Abelian matter �elds to simplicial quantum gravity,
the two theories are of course not equivalent, as emphasized in [5, 6]. One can explore
the full consequences of the Abelian gauge �elds coupled to simplicial quantum
gravity by Monte Carlo simulations. Such studies were performed in [5] and a few
ambiguities as to the nature of the transition to the crinkled phase and of the crinkled
phase itself remained. For this reason and as a matter of principle it is valuable to
have an independent simulation of the system.

In the non-compact formulation the Abelian gauge action is Gaussian. There
exist well-known methods relating low-dimensional Gaussian theories on a direct
lattice to their dual versions. The methods developed on regular lattices work equally
well on dynamical lattices and we shall make use of the concept of duality to relate
theories de�ned on direct and dual lattices. This relation will highlight why the
originally chosen way of coupling gauge �elds to geometry produced results almost
identical to a simple measure term. It will show that this is the result of a somewhat
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unfortunate choice of action, and that the \real" Abelian degrees of freedom couple
to simplicial quantum gravity more or less as ordinary massless scalar �elds, i.e. they
do not inuence the phase structure of pure simplicial quantum gravity, at least for
the number of independent Abelian �elds used so far. From this point of view
the crinkled phase observed so far is entirely due to the insertion of an ultra-local
measure factor. Further, the way we implement the coupling between the gauge
�elds and geometry allows us to introduce new e�ective actions which might change
the phase diagram of matter coupled to gravity.

Another possibility, not studied in this paper would be to go to the compact
formulation of the gauge action. In this case, at least in principle, one may expect
a phase transition between the con�ned and decon�ned phases. Numerical results
for the three-dimensional case suggest however that such a transition disappears, at
least for a single U(1) �eld [9]. Whether some new physics may emerge for more
�elds or for the non-Abelian gauge �elds remains an open problem.

2 The model

Let T be an abstract triangulation of a four-dimensional manifold. Let T � be the sim-
plicial complex dual to T and Nd denote the number of d-dimensional sub-simplices
in T . N4 is the total volume of the manifold. We shall compare two possible methods
of introducing the (non compact) Abelian gauge �elds on such a manifold.

The �rst possibility, which we call the T implementation, would be to put
the (complex) matter �elds at the vertices in T and the U(1) gauge potentials
AIJ = �AJI on the (oriented) links (IJ) of the triangulation T , with I, J number-
ing the vertices of the triangulation. At each vertex I we can perform the gauge
transformation �I and the gauge �elds transforms as

AIJ ! AIJ + �I � �J : (1)

Let us now choose a spanning tree in the complex T , i.e. a connected graph of links
with no loops. The number of links in the spanning tree is N0 � 1. Making use
of the gauge transformation (1) we can perform the gauge �xing of all the gauge
potentials on the spanning tree, reducing them to zero. The resulting number of
degrees of freedom is N1 � N0 + 1. In principle there is nothing wrong with this
implementation where the matter �elds live on the vertices. However, the number
of the degrees of freedom both of the matter �elds and the gauge �elds has no
simple relation to the volume of the manifold. For the scalar �elds this number is
proportional to the number of vertices N0 (and not N4), which can grow as N�

4 ,
where � � 1. In cases where one has a sensible thermodynamic limit it should
not matter which way the coupling between matter and gravity is done, but since
\pathological" triangulations can occur, and even dominate for some choices of
gravitational coupling constants, this choice of implementation may have troubles
with de�ning the extensive quantities, like the average action etc.
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The alternative possibility, which we call the T � implementation, is to choose
the U(1) gauge potentials A�

ij to live on the oriented links l�ij of the dual graphs,
connecting simplices with labels i and j. Each dual link corresponds to an interface
between the neighbouring simplices. As usual A�

ji = �A�

ij and there are N3 =
5
2
N4

such �elds. This formulation is in accordance with most simulations of matter
�elds coupled to gravity. The matter �elds are usually associated with the four-
simplices (are located in the \centers" of the four-simplices) and their derivatives
are calculated as di�erences formed between the values of the �elds in neighbouring
four-simplices, i.e. they are associated with the dual links. The reason for choosing
such an implementation, apart from being convenient in numerical simulations, is
that the naive counting of �eld degrees of freedom will be proportional to the four-
volume N4. This property holds also for the gauge degrees of freedom. At each
simplex we can perform a gauge transformation ��i and the gauge �elds transform
as

A�

ij ! A�

ij + ��i � ��j : (2)

Let us now choose a spanning tree in the complex T �. The number of links in the
spanning tree is N4 � 1. One can gauge A�

ij = 0 for all links in the spanning tree.
This leaves us with N3�N4+1 = 3

2
N4+1 physical degrees of freedom for the gauge

�eld. The nice feature is that this number depends only on the volume N4.
In both implementations the independent degrees of freedom can be parametrized

by the gauge invariant (oriented) plaquette variables. In the T implementation these
are oriented triangles tIJK and the plaquette variables satisfy:

P (tIJK) = AIJ + AJK + AKI: (3)

The plaquettes are not independent variables. Because of the Abelian nature of
the gauge �elds P (tIJK) are unchanged under the cyclic permutation of I; J;K and
change sign when the orientation of the plaquette is inversed. For each triangula-
tion one has to de�ne the positive orientation for the plaquette variables to avoid
the double counting. By construction the ux through any closed two-dimensional
surface is zero. The number of independent such surfaces is (in case the topology is
that of the 4-sphere, which we will assume)

N(S) = N3 �N4 + 1: (4)

This is the number of independent Bianchi identities we can write down. By Euler's
relation for the 4-sphere it leaves precisely N1�N0+1 independent plaquettes, and
the Jacobian for changing from independent gauge �elds to plaquette variables is
one [10]: Z Y

l2T

dAl

Y
l02ST

�(Al0) F (P (A)) =
Z Y

t

dP (t)
Y
s2S

�(
X
t2s

P (t)) F (P ): (5)

In eq. (5) ST denotes a spanning tree in T and S denotes the set ofN(S) independent
two-dimensional surfaces where the Bianchi identities are enforced. l and t are
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respectively links and triangles of the manifold and we assume that the de�nition
of the positive orientation of links and triangles was uniquely chosen. Notice that
in this implementation each elementary gauge loop (plaquette) has a length three,
however each gauge potential contributes to a number of neighbouring triangles
which is a non-trivial local geometric characteristic of the system.

Similar discussion can be made in the T � implementation. The dual plaquettes
constructed from a D-dimensional triangulation can be labelled by the (D � 2)-
dimensional sub-simplices in the D-dimensional triangulation, which are \encircled"
by the associated dual plaquette. In four dimensions we shall label dual plaquettes
by the triangles they encircle. The geometric properties of the two gauge-invariant
objects P (ti) and P

�(ti) are however di�erent: The length of the plaquette P �(ti) is
now o(ti), where o(ti) is the order of the triangle ti, or the number of four-dimensional
simplices sharing this triangle. As before we have to choose a positive orientation,
and the plaquette variable is unchanged when the corresponding loop is rotated and
changes sign, when it is inverted. Each gauge potential A�

ij contributes to exactly
four dual plaquette variables. Like in the T implementation we can parametrize the
system by the plaquette variables P �(ti), satisfying a set of the Bianchi identities.

To this point we did not specify the model we want to consider. Let us start
with the T � implementation. The plaquette variables are the sums of gauge �elds
associated with the oriented (dual) links `encircling' the triangles ti in T :

P �(ti) =
X
�

A�(l��); (6)

where the orientation of the (dual) links follows that of the plaquette and as discussed
above ti 2 T can be viewed as dual to the plaquette. To keep the discussion general
let us at this point assume only that the gauge action is Gaussian and assumes a
form:

S�

g(T;A
�) =

X
i

�iP
�2(ti); (7)

where �i are positive, local, geometry-dependent coe�cients. We shall argue below
what seems to be the most natural choice of �i.

With this notation the partition function can be written as

Z =
X
T

1

CT

e��
�

4
N4(T )+��

2
N2(T )

Z Y
l�
dA�

l�

Y
l0�2ST �

�(Al0�) e
�S�

g (T;A
�); (8)

where ST � is a spanning tree in T �.
We shall now construct the dual version of this model. We can write

exp(��iP
�2(ti)) =

s
1

��i

Z
dp(ti) exp

�
�
p2(ti)

�i
+ 2ip(ti)P

�(ti)
�
: (9)

Using this integral representation of the plaquette, as well as the standard integral
of the �-function: Y

l02ST �

�(A�

l0) =
Z Y

l02ST �

d�l0 e
2i�l0A

�

l0

�
(10)
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the integration over the A�-�elds in T � can be performed, giving rise to a set of delta
functions: Y

l�
��(�l� +

X
ti3l0�

p(ti)); (11)

where the product is over the dual links l�, and �l� = 0 if the dual link l� does not
belong to the chosen spanning tree. Notice that the sum in the argument of each �
function has exactly four terms. Performing the �l� integration in (10) eliminates
N4(T ) � 1 of the N3(T ) �-functions in (11). The remaining N3(T ) � N4(T ) + 1
�-functions can be viewed as the Bianchi identities for the N2(T ) variables p(ti).
Since there are N2(T )� (N3(T )� (N4(T )� 1)) independent variables p(ti), we can
implement the Bianchi identities by introducing U(1) gauge �elds Al living on the
links of the triangulation T , rewriting p(ti) = P (ti) =

P
l2tAl. Independent gauge

transformations can be done at vertices, and after gauge �xing we are left with
N1(T )� (N0(T )� 1) independent Al �elds, i.e. precisely the same as the number of
independent p(ti) �elds.

We end up this discussion by writing down the identity valid for each triangula-
tion: Z Y

l�
dA�

l�

Y
l0�2ST �

�(Al0�) e
�S�

g (T;A
�) = ��

1

2
N2+

3

2
N4+1 e

�
1

2

P
ti
ln�i (12)

�
Z Y

l

dAl

Y
l02ST

�(Al0) e
�Sg(T;A);

where

Sg(T;A) =
X
ti

P 2(ti)

�i
(13)

and P (ti) is the oriented plaquette variable (3) expressed in terms of the �elds Al

living on the links of the triangulation T . For the partition function (8) we get

Z =
X
T

�

CT
e��4N4(T )+�2N2(T )�

1

2

P
ln �i

Z Y
l

dAl

Y
l02ST

�(Al0) e
�Sg(T;A); (14)

where ST is a spanning tree in T and

�4 = ��4 �
3

2
ln �; and �2 = ��2 �

1

2
ln �: (15)

Thus, apart from a shift �4 ! ��4 �
3
2
ln� and �2 ! ��2 �

1
2
ln�, the two models are

dual up to the weight factor �1
2

P
ln �i.

The choice of the action parameters �i should be made at this point. One can
argue that it is natural to choose �i = 1=o(ti), where o(ti) is the order of the triangle.
In the T � implementation o(ti) is also the length of the boundary of the plaquette
dual to ti, and, assuming the plaquette to be at, also proportional to it's area. Since
P �(ti) signi�es the ux of the plaquette dual to ti, the �eld strength is proportional
to P �(ti)=o(ti), while the volume element associated with ti likewise is proportional
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to o(ti). This argument assumes that the plaquette is a at two-dimensional object
with a constant �eld strength. This needs not be the case, so another possible choice
could be �i = 1=o�(ti) with some power � di�erent from 1, which leaves space for
some non-trivial geometry of plaquettes.

The model for a single non-compact Abelian gauge �eld can readily be general-
ized to ng copies. For a given triangulation, T , these models will be non-interacting,
but summing over all triangulations one introduces interactions between the copies,
mediated by the geometry, as well as interactions between geometry and the matter
�elds. The �nal action we use can thus be written as

S�

g =
X
i;k

P �2(ti; k)

o�(ti)
; (16)

where the index k numbers the copies of Abelian gauge �elds and takes values
1; : : : ; ng. If � = 1 the model is dual to the original AGM model except for a
measure factor

1

2
ng
X
t

ln o(t) (17)

for each triangulation and a shift in the gravitational and cosmological constants
by

�4 ! �4 +
3ng
2

ln � and �2 ! �2 +
ng
2
ln�: (18)

We call this version of the model the dual Abelian gauge model (DAGM).
We can make two remarks at this point:

� The whole derivation made explicitly use of the fact that the topology of the
manifold is that of a four-sphere. For di�erent topologies the duality relations
become slightly more complicated and new degrees of freedom appear, related
to the possible topologically non-trivial boundary conditions for the gauge
potentials.

� Similar discussion can be made in the three and the two-dimensional cases.
In three dimensions in the T � implementation the dual of a plaquette is a
link. The duality relates the gauge theory on dual plaquettes to a massless
bosonic theory, where the bosonic �eld live on vertices, again up to a ultra-
local measure term. The T implementation will have it's dual in the form of
a massless scalar �eld living in the centers of the simplices. In two dimensions
the duality transformation permits to integrate out the gauge �eld completely,
leaving only the measure term.

3 The algorithm

The algorithm describing numerical simulations of the four-dimensional simplicial
gravity was described in many papers. Here we shall not repeat details concerning

7



the �ve geometric \moves" which became a standard. There are however some
peculiarities of the present simulation, which make the updating in the gauge sector
rather non-trivial.

In order to perform a Monte Carlo simulation of the model we found it conve-
nient to work directly with the gauge invariant plaquettes rather than the gauge
�elds themselves. Occasionally we shall need the gauge �elds and we shall then
reconstruct them from the plaquette variables. This is necessary only in order to
control round-o� errors, which eventually will lead to a violation of the Bianchi
identities. The geometric \moves" create and destroy simplices. In e�ect also the
new gauge potentials, located at the interfaces between simplices are created and
destroyed. Since the gauge action is Gaussian we shall use the heat bath method
to generate the new variables. In order to �nd the detailed balance condition it is
always necessary to compare the \move" and it's inverse.

The addition of the new gauge potentials does not create any problems and
can be handled in a way closely resembling that of the Gaussian scalar �elds. The
procedure has two steps: in the �rst step we decide if the move will be performed. If
the answer is yes we proceed to the second step, where the new gauge potentials are
generated from a (multi-dimensional) normal distribution. In the process the old
plaquette variables are modi�ed and new plaquette variables appear. The Gaussian
form of the gauge potential guarantees that both the modi�ed and new plaquettes
will remain restricted in value. The acceptance probability for the �rst step can
be expressed in terms of the gauge invariant plaquette variables. In the second
step the values of new gauge potentials are generated, but only the gauge invariant
information (the plaquette variables) is stored.

Situation may be quite di�erent when we try the inverse operation deleting some
gauge potentials. If we would decide to store the values of the potentials and simply
subtract these values from plaquettes, the resulting change in the gauge action could
become arbitrarily large. The reason is that only the gauge invariant combinations
of the gauge potentials are physical (and in the Monte Carlo simulation restricted by
the gauge action), while the gauge potentials themselves may become large unless
some form of the gauge �xing is imposed. Introducing the gauge �xing (a spanning
tree) is however a global problem and therefore maintaining the gauge condition in
the numerical simulation, where the geometry is dynamical would be very costly and
impractical. We have developed a di�erent approach, which is again a modi�cation
of the heat bath algorithm. In the �rst step we decide if the inverse move will
be performed. In order to �nd the acceptance we integrate over all possible gauge
choices of the gauge potentials to be deleted. The resulting formula is local and
expressible in terms of the gauge invariant quantities. If the inverse move is accepted
we proceed to the second step, where the potentials to be deleted are generated from
the appropriate normal distribution. After the inverse move only the gauge invariant
information is stored.

In the program the situation is slightly more complicated. In order to maintain
the detailed balance at each move we have to consider the acceptance for both
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the move and it's inverse. Also the geometric moves used in the four dimensional
updating of geometry in general are rather complicated and in each move some gauge
potentials are created, while other are destroyed. We shall report more details about
the updating procedure in the appendix.

4 Observables and measurements

Basic observables in simplicial quantum gravity have already been discussed in a
number of articles. Since we are here interested in gauge �elds it would be natural
to measure gauge invariant observables. An obvious gauge invariant quantity is
the correlator

D
F 2
��(r)F

2
��(0)

E
, where the average is over all geometries with S4

topology and with points separated a geodesic distance r. The gauge �eld itself is
just Gaussian, so the propagator in at space is trivially calculated. In quantum
space-time, where we average over all geometries , it is not clear precisely how the
propagator will fall o� with the geodesic distance. In fact, the motivation for this
study was to test if the gauge �elds had a stronger interaction with geometry than
the scalar �elds investigated so far. In [17] it was shown how to extract the connected
correlator for matter �elds coupled to simplicial quantum gravity. However, in order
to obtain a non-trivial result of interest for continuum physics it is �rst necessary to
identify a point in the combined coupling constant space of gravity and gauge theory
where we can take an interesting continuum limit. In the following we concentrate
on this necessary �rst step. Thus we study the �2; �4 phase diagram of the theory for
di�erent values of the parameter � in eq. (16). For a given value of �2 there exists a
critical point �4 where an in�nite volume limit can be obtained. At this critical point
one can measure geometric quantities like the entropy exponent , which describes
the distribution of baby universes, and one can measure the fractal dimension of
space-time. As is standard in the measurements of the fractal dimension in simplicial
quantum gravity studies, one operates with two, in principle independent, de�nitions
of the fractal dimension. A \short distance" fractal dimension, dh, measures how
the volume V (r) of spherical balls of geodesic radius r grows with increasing r as
long as r is much smaller than the average radius R of the universe:

V (r) � rdh for r� R: (19)

A \cosmological" fractal dimension is de�ned by the way \macroscopic" distances
scale with the cosmological constant or with the average space-time volume. For
instance

V (r) � rdh�bF
� r

V 1=dH

�
; (20)

where F (x) � xb for x ! 0. In the four-dimensional gravity models studied so
far one has always found that dh= dH . Although there exist models [14] of fractal
structures where dh 6= dH , one expects that dH = dh if a sensible thermodynamic
limit exists [12, 13].
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Figure 1: The (�2; �4) diagram of the AGM and that of the dual model (DAGM)
studied in this paper. Error bars are smaller than the point size and the line is only
to guide the eye. ng = 3 and N4 = 4000.

Since the transition between the branched polymer phase and the crumpled phase
of four dimensional gravity is characterized by the appearance of singular vertices
of very high order, we also study the distribution of the order of vertices, links, and
triangles in order to characterize the various phases we observe.

4.1 � = 1

Since the model (16) for �=1 is dual to the original AGM model if we include the
weight factor (17) and make the shift (18), we can as a calibration reproduce the
�2; �4 diagram of AGM. This is shown in �g. 1 for the number of gauge �elds ng=3.
We see perfect agreement. As a general statement we also see approximately the
same values of  and dh as observed in the AGM model, thus verifying the results
obtained in these investigations. It is illustrated in Table 1. Our measurements were

�2  dh
4.0 -0.30(1) 3.95 (5)
4.5 -0.12(1) 3.57 (3)

Table 1: Measurements of  and dh for the DAGM model. ng = 3 and N4 = 4000.

made on the N4 = 4000 system with ng = 3. It was therefore possible to measure
only dh (and not dH) by using standard techniques [13, 15, 14]. The number nV (r)
of 4{simplices at distance r from a given 4{simplex was measured and a �t was made
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to the function C(r + a)dh�1 where a is the so{called \shift". r is the \4{simplex
distance" which is a measure of the geodesic distance between 4{simplices. The use
of the shift permits us to estimate dh even for this moderate size of the system as
can be seen in �g. 2. A slight modi�cation of the shift a results in a much poorer
�t for small r.

-5
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-3

-2

-1

0

1

2

3

4

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

d 
ln

(n
V
(x

))
 / 

d 
ln

(x
)

ln(x)

 

a= 3.2

Figure 2: The logarithmic derivative of the two point function nV (r). Here x =
(r + a)=V 1=dh where V � N4. For a suitable choice of the shift a a power law
de�ning dh can be obtained.

However, the important point is that for � = 1 and without the measure term one
moves directly from the crumpled phase and into a branched polymer phase. There
is no trace of any crinkled phase and the interaction between the gauge �elds and
geometry is as weak as the interaction between scalar �elds and geometry observed
in [16], provided that the gauge �elds are coupled to simplicial gravity in a way
consistent with the way the scalar �elds were coupled to the geometry in [16], as
discussed in detail in the beginning of sec. 2.

In table 2 we present the results of the computer simulations for the number of
gauge copies ng = 3 and 6. The value of �2 is chosen so large that one is well away
from the crumpled phase. We studied systems with volume N4 = 4000; 8000 and
16000. Our results are summarized in Table 2.

In �g. 3 and �g. 4 we show the computation of dH and dh from the scaling
properties of nV (r). dH is computed as described in [15, 14] using the relation
nV (r) = V 1�1=dHF1((r + a)=V 1=dH ). We determine dH and a from the optimal
\collapsing" of the nV (r) distributions. dh is obtained as for the DAGM model
described above. We observe that the expected scaling holds very well and that the
values for dh and dH are consistent with being the same.

We have also measured the connected part of curvature{curvature and action{
action correlators (we refer to [17] for the details). One expects for two observables
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ng N4 �2  dh dH
3 4000 4.5 0.49 (1) 2.1 (2) 2.03(7)

8000 4.5 0.51(1)
16000 4.5 0.483(4)

6 4000 7.0 0.44 (1) 2.2 (2) 2.05(6)
8000 7.0 0.47 (2)
16000 7.0 0.470(5)

Table 2: Measurements of , dh and dH when �=1

Ai, i = 1; 2 that
G1Ai(r) = hAiiG

11(r + �Ai
) ; (21)

and that the connected part of the correlator is given by

GA1A2

c (r) � GA1A2(r)� hA1iG
1A2(r + �A1

)� hA2iG
1A1(r + �A2

) (22)

+ hA1ihA2iG
11(r + �A1

+ �A2
) :

In the above formulas \1" refers to the unity operator and G11(r) � nV (r). In
the case of curvature{curvature correlator we determine the best hAii and �i by
collapsing G1Ai(r) with G11(r). We use these values in (22) in order to produce the
plot in �g. 5. Similarly we proceed for the action{action correlator. Observe that
curvature{curvature uctuations are short range and independent of the system size.
The same is true for action{action correlators which fall o� at the same scale as the
curvature{curvature ones. Identical plots are obtained for the AGM model so we
conclude that the measure factor does not smoothen the con�gurations enough for
the �elds to uctuate at large scales. The observed behaviour means that using the
scaled distances the correlations become ultra-local. Similar pattern was observed
in the crinkled and crumpled phases. This remains in the qualitative agreement
with the curvature-curvature correlations measured in pure gravity [18], where the
de�nition of the connected correlator was di�erent.

The value for  as well as those of dh and dH are consistent with those of ordinary
branched polymers. The branched polymer interpretation is also corroborated by
the fact that hN0i =N4 � 1=4 which is the upper kinematic bound expected from
branched polymers, plus the fact that we see no vertices of high order.

4.2 � 6= 1

With the negative results of the above subsection in mind we turn to the more
general action (16) with � 6= 1 in a search for new and potentially interesting �xed
points from the point of view of continuum physics. By performing the duality
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Figure 3: Calculation of dH using �nite size scaling of nV (r). The left �gure cor-
responds to ng = 3, �2 = 4:5, dH = 2:03 and the right one to ng = 6, �2 = 7:0,
dH = 2:05.

transformation for a general � we obtain an action

X
t

� �gX
k=1

o�(t)p2(k; t)
�
+
�ng
2

ln o(t): (23)

Thus there is a possibility that a choice of negative � might bring us to a phase
resembling or being identical to the crinkled phase, since the negative weight factor
will imitate the situation encountered in the AGM model. We show the result of
the measurements for the number of gauge �elds ng =3 and �=�0:5 and�1. The
value of �2 is chosen such that we avoid the crumpled phase.

The results of the measurements of  and dh is shown in Table 3. There is a clear
tendency for the values to  and dh to drift from the branched polymer values toward
the crinkled values, in accordance with expectations. Some limited statistics that
we obtained for the � = �1:5 model suggest that  becomes even more negative.
We have taken this as evidence that we see not really new physics with the modi�ed
weights, but rather an e�ective change in measure, more or less in the same way as
the original AGM model di�ers from our model by measure term.

5 Discussion

Gauge �elds contribute far more to the conformal anomaly than scalar �elds. Thus
they are expected to play an important role in e�ective models of four-dimensional
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Figure 4: Calculation of dh for ng = 3, �2 = 4:5 (left) and ng = 6, �2 = 7:0 (right).
Here we use x = (r + a)=V 1=dh . The shifts a are �0:5 and �1:5 respectively.

�  dh
-0.5 0.30(2) 2.65 (3)
-1.0 -0.51(1) 3.5 (2)

Table 3: Measurements of  and dh for � < 0. ng = 3, N4 = 4000 and �2 = 4:5.

quantum gravity where the (infrared) dynamics is dictated by the conformal anomaly
[7]. The conjectured scaling behavior of these model are quite similar to the observed
(pseudo) scaling behavior observed in four-dimensional simplicial quantum gravity,
and this led to the expectation that gauge �elds might couple stronger to geometry
than the scalar �elds used so far. So far, computer simulations have revealed only a
weak coupling between the scalar �elds and the geometry, and the presence of scalar
�elds have not led to any quantitative change in the phase diagram of simplicial
quantum gravity.

The �rst Monte Carlo simulations of simplicial quantum gravity coupled to gauge
�elds seemed to be in accordance with the above philosophy. Indeed, for the �rst
time one observed a genuine back-reaction of the matter �elds on the quantum
geometry. However, as already remarked in the original article [5] and veri�ed in
detail later [6], major part of the interaction between geometry and the matter could
be accounted for by the term

Seff =
ng
2

X
t

ln(o(t)); (24)
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Figure 5: The connected curvature-curvature (left) and action-action (right) corre-
lation functions. ng = 6 and k2 = 7:0. The ng = 3 plots are falling on top of the
ng = 6.

where o(t) denotes the order of the triangle t. This term is an ultra-local measure
term and it is (as already remarked in [5]) unlikely that it contributes to the infrared
dynamics related to the conformal anomaly in the model proposed in [7, 8]. However,
it still left us with the puzzle why gauge �elds seemingly interact so much stronger
with geometry than ordinary scalar �elds.

In the work presented here we have veri�ed the original results obtained in the
AGM model by an independent Monte Carlo simulation working with gauge �elds
on the lattice dual to that of the of the AGM model. In addition we have shown that
there is no major di�erence between the interaction of scalar �elds with geometry
and the interaction of gauge �elds with geometry. In fact, if the gauge �elds are
coupled to geometry in a way consistent with the way the scalar �elds were coupled to
geometry, the gauge and the scalar �elds have similar weak coupling to the geometry.
We have explained how the weight factor (24) arose in the transformation from gauge
�elds living on the dual links of a triangulation to gauge �elds living on the links
themselves.

Turning the arguments around, our results lead to the prediction that scalar
�elds living on the vertices of four-dimensional triangulations will couple as strongly
to the geometry as the gauge �elds in the AGM model.

We extended that gauge �eld model coupled to geometry by modifying the weight
given to each plaquette, in order to explore further the phase-space structure of
matter coupled to geometry. However, the only new phase we could identify is
presumably identical to the crinkled phase already found in the AGM model. The

15



weight generated by the transformation from the dual links to the ordinary links of
a triangulation gave support to this interpretation.

Appendix

All moves require modi�cation of some plaquettes by introducing new dual links
into plaquettes or by destroying the dual links. Finding probabilities for the moves
resembles the problem of the Gaussian scalar �elds, however the gauge invariance
of the action requires some important changes to maintain the detailed balance and
at the same time to keep the acceptance reasonable. In this section we shall discuss
the case of one gauge potential and the parameter � = 1.

Let us �rst describe the process of introducing new degrees of freedom. For
simplicity let us discuss only the situation of the move, where a new vertex is added
in the center of a simplex. There are now 10 new gauge potentials. We consider only
the part of the gauge action involved in the move. Before the move is attempted we
have

exp(�SA(pi)) = exp(�
10X
i

�ip
2
i ); (25)

where �i = 1=o(ti) and pi are the external plaquette variables. The modi�ed action
becomes

exp(�SB(pi; xi)) = exp(�
10X
i

� 0i(pi + xi)
2 � � 0

X
i;j

xiMijxj) (26)

where xi are new �elds, � 0i are the new weights, typically � 0i = 1=(o(ti) + 1), the
matrix Mij contains the geometric information about ten new internal plaquettes

formed in the move. These new plaquettes �k can be written as

�k =
X

Ukjxj (27)

Mij =
X
k

UkiUkj (28)

where Uki are �1 or zero reecting the orientation of the xi �elds. The internal
plaquettes have always the order three, so � 0 = 1=3 typically. When performing the
move we shall have to

� decide whether we make the move or not and

� if yes { generate the new �elds with the distribution resulting from (26).

Let us de�ne

NB(pi) =
Z Y

dxi exp(�SB(pi; xi)) =

=

vuut �10

det(Q)
exp(� �SB(pi)); (29)

Qij = � 0 Mij + � 0i �ij;

16



where �SB(pi) is the global minimum of SB(pi; xi) with respect to xi. This minimum
can of course be explicitly calculated in terms of pi and the matrix Q�1:

�SB(pi) =
X
i

� 0ip
2
i �

X
ij

piQ
�1
ij pj: (30)

The quantity wB(pi; xi) = exp(�SB(pi; xi))=NB(pi) is a normalized Gaussian
distribution of the xi �elds. Let PB = �BNB be the probability that the move will
be performed and, if accepted, the new �elds be generated with this distribution. It
is easy to check that the transition probability P (A! B) satis�es

exp(�SA)P (A! B) = exp(�SA)PBwB(pi; xi) (31)

= �B exp(�SA � SB):

The form (31) will be useful in order to discuss the detailed balance condition.
The important point is that the only non-trivial quantity, NB(pi) can be calculated
also in the new con�guration fPi = pi + xi;�kg. Using (29) we can express �SB as
a global minimum of

P
i �

0

i(Pi + yi)
2 + � 0

P
k(�k +

P
j Ukjyj)

2 with respect to the
shifted variables yi. The only di�erence is the shift of variables and the value of the
minimum is unchanged. This property is very important, because we shall have to
calculate NB both for the move and it's inverse.

Let us now discuss the inverse move: we destroy 10 internal plaquettes �k and
modify values of 10 external plaquettes, eliminating 10 gauge �elds produced before.
The naive proposition would be to store the gauge �elds xi and simply to delete them.
The gauge �elds however have no gauge invariant values so the transition performed
this way would depend on the particular gauge choice - in fact even if plaquette
variables are small (because of the Gaussian weights) the gauge �elds may become
large and in e�ect the transition may be blocked completely.

In the program we use a di�erent approach. Rather than storing the gauge
�elds we try to reconstruct them when needed. When trying to delete �elds xi we
have �rst to decide what gauge choice we make. In other words we shall study the
change Pi ! pi = Pi � xi where xi satisfy the set of gauge{invariant constraintsP
Ukixi = �k. Notice that not all these constraints are independent because of

the Bianchi identities between the ten plaquettes �k. Only six of them have to be
used, reducing the number of independent degrees of freedom to four. As before let
us consider only the part of the action engaged in the move. Before the move is
attempted we have

exp(�SB(Pi;�k)) = exp(�
10X
i

� 0i P
2
i � � 0

10X
k

�2
k) (32)

After the move we have:

exp(�SA(Pi; xi)) = exp(�
10X
i

�i(Pi � xi)
2); (33)

As before we shall have to
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� decide if we perform the move and

� if yes, perform it, i.e. choose some values of xi following from (33).

Let me de�ne as before:

NA(Pi;�k) =
Z 10Y

i

dxi
6Y
k

�(�k �
X

Ukjxj) exp(�SA(Pi; xi);

=

s
�4

detN
exp(� �SA(Pi;�k)); (34)

where the matrix N depends only on �i and �SA(Pi;�k) is the conditional minimum

of SA(Pi; xi) with gauge{invariant set of conditions imposed on the xi �elds. The
integration in (34) can be viewed as integration over all possible gauge choices for
the �elds xi. It is simple to give the explicit formula for �SA in terms of Pi;�k and
the matrix N�1. We shall not write it here. Let us however note that NA(Pi;�k)
can be also calculated in the new con�guration fPi;�kg ! fpi; 0g using a simple
relation NA(Pi;�k) = NA(pi; 0).

The quantity wA(Pi;�k; xi) = exp(�SA(Pi; xi)=NA(Pi;�k) is a normalized prob-
ability for xi satisfying the gauge-invariant constraints. As before let us choose the
probability PA = �ANA(Pi;�k) to be the probability of performing the move. If
accepted we generate four independent xi from the distribution wA. The remain-
ing six can be calculated using the constraints. We can check that the transition
probability P (B ! A) satis�es

exp(�SB)P (B ! A) = �A exp(�SA � SB): (35)

Equations (31) and (35) can be used to write the detailed balance condition:

exp(�SA)P (A! B) = exp(�SB)P (B ! A)

meaning

�B
�A

= 1

or
PB

PA

=
NB

NA

: (36)

As usual, this form of the detailed balance condition suggests that in order to max-
imize the acceptance we need to know both NB and NA.The generalization to the
case of more gauge �elds and � 6= 1 is trivial.

The same method can be used to calculate the weights for other moves. The
general rule is that we need to consider at the same time both the move and it's
inverse.

18



Acknowledgements

J.J. would like to acknowledge a partial support by the Polish Government Project
(KBN) grants 2 P03B 00814 and 2 P03B 01917. J.A., K.A. and J.J thank Ma-
PhySto, Centre for Mathematical Physics and Stochastics, funded by a grant from
The Danish National Research Foundation, for �nancial support.

References

[1] J. Ambj�rn and J. Jurkiewicz, Phys.Lett.B278:42-50,1992.

[2] M.E. Agishtein and A.A. Migdal, Mod.Phys.Lett.A7:1039-1062,1992.

[3] P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Nucl.Phys.B472:293-
308,1996. hep-lat/9601024.

[4] J. Jurkiewicz and A. Krzywicki, Phys.Lett.B392:291-297,1997, hep-th/9610052,
I. Antoniadis, P. O. Mazur, E. Mottola, Phys.Lett.B394:49-56,1997, hep-
th/9611145.

[5] S. Bilke, Z. Burda, A. Krzywicki, B. Petersson, J. Tabaczek and G. Thorleifsson,
Phys.Lett.B418:266-272,1998. hep-lat/9710077.

[6] S. Bilke, Z. Burda, A. Krzywicki, B. Petersson, J. Tabaczek and G. Thorleifsson,
Phys.Lett.B432:279-286,1998 e-Print Archive: hep-lat/9804011

[7] I. Antoniadis, E. Mottola, Phys.Rev.D45:2013-2025,1992.

[8] I. Antoniadis, P. O. Mazur, E. Mottola, Nucl.Phys.B388:627-647,1992, hep-
th/9205015;
Phys.Lett.B323:284-291,1994, hep-th/9301002; Phys.Rev.D55:4756-4769,1997,
hep-th/9509168; Phys.Rev.D55:4770-4784,1997, hep-th/9509169.

[9] R.L. Renken, S.M. Catterall and J.B. Kogut, Nucl.Phys.Proc.Suppl.34:730-
732,1994.

[10] M.B. Halpern, Phys.Rev. D19:517, 1979.

[11] G.G. Batrouni, Nucl.Phys.B208:467, 1982.

[12] Y. Watabiki, Proceedings, Frontiers in Quantum Field Theory, Ed. H. Itoy-
onaka, M. Kaku. H. Kunitomo, M. Ninomiya, H. Shirokura, Toyonaka 1995,
158-167, hep-th/9605185.

[13] J. Ambj�rn, J. Jurkiewicz and Y. Watabiki, J.Math.Phys.36:6299-6339,1995,
hep-th/9503108.

19

http://xxx.lanl.gov/abs/hep-lat/9601024
http://xxx.lanl.gov/abs/hep-th/9610052
http://xxx.lanl.gov/abs/hep-th/9611145
http://xxx.lanl.gov/abs/hep-th/9611145
http://xxx.lanl.gov/abs/hep-lat/9710077
http://xxx.lanl.gov/abs/hep-lat/9804011
http://xxx.lanl.gov/abs/hep-th/9205015
http://xxx.lanl.gov/abs/hep-th/9205015
http://xxx.lanl.gov/abs/hep-th/9301002
http://xxx.lanl.gov/abs/hep-th/9509168
http://xxx.lanl.gov/abs/hep-th/9509169
http://xxx.lanl.gov/abs/hep-th/9605185
http://xxx.lanl.gov/abs/hep-th/9503108


[14] J. Ambj�rn, K. N. Anagnostopoulos, T. Ichihara, L. Jensen, N. Kawamoto, Y.
Watabiki and K. Yotsuji, Nucl.Phys.B511:673-712,1998 , hep-lat/9706009.

[15] J. Ambj�rn, K. N. Anagnostopoulos, Nucl.Phys.B497:445-475,1997, hep-
lat/9701006.

[16] J. Ambj�rn, Z. Burda, J. Jurkiewicz and C.F. Kristjansen, Phys.Rev.D48:3695-
3703,1993, hep-th/9303042.

[17] J. Ambj�rn, P. Bialas and J. Jurkiewicz, JHEP 9902:005,1999; hep-lat/9812015.

[18] B.V. de Bakker and J. Smit, Nucl.Phys.B454:343-356,1995, hep-lat/9503004,
Nucl.Phys.Proc.Suppl.47:613-616,1996, hep-lat/9510041.

20

http://xxx.lanl.gov/abs/hep-lat/9706009
http://xxx.lanl.gov/abs/hep-lat/9701006
http://xxx.lanl.gov/abs/hep-lat/9701006
http://xxx.lanl.gov/abs/hep-th/9303042
http://xxx.lanl.gov/abs/hep-lat/9812015
http://xxx.lanl.gov/abs/hep-lat/9503004
http://xxx.lanl.gov/abs/hep-lat/9510041

