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Abstract

Using a slight modification of the framework in Bramson [7] and Williams [52], we prove
heavy traffic limit theorems for six families of multiclass queueing networks. The first three
families are single station systems operating under first-in first-out (FIFO), generalized head-
of-the-line proportional processor sharing (GHLPPS) and static buffer priority (SBP) service
disciplines. The next two families are re-entrant lines operating under first-buffer-first-serve
(FBFS) and last-buffer-first-serve (LBFS) service disciplines; the last family consists of certain
2-station, 5-class networks operating under an SBP service discipline. Some of these heavy
traffic limits have appeared earlier in the literature; our new proofs demonstrate the significant
simplifications that can be achieved in the present setting.
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1 Introduction

Queueing networks have been extensively used to model computer systems, telecommunications
networks, and manufacturing systems (see, e.g., Bertsekas and Gallager [2], and Yao [54]). Classical
queueing network theory imposes restrictive assumptions on the distributions of the interarrival
and service times, and on the service disciplines employed in a queueing network (Jackson [35],
Baskett et. al. [1] and Kelly [37]). These restrictions exclude the use of such theory for many
practical systems. Brownian model approximations have been employed as an alternative tool for
more general queueing networks (see, e.g., Harrison and Nguyen [27]). They share two distinctive
features: (a) the analysis of a Brownian model is mathematically more tractable than that of
the corresponding queueing network, since a complicated Markov chain is replaced by a diffusion
process and (b) the Brownian model uses just the first two moments of the interarrival and service
times, and of the routing vectors associated with the queueing network.

In formulating the Brownian model for a queueing network, one replaces the workload process of
the queueing network by a multi-dimensional semimartingale reflecting Brownian (SRBM). Many
quantities for the SRBM, including the stationary distribution, can be computed either exactly
or numerically (Harrison and Williams [30], Dai and Harrison [16]). Ideally, these should provide
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estimates for the corresponding queueing networks. Unfortunately, this is not always the case (Dai
and Wang [21]); it is thus essential to determine when a Brownian model can be used for the
analysis of a queueing network. This task is often carried out by establishing a heavy traffic limit
for a sequence of related queueing networks, which justifies the comparison with a Brownian model
when each server is heavily utilized. Such an assumption is reasonable in many systems, including
semiconductor wafer production lines, where extremely high capital cost of equipment demands
high utilization of machines.

The order in which jobs at a station are executed is an important component in heavy traffic
limits. When each station has a single class of jobs, a queueing network is referred to as a single-
class network; when at least one station has more than one job class, it is a multiclass network. In
the latter setting, a policy dictating the order in which jobs at each station are served is called a
service discipline. Examples of service disciplines include first-in first-out (FIFO), generalized head-
of-the-line proportional processor sharing (GHLPPS) and static buffer priority (SBP) disciplines,
each of which will be defined in Section 2. When the routing is deterministic and only one class
has external arrivals, the network is called a re-entrant line.

In a typical setup for heavy traffic limits, one considers a sequence of queueing networks, indexed
by r. The basic network topology remains fixed across the entire sequence, with, however, the
arrival and service rates, and the corresponding distributions varying over r. As r →∞, the traffic
intensity at each station is assumed to converge to 1, i.e., each service station is critically loaded in
the limit. In this setting, one expects the queue length and workload processes to typically grow
without bound as r → ∞. For standard heavy traffic limits, under diffusive scaling, the workload
processes converge to a limit which is an SRBM, with dimension equal to the number of stations in
each network. The corresponding limit of the queue lengths, with dimension equal to the number
of classes in each network, will be a constant multiple of the workload limit. This last property is
an example of state space collapse, a term first used in Reiman [44], although such phenomena were
observed earlier in Whitt [48] and Foschini and Salz [26]. The nature of the queue length limit will
be strongly influenced by the service discipline for the networks in the sequence.

The study of heavy traffic limits of queueing systems has a long history, which dates back to
Kingman [38, 39], Prohorov [42], Borovkov [3, 4] and Iglehart [32]. Heavy traffic limits, in the form
of functional central limit theorems, were first studied by Iglehart and Whitt [33, 34]; a survey can
be found in Whitt [49]. Reiman [43] proved a heavy traffic limit theorem for single-class networks;
his proof was simplified by Johnson [36] by studying the corresponding fluid models. (Readers
are referred to Chen and Mandelbaum [8] for a survey on single-class networks.) There have been
a number of heavy traffic limits for multiclass queueing networks in Whitt [48], Peterson [41],
Reiman [45], Dai and Kurtz [17], Chen and Zhang [11, 12, 10], Bramson [7] and Williams [52];
Williams [51] provides a survey. Examples of non-existence of heavy traffic limits were given in
Whitt [50], and Dai and Nguyen [18]. Unconventional heavy traffic limits were obtained in Harrison
and Williams [31], and Coffman et. al. [14].

In this paper, we establish heavy traffic limits for six families of multiclass queueing networks.
The first three families are single station systems operating under FIFO, GHLPPS and SBP service
disciplines. The next two families are re-entrant lines operating under first-buffer-first-serve (FBFS)
and last-buffer-first-serve (LBFS) service disciplines. Last, we prove that, under an additional,
unconventional heavy traffic condition, the heavy traffic limit holds for a given family of 2-station,
5-class networks operating under an SBP service discipline. Our proofs of the heavy traffic limit
theorems are based on a slight modification of the framework given in Bramson [7] and Williams [52],
in which state space collapse and fluid limits play a central role. Our criteria will consist of showing
that (a) the reflecting matrix R, corresponding to the sequence of queueing networks, is completely-
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S and (b) the critically loaded fluid model, corresponding to the queueing networks, is uniformly
convergent.

Some of our heavy traffic results are not new. Heavy traffic limits for sequences of FIFO single
station systems were established in Reiman [43] and in Dai and Kurtz [17]. Chen and Zhang [11]
proved a heavy traffic limit for a family of FBFS re-entrant lines. These known results are included
here to show how one may significantly simplify their proofs by using the framework of Bramson [7]
and Williams [52]. Presumably, this framework can be employed for further heavy traffic limit
theorems. It has been reported to us that, in a contemporaneous independent work, Chen and
Ye [9] have shown a heavy traffic limit theorem for LBFS re-entrant lines by using a related
framework from Chen and Zhang [13].

The paper is organized as follows. Multiclass networks are introduced in Section 2. In Section 3,
we present the background for and state our main results on heavy traffic limits; the remainder
of the paper is devoted to demonstrating these results. The equations of the queueing networks
we consider and the corresponding fluid model equations are given in Section 4. The framework
of Bramson [7] and Williams [52] is applied to our setting in Section 5. The proofs of our heavy
traffic limit theorems are given in Sections 6-8. Such limits are demonstrated for single station
systems (Theorems 3.1-3.3) in Section 6, and for FBFS and LBFS re-entrant lines in Section 7
(Theorems 3.4-3.5). In Section 8, heavy traffic limits are demonstrated for a particular family of
2-station, 5-class re-entrant lines (Theorem 3.6).

2 Open multiclass queueing networks

Multiclass queueing networks were introduced in Section 1; in this section, we give a more detailed
description of these networks. Each station is assumed to have a single server, with unlimited
waiting space. When a job arrives from outside the network, it receives service at a finite number
of stations, after which it leaves the network. At any given time during its lifetime in the network,
the job belongs to one of the job classes. The job changes classes as it moves through the network,
changing classes each time a service is completed; all jobs within a class are served at a unique
station. Since the network is multiclass, more than one class might be served at a station. Each
job is assumed to eventually leave the network. The ordered sequence of classes that a job visits in
the network is called its route; if all jobs follow the same route, the network is called a re-entrant
line.

We use J to denote the number of service stations and K to denote the number of job classes
in the network. Stations are labelled j = 1, . . . , J , and classes by k = 1, . . . ,K. We use C(j) to
denote the set of classes belonging to station j, and s(k) to denote the station to which class k
belongs; when j and k appear together, we implicitly set j = s(k). Associated with each class k
of a queueing network, there are two i.i.d. sequences of random variables, uk = {uk(i), i ≥ 1} and
vk = {vk(i), i ≥ 1}, an i.i.d. sequence of K-dimensional random vectors, φk = {φk(i), i ≥ 1}, and
two real numbers, αk ≥ 0 and mk > 0. We assume that 3K sequences

u1, . . . , uK , v1, . . . , vK , φ
1, . . . , φK (2.1)

are mutually independent. We refer to them as the primitive increments of the network. We set
ak = var(uk(1)) and bk = var(vk(1)), and assume that ak < ∞ and bk < ∞, and that uk and vk
are unitized, i.e., E[uk(1)] = 1 and E[vk(1)] = 1. For each i, uk(i)/αk will denote the interarrival
time between the (i − 1)th and the ith externally arriving job at class k, mkvk(i) will denote the
service time for the ith class k job, and φk(i) will denote the routing vector of the ith class k job.
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It follows that, for each class k, mk is the mean service time for class k jobs, αk is the external
arrival rate to class k, and ak and bk are the squared coefficients of variation for interarrival and
service times. (The squared coefficient of variation of a positive random variable is defined to
be the variance divided by the squared mean.) We allow αk = 0 for some classes k, and we set
E = {k : αk 6= 0}. We assume that the routing vector φk(i) takes values in {e0, e1, . . . , eK}, where
e0 is the K-dimensional vector of all 0’s and, for ` = 1, . . . ,K, e` is the K-dimensional vector with
`th component 1 and other components 0. When φk(i) = e`, the ith job departing class k becomes
a class ` job. We let Pk` = P{φk(i) = e`} be the probability that a job departing class k becomes
a class ` job. The K ×K matrix P = (Pk`) is the routing matrix of the network. We assume our
networks are open, that is, the matrix

Q
def= I + P ′ + (P ′)2 + · · ·

is finite, which is equivalent to (I − P ′) being invertible, with Q = (I − P ′)−1. (The symbol ′ on a
vector or a matrix denotes the transpose.)

We define the cumulative arrival, cumulative service and cumulative routing processes by the
sums

Uk(n) =
n∑
i=1

uk(i), Vk(n) =
n∑
i=1

vk(i), Φk(n) =
n∑
i=1

φk(i),

where n = 1, 2, . . . and k = 1, . . . ,K. For each class k, mkVk(n) is the total amount of service
required for the first n class k jobs. Also, for each k and t ≥ 0, let Ek = {Ek(t), t ≥ 0} denote the
renewal process associated with the i.i.d. sequence {uk(i), i ≥ 1}, i.e.,

Ek(t) = max{n : Uk(n) ≤ t}.

For t ≥ 0, Ek(αkt) counts the number of external arrivals to class k in (0, t]. We also write
Vk = {Vk(n), n ≥ 1} and Φk = {Φk(n), n ≥ 1}. The processes

E1, . . . , Ek, V1, . . . , VK ,Φ1, . . . ,ΦK (2.2)

are referred to as the primitive processes. They contain the same information as the primitive
increments in (2.1).

A service discipline dictates the order in which jobs are served at each station. A service
discipline is said to be non-idling if a server is always active when there are jobs waiting to be
served at its station. In this paper, we restrict our disciplines to three families of disciplines, first-in
first-out (FIFO), generalized head-of-the-line proportional processor sharing (GHLPPS) and static
buffer priority (SBP), which are defined below.

Under the FIFO discipline, jobs at each station are served on a first-in first-out basis, regardless
of their class designations. Under a GHLPPS service discipline with weight vector β = (β1, . . . , βK),
with βk > 0 for all k, the server at each station simultaneously serves the leading job of each (non-
empty) class. The server allocates effort to each class k in proportion to the number of jobs in
that class, weighted by βk. Such disciplines are mathematical idealizations of certain round-robin
processor sharing disciplines, which are common in telecommunication networks. When the weight
vector β = (1, . . . , 1), the GHLPPS discipline becomes the head-of-the-line proportional processor
sharing (HLPPS) service discipline in Bramson [5, 7] and Williams [52].

Under an SBP discipline, the classes at each station are assigned a fixed ranking. When the
server switches from one job to another, the new job will be taken from the leading (or longest
waiting) job at the highest ranking non-empty class at the server’s station. We assume that the
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ranking is strict, i.e., there is no tie in the ranking. We also assume that the service discipline is
preemptive-resume. That is, when a job, with a higher rank than the one currently being served,
arrives at the server’s station, the service of the current job is interrupted. When service of all jobs
with higher ranks is completed, the interrupted service continues from where it left off. Two SBP
disciplines for re-entrant lines that have been studied in the literature are first-buffer first-served
(FBFS) and last-buffer first-served (LBFS). Under the FBFS discipline, earlier classes along the
route are assigned higher priorities. Under the LBFS discipline, later classes along the route are
assigned higher priorities.

All of these disciplines are examples of head-of-the-line (HL) disciplines, that is, only the leading
job from each class may receive service at any given time. It is assumed that the discipline is non-
idling, and that service within each class is on a FIFO basis; each class receives a proportion
(possibly zero) of the associated server’s time, where this proportion may be random, but it is kept
constant between changes in the arrival or departure processes. Furthermore, these proportions
should depend, in a measurable way, on the “state” of the queueing network, and they should not
anticipate (external) interarrival times, service times or routing vectors for future arrivals. Readers
are referred to Bramson [5] for precise definition of such disciplines. (Williams [52] gives a slightly
more general definition.)

In this paper, we focus our study on six network models. The first three consist of the multiclass
single server stations (i.e., J = 1) under the FIFO, GHLPPS and SBP service disciplines. The other
three models are the family of re-entrant lines under FBFS and LBFS disciplines, and the 2-station,
5-class re-entrant line pictured in Figure 1, in Section 3.

3 Heavy traffic limit results

In order to state our heavy traffic results, we require additional terminology. This is provided
in Sections 3.1-3.5, where performance processes, traffic equations, initial conditions, scaling and
heavy traffic conditions, and the definition of reflecting Brownian motion are discussed. Our heavy
traffic results are then presented in Section 3.6.

3.1 Performance processes

The following processes Z, D, W , and Y will be used to measure the performance of our queueing
network. The processes Z = {Z(t), t ≥ 0} and D = {D(t), t ≥ 0} are both K-dimensional, with
Zk(t) denoting the number of class k jobs at time t, and Dk(t) denoting the cumulative number of
departures from class k over [0, t]. They are called the queue length process and departure process,
respectively. The other two processes, W = {W (t), t ≥ 0} and Y = {Y (t), t ≥ 0}, are both
J-dimensional. For each station j, Wj(t) denotes the amount of work for server j (measured in
units of remaining service time) embodied in those jobs who are at station j at time t. If no more
arrivals (either external and internal) are allowed at station j after time t, server j needs to work
Wj(t) additional units of time before the station is empty. The process W is called the (immediate)
workload process. For each station j, Yj(t) denotes the total amount of time that the server at
station j has been idle over [0, t]. Y is called the (cumulative) idletime process. The queue length
and workload processes measure congestion and delay in the network; the idletime process measures
utilization of the resources (servers) in the network.
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3.2 Traffic equations

To investigate open multiclass queueing networks, one employs the solution λ`, ` = 1, . . . ,K, of
the traffic equations

λ` = α` +
K∑
k=1

λkPkl, (3.1)

or equivalently, in vector form, of λ = α+ P ′λ. (All vectors in this paper are to be interpreted as
column vectors unless explicitly stated otherwise.) Since the network corresponding to P is open,
the unique solution in (3.1) of λ is λ = Qα. The term λk is referred to as the nominal total arrival
rate at class k; it depends on both external and internal arrivals. If, for each class k, there is a
long-run average rate of flow into the class which is equal to the long-run average rate out of that
class, this rate will equal λk.

Employing m and λ, one defines the traffic intensity ρj for the jth server as

ρj =
∑
k∈C(j)

mkλk. (3.2)

In vector form, ρ is given by ρ = CMλ, where M = diag(m) and C is the constituency matrix

Cjk =

{
1 if k ∈ C(j),
0 otherwise.

(3.3)

(For a d-dimensional vector x, diag(x) denotes the d × d matrix whose diagonal entries are given
by the components of x and all other entries are 0.) When ρj ≤ 1, ρj is also referred to as the
nominal fraction of time that server j is busy. In this paper, we are interested in networks in which
ρj is close to one for each station j. Such networks are said to be “heavily loaded.”

3.3 Initial conditions

Heavy traffic limit theorems have frequently required the corresponding networks to be empty
initially [10, 17, 41, 45]. Here, we allow each class to have a positive number of jobs at time 0; we
assume that the probabilistic behavior of these jobs is the same as for jobs arriving at the class
after time 0 (in terms of service requirement and routing). This assumption is less general than
those in [7, 52], where the initial jobs are allowed to have different service time distributions. We
restrict ourselves to the current framework to keep the exposition simple.

Depending on the discipline used, the amount of information encoded in the initial state can
differ. The initial state should have enough information so that, under the service discipline, the
evolution of the queueing network is completely determined by the initial state and the primitive
processes in (2.2). For a GHLPPS or an SBP discipline, we take Z(0) to be the initial state.
(Recall that the kth component Zk(0) is the number of jobs initially in class k.) For a FIFO service
discipline, however, one needs to specify the order of the initial jobs at each station or, equivalently,
the order in which the initial jobs depart after their service completions. The initial state for a
network with the FIFO discipline is given by

{Dk(s), for 0 ≤ s ≤Wj(0)} for each k ∈ C(j).
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3.4 Scaling and heavy traffic conditions

We will use αr and mr to denote the vectors of the external arrival rates and mean service times
for a family of networks indexed by r, where r tends to infinity through a strictly increasing family
of values in (0,∞). (With some abuse of notation, we refer to such networks as a sequence of
networks.) Let λr = Qαr and ρr = CM rλr, with M r = diag(mr). We assume that the set
E = {k : αrk 6= 0} and the routing matrix P do not depend on r. We assume further that αr and
mr are so chosen that, as r →∞,

αrk → αk > 0 for k ∈ E , mr
k → mk > 0 for k = 1, . . . ,K, (3.4)

and that ρr → e at the rate

r(ρr − e)→ γ, (3.5)

where e is the J-dimensional vector of all 1’s and γ is some J-dimensional vector. Note that
(3.4)-(3.5) imply that

ρ = CMλ = e, (3.6)

namely, each station is critically loaded in the limit. The interarrival times at class k are given
by {uk(i)/αrk, i = 1, . . . } and the service times by {mr

kvk(i) : i = 1, . . . }. Therefore, the squared
coefficients of variation of the interarrival times and service times for class k, ak and bk, and do not
depend on the index r.

Conditions (3.4)-(3.5) are referred to as heavy traffic conditions; they will be employed in
Section 3.6. Readers who are not familiar with this setting may be puzzled by our reason for
introducing a sequence of networks. As motivation, one can consider the following situation. In
a production system, it is up to the manager to decide how quickly jobs are to be released into
the system. In particular, one needs to decide how heavily the system should be loaded in order
to effectively use its resources. Ideally, one would like to choose each ρj close to 1. A sequence
corresponding to such a network arises by varying the load condition imposed by the manager; one
envisions the network as a member of the sequence, with r chosen large since ρ is close to e. The
heavy traffic limit corresponding to this sequence of networks should then provide insight on the
behavior of the original network. For the re-entrant line pictured in Figure 1 of Section 3.6, with
m constant and satisfying

m1 +m3 +m5 = m2 +m4,

let αr1 = 1/(m1 +m3 +m5)− 1/r, with r > 0. Then, ρ1 = ρ2 = 1− (m1 +m3 +m5)/r, and so the
heavy traffic conditions (3.4)-(3.5) are satisfied with γ1 = γ2 = −(m1 +m3 +m5).

When ρr → e as r → ∞, we expect the queue length, workload and idletime processes to
grow. With functional central limit theorems in mind, we define the scaled queue length process
Z̃r(t) = (Z̃r1(t), . . . , Z̃rK(t))′, by

Z̃rk(t) = r−1Zrk(r2t).

For 0 ≤ t ≤ 1, the scaled process Z̃r(t) records the queue lengths over [0, r2] at resolution 1/r
(each job is assigned weight 1/r). As r increases, the scaled process employs longer and longer time
intervals at coarser and coarser resolutions. We similarly define W̃ r(t) and Ỹ r(t) by

W̃ r
k (t) = r−1W r

k (r2t) and Ỹ r
k (t) = r−1Y r

k (r2t).
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3.5 Reflecting Brownian motion

In this section, we recall the definition of semimartingale reflecting Brownian motion (SRBM). Such
processes will be the limits for our heavy traffic limit theorems. Throughout this section, B denotes
the σ-algebra of Borel subsets of RJ+, θ is a vector in RJ , Γ is a J × J symmetric and strictly
positive definite matrix, R is a J × J matrix, and ν is a probability measure on (RJ+,B).

The following definition of an SRBM is taken from Williams [53, Section 6].

Definition 3.1 (SRBM). An SRBM associated with the data (RJ+, θ,Γ, R, ν) is an {Ft}-adapted,
J-dimensional process W , defined on some filtered probability space (Ω,F , {Ft},P), such that P-
a.s.:

(i) W has continuous paths with W (t) ∈ RJ+ for t ≥ 0, and

(ii) W = X +RY for appropriate J-dimensional processes X and Y .

The processes X and Y satisfy the following properties. Under P,

(iii) X is a Brownian motion with drift vector θ and covariance matrix Γ, such that X(0) has
distribution ν, and

(iv) {X(t)−X(0)− θt, Ft, t ≥ 0} is a martingale.

The process Y is an {Ft}-adapted, J-dimensional process such that P-a.s., for each j = 1, . . . , J ,

(v) Yj(0) = 0,

(vi) Yj is continuous and nondecreasing,

(vii) Yj can increase only at times t where Wj(t) = 0.

In (vii), we mean that, for each t > 0, Wj(t) > 0 implies Yj(t− δ) = Yj(t + δ) for some δ > 0.
This is equivalent to

∫∞
0 Wj(s)dYj(s) = 0 for all j. Loosely speaking, an SRBM behaves like a

Brownian motion with drift vector θ and covariance matrix Γ in the interior of the orthant RJ+,
with the processes being confined to the orthant by instantaneous “reflection” (or “pushing”) at
the boundary, where the direction of “reflection” on the jth face, Fj ≡ {x ∈ RJ+ : xj = 0}, is given
by the jth column of R. The parameters θ, Γ and R are called the drift vector, covariance matrix
and reflection matrix of the SRBM, respectively. Results of Reiman and Williams [46] and Taylor
and Williams [47] show that a necessary and sufficient condition for the existence and uniqueness
(in distribution) of the SRBM associated with (RJ+, θ,Γ, R, ν), for each initial distribution ν on
(RJ+,B), is that the reflection matrix R be completely-S, which is defined as follows. For a J × J
matrix R and a subset J ⊂ {1, . . . , J}, the principal submatrix associated with J is the |J | × |J |
matrix obtained from R by deleting the rows and columns that are not in J , where |J | is the
cardinality of J . A J × J matrix R is an S matrix if there exists u ≥ 0 such that Ru > 0. (Vector
inequalities are to be interpreted componentwise.) The matrix R is completely-S if each principal
submatrix of R is an S matrix.

In Definition 3.1, the SRBM W has the semimartingale decomposition (ii) with respect to a
Brownian motion X defined on some probability space. In the stochastic differential equation
literature, such a W is called a weak solution of (i)-(vii). If, for a Brownian motion X defined on
a given probability space, one can find W and Y that are defined on the same probability space,
are adapted to X, and satisfy conditions (i)-(vii) of Definition 3.1 with {Ft} being the filtration
generated by X, then W is called a strong solution of (i)-(vii). Note that, in the strong solution
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setting, condition (iv) is redundant because Brownian motion minus the drift is always a martingale
with respect to its own filtration. If the reflection matrix R satisfies an appropriate spectral radius
condition, such as in Harrison and Reiman [29], the strong solution always exists and is unique.

3.6 Heavy traffic limit theorems

We state here the heavy traffic limit theorems 3.1-3.6, which are the main results of the paper. For
these results, we will need some general assumptions. Recall that α and m are the limits in (3.4)
and that λ = Qα. We will henceforth assume that (3.4) holds, and that λk > 0 for all k.

Let Hk be the K ×K matrix given by

Hk
``′ =

{
Pk`(1− Pk`) for ` = `′,

−Pk`Pk`′ for ` 6= `′,
(3.7)

with `, `′ = 1, . . . ,K. One can check that Hk is the covariance matrix of the routing vector φk(1).
Thus, it is symmetric and nonnegative definite. Set

Σ = C

(
diag(λ1b1, . . . , λKbK) +MQ

(
diag(α3

1a1, . . . , α
3
KaK) +

K∑
k=1

λkH
k

)
Q′M

)
C ′. (3.8)

Since
∑K

k=1 λkH
k and the two diagonal matrices in (3.8) are each symmetric and nonnegative

definite, Σ is symmetric and nonnegative definite. The role of the diagonal matrices diag(α3
1a1,

. . . , α3
KaK) and diag(λ1b1, . . . , λKbK) is to quantify the randomness of the interarrival and service

times. Similarly, the matrix
∑K

k=1 λkH
k quantifies the randomness of the routing vectors. Thus,

the matrix Σ can be thought of as measuring the randomness in the queueing network due to
the above three quantities. We will always assume that Σ is positive definite. Since Σ is always
nonnegative definite, this is equivalent to the determinant of Σ being positive. This condition is
needed for the uniqueness of the SRBM discussed after Definition 3.1.

To properly talk about the convergence of the stochastic processes under discussion, we employ
the path spaces Dd[0,∞), with d ∈ Z+. Each path x ∈ Dd[0,∞) is a function x : [0,∞) → R

d

that is right continuous in [0,∞), and has left limits on (0,∞). We endow the path space with the
usual Skorohod J1-topology (see, e.g., Ethier and Kurtz [25]). We note that when a limit point is
a continuous path, convergence in the Skorohod topology is equivalent to uniform convergence on
compact intervals. For a sequence of stochastic processes {ξr, r > 0} taking values in Dd[0,∞) for
some d ∈ Z+, we use ξr ⇒ ξ∗ to denote the convergence of ξr to ξ∗ in distribution.

In the following definition, we assume that (3.4) and (3.5) hold, and employ the following
notation. Let ∆ denote a K × J nonnegative matrix. Also, set

G = CMQP ′∆, (3.9)

R = (I +G)−1, (3.10)
θ = Rγ, (3.11)
Γ = RΣR′. (3.12)

In defining R in (3.10), one implicitly assumes that I +G is invertible.

Definition 3.2. Let ∆ denote a K × J nonnegative matrix. For a sequence of networks indexed
by r that satisfy (3.4) and (3.5), set X̃r = W̃ r −RỸ r. Assume that

(W̃ r, X̃r, Ỹ r, Z̃r) =⇒ (W ∗, X∗, Y ∗, Z∗) as r →∞, (3.13)
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for some W ∗, X∗, Y ∗ and Z∗, where W ∗ = X∗ + RY ∗ is an (RJ+, θ,Γ, R, ν)-SRBM. Also, assume
that

Z∗ = ∆W ∗. (3.14)

Then, (3.13) is said to be a heavy traffic limit with lifting matrix ∆.

The condition (3.14) is an example of state space collapse. It says that the K-dimensional pro-
cess Z∗, corresponding to the classes of the networks, is deterministically given by the J-dimensional
process W ∗, corresponding to the stations. Note that by the discussion following Definition 3.1, for
a heavy traffic limit theorem to hold, the reflection matrix R needs to be completely-S.

In order for (3.13) to hold, the initial data must satisfy

W̃ r(0) =⇒W ∗(0) as r →∞ (3.15)

for some nonnegative random vector W ∗(0). State space collapse in (3.14) implies that Z∗(0) =
∆W ∗(0), and hence

|Z̃r(0)−∆W̃ r(0)| → 0 in probability as r →∞ . (3.16)

In general (3.15) is not needed for (3.16), since it is possible for Z̃r(0) and W̃ r(0) to be in a fixed
proportion, but for both to diverge as r →∞.

We note that the matrix ∆ will typically depend on the discipline and other features of the
networks in the above sequence. When the service discipline is FIFO, we will set

∆w = (λ1ws(1), . . . , λKws(K)), for w ∈ RJ .

One then needs the following stronger condition on the initial data in order to show (3.13):

r−1
∑

0≤s≤W r
j (0)

|Dr
k(s)− λks| → 0 in probability as r →∞, (3.17)

for k ∈ C(j), j = 1, . . . , J . One can check that (3.16) follows from (3.17). Note that when

W̃ r(0) =⇒ 0 as r →∞, (3.18)

(3.16) and (3.17) are both automatically satisfied. In order to understand the following theorems,
the reader may find it useful to substitute (3.18) for (3.16) and (3.17).

We now state the main results of the paper, which consist of the following six heavy traffic
limit theorems. The first three theorems are for multiclass single station systems. The last three
theorems are for re-entrant lines.

Theorem 3.1 (FIFO single station). Assume that the service discipline is FIFO, and that J =
1. Assume (3.4), and let the K × 1 matrix ∆ = (∆1, . . . ,∆K)′ be given by ∆k = λk. Assume
further that (3.5), (3.15) and (3.17) all hold. Then, the heavy traffic limit (3.13) holds with lifting
matrix ∆.

A heavy traffic limit for FIFO single station systems was first proved by Reiman [45], for
W ∗(0) = 0, under the additional assumption that jobs can make at most a pre-specified number
of visits to each class before leaving the station. This assumption does not allow the feedback to

10



be Markovian. Dai and Kurtz [17] provided a simpler proof in the more general Markov setting.
They, too, considered zero initial data.

It is known that the network version of Theorem 3.1, with more than one station, does not hold;
see Dai and Wang [21], Whitt [50] and Dai and Nguyen [18]. A sequence of networks satisfying
(3.4) is said to be asymptotically of Kelly type if mk = m` whenever s(k) = s(`). Bramson [7]
and Williams [52] showed that the heavy traffic limit theorem holds for FIFO networks which are
asymptotically of Kelly type.

Theorem 3.2 (GHLPPS single station). Assume that the service discipline is GHLPPS with
weight vector β = (β1, . . . , βK), and that J = 1. Assume (3.4), and let the K × 1 matrix ∆ =
(∆1, . . . ,∆K)′ be given by

∆k =
(λkmk/βk)∑K
`=1(λ`m2

`/β`)
.

Assume further that (3.5), (3.15) and (3.16) all hold. Then, the heavy traffic limit (3.13) holds
with lifting matrix ∆.

When the weight vector β = (1, . . . , 1), the GHLPPS discipline reduces to the HLPPS discipline.
Bramson [7] and Williams [52] showed that the heavy traffic limit holds for HLPPS networks. For
a general weight vector β, it is not difficult to show that the network version of Theorem 3.2 does
not hold.

Theorem 3.3 (Static buffer priority single station). Assume that the service discipline is SBP,
and that J = 1. Assume (3.4), and let the K×1 matrix ∆ = (∆1, . . . ,∆K)′ be given by ∆k = 1/mk

if k is the lowest priority class at the station and 0 otherwise. Assume further that (3.5), (3.15)
and (3.16) all hold. Then, the heavy traffic limit (3.13) holds with lifting matrix ∆.

Whitt [48] showed the limit theorem when the station has no feedback, i.e., every job visits the
station exactly once before leaving the system.

Our next two theorems are for FBFS and LBFS re-entrant lines.

Theorem 3.4 (FBFS re-entrant line). Consider a re-entrant line with the FBFS service disci-
pline. Assume (3.4), and let the K×J matrix ∆ be given by ∆kj = 1/mk if k is the lowest priority
class at station j and 0 otherwise. Assume further that (3.5), (3.15) and (3.16) all hold. Then, the
heavy traffic limit (3.13) holds with lifting matrix ∆.

Theorem 3.5 (LBFS re-entrant line). Consider a re-entrant line with the LBFS service disci-
pline. Assume (3.4), and let the K×J matrix ∆ be given by ∆kj = 1/mk if k is the lowest priority
class at station j and 0 otherwise. Assume further that (3.5), (3.15) and (3.16) all hold. Then, the
heavy traffic limit (3.13) holds with lifting matrix ∆.

When the service discipline is FBFS, Chen and Zhang [11] proved the heavy traffic limit the-
orem under (3.18). Therefore, Theorem 3.4 is not new (except for the more general initial data).
Nevertheless, it is a good illustration of the framework developed in Bramson [7] and Williams
[52] for proving heavy traffic limit theorems; it is, in particular, much shorter than a proof “from
scratch.”

Finally, consider the 2-station, 5-class re-entrant line pictured in Figure 1. We assume that the
service discipline there is the SBP discipline

{(5, 3, 1), (2, 4)}, (3.19)

that gives the highest priority to class 5, the next priority to class 3 and the lowest priority to class
1 at station 1; and the highest priority to class 2, and the lowest priority to class 4 at station 2.

11
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Figure 1: A 2-station, 5-class priority network

Theorem 3.6 (A 2-station, 5-class priority network). Consider the 2-station, 5-class prior-
ity network in Figure 1, with priority ranking given in (3.19). Assume (3.4), and let the 5 × 2
matrix ∆ be given by

∆ =


1/m1 0

0 0
0 0
0 1/m4

0 0

 . (3.20)

Assume further that (3.5), (3.15) and (3.16) all hold, and that

α1(m2 +m5) < 1 . (3.21)

Then, the heavy traffic limit (3.13) holds with lifting matrix ∆.

The above network has certain interesting properties which will be discussed in Section 8. In
addition to the proof of Theorem 3.6, a partial converse, Theorem 8.1, will be given there.

A number of assumptions in the preceding theorems can be relaxed. The i.i.d. assumptions on
the primitive increments u, v, and φ in (2.1), that were used in Theorems 3.1- 3.6, can be replaced,
in Theorems 3.1-3.4 and 3.6, by the assumption that the functional central limit theorem holds for
each of the primitive processes E, V , and Φ. The i.i.d. assumption employed in our theorems allows
us to quote results from Williams [52]. In proving heavy traffic convergence, Williams employed
this assumption to show that each limit process is an SRBM having the martingale property given
in (iv) of Definition 3.1, and hence that the process is unique in distribution. When the uniqueness
is guaranteed through other means, e.g., the reflection matrix R in Definition 3.1 is of the type
given in Harrison and Reiman [29], the i.i.d. assumption can be relaxed to a functional central limit
theorem assumption for E, V and Φ. When J = 1, R is of the type given in Harrison and Reiman
[29]. For a FBFS re-entrant line, R is of upper triangular form, and so is also of Harrison and
Reiman type. For a LBFS re-entrant line, R is not of Harrison and Reiman type, and the i.i.d.
assumption is needed for the proof in this case. (For the last observation, see the appendix of Dai,
Yeh and Zhou [23].)

Bramson [6] and Williams [53] considered more general initial data than that assumed in Sec-
tion 3.3. They allowed the service times and routing vectors for the initial jobs to have distributions
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that are different from those for the jobs arriving at the network after time 0. They also allowed
the residual external interarrival time for the first job arriving at each class k after time 0 and the
residual service time for the first job in class k to depend on each other, and on the other parts of
the initial data. To keep the exposition simple, we employ our more restrictive assumptions.

For our sequence of queueing networks in (3.13), we employed the same primitive increments u,
v and φ, for each r, to construct the interarrival times, service times and routing vectors. In a more
general setting, these three variables are given by triangular arrays of random variables, where
the underlying u, v and φ may vary. Heavy traffic limit theorems under this more general setup
show that the approximations given by (3.13) are robust under perturbations of the interarrival,
service and routing vectors. The purpose of the present setup is to keep the notation simple. Since
Bramson [6] and Williams [53] use the framework of triangular arrays, all of the theorems in this
paper can be generalized straightforwardly to that setting.

4 Queueing network and fluid model equations

In this section, we write down systems of equations for the queueing networks of interest to us. We
also introduce fluid models, which are the continuous, deterministic analogs of queueing networks;
their fluid model equations are the analogs of the queueing network equations.

4.1 Queueing network equations

We consider a sequence of queueing networks indexed by r, with performance processes Zr, Dr,
W r, Y r defined as in Section 3.1. To describe the dynamics of the queueing network, we introduce
two additional K-dimensional processes, Ar = {Ar(t), t ≥ 0} and T r = {T r(t), t ≥ 0}, where Ark(t)
denotes the total number of arrivals, over [0, t], at class k (including both external and internal
arrivals), and T rk (t) denotes the amount of time that server s(k) has spent serving class k jobs over
[0, t]. One can check that Ar, Dr, T r, W r, Y r, and Zr satisfy the queueing network equations

Ar(t) = Er(t) +
∑
k

Φk (Dr
k(t)) , (4.1)

Zr(t) = Zr(0) +Ar(t)−Dr(t), (4.2)
W r(t) = CV r(Ar(t) + Zr(0))− CT r(t), (4.3)
CT r(t) + Y r(t) = et, (4.4)
Y r
j (t) can increase only at times t where W r

j (t) = 0, j = 1, . . . , J, (4.5)

for all t ≥ 0. Here, C is the constituency matrix defined in (3.3), e denotes the J-vector of all 1’s,
Erk(t) = Ek(αrkt) and V r

k (n) = mr
kVk(n). We note that T r and Y r are continuous in t, and that Ar,

Dr, W r, and Zr are right continuous with left limits. All of the variables are nonnegative in each
component, with Ar, Dr, T r and Y r being nondecreasing. By assumption, one has

Ar(0) = Dr(0) = T r(0) = 0 and Y r(0) = 0. (4.6)

In (4.5), we mean that Y r
j (t2) > Y r

j (t1) implies W r
j (t) = 0 for some t ∈ [t1, t2], which reflects the

non-idling property. Since Y r is continuous, this can also be written as∫ ∞
0

W r
j (t)dY r

j (t) = 0, j = 1, . . . , J. (4.7)
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All queueing networks that we will be working with are HL networks, which were introduced in
Section 2. For such networks, one has

V r(D(t)) ≤ T r(t) ≤ V r(Dr(t) + e) (4.8)

in addition to (4.1)-(4.5), where the inequalities are componentwise and e denotes the K-vector of
all 1’s.

From our perspective, the 6-tuple

X
r(t) = (Ar(t), Dr(t), T r(t),W r(t), Y r(t), Zr(t)), t ≥ 0, (4.9)

will contain all of the essential information on the evolution of the system. As in Bramson [7], we
refer to Xr as the queueing network process for the queueing network, or, in the HL setting, as the
HL queueing network process. The above equations do not specify the discipline of the queueing
network. Below, we give the appropriate equations for the FIFO, GHLPPS and SBP disciplines.

FIFO queueing networks

We recall that for FIFO queueing networks, jobs are served in the order of their arrival at each
station. This property can be written as

Dr
k(t+W r

j (t)) = Zrk(0) +Ark(t), k = 1, . . . ,K, (4.10)

for all t ≥ 0. Together, (4.1)-(4.5), (4.8) and (4.10) form the FIFO queueing network equations; the
corresponding 6-tuple Xr will be referred to as a FIFO queueing network process. One can check
that these equations, together with the values taken by (E, V,Φ, αr,mr) and{

Dr
k(t), for t ≤W r

j (0), k = 1, . . . ,K
}
, (4.11)

determine Xr(t), for all t ≥ 0. (One also needs to specify an ordering among classes to take care of
possible ties among arrivals of customers at different classes.) Thus, the quantity in (4.11) serves
the role of the initial data for these equations.

GHLPPS networks

Under a GHLPPS discipline with weight vector β = (β`), all nonempty classes present at a station
are served simultaneously, with the fraction of time spent serving a class, say k, being proportional
to βk times the number of jobs in the class. All service goes into the first job of each class to arrive
at the station, with the job departing from the station when the service requirement is attained.

The GHLPPS property can be written as

T r(t) =
∫ t

0
Zr,β(s)ds (4.12)

for all t ≥ 0, where

Zr,βk (s) =

{
βkZ

r
k(s)/

∑
`∈C(j) β`Z

r
` (s) if

∑
`∈C(j) β`Z

r
` (s) > 0,

0 otherwise.
(4.13)

The term Zr,βk (s) is the proportion of effort devoted by the server s(k) to the class k at time
s. Together, (4.1)-(4.5), (4.8) and (4.12) form the GHLPPS queueing network equations; the
corresponding 6-tuple Xr will be referred to as a GHLPPS queueing network process. The equations,
together with the values taken by (E, V,Φ, αr,mr) and Zr(0), determine Xr(t) for all t ≥ 0; Zr(0)
serves the role of the initial data for these equations.
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SBP networks

Under an SBP discipline, classes at each station are assigned a fixed ranking, with jobs from higher
ranking classes being served first. For each class k, we denote by Zr,+k (t) the total number of jobs
present in classes whose priorities are at least as great as k, and by T r,+k (t) the cumulative time
that server s(k) has spent on classes whose priorities are at least as great as k. Since the discipline
is assumed to be preemptive resume, the SBP property is given by

t− T r,+k (t) can increase only at times t where Zr,+k (t) = 0, k = 1, . . . ,K, (4.14)

for all t ≥ 0. (In this setting, (4.5) is redundant, since it is equivalent to (4.14) when k is the lowest
ranked class at its station.) As in (4.7), one can instead write this as∫ ∞

0
Zr,+k (t)d

(
t− T r,+k (t)

)
= 0, k = 1, . . . ,K. (4.15)

Together, (4.1)-(4.5), (4.8) and (4.15) form the SBP queueing network equations; the corresponding
6-tuple Xr will be referred to as an SBP queueing network process. These equations, together with
the values taken by (E, V,Φ, αr,mr) and Zr(0), determine Xr(t) for all t ≥ 0; Zr(0) therefore serves
the role of the initial data for these equations.

4.2 Fluid model equations

The formal deterministic analog of a queueing network process has components which satisfy the
equations

A(t) = αt+ P ′D(t), (4.16)
Z(t) = Z(0) +A(t)−D(t), (4.17)
W (t) = CM(A(t) + Z(0))− CT (t), (4.18)
CT (t) + Y (t) = et, (4.19)
Yj(t) can increase only at times t where Wj(t) = 0, j = 1, . . . , J, (4.20)

for all t ≥ 0. The analog of (4.8) is given by

T (t) = MD(t). (4.21)

Here, α = (α1, . . . , αK)′ is assumed to have nonnegative components, M = diag(m), where m =
(m1, . . . , ,mK)′ has positive components, and P is a subprobability transition matrix.

The equations in the displays (4.16)-(4.20) are known as fluid model equations; their solutions,
written as

X(t) = (A(t), D(t), T (t),W (t), Y (t), Z(t)), t ≥ 0,

will be referred to as fluid model solutions. When (4.21) is included with (4.16)-(4.20), we refer
to the corresponding quantities as HL fluid model equations and HL fluid model solutions. When
convenient, we will employ the same vocabulary for the fluid model analogs of queueing network
quantities, such as the workload W .

We will be interested in HL fluid model solutions for which α = limr→∞ α
r and m = limr→∞m

r,
where αr, mr and P are the means of sequences of queueing network processes as in (4.1)-(4.5) and
(4.8). One formally obtains (4.16)-(4.21) from (4.1)-(4.5) and (4.8) by scaling both time and the
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weight of the individual jobs by r, and applying the law of large numbers to Er(·), V r(·) and Φ(·)
in (4.1), (4.3) and (4.8).

We will assume that all of the components of X are continuous and nonnegative, with A, D, T ,
and Y being nondecreasing. One can check that

A(0) = D(0) = T (0) = 0 and Y (0) = 0

all follow from (4.16)-(4.20), and that

W (t) = CMZ(t), for all t ≥ 0, (4.22)

follows from (4.17), (4.18) and (4.21). Using (4.16)-(4.21), it is easy to show that each component
of X is Lipschitz continuous. That is, for some N > 0 (depending on (α,m,P )),

|f(t2)− f(t1)| ≤ N |t2 − t1| for all t1, t2 ≥ 0,

if f is any of the above functions. (When dealing with vectors, we always employ the max norm,
although this is a matter of convenience.) In particular, each component of X is absolutely con-
tinuous, and hence differentiable almost everywhere with respect to Lebesgue measure on [0,∞).
A time t > 0 is said to be a regular point for the fluid model solution X if X is differentiable at
this time. Whenever we employ the derivative of a component of X at a time t, we will implicitly
assume that t is a regular point. We use ḟ(t) to denote the derivative of a function f at t.

For each service discipline, there are additional equations for X to satisfy. Such equations will
be similar to those specifying the discipline of the corresponding queueing network process. Fluid
model solutions need not be unique, even though their queueing network counterparts determine
the evolution of the corresponding queueing network uniquely. This is, for example, the case for
the fluid model that corresponds to the well known Lu-Kumar network in [40]. (Dai and Weiss
[22, Section 5] presented a divergent fluid solution with Z(0) = 0; another solution is given by
Z(·) ≡ 0.)

The FIFO fluid model equations consist of (4.16)-(4.21), together with

Dk(t+Wj(t)) = Zk(0) +Ak(t), k = 1, . . . ,K, (4.23)

for all t ≥ 0. The initial data are given by

{Dk(t), for t ≤Wj(0), k = 1, . . . ,K} . (4.24)

These last two conditions are the analogs of (4.10) and (4.11). By (4.19)-(4.21),∑
k∈C(j)

mkDk(t) = 1 for t ≤Wj(0),

which serves as a consistency condition on the initial data.
The GHLPPS fluid model equations consist of (4.16)-(4.21), together with

Ṫk(t) = Zβk (t) for
∑
`∈C(j)

β`Z`(t) > 0, k = 1, . . . ,K, (4.25)

where
Zβk (t) =

βkZk(t)∑
`∈C(j) β`Z`(t)

for
∑
`∈C(j)

β`Z`(t) > 0.
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The equality (4.25) states that when a station j is nonempty, the server allocation rates Ṫk(t) exist
and are proportional to the weighted fluid level of each class k. (When a station is empty, Ṫk(t)
may still be positive, and so (4.12) need not hold for the fluid model.) Here, Z(0) serves the role
of the initial data for the GHLPPS fluid model equations.

The SBP fluid model equations consist of (4.16)-(4.21), together with

Ṫ+
k (t) = 1 when Z+

k (t) > 0, k = 1, . . . ,K, (4.26)

for all regular values of t. (In this setting, (4.20) is redundant, since it is equivalent to (4.26) when
k is the lowest ranked class at its station.) The corresponding 6-tuples X are the SBP fluid model
solutions. Here, Z(0) serves the role of the initial data for these equations.

5 Heavy traffic limits and uniform convergence of fluid models

Consider a sequence of queueing networks that satisfies (3.4) and (3.5), and has FIFO, GHLPPS
or SBP service discipline. One can then define the corresponding fluid model, with parame-
ters α = limr→∞ α

r, m = limr→∞m
r and P , as in Section 4.2. Each fluid model solution

X = (A,D, T,W, Y, Z) satisfies the fluid equations (4.16)-(4.21), and additional equations that
are specific to the service discipline.

In this section, we provide criteria under which heavy traffic limits hold for such sequences of
networks, based on the behavior of the corresponding fluid models and their reflection matrices.
These results are modifications of results in Bramson [7] and Williams [52]. To state the conditions
on the fluid models succinctly, we introduce the following terminology.

Definition 5.1. Let ∆ be a K × J nonnegative matrix. A fluid model is said to be uniformly
convergent with lifting matrix ∆ if there exists a function h : R+ → R+, with h(t)→ 0 as t→∞,
such that for each fluid model solution X with |Z(0)| = 1,

|Z(t)− Z(∞)| ≤ h(t) for all t ≥ 0, (5.1)

for some Z(∞) ∈ RK+ satisfying

Z(∞) = ∆w for some w ∈ RJ+. (5.2)

Condition (5.1) requires that all fluid model solutions, with |Z(0)| = 1, converge uniformly
quickly to limits satisfying (5.2). (Recall that fluid model solutions need not be unique.) The next
two lemmas state that for critical FIFO, GHLPPS and SBP networks, two additional properties
automatically follow. These results will be used for Theorems 5.1-5.3. They may be skipped by
readers not concerned with the proofs of the theorems. As in Section 3.6, the following K × J
lifting matrices ∆ are assigned to each of the disciplines: for FIFO,

∆kj =

{
λk if j = s(k),
0 otherwise,

(5.3)

for GHLPPS,

∆kj =
λkmk/βk∑

`∈C(j) λ`m
2
`/β`

, (5.4)
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and for SBP,

∆kj =

{
1/mk if k is the lowest priority class at station j,

0 otherwise.
(5.5)

Lemma 5.1. Assume that a fluid model operates under a FIFO, GHLPPS or SBP discipline,
and is uniformly convergent. Then, (5.1) and (5.2) also hold for each fluid model solution with
|Z(0)| ≤ 1.

Lemma 5.2. Assume that a fluid model operates under a GHLPPS or SBP discipline, and is
uniformly convergent. For each fluid model solution with Z(0) = ∆w for some w ∈ RJ+, one has
Z(t) = Z(0) for t ≥ 0. Assume that a fluid model operates under the FIFO discipline and is
uniformly convergent. For each fluid model solution with Dk(t) = λkt for 0 ≤ t ≤ Wj(0), one has
Z(t) = Z(0) for all t ≥ 0.

Lemma 5.1 states that (5.1)-(5.2) remain valid under |Z(0)| ≤ 1, if they are satisfied under
|Z(0)| = 1. Lemma 5.2 states that, for the GHLPPS and SBP disciplines Z(t) = Z(0) for all t
if Z(0) = ∆w; for FIFO, the same conclusion holds if one instead assumes that Dk(t) = λkt for
0 ≤ t ≤ Wj(0). This shows that bifurcation from these initial states cannot occur. Lemmas 5.1
and 5.2 are proved at the end of the section. The reasoning is elementary in each case.

In this paper, we will use the following heavy traffic limit results for sequences of networks
with the FIFO, GHLPPS and SBP disciplines. In each case, the two main conditions are that the
fluid model corresponding to sequences of queueing networks, with the limits (3.4), be uniformly
convergent, and that the reflection matrix R given in (3.10) exist and be completely-S.

Theorem 5.1 (FIFO networks). Assume that the service discipline of a sequence of queueing
networks is FIFO, and that ∆ is given by (5.3). Assume that (3.4), (3.5), (3.15) and (3.17) hold.
If (i) the corresponding FIFO fluid model is uniformly convergent with lifting matrix ∆ and (ii) the
matrix R in (3.10) is completely-S, then the heavy traffic limit holds with lifting matrix ∆.

Theorem 5.2 (GHLPPS networks). Assume that the service discipline of a sequence of queue-
ing networks is GHLPPS with weight vector β = (β1, . . . , βK), and that ∆ is given by (5.4). Assume
that (3.4), (3.5), (3.15) and (3.16) hold. If (i) the corresponding GHLPPS fluid model is uniformly
convergent with lifting matrix ∆ and (ii) the matrix R in (3.10) is completely-S, then the heavy
traffic limit holds with lifting matrix ∆.

Theorem 5.3 (SBP networks). Assume that the service discipline of a sequence of queueing
networks is SBP, and that ∆ is given by (5.5). Assume that (3.4), (3.5), (3.15) and (3.16) all hold.
If (i) the corresponding SBP fluid model is uniformly convergent with lifting matrix ∆ and (ii) the
matrix R in (3.10) is completely-S, then the heavy traffic limit holds with lifting matrix ∆.

The proofs of Theorems 5.1-5.3 are similar, and all follow from the reasoning employed in
Bramson [7] and Williams [52] for related networks. We provide a brief summary here.

Since the FIFO, GHLPPS and SBP disciplines are all HL, it suffices to check that the conditions
of Theorem 7.1 in Williams [52] are satisfied in each case. Most of the assumptions in Theorem 7.1
are automatically satisfied, because our construction of each sequence of networks is in terms of the
same primitive increments u and v, which have finite second moments, and because of the initial
conditions given in the first paragraph of Section 3.3 and the assumptions (3.4), (3.5) and (3.15) on
αr, mr and Ŵ r(0). Two further conditions in Theorem 7.1 remain to be verified for each discipline,
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namely that (a) the matrix R in (3.10) exists and is completely-S, and that (b) multiplicative state
space collapse (MSSC) occurs for the sequence Xr. The latter condition means that, for each t ≥ 0,

‖Ẑr(·)−∆Ŵ r(·)‖t
‖Ŵ r(·)‖t ∨ 1

→ 1 in probability (5.6)

as r →∞, where ‖ · ‖t denotes the sup norm on [0, t] and a ∨ b = max(a, b). We explicitly assume
(a) in part (ii) of each of Theorems 5.1-5.3. So, in order to demonstrate the heavy traffic limits
in each of these theorems, it remains to demonstrate MSSC in each case. The condition, (3.16) is
needed for the GHLPPS and SBP disciplines, and (3.17) is needed for FIFO.

MSSC for SBP networks, in Theorem 5.3, follows immediately from Theorem 4 of Bramson [7],
where the results are phrased slightly differently. There, uniform convergence of the fluid model
and the resulting properties in Lemmas 5.1 and 5.2 are all assumed. The current approach is more
efficient, since the properties given in the lemmas follow automatically because of the discipline.

In order to demonstrate MSSC for the FIFO and GHLPPS networks given in Theorems 5.1 and
5.2, one needs to modify slightly the proofs of Theorems 1 and 1′ of Bramson [7]. In Theorem 1, the
FIFO networks are assumed to satisfy the additional condition that mk = m` for s(k) = s(`) (that
is, the sequence Xr is asymptotically of Kelly type), in place of uniform convergence. For these
networks, the conclusion of Proposition 6.3, in Bramson [7], contains a stronger version of uniform
convergence and the conclusions of Lemmas 5.1 and 5.2. As mentioned on page 134 of Bramson [7],
Proposition 6.3 is the only place in the proof of Theorem 1 where this condition is used. Assuming
uniform convergence instead, one can show MSSC by closely following the same steps. The only
other difference, in the two arguments, is that multiplicative strong state space collapse, in addition
to MSSC, is demonstrated in Theorem 1. In order to demonstrate this stronger variant of MSSC,
one employs a suitable norm on Xr rather than working directly with Zr. As a result, the proof
simplifies slightly, when instead demonstrating MSSC for Theorem 5.1.

MSSC for HLPPS networks is demonstrated in Theorem 1′. The analog of Proposition 6.3,
Proposition 7.2, holds for such networks, and is applied in the same manner. Upon replacing the
proposition with the assumption of uniform convergence, the same proof shows that MSSC holds
for the sequences of GHLPPS networks given in Theorem 5.2. Since the proof of Theorem 1′ already
deals with Zr rather than Xr, the changes required in the preceding paragraph, for replacing Xr by
Zr for FIFO networks, are not needed here. The summary provided at the beginning of Section 7
of Bramson [7], for adapting the proof of Theorem 1 to that of Theorem 1′, can be used as a guide
for demonstrating MSSC for GHLPPS networks.

Checking the uniform convergence of a fluid model may involve entropy arguments (for FIFO
networks of Kelly type and HLPPS networks), comparisons with Markov chains (for single station
FIFO and GHLPPS networks) and piecewise linear Lyapunov functions (for SBP networks). The
completely-S property can always be checked, at least numerically, because of the linear algebra
involved. For single station networks, the completely-S property becomes trivial, since R reduces
to a positive scalar.

We now return to the proofs of Lemmas 5.1 and 5.2. Instead of demonstrating Lemma 5.1, it is
natural to work in a more general setting. For a given fluid model solution X(·) and c > 0, we set

X
c(t) = (A(t+ c)−A(c), D(t+ c)−D(c), T (t+ c)− T (c),W (t+ c), Y (t+ c)− Y (c), Z(t+ c)) ,

for t ≥ 0; Xc(·) corresponds to restarting X(·) at time c.

Definition 5.2. A fluid model is said to be shift invariant if for each fluid model solution X(·),
X
c(·) is also a fluid model solution for each c > 0. A fluid model is said to be scale invariant if for

each fluid model solution X(·), c−1
X(c·) is also a fluid model solution for each c > 0.
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Plugging into the fluid model equations (4.16)-(4.21), (4.23), (4.25) and (4.26), it is not difficult
to check that FIFO, GHLPPS and SBP fluid models are all shift and scale invariant. So, Lemma 5.1
is included in the following result.

Lemma 5.3. Assume that a fluid model is shift and scale invariant, and assume that there exists
a function h : R+ → R+, with h(t) → 0 as t → ∞, such that (5.1) and (5.2) hold for each fluid
model solution X(·) with |Z(0)| = 1. Then (5.1) and (5.2) also hold for each fluid model solution
X(·) with |Z(0)| ≤ 1.

Proof. We may assume without loss of generality that h is bounded and nonincreasing. For example,
letting h̃ denote the original choice of h, one may set h(t) = supt′≥t h̃(t′) ∧M for large enough M ,
since Z(·) is Lipschitz, where a ∧ b = min(a, b).

We first show that, for any fluid model solution X(·),

Z(0) = 0 implies Z(t) = 0 for all t ≥ 0. (5.7)

Assume, on the contrary, that |Z(t1)| = c > 0 for some t1 > 0. Then, by the continuity of Z(·), for
any M > 1, there exists t0 ∈ (0, t1), so that |Z(t0)| = c/M . Set X̃(t) = M

c X
t0
(
c
M t
)
, t ≥ 0. By the

shift and scale invariance of the fluid model, X̃(·) is also a solution; it clearly satisfies |Z̃(0)| = 1.
But,

∣∣∣Z̃ (Mc (t1 − t0)
)∣∣∣ = M

c |Z(t1)| = M ; since M is arbitrary, this contradicts (5.1). So, (5.7)
holds.

Because of (5.7), it suffices to consider |Z(0)| ∈ (0, 1], in order to demonstrate the lemma.
Setting c = |Z(0)|, it follows that X̃(·) = c−1

X(c·) is a fluid model solution with |Z̃(0)| = 1. So, by
assumption, |Z̃(t) − Z̃(∞)| ≤ h(t) for t ≥ 0, where Z̃(∞) = ∆w̃ for some w̃ ∈ RJ+. Equivalently,
|Z(ct)− Z(∞)| ≤ ch(t) for t ≥ 0, where Z(∞) = ∆(cw̃). Therefore,

|Z(t)− Z(∞)| ≤ ch(c−1t) ≤ h(t),

as desired.

The demonstration of Lemma 5.2 also employs the shift invariance of the FIFO, GHLPPS and
SBP disciplines.

Proof of Lemma 5.2. It suffices to show in all three cases, that for each c > 0, there exists a fluid
model solution X̃(·), with |Z̃(0)| ≤ 1 and X(·) = X̃

c(·). Then, by Lemma 5.1,

|Z(t)− Z̃(∞)| = |Z̃(t+ c)− Z̃(∞)| ≤ h(c)

for appropriate Z̃(∞) and any t ≥ 0, where h(c)→ 0 as c→∞, and h(·) does not depend on Z̃(·).
Consequently, Z(t) is constant.

We construct X̃(·) by shifting X(·) by −c, and defining X̃(·) over [0, c] to be X̂(·), the invariant
fluid model solution with Ẑ(t) = Z(0) and D̂(t) = λt for all t. Over t ≥ c, this means that

Ã(t) = Â(c) +A(t− c), D̃(t) = D̂(c) +D(t− c),
T̃ (t) = T̂ (c) + T (t− c), Ỹ (t) = Ŷ (c) + Y (t− c),
W̃ (t) = W (t− c), Z̃(t) = Z(t− c).

It is not difficult to see that X̃(·) always satisfies the fluid model equations (4.16)-(4.21), and,
when the discipline is GHLPPS or SBP, either (4.25) or (4.26) holds. In particular, X̃(·) is a fluid
model solution for the GHLPPS and SBP disciplines. Using the assumption that Dk(t) = λkt for
0 ≤ t ≤ Wj(0), one can check that X̃(·) also satisfies (4.23) when X(·) and X̂(·) are FIFO. (The
behavior of X̃(·) on the time interval [c, c+Wj(c)] requires a little work.) So, X̃(·) is, in this case,
a fluid model solution for the FIFO discipline.
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6 Proofs of Theorems 3.1, 3.2 and 3.3

In this section, we prove Theorems 3.1-3.3, which are the heavy traffic limits for single station
systems operating under the FIFO, GHLPPS and SBP disciplines. Since J = 1, the matrix R
defined in (3.10) reduces to a scalar. One can check that it is always positive, and hence that R
is completely-S. Therefore, by Theorems 5.1-5.3, to prove Theorems 3.1-3.3, it is enough to show
that each fluid model is uniformly convergent with the corresponding lifting matrix ∆, which is
specified, in (5.3)-(5.5), for each discipline. In our proofs, we drop the station index j, since there
is only one station in the system.

Before proceeding with the proofs of the theorems, we point out, in Lemma 6.1, that for all crit-
ically loaded one-station fluid models, the total workload CMQZ(t) is invariant. This observation
will be needed in the proofs of Theorems 3.1 and 3.3.

Lemma 6.1. For a one-station, critically loaded fluid model,

CMQ(Z(t)− Z(0)) = 0 (6.1)

holds for all solutions and all t.

Proof. By (4.16), (4.17) and the definition of Q,

CMQ(Z(t)− Z(0)) = tCMQα− CMD(t).

On account of (4.21) and the equalities, λ = Qα and CMλ = 1, this equals t− CT (t). By (4.19),
t ≥ CT (t) always holds, and so CMQZ(t) is nondecreasing.

Suppose now that CMQZ(t1) > 0 for some t1. Then, by the preceding paragraph, CMQZ(t) >
0 for all t ≥ t1. Since Z(t) 6= 0 implies thatW (t) > 0, it follows from (4.19) and (4.20), that t−CT (t)
remains constant on [t1,∞). So, CMQZ(t) is constant on [t1,∞). Since CMQZ(t) is continuous
in t and is always nonnegative, (6.1) follows from this.

The following corollary of Lemma 6.1 will be used in the proofs of Theorems 3.1 and 3.2. It
follows immediately from (6.1) and the inequalities

|Z(t1)|min
k
{mk} ≤ CMQZ(t1) = CMQZ(t2) ≤ K|(I − P ′)−1| |Z(t2)|max

k
{mk}

for t1, t2 ≥ 0, where | · | denotes the max norm for both vectors and matrices.

Corollary 6.1. For a one-station, critically loaded fluid model,

|Z(0)|/a ≤ |Z(t)| ≤ a|Z(0)|, t ≥ 0 (6.2)

for appropriate a > 0, depending only on M and P .

6.1 Proof of Theorem 3.1

In order to show that a critical one-station FIFO fluid model is uniformly convergent, we need to
show that for |Z(0)| = 1, Z(t) converges uniformly to a scalar multiple of λ. The reasoning consists
of four main steps. Let τ(s) = s + W (s), Z̄(t) = Λ−1Z(t) and B = Λ−1(αCM + P ′)Λ, where
Λ = diag(λ). We first show, in Step 1, that

Z̄(τ(s)) = BZ̄(s) for s ≥ 0. (6.3)
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In Step 2, we show that B is the transition matrix of an irreducible aperiodic K-state Markov
chain. Letting τn(s) denote the n-fold iterate of τ(s), it will then follow, as in Step 3, that
Z(τn(s)) converges to a multiple of λ as n→∞, where the convergence is uniform in s. In Step 4,
we conclude from this, that Z(t) converges to a multiple of λ as t→∞. This is the desired result.

Step 1. (6.3) holds.

Proof. Combining (4.16) and (4.17), we have

Z(s) = Z(0) + αs− (I − P ′)D(s), s ≥ 0.

Thus, for s ≥ 0,

Z(s+W (s)) = Z(0) + α(s+W (s))− (I − P ′)D(s+W (s)) (6.4)
= Z(0) + α(s+W (s))− (I − P ′)(Z(0) +A(s)) (6.5)
= αW (s) + P ′(Z(0) +A(s)) + αs−A(s)
= αW (s) + P ′(Z(0) +A(s)−D(s)) (6.6)
= (αCM + P ′)Z(s), (6.7)

where we have used the FIFO equation (4.23) in getting (6.5), (4.16) in getting (6.6), and (4.17)
and (4.22) in getting (6.7). Substitution of Z̄ = Λ−1Z and B = Λ−1(αCM + P ′)Λ above implies
(6.3).

Step 2. B is the transition matrix of an irreducible aperiodic K-state Markov chain.

Proof. Observe that each entry of B is nonnegative, and that the kth row of B is given by

αkλ
−1
k (λ1m1, . . . , λKmK) + λ−1

k (λ1P1k, . . . , λKPKk).

Therefore, the sum of the entries of the kth row of B is

αkλ
−1
k

K∑
`=1

λ`m` + λ−1
k

K∑
`=1

λ`P`k = αkλ
−1
k + λ−1

k (λk − αk) = 1,

where we have used equations (3.1) and (3.6). It follows that B is a stochastic matrix. We claim
that B is irreducible. Note that for any n ≥ 1, Bn = Λ−1(αCM + P ′)nΛ. Fix k. Since λk > 0, it
follows from λ = Qα that the kth component of (P ′)n−1α, which we denote by ck, is positive for
some n ≥ 1. Also,

(αCM + P ′)n ≥ (P ′)n−1αCM,

with the kth row of (P ′)n−1αCM being given by ck(m1, . . . ,mK), each component of which is
strictly positive. It follows that Bn

k` > 0 for appropriate n and all `. Consequently, B is irreducible.
We still need to show that B is aperiodic. This is a simple consequence of the observation that

αk > 0 for some k, and that the kth diagonal entry of αCM is given by αkmk, which is therefore
positive for this k.

By Step 2 and discrete time Markov chain theory,

Bn → Π as n→∞ (6.8)

for some matrix Π, where all rows of Π are identical, and the entries π1, . . . , πK are positive and
sum to 1. Set π(z) =

∑
k πkzk.

Step 3. Z(τn(s))→ λπ(Z̄(0)) as n→∞, where convergence is uniform over all s and initial data
|Z(0)| = 1.
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Proof. By Step 1 and (6.8),

Z(τn(s)) = ΛBnZ̄(s)→ ΛΠZ̄(s) as n→∞. (6.9)

To see the uniformity of the convergence in (6.9) over all s and initial data satisfying |Z(0)| = 1,
note that

|ΛBnZ̄(s)− ΛΠZ̄(s)| ≤ K|Λ| |Bn −Π| |Z̄(s)|. (6.10)

By Corollary 6.1, the right side of (6.10) is at most aK|Λ| |Λ−1| |Bn − Π|, which does not depend
on s or on Z(0), since |Z(0)| = 1 is assumed.

One can write ΛΠZ̄(s), on the right side of (6.9), as λπ(Z̄(s)), which is a scalar multiple of λ.
By Lemma 6.1, CMQZ(τn(s)) is constant, and so the limit, as n → ∞, does not depend on s. It
follows that π(Z̄(s)) = π(Z̄(0)) must always hold. This implies the claim.

Step 4. Z(t) → λπ(Z̄(0)) as t → ∞, where convergence is uniform over initial data satisfying
|Z(0)| = 1.

Proof. By the upper bound in (6.2), |Z(s)|, and hence τ(s)− s = W (s), remains bounded for all s.
It follows that

τn−1(s) < cn (6.11)

for appropriate c, and all n ≥ 1 and s ∈ [0, τ(0)). Also, note that since W (s) is continuous in
s, so is τ(s). Hence, for every t ∈ [τn

′
(0), τn

′+1(0)), there exists an s ∈ [0, τ(0)) with t = τn
′
(s).

Setting τ∞(0) = limn→∞ τ
n(0), one has, in particular, that for t ∈ [cn, τ∞(0)), t = τn

′
(s) for some

s ∈ [0, τ(0)) and n′ ≥ n.
The last observation, together with Step 3, implies that

sup
t∈[cn,τ∞(0))

|Z(t)− λπ(Z̄(0))| → 0 as n→∞ (6.12)

uniformly over initial data satisfying |Z(0)| = 1. It follows from the lower bound in (6.2), that
τn(0) ≥ n/c, for appropriate c > 0. So τ∞(0) = ∞. Together with (6.12), this implies the
claim.

This concludes the proof of Theorem 3.1.

6.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is similar to that of Theorem 3.1, but simpler, since one can use Ż(t),
rather than iterate Z(s+W (s)). In order to show that a critical one-station GHLPPS fluid model
is uniformly convergent, we need to show that for |Z(0)| = 1, Z(t) converges uniformly to a scalar
multiple of (λm1/β1, . . . , λKmK/βK).

By the lower bound in (6.2), Z(t) 6= 0 for all t. Applying (4.16) and (4.17), and then (4.21) and
(4.25), one obtains

Ż`(t) = α` +
K∑
k=1

Pk`Ḋk(t)− Ḋ`(t)

=
1

|Z(t)|β

(
α`|Z(t)|β +

K∑
k=1

Pk`βkZk(t)/mk − β`Z`(t)/m`

)
, (6.13)
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where |Z(t)|β =
∑

k βkZk(t). Let Z̄k(t) = βkZk(t)/(λkmk). Substituting into (6.13), one can check
that

˙̄Z`(t) =
β`

m`|Z(t)|β

(
K∑
k=1

(
α`λkmkλ

−1
` + λkPk`λ

−1
`

)
Z̄k(t)− Z̄`(t)

)
. (6.14)

Therefore,

˙̄Z(t) =
1

|Z(t)|β
GZ̄(t), (6.15)

where
G = diag(β1µ1, . . . , βKµK)(B − I) and B = Λ−1(αCM + P ′)Λ .

Solving (6.15) gives

Z̄(t) = exp
(
G

∫ t

0

1
|Z(s)|β

ds

)
Z̄(0). (6.16)

(Here, exp(H) = I + · · ·+Hn/n! + . . . .)
The matrix B was employed in the proof of Theorem 3.1. In Step 2, it was shown that B is the

transition matrix of an irreducible Markov chain. Consequently, G is the infinitesimal generator of a
continuous time Markov chain. On the other hand, by the lower bound in (6.2), |Z(t)|β is bounded
away from 0, uniformly for all fluid model solutions with |Z(0)| = 1. Hence,

∫ t
0 1/|Z(s)|β ds → ∞

uniformly as t→∞. It follows from continuous time Markov chain theory, that

exp
(
G

∫ t

0

1
|Z(s)|β

ds

)
→ Π as t→∞, (6.17)

where all rows of Π are identical, and convergence is uniform over |Z(0)| = 1.
Let π be a row of Π, and π(z) =

∑
k πkzk for z ∈ RK . From (6.16) and (6.17), we have

Z̄(t)→ eπ(Z̄(0)) as t→∞,

where e the K-vector of all 1’s. Therefore,

Z(t)→ (λ1m1/β1, . . . , λKmK/βK)′π(Z̄(0)) as t→∞,

with convergence being uniform over all fluid model solutions X satisfying |Z(0)| = 1. This demon-
strates Theorem 3.2.

6.3 Proof of Theorem 3.3

In order to show that a critical one-station priority fluid model is uniformly convergent, we need
to show that for |Z(0)| = 1, Z(t) converges uniformly to a scalar multiple of ∆, with ∆k = 1/mk if
k is the lowest priority class at the station and ∆k = 0 otherwise. The argument differs from those
of Theorems 3.1 and 3.2. We will show that fluid levels in non-lowest priority classes reach zero in
a finite time. We will then use Lemma 6.1 to conclude that the fluid level in the lowest priority
class remains constant after that time.

To show that the fluid levels of non-lowest priority classes reach zero, we construct a Lyapunov
function of the fluid levels for such classes. We introduce the following notation. Denote by K
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the class with lowest priority and by H = {1, . . . ,K − 1} the set of higher priority classes. Set
MH equal to the (K − 1)× (K − 1) diagonal matrix, with diagonal entries mk, k = 1, . . . ,K − 1.
Partition the transition matrix P according to

P =
(
PHH PHK
PKH PKK

)
,

where PHH is the (K − 1)× (K − 1) submatrix of P , with (k, `)th entry Pk`, PHK is the (K − 1)
column vector, with kth component PkK , and PKH is the (K − 1) row vector with kth component
PKk. For a vector y, (yH, yK)′ denotes the corresponding partition. Also, set QH = (I − P ′HH)−1

and e the (K − 1)-vector of all 1’s, and define

f(t) = eMHQHZH(t), (6.18)

which is the total workload for the modified network, which is obtained by removing fluid upon
arrival at K.

We wish to show that f(t) = 0 for t ≥ δ and appropriate δ ≥ 0. Using (4.16) and (4.17), one
has

ZH(t) = ZH(0) + αHt+ P ′KHDK(t)− (I − P ′HH)DH(t). (6.19)

Substitution of (6.19) into (6.18) implies that

ḟ(t) = eMHQHαH + eMHQHP
′
KHḊK(t)−

∑
k∈H

Ṫk(t). (6.20)

By the traffic equation (3.1), λH = αH + P ′H,HλH + P ′KHλK , and so

QHαH = λH −QHP ′KHλK ≤ λH .

Therefore,

eMHQHαH ≤ eMHλH =
∑
k∈H

λkmk = 1− λKmK . (6.21)

When f(t) > 0, then
∑

k∈H Zk(t) > 0, and hence ḊK(t) = 0 and
∑

k∈H Ṫk(t) = 1. Substitution of
this and the bound in (6.21) into (6.20) implies that ḟ(t) ≤ −λKmK whenever f(t) > 0. It follows
without difficulty, since f(·) is absolutely continuous, that f(t) = 0, and hence Zk(t) = 0, for k ∈ H
and t ≥ δ′ ≡ f(0)/(λKmK). By Lemma 6.1, the total workload for the entire network is constant,
and so ZK(t) = ZK(δ′) for t ≥ δ′. Set Z(∞) = (0, . . . , 0, ZK(δ′))′. Clearly, Z(t) = Z(∞) for t ≥ δ′.
By (6.18), with t = 0, δ ≡ sup|Z(0)|=1 δ

′ is finite. This demonstrates Theorem 3.3.

7 Proofs of Theorems 3.4 and 3.5

In this section, we prove Theorems 3.4 and 3.5, which are the heavy traffic limits for re-entrant
lines with FBFS and LBFS static buffer priorities. By Theorems 3.1 and 3.2 of Dai, Yeh and Zhou
[23], under either discipline, the matrix R given by (3.10) is completely-S. Using Theorem 5.3, it
therefore suffices to prove that the corresponding fluid models, in each case, are uniformly conver-
gent, with the lifting matrices given in Theorems 3.4 and 3.5. The proof of this for FBFS is quite
quick; the proof for LBFS is more involved.
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By (3.6), ρ = e automatically holds in both settings. We can assume without loss of generality
that α1 = 1; it then follows that

∑
k∈C(j)mk = 1 for each j. In the proofs, we enumerate the classes

according to the order of their appearance along the route of the re-entrant line. For a fluid model
solution X, we will find it convenient to set dk(t) = Ḋk(t), for the departure rate from a class k.
As mentioned in Section 4.2, because of the absolute continuity of X, we need only consider dk(t)
at t which are regular points of X.

Proof of Theorem 3.4. We use induction to prove that, for each k = 1, . . . ,K, there exists a tk ≥ 0
such that, for any fluid model solution X with |Z(0)| = 1, Z`(t) is constant on [tk,∞), for ` =
1, . . . , k. Furthermore, this value is zero if ` is not a lowest priority class, i.e., the last class to be
visited at some station. For the induction step, we assume that Z`(t) is constant on [tk−1,∞), for
` = 1, . . . , k − 1. We break the argument into two cases, depending on whether or not the class k
has lowest priority.

We note that for t ≥ tk−1, dk−1(t) = dk−2(t) = · · · = d1(t) = α1 = 1. Set Hk = {` ≤ k :
s(`) = s(k)}. If Zk(t) > 0, then, by the FBFS property,

∑
`∈Hk m`d`(t) = 1. So, for Zk(t) > 0 and

t ≥ tk−1,

dk(t) = µk

(
1−

∑
`∈Hk\{k}

m`

)
. (7.1)

Case (i). Class k is not a lowest priority class. In this case,
∑

`∈Hk m` < 1, and so

Żk(t) = dk−1(t)− dk(t) = 1− µk
(

1−
∑

`∈Hk\{k}

m`

)
< 0

whenever Zk(t) > 0 and t ≥ tk−1. Setting

t′k = tk−1 +
Zk(tk−1)

µk

(
1−

∑
`∈Hk\{k}m`

)
− 1

,

it follows that Zk(t) = 0 for t ≥ t′k. Since |Z(0)| = 1 and α1 = 1, one has Zk(t) ≤ |Z(t)| ≤ t+ 1 for
all t. So, we can choose tk ≥ tk−1 independently of the fluid solution X, with Zk(t) = 0 for t ≥ tk.

Case (ii). Class k is a lowest priority class. Since
∑

`∈Hk m` = 1, it follows from (7.1) that
dk(t) = 1, whenever Zk(t) > 0 and t ≥ tk−1. From this, it follows that Żk(t) = dk−1(t)− dk(t) = 0.
When Zk(t) = 0, Żk(t) = 0 holds. (Recall that t is a regular point of X.) It follows that Zk(t) is
constant on [tk−1,∞). So, we simply choose tk = tk−1 in this case.

Proof of Theorem 3.5. We use induction to prove that, for each k = 1, . . . ,K, there exists a tk ≥ 0
such that, for any fluid model solution X with |Z(0)| = 1, Z`(t) is constant on [tk,∞) for ` = k,
k+ 1, . . . ,K. Furthermore, this value is zero if ` is not a lowest priority class, i.e., the first class to
be visited at some station. For the induction step, we assume that Z`(t) is constant on [tk+1,∞),
for ` = k+ 1, k+ 2, . . . ,K. As before, we break the argument into two cases, depending on whether
or not the class k has lowest priority.

We first present some preliminaries. It will be convenient, for bookkeeping purposes, to append
an extra one-class station, denoted by k = 0, to the beginning of the network, with m0 = 1 and
Z0(0) = 1. Then, Z0(t) = 1 will always hold, and the evolution of X proceeds as before in the
remainder of the network. (For the new network, |Z(0)| = 2.) Set Gk = {` ≥ k : s(`) = s(k)} and
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Gh,k = {h ≤ ` < k : s(`) = s(h)}, for h, k = 0, 1 . . . ,K and h < k, and set m̄k =
∑

`∈Gk m`. Since
Z`(t) is assumed to be constant on [tk+1,∞), dk(t) = dk+1(t) = · · · = dK(t) for t ≥ tk+1. By the
fluid model equations (4.19) and (4.21),

∑
`∈C(j)m`d`(t) ≤ 1 always holds for each j. Consequently,

dk(t) ≤ 1/m̄k for t ≥ tk+1, (7.2)

and by the LBFS discipline,

dk(t) = 1/m̄k for t ≥ tk+1, whenever Zk(t) > 0. (7.3)

We will employ the functions fk(·) and gh,k(·), where

fk(t) =
∑
`≤k

Z`(t), gh,k(t) =
∑
`∈Gh,k

m`

∑
`<`′≤k

Z`′(t). (7.4)

One can check that

fk(t) = fk(0) + t−Dk(t), gh,k(t) = gh,k(0) +
∑
`∈Gh,k

m`(D`(t)−Dk(t)). (7.5)

The meaning of fk(·) is clear. The functions gh,k(·) are more difficult to motivate; the main point
is that, by (7.6), ġh,k(·) will have a fixed sign over the intervals of interest to us, in Cases (i) and
(ii) of the proof.

Lemma 7.1. Let X be a solution of the fluid model equations (4.16)-(4.21) and (4.26) for a re-
entrant line whose discipline is LBFS, with ρ = e. Assume that for given classes h and k, with
h < k, Z`(t) is constant on (u, v), for ` = k + 1, . . . ,K, and Zh(t) > 0 on (u, v). Then,

ġh,k(t) = 1− m̄hdk(t) on (u, v). (7.6)

Proof. By (7.5),
ġh,k(t) =

∑
`∈Gh,k

m`(d`(t)− dk(t)).

Since Z`(t), ` ≥ k + 1, is constant on (u, v), this equals∑
`∈Gh

m`(d`(t)− dk(t)) =
(∑
`∈Gh

m`d`(t)
)
− m̄hdk(t)

on (u, v). On (u, v), Zh(t) > 0, and hence
∑

`∈Ghm`d`(t) = 1. This implies (7.6).

We first consider the case where k is not a lowest priority class at a station. One then has
m̄k < 1.

Case (i). Class k is not a lowest priority class. We wish to show that for appropriate tk, not
depending on X, Zk(t) = 0 on [tk,∞). We do this in two steps. In Step 1, we show that for
appropriate t′k satisfying (7.7), Zk(t′k) = 0. In Step 2, we show that Zk(t) = 0 on [t′k,∞). Since the
bound in (7.7) is uniform over all X, tk can be chosen not to depend on X.

Step 1. For each fluid model solution X, there is a t′k satisfying Zk(t′k) = 0 and

t′k − tk+1 ∈ (0, (tk+1 + 2)/(1/m̄k − 1)]. (7.7)
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Proof. By (7.5), ḟk(t) = 1 − dk(t) for t ≥ 0. So, by (7.3), whenever t ≥ tk+1 and Zk(t) > 0,
ḟk(t) = 1− 1/m̄k < 0. Consequently, there exists a t′k satisfying fk(t′k) = 0, and hence Zk(t′k) = 0,
with

t′k − tk+1 ∈ (0, fk(tk+1)/(1/m̄k − 1)]. (7.8)

Since |Z(0)| = 2 and α1 = 1, fk(t) ≤ |Z(t)| ≤ t + 2 for all t. Together with (7.8), this implies
(7.7).

Step 2. Choose t′k as in Step 1. Then, Zk(t) = 0 for t ∈ [t′k,∞).

Proof. We assume the claim is not true, and that there exists an interval [a, b] ⊂ [t′k,∞) such that
Zk(a) = 0 and Zk(t) > 0 for t ∈ (a, b]. We will show that, depending on the sign of ġh,k(t) close to
a, this will result in a contradiction for either t < a or t > a.

Let h be the first class before k that is nonempty at time a, that is,

h = max{` < k : Z`(a) > 0}. (7.9)

(The class k = 0 ensures that the set is not empty.) By the continuity of Z(·), there is an interval
(u, v) ⊂ [tk+1, b], containing a, on which Zh(t) > 0. One always has gh,k(t) ≥ 0. By the choice of h
and [a, b], gh,k(a) = 0 and gh,k(t) > 0, for t ∈ (a, v] ⊂ (a, b], also hold.

Suppose now that m̄k ≤ m̄h. On (a, v), Zk(t) > 0, and so, by (7.3), dk(t) = 1/m̄k. Therefore, by
Lemma 7.1, ġh,k(t) = 1− m̄h/m̄k ≤ 0 on (a, v). This contradicts the last sentence of the previous
paragraph. Suppose instead that m̄k > m̄h. By (7.2), dk(t) ≤ 1/m̄k, and so by Lemma 7.1,
ġh,k(t) ≥ 1 − m̄h/m̄k > 0 on (u, a) ⊂ (u, v). This contradicts gh,k(a) = 0 and the nonnegativity
of gh,k(·). So, there exists no point a as specified at the beginning of the proof. This implies that
Zk(t) = 0 for t ∈ [t′k,∞).

We now consider the case where k is the lowest priority class at a station. One then has m̄k = 1.

Case (ii). Class k is a lowest priority class. We wish to show that for appropriate tk, not
depending on X, Zk(t) is constant on [tk,∞). This requires three steps. In Step 1, we show that
Zk(t) is nondecreasing on [tk+1,∞). Set

ε = min{1− m̄` : ` is not a lowest priority class};

then, ε > 0. In Step 2, we show that for appropriate t′k satisfying (7.11), Żk(t′k) < ε. Then, in
Step 3, we show that Zk(t) is constant on [t′k,∞). Since the bound in (7.11) is uniform over all X,
tk can be chosen not to depend on X. Steps 2 and 3 are the analogs of Steps 1 and 2 in Case (i).
The reasoning here is similar, except that there are more alternatives to be considered in Step 3.

Step 1. For each fluid model solution X, Zk(t) is nondecreasing on [tk+1,∞).

Proof. For a given t ∈ [tk+1,∞), set h = max{` < k : Z`(t) > 0}. Since Z`(t), ` ≥ k+1, is constant
on [tk+1,∞), one has d` = dk for ` ≥ k. Also, since Z`(t) = 0, and hence Ż`(t) = 0, for h < ` < k,
one has d`(t) = dk−1(t) for h ≤ ` ≤ k − 1. It therefore follows from (4.21) and the LBFS property,
that

dk−1(t)
∑
`∈Gh,k

m` + dk(t)
∑

`∈Gh\Gh,k

m` =
∑
`∈Gh

d`(t)m` = 1. (7.10)

Also,
∑

`∈Ghm` ≤ 1, and, by (7.2), dk(t) ≤ 1. So, by (7.10), dk−1(t) ≥ 1, and hence Żk(t) =
dk−1(t)− dk(t) ≥ 0. Since t ∈ [tk+1,∞) is arbitrary, this implies that Zk(t) is nondecreasing on the
set.
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Step 2. For each fluid model solution X, there is a regular point t′k, with Żk(t′k) < ε and

t′k − tk+1 ∈ (0, (tk+1 + 3)/ε]. (7.11)

Proof. Assume that, on the contrary, for a given w > tk+1, Żk(t) ≥ ε for all regular t ∈ (tk+1, w).
Then, fk(t) is constant over [tk+1, w], where fk(t) is given by (7.4). To see this, note that since
Zk(t) > 0 for t ∈ (tk+1, w), it follows from (7.3) that dk(t) = 1/m̄k = 1. Together with (7.5), this
implies fk(t) is constant on [tk+1, w].

It follows that Zk(w) ≤ fk(w) = fk(tk+1). Since Zk(w)−Zk(tk+1) ≥ ε(w− tk+1) also holds, we
have

w − tk+1 ≤ Zk(w)/ε ≤ fk(tk+1)/ε.

Consequently, there exists a regular t′k, with Żk(t′k) < ε and

t′k − tk+1 ∈ (0, fk(tk+1)/ε+ 1].

Since fk(tk+1) ≤ |Z(tk+1)| ≤ tk+1 + 2, this implies (7.11).

Step 3. Choose t′k as in Step 2. Then Zk(t) is constant over [t′k,∞).

Proof. We assume the claim is not true. By the monotonicity of Zk(t) in Step 1, there exists an
interval [a, b] ⊂ [t′k,∞) such that Zk(t) = Zk(t′k) for t ∈ [t′k, a] and Zk(t) > Zk(t′k) for t ∈ (a, b]. As
in Step 2 of Case (i), we will show that, depending on the value of ġh,k(t) close to a, this will result
in a contradiction for either t > a or t < a. In the first case, we use the monotonicity of Zk(t) in
Step 1, and in the second case, we use Steps 1 and 2. The reasoning will be different, depending
on whether a = t′k or a > t′k.

We consider first the case where a > t′k. Choose h as in (7.9). There is an interval (u, v) ⊂ [t′k, b],
containing a, on which Zh(t) > 0. On [a, v), t = a is a strict minimum for gh,k(t), and on (u, a],
it is a minimum. This is because t = a is a strict minimum (respectively, minimum) for Zk(t) on
[a, v) (respectively, (u, a]), and Z`(a) = 0 for h < ` < k.

The reasoning now proceeds as in Step 2 in Case (i). First, suppose that m̄k ≤ m̄h (i.e.,
m̄h = 1). On (a, v), dk(t) = 1/m̄k, and so by Lemma 7.1, ġh,k(t) = 1 − m̄h/m̄k ≤ 0 on (a, v).
This contradicts the conclusion, in the previous paragraph, that a is a strict minimum for gh,k(t)
on [a, v). So, suppose instead that m̄k > m̄h (i.e., m̄h < 1). On (u, a), dk(t) ≤ 1/m̄k, and so by
Lemma 7.1, ġh,k(t) ≥ 1− m̄h/m̄k > 0. This contradicts the conclusion, in the previous paragraph,
that a is a minimum for gh,k(t) on (u, a]. So, a > t′k is not possible.

We turn now to the case where a = t′k. The possibility that m̄k ≤ m̄h is excluded by exactly
the same reasoning, as in the previous paragraph, by analyzing the behavior of ġh,k(t) over (a, v),
with v chosen close to a. So, suppose instead that m̄k > m̄h. By Step 2, Ḋ(t′k) and Ż(t′k) exist.
Since Z`(t′k) = 0 for h < ` < k, it follows that dh(t′k) = dk−1(t′k). Consequently,

Żk(t′k) = dk−1(t′k)− dk(t′k) = dh(t′k)− dk(t′k). (7.12)

Also, dh(t′k) = · · · = dk−1(t′k) ≥ dk(t′k) = · · · = dK(t′k), with the inequality following from Step 1.
It therefore follows, as in (7.3), that dh(t′k) ≥ 1/m̄h. Together with (7.2), this implies that (7.12)
is at least

1/m̄h − 1 = m̄−1
h (1− m̄h) ≥ ε.

This contradicts Step 2, where Żk(t′k) < ε is given. So, a = t′k is also not possible. Hence, there
exists no point a as specified at the beginning of the proof. This implies that Zk(t) is constant over
[t′k,∞).
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Together, Cases (i) and and (ii) imply that Zk(t) is constant on [tk,∞), for appropriate tk, with
Zk(t) = 0 if k is not a lowest priority class. This completes the proof of Theorem 3.5.

8 The 2-station, 5-class priority network

In this section, we analyze the behavior of the family of 2-station, 5-class SBP networks that
was introduced in Section 3. We first demonstrate a heavy traffic result, Theorem 3.6, for these
networks. In addition to the standard assumptions (3.4) and (3.5) on αr, mr and ρr, this result
requires (3.21), i.e., that α1(m2 +m5) < 1. At the end of the section, we show that this condition
is, in fact, needed.

This example shows that it is sometimes possible to apply standard heavy traffic limit results,
such as Theorem 5.3, in unconventional situations. One can also show analogous results for the
more elementary Lu-Kumar network in Lu and Kumar [40]. (There, a heavy traffic limit holds
exactly when α1(m2 + m4) < 1.) We prefer to investigate the networks given in Theorem 3.6
since they are without immediate feedback; the somewhat more sophisticated arguments used here
also give a better idea of the type of reasoning that is often needed to verify the conditions of
Theorem 5.3. (The networks in Theorem 3.6 were first examined in Dai and Vande Vate [19].)

Throughout the section, we assume that α1 = 1, except when specified otherwise. Also, as in
the previous section, we set dk(t) = Ḋk(t) for the departure rate from a class k.

Proof of Theorem 3.6. Since the discipline is an SBP re-entrant line, we can use Theorem 5.3 to
demonstrate the theorem. We first show that (a) the matrix R in (3.10) is well-defined and is
completely-S. We then show that (b) the corresponding fluid model is uniformly convergent with
the lifting matrix ∆ in (3.20). Checking (a) is quite straightforward. We use a piecewise linear
Lyapunov function to check (b).

To show (a), recall the definition of the matrix G in (3.9). One can check that for this network,

I +G =
(
m1 +m3 +m5 m5

m2 +m4 m4

)
[diag(m1,m4)]−1.

It follows from (3.6), that

m1 +m3 +m5 = 1, m2 +m4 = 1. (8.1)

Thus,

I +G =
(

1 m5

1 m4

)
[diag(m1,m4)]−1.

By (8.1) and (3.21), m5 < m4. The determinant of I + G is therefore positive; the inverse R is
given by

R = (m4 −m5)−1 diag(m1,m4)
(
m4 −m5

−1 1

)
.

To check that R is completely-S, note that its diagonal elements are positive. Also, choose a > 1 so
that am5 < m4 and u = (1, a)′; then, Ru > 0. This shows that R is completely-S, and completes
the proof of (a).

To prove (b), we show that there exists a δ > 0 such that for any fluid model solution X with
|Z(0)| = 1, Zk(t) is constant on [δ,∞), for k = 1, . . . , 5, and is zero, for k = 2, 3 and 5. We separate
the proof into two steps. Let

f(t) = Z2(t) + Z3(t) + Z5(t).
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In Step 1, we show that there exists a δ > 0, depending only on m, such that f(t) = 0 for t ≥ δ. In
Step 2, we show that Zk(t) is constant on [δ,∞) for k = 1 and 4.

Step 1. There exists a δ > 0, such that for each fluid model solution X with |Z(0)| = 1, f(t) = 0
for t ≥ δ.

Proof. We claim that there exists an ε > 0 such that ḟ(t) ≤ −ε whenever f(t) > 0. It then follows
that f(t) = 0 for t ≥ f(0)/ε. Since f(0) ≤ |Z(0)| = 1, setting δ = 1/ε implies that f(t) = 0 for
t ≥ δ.

To prove the claim, we consider different cases, depending on whether or not the individual
components Zk(t) are positive. For this, we recall the priority structure of the re-entrant line,
which, in descending order, is given by (5, 3, 1) at station 1 and (2, 4) at station 2. We will
also repeatedly use the observation that Zk(t) = 0 implies Żk(t) = 0 at regular points, and so
dk−1(t) = dk(t) there.

We first assume that Z5(t) > 0. This implies d1(t) = d3(t) = 0. If, in addition, either Z2(t) > 0
or Z4(t) = 0, then d4(t) = 0. It follows that ḟ(t) = −µ5. If, on the other hand, Z2(t) = 0 and
Z4(t) > 0, then d4(t) = µ4, and so ḟ(t) = µ4 − µ5, which is also negative, since µ5 > µ4.

For the other cases, we assume that Z5(t) = 0. If, in addition, both Z2(t) > 0 and Z3(t) > 0,
then d1(t) = d4(t) = d5(t) = 0. It follows that ḟ(t) = −µ3. Assume instead, then, that Z2(t) > 0
but Z3(t) = 0. Then,

ḟ(t) = Ż2(t) = d1(t)− d2(t) = d1(t)− µ2.

Two subcases arise, depending on whether or not Z1(t) = 0. Under Z1(t) = 0, one has d1(t) = 1,
and so ḟ(t) = 1−µ2 < 0. Under Z1(t) > 0 one has m1d1(t) +m3d3(t) = 1. Since Z3(t) = 0 implies
that d3(t) = d2(t) = µ2, solving the above equation produces d1(t) = µ1(1− µ2m3). Consequently,
ḟ(t) = µ1(1 − µ2m3) − µ2, which we wish to show is < 0. This is equivalent to m2 < m1 + m3,
which is implied by (3.21) and the first equation in (8.1).

We still need to consider the case where Z2(t) = Z5(t) = 0 and Z3(t) > 0. Then,

ḟ(t) = Ż3(t) = d2(t)− d3(t) = −d3(t),

with the last equality holding since there is no service at class 1 when class 3 is occupied. There
are two subcases, depending on whether or not Z4(t) = 0. Under Z4(t) = 0, one has d3(t) = d5(t).
Together with m3d3(t) + m5d5(t) = 1, this implies that d3(t) = 1/(m3 + m5), and so ḟ(t) =
−1/(m3 +m5). Suppose, instead, that Z4(t) > 0. Since Z2(t) = 0 and Z3(t) > 0, there is no service
at class 2, and so d4(t) = µ4. Since d4(t) = d5(t), it follows from this and m3d3(t) + m5d5(t) = 1,
that d3(t) = µ3(1 − µ4m5). Consequently, ḟ(t) = −µ3(1 − µ4m5), which is also negative since
m5 < m4.

Together, the values of ḟ(t) that are computed above show that, for appropriate ε > 0, ḟ(t) ≤ −ε
whenever f(t) > 0. This completes the argument for Step 1.

Step 2. Let δ be chosen as in Step 1. Then, Z1(t) and Z4(t) are constant on [δ,∞).

Proof. By Step 1, Zk(t) is constant on [δ,∞), for k = 2, 3 and 5, and so

d1(t) = d2(t) = d3(t), d4(t) = d5(t). (8.2)

In order to show Z1(t) and Z4(t) are constant on [δ,∞), it therefore suffices to show

d2(t) = d4(t) = 1 (8.3)
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for such t.
There are four cases to show, depending on whether or not Z1(t) and Z4(t) are positive. Assume,

first, that Z1(t) > 0 and Z4(t) > 0. Then,
∑

k∈C(j)mkdk(t) = 1 for j = 1, 2. Employing (8.2) at
the first station, this can be rewritten as

(m1 +m3)d2(t) +m5d4(t) = 1,
m2d2(t) +m4d4(t) = 1.

(8.4)

By (8.1), d2(t) = d4(t) = 1 solves (8.4). Using (8.1) and (3.21), it is easy to check that the system
is nonsingular, and so this solution is unique.

Assume next that Z1(t) = 0 and Z4(t) > 0. Then, d1(t) = 1 and m2d2(t) + m4d4(t) = 1.
Together with (8.1) and (8.2), this implies (8.3). The reasoning for Z1(t) > 0 and Z4(t) = 0 is
similar. Here, one instead employs d3(t) = d4(t) and m1d1(t) + m3d3(t) + m5d5(t) = 1, together
with (8.1) and (8.2). For Z1(t) = Z4(t) = 0, one has d1(t) = 1 and d3(t) = d4(t). Together with
(8.2), this implies (8.3).

This completes the proof of Theorem 3.6.

We conclude this section by providing a partial converse to Theorem 3.6, where the assumption
(3.21) is replaced by (8.5). Some motivation for this is provided by Lemma 8.1 and the following
discussion.

Theorem 8.1. Consider a sequence of 2-station, 5-class SBP networks in Figure 1, with priority
ranking given by (3.19). Assume (3.4), (3.5), and that Zr(0) = 0 for each r > 0. If

α1(m2 +m5) > 1, (8.5)

then, with probability one, |Z̃r(t)| → ∞ for each t > 0, as r →∞.

As before, one can, without loss of generality, assume that α1 = 1. We also note that |W̃ r(t)| →
∞ as r → ∞ follows from the above assumptions, with the argument being the same as that for
|Z̃r(t)| → ∞.

A key ingredient in the proof of the theorem is the following elementary lemma.

Lemma 8.1. Consider a sequence of 2-station, 5-class SBP networks as in Figure 1, with priority
ranking given by (3.19), and with Zr(0) = 0 for each r > 0. Then,

Zr2(t)Zr5(t) = 0, t ≥ 0. (8.6)

Consequently,

T r2 (t) + T r5 (t) ≤ t, t ≥ 0. (8.7)

The first part of Lemma 8.1 states that at any given time, either class 2 or class 5 must be
empty. This condition holds at t = 0; it persists at later times because a job cannot move from
class 1 to class 2 as long as class 5 is occupied, and cannot move from class 4 to class 5 as long
as class 2 is occupied. The second part of the lemma is an immediate consequence of the inability
of classes 2 and 5 to simultaneously receive service. Because of this behavior, classes 2 and 5 are
said to form a virtual station; (3.21) is thus a virtual station condition. This type of behavior was
first observed in Harrison and Nguyen [28], and in Dumas [24] for certain networks; it has been
systematically employed in Dai and Vande Vate [19, 20].
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We provide an abbreviated argument for Theorem 8.1. This is the only proof in the paper
where we need to work with random quantities; on account of Theorems 5.1-5.3, it sufficed to work
with fluid models for the proofs in Sections 6 and 7. We therefore provide only a quick account of
the machinery, referring the reader elsewhere for more detail.

Proof of Theorem 8.1. By the strong law of large numbers,

lim
t→∞

Ek(t)
t

= 1, lim
n→∞

Vk(n)
n

= 1, lim
n→∞

Φk
` (n)
n

= Pk`, (8.8)

with probability 1. Choose a sample path ω such that (8.8) holds and consider the sequence X̄r(·, ω),
r > 0, where

X̄
r(t, ω) = r−2

X
r(r2t, ω).

Since |T r(t, ω) − T r(s, ω)| ≤ t − s for any 0 ≤ s ≤ t and r > 0, by the Azela-Ascoli lemma,
{T̄ r(·, ω), r > 0} is precompact in the topology of uniform convergence on compact intervals. It
follows from queueing network equations (4.1)-(4.5) and (4.8), and the strong law of large numbers
in (8.8), that {X̄r(·, ω)} is precompact, as r →∞, in D4K+2J [0,∞), under the topology of uniform
convergence on compact intervals. One can show that each limit point X̄, of {X̄r(·, ω)}, is a fluid
model solution to (4.16)-(4.21). (The reasoning is now quite standard, see, for example, Dai [15]
for an analogous argument.)

We claim that the queue length |Z̄(t)| grows linearly in t. For this, we observe that

m2(Z̄1(t) + Z̄2(t)) +m5(Z̄1(t) + · · ·+ Z̄5(t)) = m2(t− D̄2(t)) +m5(t− D̄5(t))
= (m2 +m5)t− (T̄2(t) + T̄5(t)).

(8.9)

The equalities follow from (4.16)-(4.21); they rephrase the total workload at the virtual station, at
a given time, in terms of the arrival and departure of fluid. On account of (8.7), T̄2(t)+T̄5(t) ≤ t for
t > 0. Together with (8.5), this implies that (8.9) is at least ct, for some c > 0. So, for appropriate
c′ > 0, |Z̄(t)| ≥ c′t for t > 0. It follows that

lim inf
r→∞

|Z̄r(t, ω)| ≥ c′t.

Since Z̃r(t, ω) = rZ̄r(t, ω), this implies that

lim
r→∞

|Z̃r(t, ω)| =∞

for each t > 0, as desired.

Theorems 3.6 and 8.1 analyze the behavior of sequences of queueing networks, as in Figure 1,
where m2 + m5 < 1 and m2 + m5 > 1, respectively. One can, naturally, ask what happens in the
borderline case, where m2 + m5 = 1. It is not difficult to check that, in this case, I + G is not
invertible, and so R, in (3.10), is not defined. One can also construct a fluid model solution X, with
Z(0) = (1, 0, 0, 0, 0), that is periodic (see Dai and Vande Vate [20, Section 8]). Therefore, the fluid
model is not uniformly convergent. Moreover, Z̄r is not tight as r → ∞; we omit the rather long
argument.
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