Brown's Spectral Distribution Measure for R-diagonal Elements in Finite von Neumann Algebras

Uffe Haagerup^{*†} and

www.maphysto.dk

Flemming Larsen^{*}

Abstract

system, then sp T = D, the closed unit disk, and μ_T has constant density $1/\pi$ on D. of the S-transform of the distribution μ_{T^*T} of the positive operator T^*T . In case T in the sense of Nica and Speicher.) The measure μ_T is expressed explicitly in terms are *-free. (When Ker $T = \{0\}$ this is equivalent to that (T, T^*) is an *R*-diagonal pair tracial state τ . In this paper we compute Brown's spectral distribution measure in elements in a finite von Neumann algebra \mathcal{M} with respect to a fixed normal faithful In 1983 L. G. Brown introduced a spectral distribution measure for non-normal case T has a polar decomposition T = UH where U is a Haar unitary and U and H is a circular element, i.e., $T = (X_1 + iX_2)/\sqrt{2}$ where (X_1, X_2) is a free semicircular

1 Introduction

of (a, b) is of the form is called R-diagonal if the (2-dimensional) R-transform $R_{\mu_{(a,b)}}$ of the joint distribution $\mu_{(a,b)}$ probability spaces (see [10]). A pair (a, b) in the non-commutative probability space (A, φ) In 1995 Nica and Speicher introduced the class of *R*-diagonal pairs in non-commutative

$$R_{\mu_{(a,b)}}(z_1, z_2) = \sum_{j=1}^{\infty} \alpha_j (z_1 z_2)^j + \sum_{j=1}^{\infty} \alpha_j (z_2 z_1)^j$$

and Speicher prove that if T is an R-diagonal element in some tracial non-commutative non-commutative *-probability space such that (a, a^*) is an *R*-diagonal pair. In [10] Nica for arbitrary complex numbers α_j . C^* -probability space then T has the same *-distribution as a product UH where U and H An *R*-diagonal element is a random variable in a

^{*}Department of Mathematics and Computer Science, SDU, Odense University campus, Denmark.

National Research Foundation. $^{\dagger}MaPhySto-Centre$ for Mathematical Physics and Stochastics, funded by a grant from the Danish

are *-free random variables in some tracial non-commutative C^* -probability space, U is a Haar unitary and H is positive. When this happens H and |T| have the same distribution, and the *-distribution of T is uniquely determined by the distribution of $T^*T = |T|^2$. In this paper we restrict to the case of tracial non-commutative W^* -probability spaces. This is not an essential restriction since a tracial C^* -probability space can always be embedded in a tracial W^* -probability space via the GNS representation.

L. G. Brown introduced in the paper [3] a spectral distribution measure μ_T for not necessarily normal operators T in a von Neumann algebra \mathscr{M} with a faithful normal tracial state τ . The main purpose of this paper is to compute the spectrum sp T as well as the Brown measure μ_T for every R-diagonal element T in (\mathscr{M}, τ) . We find a general expression for μ_T in terms of the S-transform of the distribution of T^*T and in particular, we find that the support of μ_T for an R-diagonal element T is given by

$$\operatorname{supp} \mu_T = \left\{ \lambda \in \mathbb{C} \mid \|T^{-1}\|_2^{-1} \leqslant |\lambda| \leqslant \|T\|_2 \right\}$$
(1.1)

in case Ker $T = \{0\}$ and $T^{-1} \in L^2(\mathcal{M}, \tau)$. Otherwise $\operatorname{supp} \mu_T$ is the closed disk with radius $||T||_2$. The spectrum sp T coincides with $\operatorname{supp} \mu_T$ unless $T^{-1} \in L^2(\mathcal{M}, \tau) \setminus \mathcal{M}$ in which case $\operatorname{supp} \mu_T$ is the annulus (1.1), while sp T is the full closed disk with radius $||T||_2$. A key step in the proof is to show, that when a and b are *-free elements in \mathcal{M} and $\tau(a) = \tau(b) = 0$, then the spectral radius of ab is $||a||_2 ||b||_2$.

The paper is organized as follows. In Section 2 we list, for easy reference, the theory we need in this paper. In Section 3 we derive the basic properties of R-diagonal elements in finite von Neumann algebras. In Section 4 we give a complete description of the spectrum and the Brown measure of an R-diagonal element, and in Section 5 we compute concrete examples of Brown measures.

2 Preliminaries and Notation

We use the notation (\mathcal{M}, τ) to denote a tracial non-commutative W^* -probability space, i.e., a von Neumann algebra \mathcal{M} with a normal faithful tracial state τ . When needed we assume that \mathcal{M} acts as a von Neumann algebra on its associated GNS Hilbert space $L^2(\mathcal{M})$. When clarity demands it we write \hat{a} to denote the element $a \in \mathcal{M}$ as an element of $L^2(\mathcal{M})$. We let $\|\cdot\|_2$ denote the norm arising from the inner product $\langle \hat{a}, \hat{b} \rangle = \tau(b^*a)$ on $L^2(\mathcal{M})$. For h a positive element in \mathcal{M} we let μ_h be the unique compactly supported probability measure on \mathbb{R} such that $\tau(h^n) = \int_{\mathbb{R}} t^n d\mu_h(t)$ and we extend $\|\cdot\|_2$ to "inverse" positive elements by the formula $\|h^{-1}\|_2 := (\int_{\mathbb{R}} t^{-2} d\mu_h(t))^{1/2} \epsilon [0, \infty]$ for all $h \ge 0$. (We use the conventions $1/0 = \infty$ and $1/\infty = 0$ when computing these integrals.) This definition agrees with the previous if h is invertible. By sp a we denote the spectrum of a and r(a) denotes the spectral radius of a. A symmetry is a self-adjoint unitary.

For a measure μ we let $\operatorname{supp} \mu$ denote the support of μ and if f is a function, μ_f is the image measure of μ induced by f. The name invisitnds for the map $z \mapsto z^{-1}$ on $\mathbb{C} \setminus \{0\}$,

and sq is the map $z \mapsto z^2$. If μ is supported on \mathbb{R} we let $\tilde{\mu}$ be the symmetrization of μ , i.e., $\tilde{\mu}(A) = (\mu(-A) + \mu(A))/2$. The point measure centered at α is δ_{α} and dm, $d\lambda$ are used to denote Lebesgue measure on \mathbb{R} and \mathbb{C} respectively. By \times_p we denote polar set product: $A \times_p B = \{ae^{i\theta} \mid a \in A, \theta \in B\}$ and we say that f is a radial density function for the measure μ if the absolute continuous part of μ (with respect to Lebesgue measure) is given by $f(|\lambda|) d\lambda$. By B(a, r) we denote the open ball with radius r centered at a.

We let Δ denote the Fuglede-Kadison-determinant on (\mathcal{M}, τ) , cf. [4] and let L denote log Δ . For easy reference we state the most important properties of Δ (expressed in terms of the *L*-function): for an arbitrary element a in \mathcal{M} we have

$$L(a) = \int_{\mathbb{R}} \log t \, d\mu_{|a|}(t) \, \epsilon \, [-\infty, \infty[$$

and $L(a) = L(a^*a)/2 = L(a^*)$. If b is an element in \mathscr{M} then L(ab) = L(a) + L(b), if u is a unitary L(u) = 0, and if z is a scalar $L(z1) = \log |z|$. If (a_n) is a sequence of positive elements, $a_n \ge a \ge 0$ and $a_n \to a$ in norm then $L(a_n) \to L(a)$, and if a is invertible then $L(a) = \tau(\log |a|)$. In particular $L(\exp a) = \operatorname{Re} \tau(a)$ for $a \ge 0$. In fact the formula

$$L(\exp a) = \operatorname{Re}\tau(a) \tag{2.1}$$

holds for all a in \mathcal{M} (use [4, Lemma 3 with H = 1]). The functions L and Δ are continuous on the invertible elements in $(\mathcal{M}, \|\cdot\|)$ and in general upper semicontinuous on $(\mathcal{M}, \|\cdot\|)$.

For an arbitrary element a in \mathscr{M} the function $\lambda \mapsto L(a - \lambda 1)$ is subharmonic on \mathbb{C} and harmonic on $\mathbb{C} \setminus \operatorname{sp} a$ and the Riesz construction applied to $(2\pi)^{-1}L(a-\lambda 1)$ gives a regular positive probability measure (denoted) μ_a . We call this measure the *Brown measure* for a, cf. [3]. It is defined by

$$\mu_a = \frac{1}{2\pi} \nabla^2 L(a - \lambda 1) \, d \operatorname{Re} \lambda \, d \operatorname{Im} \lambda$$

where ∇^2 is the Laplace operator $\partial^2/\partial(\operatorname{Re} \lambda)^2 + \partial^2/\partial(\operatorname{Im} \lambda)^2$ in the distribution sense. (The notation $d \operatorname{Re} \lambda d \operatorname{Im} \lambda$ will often be replaced by $d\lambda$ or $dm_2(\lambda)$.) The Brown measure has the following properties: μ_a is the unique compactly supported measure (on the Borel measurable sets) that fulfils $L(a - \lambda 1) = \int_{\mathbb{C}} \log |z - \lambda| d\mu_a(z)$ for (almost) all complex numbers λ . The support of μ_a is contained in sp a, and for p any natural number we have $\tau(a^p) = \int_{\mathbb{C}} z^p d\mu_a(z)$. Furthermore $\mu_{ab} = \mu_{ba}$ for arbitrary a and b in \mathscr{M} , and if f is analytic in a neighbourhood of sp a, $\mu_{f(a)} = (\mu_a)_f$. As consequences we have $\mu_{a^{-1}} = (\mu_a)_{inv}$ if a is invertible and $\mu_{bab^{-1}} = \mu_a$ whenever b is invertible. If a is normal, μ_a is the trace composed with the spectral measure for a hence the notation μ_a agrees with the previous introduced notation for positive elements, and the Brown measure for a Haar unitary is the Haar measure on \mathbb{T} .

By a non-commutative probability space (A, φ) we mean a unital algebra A (over the complex numbers) equipped with a linear functional φ such that $\varphi(1) = 1$. If A is a von Neumann algebra and φ is a normal state, (A, φ) is called a non-commutative W^* -probability

space. We refer to [14] for the basics of free probability theory. For easy reference we restate some of the notation and nomenclature: By a° we denote the centered part $a - \varphi(a)$ of a, if $\varphi(a) = 0$ we say that a is centered. We call the numbers $\varphi(a^p)$ (p = 1, 2, ...)the moments of a, and the distribution μ of a is the linear functional $\mu \colon \mathbb{C}[X] \to \mathbb{C}$ determined by $\mu(P) = \varphi(P(a))$ for all P in $\mathbb{C}[X]$. If all the odd moments of a vanishes we say that a is symmetric distributed. If (B, ψ) is a non-commutative probability space, $a \in A, b \in B$ we write $a \sim_{D} b$ when a and b have the same distribution. If (A, φ) and (B,ψ) are *-probability spaces the notation $a \sim_{*D} b$ means that a and b have the same *-distribution. If (A, φ) is a tracial non-commutative *-probability space, $a, u \in A, u$ is a unitary we have that uau^* and a have the same *-distribution. Note that if a, b, c, d are random variables, $a \sim_{*D} b$, $c \sim_{*D} d$, a, c are *-free and b, d are *-free, then $ac \sim_{*D} bd$. When forming free products of non-commutative probability spaces we often have a natural choice of functionals, and in such cases we omit specifying the functionals, i.e., A * Bis an abbreviation for $(A, \varphi) * (B, \psi)$. By an isomorphism $\Phi: (A, \varphi) \to (B, \psi)$ we mean an isomorphism $\Phi: A \to B$ such that $\varphi = \psi \circ \Phi$. If (\mathcal{N}, ω) is a finite non-commutative W^* -probability space with a faithful trace ω , $a \in \mathcal{M}$, $b \in \mathcal{N}$ and $a \sim_{*D} b$ then there exists a surjective *-isomorphism $\Phi: (W^*(a), \tau) \to (W^*(b), \omega)$ such that $\Phi(a) = b$. By the notation $i_1 \neq i_2 \neq \cdots \neq i_n$ we mean $i_1 \neq i_2, i_2 \neq i_3, \ldots, i_{n-1} \neq i_n$. A product $x_1 \cdots x_n$ where $x_i \in A_{i_i}, i_1 \neq i_2 \neq \cdots \neq i_n$ is called an alternating product.

If a is a self-adjoint random variable in \mathscr{M} there is a unique measure μ_a supported on sp a fulfilling $\tau(a^n) = \int_{\mathbb{R}} t^n d\mu_a(t)$. Faithfulness of τ implies that $\operatorname{supp} \mu_a = \operatorname{sp} a$. If μ is a compactly supported probability measure on \mathbb{R} the distribution of the identity map id in $(L^{\infty}(\operatorname{supp} \mu, \mu), \int \cdot d\mu)$ has the same moments as μ , hence given a compactly supported probability measure on \mathbb{R} this measure represents the distribution of a selfadjoint element in some finite non-commutative W^* -probability space. If $\operatorname{supp} \mu \subseteq [0, \infty[$ then μ corresponds to the distribution of a positive element. Using measures in place of distributions we get the analytic version of the theory of R- and S-transforms: if μ is a compactly supported measure on \mathbb{R} the Cauchy transform

$$G_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{z - x} d\mu(x)$$
(2.2)

is defined and analytic on $\mathbb{C} \setminus \text{supp } \mu$ and $G_{\mu}(z) \sim z^{-1}$ as $|z| \to \infty$. It is seen from (2.2) that $\text{Im } z \cdot \text{Im } G_{\mu}(z) \leq 0$ for all z. These properties are the main tools used to determine the Cauchy transform when solving quadratic equations. The Cauchy transform is invertible in a neighbourhood of ∞ and the *R*-transform of μ is obtained from the inverse function G_{μ}^{-1} as $\mathscr{R}_{\mu}(z) = G_{\mu}^{-1}(z) - z^{-1}$ or equivalently

$$z = G_{\mu} \left(z^{-1} (1 + z \mathscr{R}_{\mu}(z)) \right)$$
(2.3)

for z in a neighbourhood of 0, $z \neq 0$. If μ is symmetric a simple computation shows that $G_{\mu_{sq}}(z) = G_{\mu}(\sqrt{z})/\sqrt{z}$. If $\int_{\mathbb{R}} t \, d\mu(t) \neq 0$ we have the analytic version of the S-transform too, cf. [14, Section 3.6]: The ψ -function is analytic in a neighbourhood of 0 and is given

by

$$\psi_{\mu}(u) = \int_{\mathbb{R}} \frac{tu}{1 - tu} \, d\mu(t).$$

Since $\psi_{\mu}'(0) = \int_{\mathbb{R}} t \, d\mu(t) \neq 0$, ψ_{μ} is invertible (with inverse χ_{μ}) in a neighbourhood of 0. Then the S-transform of μ is given by $\mathscr{S}_{\mu}(w) = (w+1)\chi_{\mu}(w)/w$ and is analytic in a neighbourhood of 0, cf. [6]. The Cauchy transform G_{μ} and ψ_{μ} are related by the formula

$$u(1 + \psi_{\mu}(u)) = G_{\mu}(u^{-1})$$
(2.4)

for u in a neighbourhood of 0, $u \neq 0$. Now define $z = z(u) = u(1 + \psi_{\mu}(u))$ for $u \approx 0$. It follows from (2.3) and (2.4) that

$$\frac{1}{u} = \frac{1}{z} \left(1 + z \mathscr{R}_{\mu}(z) \right)$$

and hence that $z/u - 1 = z \mathscr{R}_{\mu}(z) = \psi_{\mu}(u)$. Then $u = \chi_{\mu}(\psi_{\mu}(u)) = \chi_{\mu}(z \mathscr{R}_{\mu}(z))$ and also

$$z\mathscr{R}_{\mu}(z)\mathscr{S}_{\mu}(z\mathscr{R}_{\mu}(z)) = (1 + z\mathscr{R}_{\mu}(z))\chi_{\mu}(z\mathscr{R}_{\mu}(z)) = \frac{z}{u} \cdot u = z.$$

This relation is valid for z in a neighbourhood of 0. This proves the following connection between \mathscr{R}_{μ} and \mathscr{S}_{μ} , first established in [9]:

$$z\mathscr{S}_{\mu}(z) = \left(z\mathscr{R}_{\mu}(z)\right)^{\langle -1\rangle} \tag{2.5}$$

where $(\cdot)^{\langle -1 \rangle}$ means inversion with respect to composition. (Also note that if one of the functions \mathscr{R}_{μ} , ψ_{μ} and \mathscr{S}_{μ} is analytic in a neighbourhood of 0, the other two functions are analytic too. Therefore (2.5) holds for all distributions μ with $\mu(X) \neq 0$ because we can apply the standard trick of truncating power series to polynomials.)

3 Basic Properties of *R*-diagonal Elements in Finite von Neumann Algebras

Proposition 3.1. ([11], Theorem 4.5.) Let x and y be free self-adjoint symmetric distributed elements in a tracial non-commutative W^* -probability space (\mathcal{M}, τ) . Then xy is *R*-diagonal.

We shall use the following immediate corollary of Proposition 3.1.

Corollary 3.2. Let (\mathcal{M}, τ) be as above and let a and x be free self-adjoint symmetric distributed elements in \mathcal{M} , such that $a^2 = 1$. Then ax is R-diagonal. Hence ax has the same *-distribution as uh, where u and h are *-free elements in a non-commutative W^* -probability space (\mathcal{N}, ω) , u is a Haar unitary and h is positive with the same distribution as |x|.

Lemma 3.3. Let (A, φ) be a non-commutative probability space, and let a and x be free symmetric distributed random variables in A. Suppose that $a^2 = 1$. Define

$$\begin{aligned} P_{\rm e} &= \{p \mid p \text{ is an even polynomial, } \varphi(p(x)) = 0\} \\ P_{\rm o} &= \{p \mid p \text{ is an odd polynomial}\} \\ P &= P_{\rm e} \cup P_{\rm o} \end{aligned}$$

and let T be the set of products $a^{m_0}p_1(x)a\cdots p_k(x)a^{m_k}$ where $k \in \mathbb{N}, p_1, \ldots, p_k \in P$, $m_0, m_k \in \{0, 1\}$ and $m_0 + (k-1) + m_k + \sum_{j=1}^n \deg p_j \in 2\mathbb{N}$.

Then $alg(1, ax, xa) = span(\{1\} \cup T)$ and $alg(1, ax, xa)^{\circ} = span T$.

Proof: The last statement is an immediate consequence of the first statement. Put $B = alg(1, ax, xa), S = span(\{1\} \cup T)$. Then $1, ax, xa \in S$. We show that $axS, xaS, Sax, Sxa \subseteq S$ and it is enough to prove that $axT, xaT, Txa, Tax \subseteq S$.

Let $t = a^{m_0} p_1(x) a \cdots p_k(x) a^{m_k} \epsilon T$. If $m_0 = 1$ then $axt = axap_1(x) a \cdots p_k(x) a^{m_k} \epsilon T$ and if $m_0 = 0$ then

$$axt = axp_1(x)ap_2(x)a\cdots p_k(x)a^{m_k}.$$
(3.1)

If deg p_1 is even then $axt \ \epsilon \ T$ because id $\cdot p_1 \ \epsilon \ P_0$ and

$$1 + (k - 1) + m_k + \deg(\mathrm{id} \cdot p_1) + \sum_{j=2}^k \deg p_j$$

= $m_0 + (k - 1) + m_k + \sum_{j=1}^k \deg p_j + 2\epsilon 2\mathbb{N}.$

Otherwise deg p_1 is odd and we rewrite (3.1) to

$$axt = axp_1(x)ap_2(x)\cdots p_k(x)a^{m_k} - \varphi(xp_1(x))p_2(x)a\cdots p_k(x)a^{m_k} +\varphi(xp_1(x))p_2(x)a\cdots p_k(x)a^{m_k} = a(xp_1(x))^\circ ap_2(x)a\cdots p_k(x)a^{m_k} + \varphi(xp_1(x))p_2(x)a\cdots p_k(x)a^{m_k}.$$

Here $p_2(x)a\cdots p_k(x)a^{m_k} \epsilon T$ because

$$(k-2) + m_k + \sum_{j=2}^k \deg p_j$$

= $m_0 + (k-1) + m_k + \sum_{j=1}^k \deg p_j - (1 + \deg p_1) \epsilon 2\mathbb{N}.$

Since $\deg(\mathrm{id} \cdot p_1)^\circ = \deg(\mathrm{id} \cdot p_1) = 1 + \deg p_1$, we infer that $a(xp_1(x))^\circ ap_2(x) \cdots p_k(x)a^{m_k} \in T$ because

$$1 + (k - 1) + m_k + \deg(\mathrm{id} \cdot p_1)^\circ + \sum_{j=2}^k \deg p_j$$

= $m_0 + (k - 1) + m_k + \sum_{j=1}^k \deg p_j + 2\epsilon 2\mathbb{N}.$

This shows that $axt \in S$.

Summing up we have proved that $axT \subseteq S$. The same argument applies to show that $xaT, Tax, Txa \subseteq S$. We conclude that S contains 1, ax, xa and is stable under multiplication by ax and xa. But B is the smallest subspace of A with this property whence $B \subseteq S$.

We remain to prove that $S \subseteq B$, and it suffices to prove that $T \subseteq B$. If p is an even polynomial then $p(s) = q(s^2)$ for some polynomial q, and

$$p(x) = q(xaax) \ \epsilon \ B,$$
$$ap(x)a = q(ax^2a) \ \epsilon \ B.$$

If p is an odd polynomial then $p(s) = sq(s^2) = q(s^2)s$ for some polynomial q and

$$ap(x) = axq(xaax) \epsilon B,$$

 $p(x)a = q(xaax)xa \epsilon B.$

It is then easy to see that an arbitrary element in T can be written as a product of elements of the forms p(x), ap(x)a (p even) and ap(x), p(x)a (p odd). We conclude that $S \subseteq B$. \Box

Lemma 3.4. Let (A, φ) be a non-commutative probability space and let $a, (x_i)_{i \in I}$ be symmetric distributed random variables in A such that $(x_i)_{i \in I}$ is a free family and $\{a\}$ and $\{x_i \mid i \in I\}$ are free sets in A. Suppose that $a^2 = 1$.

Then the sets $\{ax_i, x_ia\}$ $(i \in I)$ are free.

Proof: Put $A_i = alg(1, ax_i, x_ia)$. Lemma 3.3 shows that

$$A_i^{\circ} \subseteq \operatorname{span}\left(S_i \cup aS_i \cup S_i a \cup aS_i a \cup S_i aS_i \cup \cdots\right)$$

where $S_i = alg(1, x_i)^{\circ}$. To show freeness of $\{ax_i, x_ia\}$ $(i \in I)$ it suffices to show that the product

$$X_1 \cdots X_n \tag{3.2}$$

is centered whenever $n \in \mathbb{N}$, $X_j \in A_{i_j}^{\circ}$ (j = 1, ..., n) and $i_1 \neq \cdots \neq i_n$. By linearity of φ it is sufficient to assume that X_j is a word in $S_{i_j} \cup aS_{i_j} \cup S_{i_j}a \cup \cdots$ (for all j). In this case the product (3.2) consists of alternating occurrences of words from the sets $\{a\}$, S_{i_j} (j = 1, ..., n), and the freeness assumptions implies that the product (3.2) is centered.

We note that the condition that all odd moments vanishes is necessary: If $\varphi(x^{2m-1}) \neq 0$ and $\varphi(y^{2n-1}) \neq 0$ for some m, n then $\varphi(x^{2m-1}aay^{2n-1}) = \varphi(x^{2m-1}y^{2n-1}) = \varphi(x^{2m-1})\varphi(y^{2n-1}) \neq 0$, but $\varphi(x^{2m-1}a) = 0$ and $\varphi(ay^{2n-1}) = 0$. If $\varphi(x^{2m-1}) = 0$ for all $m \in \mathbb{N}$ but $\varphi(y^{2n-1}) \neq 0$ for some n then $\varphi((xa)(ay^{2n-1})(xa)(ay^{2n-1})) = \varphi(x^2)\varphi(y^{2n-1})^2$ which in general is different from 0.

The condition that $a^2 = 1$ is necessary too: if a, x, y are suitably chosen *-free unitaries in $L(\mathbb{Z}_4 * \mathbb{Z}_2 * \mathbb{Z}_2)$ then (xa)(ayya)(ax) = 1 but xa, ax and $ayya = a^2$ are centered. This shows that $\{ax, xa\}$ and $\{ay, ya\}$ are not free.

Proposition 3.5. ([10], [11].) Let r and s be *-free R-diagonal elements in a tracial non-commutative W^* -probability space (\mathcal{M}, τ) . Then

- (i) r + s is *R*-diagonal.
- (ii) The distribution of |r + s| can be obtained from the distributions of |r| and |s| by the formula

$$\widetilde{\mu}_{|r+s|} = \widetilde{\mu}_{|r|} \boxplus \widetilde{\mu}_{|s|}$$

where $\tilde{\mu}$ denotes the symmetrization of a measure μ on \mathbb{R} .

Proof: (i) follows immediately from the definition of R-diagonal elements in [10] and the fact that

$$R_{r+s,r^*+s^*}(z_1, z_2) = R_{r,r^*}(z_1, z_2) + R_{s,s^*}(z_1, z_2)$$

whenever r and s are *-free elements, cf. [8].

(ii) This can be extracted from Proposition 5.2 in [11]. For convenience of the reader, we include a different proof based on Corollary 3.2 and Lemma 3.4. We can choose a tracial non-commutative W^* -probability space (\mathscr{N}, ω) , which contains three self-adjoint elements a, x and y, such that (a, x, y) is a free family, $a^2 = 1$ and a, x and y are symmetric distributed with

$$\mu_x = \widetilde{\mu}_{|r|}, \qquad \qquad \mu_y = \widetilde{\mu}_{|s|}.$$

By Corollary 3.2 and Lemma 3.4 r' = ax and s' = ay are *-free *R*-diagonal elements with the same *-distributions as *r* and *s* respectively. Hence (r', s') has the same (joint) *-distribution as (r, s), so without loss of generality, we may assume that r = ax, s = ayand $\tau = \omega$. Since *x* and *y* are free and symmetric, x + y is symmetric distributed and $\mu_{x+y} = \mu_x \boxplus \mu_y$. We have r + s = a(x + y) and thus |r + s| = |x + y| whence

$$\widetilde{\mu}_{|r+s|} = \widetilde{\mu}_{|x+y|} = \mu_{x+y} = \mu_x \boxplus \mu_y = \widetilde{\mu}_{|x|} \boxplus \widetilde{\mu}_{|y|} = \widetilde{\mu}_{|r|} \boxplus \widetilde{\mu}_{|s|}.$$

This proves (ii).

Proposition 3.6. ([10].) Let r and s be *-free R-diagonal elements in a finite noncommutative W^* -probability space (\mathcal{M}, τ) . Then

- (i) rs is R-diagonal.
- (ii) The distribution of |rs| can be obtained from the distributions of |r| and |s| by the formula

$$\mu_{|rs|^2} = \mu_{|r|^2} \boxtimes \mu_{|s|^2}.$$

Proof: (i) This is a special case of Theorem 1.5 in [10].

(ii) This can be extracted from Corollary 1.8 in [10], but for convenience of the reader we include a direct proof. We can choose 4 *-free elements u, v, h and k in a tracial non-commutative W^* -probability space (\mathcal{N}, ω) such that u and v are Haar unitaries, hand k are positive elements with the same distributions as |r| and |s| respectively. Then r' = uh and s' = vk are *-free R-diagonal elements with the same *-distributions as r and s respectively, and hence (r', s') has the same (joint) *-distribution as (r, s). Thus, without loss of generality, we may assume that r = uh, s = vk and $\tau = \omega$. Since ω is a trace, we have for all natural numbers p

$$\omega(|rs|^{2p}) = \omega((v^*h^2vk^2)^p).$$

Thus $|rs|^2$ has the same distribution as $(v^*h^2v)k^2$ and since v^*h^2v and k^2 are free, we get

$$\mu_{|rs|^2} = \mu_{v^*h^2v} \boxtimes \mu_{k^2} = \mu_{h^2} \boxtimes \mu_{k^2},$$

where the last equality follows from the trace property of ω . This proves (ii).

In the next lemma we collect some well-known facts about freeness obtained by encapsulating sets with Haar unitaries.

Lemma 3.7. Let (A, φ) be a non-commutative *-probability space, let u be a Haar unitary in A. Assume that S is a set in A such that S and $\{u\}$ are *-free.

Then for any natural number n we have that

- (i) the sets S, uSu^* , $u^2S(u^*)^2$,... are *-free,
- (ii) the sets $S, uSu^*, \ldots, u^{n-1}S(u^*)^{n-1}, \{u^n\}$ are *-free,
- (iii) the sets $uSu^*, \ldots, u^nS(u^*)^n, \{u^n\}$ are *-free.

Proof: Put $A_0 = alg(\{1\} \cup S \cup S^*)$ and for any natural number n put

$$A_n = alg(\{1\} \cup u^n S u^{-n} \cup u^n S^* u^{-n}) = u^n A_0 u^{-n}.$$

Note that $(A_n)^\circ = u^n A_0^\circ u^{-n}$.

Consider an alternating product $x_1 \cdots x_p$ of centered elements from A_0, A_1, \ldots , i.e., $i_1 \neq \cdots \neq i_p$ and $x_j = u^{i_j} y_j u^{-i_j}$ for some $y_1, \ldots, y_p \in A_0^{\circ}$. Then

$$x_1 \cdots x_p = u^{i_1} y_1 u^{i_2 - i_1} y_2 \cdots u^{i_p - i_{p-1}} y_p u^{-i_p}$$

where $i_2 - i_1 \neq 0, \ldots, i_p - i_{p-1} \neq 0$. The *-freeness assumption on $\{u\}$ and S gives that $\varphi(x_1 \cdots x_p) = 0$. This proves (i).

Let $A_{-1} = \operatorname{alg}(u^n, (u^*)^n)$. Suppose that $x_1 \cdots x_p$ is an alternating product of centered elements from $A_{-1}, A_0, \ldots, A_{n-1}$. This means that $x_j \in A_{i_j}^\circ$ for $i_1 \neq i_2 \neq \cdots \neq i_p$, $i_j \in \{-1, 0, 1, \ldots, n-1\}$. Since $A_{-1}^\circ = \operatorname{span}\{u^{nq} \mid q \in \mathbb{Z} \setminus \{0\}\}$ it is sufficient to consider the case where x_j is of the form u^{nq} whenever $i_j = -1$. If $i_j \neq -1$ we have $x_j = u^{i_j} y_j u^{-i_j}$ for some $y_j \in A_0^\circ$, and we assume without loss of generality that $y_j \neq 0$.

We show that the occurring y's are separated by elements from $alg(u, u^*)^{\circ}$. There are two cases: Either two neighbouring y's come from consecutive x's, otherwise there is precisely one element of the form u^{nq} $(q \in \mathbb{Z} \setminus \{0\})$ between the corresponding x's. In the first case the y's in question are y_j and y_{j+1} , for some j. But then $y_j u^{i_{j+1}-i_j}y_{j+1}$ is a subword of $x_1 \cdots x_p$ hence the y's are separated. Otherwise we have for some j that $i_j, i_{j+2} \in \{0, \ldots, n-1\}$ and $i_{j+1} = -1$. Then $x_{j+1} = u^{nq}$ for some non-zero integer q and $y_j u^{nq-i_j+i_{j+2}}y_{j+2}$ is a subword of $x_1 \cdots x_p$. But $nq - i_j + i_{j+2} \neq 0$ for any non-zero integer q because $i_j, i_{j+2} \in \{0, 1, \ldots, n-1\}$. We conclude that in this case the y's are separated by an element of the form u^r $(r \in \mathbb{Z} \setminus \{0\})$.

We have thus shown that $x_1 \cdots x_p$ is an alternating product of centered elements from $alg(u, u^*)$ and A_0 respectively, and this shows (ii). (iii) follows by the same proof as for (ii), since $i_j, i_{j+2} \in \{1, \ldots, n\}$ and $q \in \mathbb{Z} \setminus \{0\}$ also implies that $nq - i_j + i_{j+2} \neq 0$. \Box

The same method can be used to show that for example S, uSu^* , u^3 , $u^5S(u^*)^5$ are *-free.

Lemma 3.8. Let (A, φ) be a non-commutative probability space, let a be a random variable in A satisfying $\varphi(a) = \cdots = \varphi(a^{n-1}) = 0$ and $a^n = 1$. Assume that S is a set in A such that $\{a\}$ and S are free.

Then $S, aSa^{n-1}, a^2Sa^{n-2}, \ldots, a^{n-1}Sa$ are free.

Proof: As in the proof of Lemma 3.7 we put $A_0 = alg(\{1\} \cup S), A_j = alg(\{1\} \cup a^j Sa^{n-j})$ for $j = 1, \ldots, n-1$, and note that $A_j = a^j A_0 a^{n-j}, A_j^\circ = a^j A_0^\circ a^{n-j}$. Let $x_1 \cdots x_p$ be an alternating product of centered elements from A_0, \ldots, A_{n-1} , i.e., $x_j \in A_{i_j}^\circ, i_1 \neq \cdots \neq i_p$. Then $x_j = a^{i_j} y_j a^{n-i_j}$ for some $y_j \in A_0^\circ$ $(j = 1, \ldots, p)$ and $x_1 \cdots x_p = a^{i_1} y_1 a^{n-i_1+i_2} \cdots y_p a^{n-i_p}$. Since $i_1 \neq \cdots \neq i_p$ it follows from the assumptions on a that $x_1 \cdots x_p$ is an alternating product of centered elements, and the freeness assumption on S and $\{a\}$ implies then that $x_1 \cdots x_p$ is centered. This shows that $S, aSa^{n-1}, \ldots, a^{n-1}Sa$ are free. \Box

Lemma 3.9. ([10].) Let u and a be *-free elements in a finite non-commutative W^* -probability space, such that u is a Haar unitary. Then ua and au are R-diagonal elements.

Proof: Since u is R-diagonal this follows from Theorem 1.5 in [10].

Proposition 3.10.

(i) Let r be an R-diagonal element and let p be a natural number. Then r^p is R-diagonal and

$$\mu_{|r^p|^2} = \underbrace{\mu_{|r|^2} \boxtimes \cdots \boxtimes \mu_{|r|^2}}_{p \text{ factors}} \qquad (= \mu_{|r|^2}^{\boxtimes p}.)$$

(ii) If r is R-diagonal and invertible, then r^{-1} is R-diagonal and $\mu_{|r^{-1}|}$ is the image measure $(\mu_{|r|})_{inv}$ of $\mu_{|r|}$ by the inversion map $t \mapsto t^{-1}$ on $\mathbb{R} \setminus \{0\}$.

Proof: (i) Without loss of generality we may assume that r = uh, where u and h are *-free, u is a Haar unitary and $h \ge 0$. Then

$$(uh)^p = u^p ((u^*)^{p-1} h u^{p-1}) \cdots (u^* h u) h.$$

It is clear that u^p is a Haar unitary. By Lemma 3.7 u^p is *-free from the remaining p factors in the above product. Hence by Lemma 3.9 $(uh)^p$ is R-diagonal. Moreover

$$|(uh)^{p}|^{2} = h(u^{*}hu) \cdots ((u^{*})^{p-1}hu^{p-1})^{2} \cdots (u^{*}hu)h$$

so by the trace property, $|(uh)^p|^2$ has the same distribution as

$$(u^*hu)\cdots((u^*)^{p-1}hu^{p-1})^2\cdots(u^*hu)h^2,$$

so by Lemma 3.7

$$\mu_{|(uh)^p|^2} = \mu_y \boxtimes \mu_{h^2}$$

where $y = (u^*hu)\cdots((u^*)^{p-1}hu^{p-1})^2\cdots(u^*hu) = u^*|(uh)^{p-1}|^2u$. Thus by the trace property

$$\mu_{|(uh)^p|^2} = \mu_{|(uh)^{p-1}|^2} \boxtimes \mu_{h^2},$$

and hence, (i) follows by induction in p.

(ii) Again, we may assume that r = uh, as in (i). Hence $r^{-1} = h^{-1}u^*$. Since u^* is a Haar unitay and *-free from h^{-1} , we get from Lemma 3.9 that r^{-1} is *R*-diagonal. Moreover $|r^{-1}| = uh^{-1}u^*$ has the same distribution as $h^{-1} = |r|^{-1}$. This proves (ii).

Example 3.11. Lemma 3.8 enables us to compute the Brown measure of an element ah where a and h are free random variables in some non-commutative W^* -probability space $(\mathcal{M}, \tau), a^2 = 1, a = a^*, \tau(a) = 0$ and h is positive: We first note that ah is symmetric distributed and that $\mu_{ah} = \mu_{h^{1/2}ah^{1/2}}$ whence μ_{ah} is supported in \mathbb{R} , and then we compute its square (which is supported in $[0, \infty[)$: $(\mu_{ah})_{sq} = \mu_{ahah} = \mu_{aha} \boxtimes \mu_h = \mu_h \boxtimes \mu_h$ because aha and h are positive and free, cf. Lemma 3.8. Then μ_{ah} is the symmetrization of $(\mu_h \boxtimes \mu_h)_{z \mapsto \sqrt{z}}$.

Example 3.12. Using Lemma 3.8 we can state the distribution of the real and imaginary parts of an *R*-diagonal random variable T = uh = ax (where u, h, a and x are random variables as stated in Corollary 3.2). We first note that $T \sim_{*D} -iT$ whence $\operatorname{Re} T$ and $\operatorname{Re} -iT = \operatorname{Im} T$ have the same distribution. Then $2\operatorname{Re} T = T + T^* = ax + xa$ and it is straightforward to verify that the odd moments of $2\operatorname{Re} T$ vanishes. Lemma 3.8 yields that x and axa are free hence x + axa is symmetric distributed. In computing the even moments we note that $(ax + xa)^2 = (x + axa)^2$ and we conclude that $ax + xa \sim_D x + axa$. This gives $\mu_{2\operatorname{Re} T} = \mu_{ax+xa} = \mu_{x+axa} = \mu_x \boxplus \mu_{axa} = \mu_x \boxplus \mu_x$. Cf. Application 1.3 in [11].

4 Brown Measures of *R*-diagonal Elements

Proposition 4.1. Let (\mathcal{M}, τ) be a non-commutative von Neumann probability space with a faithful trace τ . Let a and b be *-free centered elements in \mathcal{M} .

Then the spectral radius, r(ab), of ab is $||a||_2 ||b||_2$.

Proof: We can without loss of generality assume that $||a||_2 = ||b||_2 = 1$. Put $\mathcal{M}_a = W^*(a)$, $\mathcal{M}_b = W^*(b)$ and let \mathcal{M}_j° denote the set of centered elements of \mathcal{M}_j , j = a, b. It is no loss of generality to assume that $\mathcal{M} = \mathcal{M}_a * \mathcal{M}_b$ and that $\mathcal{M}_a * \mathcal{M}_b$ acts on its GNS Hilbert space $(\mathcal{H}, \xi) = (L^2(\mathcal{M}), \hat{1})$. Let (\mathcal{H}_a, ξ_a) and (\mathcal{H}_b, ξ_b) be the GNS spaces of (\mathcal{M}_a, τ_a) and (\mathcal{M}_b, τ_b) $(\tau_j = \tau|_{\mathcal{M}_j}, j = a, b)$. Then by [12, Section 1] $(\mathcal{H}, \xi) = (\mathcal{H}_a, \xi_a) * (\mathcal{H}_b, \xi_b)$, i.e.,

$$\mathscr{H} = \mathbb{C}\xi \oplus \bigoplus_{\substack{n \in \mathbb{N} \\ j_1 \neq \cdots \neq j_n}} \mathscr{H}_{j_1}^{\circ} \otimes \cdots \otimes \mathscr{H}_{j_n}^{\circ},$$

where $\mathscr{H}_{j}^{\circ} = \{\xi_{j}\}^{\perp} \subseteq \mathscr{H}_{j}$. Note also, that

$$\mathscr{H}_{j_1}^{\circ} \otimes \cdots \otimes \mathscr{H}_{j_n}^{\circ} = [\mathscr{M}_{j_1}^{\circ} \cdots \mathscr{M}_{j_n}^{\circ} \xi], \qquad j_1 \neq \cdots \neq j_n,$$

where [S] denotes the closed linear span of a set S. Put

$$\mathcal{K}_{0} = \mathbb{C}\xi,$$

$$\mathcal{K}_{n} = [\underbrace{\mathcal{M}_{a}^{\circ}\mathcal{M}_{b}^{\circ}\cdots}_{n}\xi], \qquad \mathcal{L}_{n} = [\underbrace{\mathcal{M}_{b}^{\circ}\mathcal{M}_{a}^{\circ}\cdots}_{n}\xi], \qquad n \in \mathbb{N}$$

$$\mathcal{K} = \bigoplus_{n=0}^{\infty} \mathcal{K}_{n}, \qquad \qquad \mathcal{L} = \bigoplus_{n=1}^{\infty} \mathcal{L}_{n}.$$

Then clearly $\mathscr{H} = \mathscr{K} \oplus \mathscr{L}$. Since $a \in \mathscr{M}_a^{\circ}$ and $b \in \mathscr{M}_b^{\circ}$, we have

$$ab\mathscr{K}_n \subseteq \mathscr{K}_{n+2}, \qquad n=0,1,2,\ldots$$

and hence $ab(\mathscr{K}) \subseteq \mathscr{K}$. Therefore the 2 × 2-matrix representation of ab corresponding to the decomposition $\mathscr{H} = \mathscr{K} \oplus \mathscr{L}$ is

$$ab = \begin{pmatrix} R & S \\ 0 & T \end{pmatrix}$$

where $R = ab|_{\mathscr{K}}$, $S = P_{\mathscr{K}}ab|_{\mathscr{L}}$, $T = P_{\mathscr{L}}ab|_{\mathscr{L}}$, and $P_{\mathscr{K}}$, $P_{\mathscr{L}}$ denotes orthogonal projections onto \mathscr{K} respectively \mathscr{L} . We have $R(\mathscr{K}_n) \subseteq \mathscr{K}_{n+2}$, and the restriction of R to \mathscr{K}_n is given by

$$R(a_1b_1a_2b_2\cdots)=aba_1b_1a_2b_2\cdots$$

which corresponds to tensoring from the left by $a\xi_a \otimes b\xi_b \in \mathscr{H}_a^{\circ} \otimes \mathscr{H}_b^{\circ}$ on $\mathscr{H}_a^{\circ} \otimes \mathscr{H}_b^{\circ} \otimes \cdots$. Since $||a||_2 = ||b||_2 = 1$, R maps \mathscr{H}_n isometrically into \mathscr{H}_{n+2} , and hence R is an isometry of \mathscr{H} into \mathscr{H} . In particular $||R^p|| = 1$ for all p in \mathbb{N} . Since

$$(ab)^* = \begin{pmatrix} R^* & 0\\ S^* & T^* \end{pmatrix},$$

 \mathscr{L} is invariant under $(ab)^* = b^*a^*$ and $T^* = b^*a^*|_{\mathscr{L}}$. Using $||a^*||_2 = ||a||_2 = 1$, $||b^*||_2 = ||b||_2 = 1$ we get, as above, that T^* maps \mathscr{L}_n isometrically into \mathscr{L}_{n+2} for any $n \ge 1$, and hence T^* is an isometry. In particular $||T^p|| = ||(T^*)^p|| = 1$ for all p in \mathbb{N} . Since

$$(ab)^{p} = \begin{pmatrix} R^{p} & 0\\ 0 & T^{p} \end{pmatrix} + \sum_{r=0}^{p-1} \begin{pmatrix} 0 & R^{p-r-1}ST^{r}\\ 0 & 0 \end{pmatrix},$$

we have

$$1 \leqslant \|(ab)^p\| \leqslant 1 + p\|S\| \leqslant 1 + p\|ab\|$$

hence $r(ab) = \lim_{p \to \infty} ||(ab)^p||^{1/p} = 1$ as desired.

Corollary 4.2. If T is an R-diagonal element, then

$$||T^p|| \leq (1+p)||T|| ||T||_2^{p-1}$$

for every p = 1, 2, ...

Proof: By Corollary 3.2 we can assume that T = ax, for some free self-adjoint and symmetric distributed random variables a, x, where $a^2 = 1$. In particular a and x are centered, $||a||_2 = 1$ and $||x||_2 = ||T||_2$, so by the proof of Proposition 4.1, we get

$$\left\| \left(\frac{T}{\|T\|_2} \right)^p \right\| \leqslant 1 + p \left\| a \cdot \frac{x}{\|x\|_2} \right\| = 1 + p \cdot \frac{\|T\|}{\|T\|_2}$$
$$\|T\|_p^p + p \|T\| \|T\|_p^{p-1} \le (1+p) \|T\| \|T\|_p^{p-1}$$

hence $||T||^p \leq ||T||_2^p + p||T|| ||T||_2^{p-1} \leq (1+p)||T|| ||T||_2^{p-1}$.

Lemma 4.3. Let (\mathcal{M}, τ) be a non-commutative von Neumann probability space with a faithful trace τ . Suppose that $a \in \mathcal{M}$ has vanishing moments, i.e., $\tau(a^n) = 0$ for $n \in \mathbb{N}$.

Then $\Delta(1-a) = 1$ if $r(a) \leq 1$.

Proof: We first assume that r(a) < 1. Then $b = \log(1 - a)$ is well defined, and expanding log in a power series we obtain from (2.1)

$$\log \Delta(1-a) = \operatorname{Re} \tau(b) = -\operatorname{Re} \tau\left(\sum_{n=1}^{\infty} \frac{a^n}{n}\right) = -\operatorname{Re} \sum_{n=1}^{\infty} \frac{\tau(a^n)}{n} = 0.$$

Next suppose that r(a) = 1. Then $1 - ta \rightarrow 1 - a$ in norm as $t \rightarrow 1^-$ and upper semicontinuity of Δ gives

$$\Delta(1-a) \ge \limsup_{t \to 1^-} \Delta(1-ta) = 1.$$

The reverse inequality follows from the maximum principle for subharmonic functions and the fact that the mapping $\lambda \mapsto \Delta(a - \lambda 1)$ is subharmonic on \mathbb{C} : For s > 1 we have

$$\Delta(1-a) \leqslant \max_{|\lambda| \leqslant s} \Delta(\lambda 1 - a) = \max_{|\lambda| = s} s\Delta(1 - \lambda^{-1}a) = s.$$

We conclude that $\Delta(1-a) = 1$.

Theorem 4.4. Let (\mathcal{M}, τ) be a non-commutative von Neumann probability space with a faithful trace τ . Let u and h be *-free random variables in \mathcal{M} , u a Haar unitary, $h \ge 0$ and assume that the distribution μ_h for h is not a Dirac measure.

Denote by μ_{uh} the Brown measure for uh. Then

(i) μ_{uh} is rotation invariant and

$$\operatorname{supp} \mu_{uh} = [\|h^{-1}\|_2^{-1}, \|h\|_2] \times_p [0, 2\pi[.$$

- (ii) The S-transform $\mathscr{S}_{\mu_{h^2}}$ of the distribution of h^2 has an analytic continuation to (a neighbourhood of) $]\mu_h(\{0\}) 1, 0]$, $\mathscr{S}_{\mu_{h^2}}(]\mu_h(\{0\}) 1, 0]) = [||h||_2^{-2}, ||h^{-1}||_2^2[$ and $\mathscr{S}'_{\mu_{h^2}} < 0$ on $]\mu_h(\{0\}) 1, 0[$.
- (iii) $\mu_{uh}(\{0\}) = \mu_h(\{0\})$ and

$$\mu_{uh}(B(0,\mathscr{S}_{\mu_{h^2}}(t-1)^{-1/2})) = t, \quad \text{for } t \in]\mu_h(\{0\}), 1].$$
(4.1)

(iv) μ_{uh} is the only rotation symmetric probability measure satisfying (iii).

In our attempt to compute $L(uh - \lambda 1)$ in order to compute the Brown measure μ_{uh} for uh, it is computationally more convenient to convert uh to a product ax of free self-adjoint symmetric distributed elements and compute $L(x + \lambda a)$. The idea in this computation is to use Lemma 3.3 in [6] to factorize $x + \lambda a$ and separate computations involving the distributions of a and x: We then have to compute Fuglede-Kadison determinants of functions of a and x only. It turns out that it is not in general possible to factorize $x + \lambda a$ but we can state a set of λ 's for which this is possible. For these specified values of λ we compute $L(x + \lambda a)$ in terms of the distribution of x and this information enables us to state the absolute continuous part of μ_{uh} .

Proof: Let T = uh. If ρ is a complex number of modulus 1 then $\rho T = (\rho u)h \cong uh = T$ because $\rho u \cong u$ and u and h are *-free. Therefore the spectrum of T, the map $\lambda \mapsto L(T - \lambda 1)$, the support of the Brown measure μ_T of T and the measure μ_T are rotation

symmetric. Applying Corollary 3.2 we infer that T has the same *-distribution as ax, where a and x are free self-adjoint symmetric distributed random variables, a is a $L(\mathbb{Z}_2)$ -symmetry with distribution $\mu_a = (\delta_{-1} + \delta_1)/2$ and the distribution μ of x is determined by $\mu_{sq} = \mu_{h^2}$. Define

$$k_x(s) = \tau((1 - sx)^{-1}) = \int_{\mathbb{R}} \frac{1}{1 - sw} d\mu(w),$$

$$f(v) = k_x(iv) = \int_{\mathbb{R}} \frac{1}{1 - ivw} d\mu(w) \stackrel{(*)}{=} \int_{\mathbb{R}} \frac{1}{1 + ivw} d\mu(w) = \int_{\mathbb{R}} \frac{1}{1 + v^2 w^2} d\mu(w),$$

for $s \in \mathbb{C} \setminus (\operatorname{sp} x)^{-1}$, v > 0. At (*) we use the fact that μ is symmetric. Note that 0 < f < 1and $f(v) \to \mu(\{0\})$ as $v \to \infty$. Thus we can define g on $]0, \infty[$ by

$$g(v) = \frac{1 - f(v)}{v^2 f(v)} = \int_{\mathbb{R}} \frac{w^2}{1 + v^2 w^2} d\mu(w) \Big/ \int_{\mathbb{R}} \frac{1}{1 + v^2 w^2} d\mu(w).$$
(4.2)

We show that g is strictly decreasing and $g(]0, \infty[) =]||h^{-1}||_2^{-2}, ||h||_2^{2}[$. Observe first that g > 0 hence we can do logarithmic differentiation of g:

$$\frac{d}{dv}\log g(v) = \frac{g'(v)}{g(v)} = -\frac{2(1-f(v))f(v) + vf'(v)}{v(1-f(v))f(v)}.$$
(4.3)

It follows that we can show monotonicity of g by showing the numerator in (4.3) is positive: for v > 0 we find

$$2(1 - f(v))f(v) - vf'(v)$$

$$= 2 \int_{\mathbb{R}} \frac{v^2 t^2}{1 + v^2 t^2} d\mu(t) \int_{\mathbb{R}} \frac{1}{1 + v^2 s^2} d\mu(s) - 2v^2 \int_{\mathbb{R}} \frac{t^2}{(1 + v^2 t^2)^2} d\mu(t)$$

$$= v^2 \int_{\mathbb{R}^2} \frac{t^2 + s^2}{(1 + v^2 t^2)(1 + v^2 s^2)} d\mu \times \mu(s, t)$$

$$- v^2 \int_{\mathbb{R}^2} \left(\frac{t^2}{(1 + v^2 t^2)^2} + \frac{s^2}{(1 + v^2 s^2)^2}\right) d\mu \times \mu(s, t)$$

$$= v^4 \int_{\mathbb{R}^2} \frac{(t^2 - s^2)^2}{(1 + v^2 t^2)^2(1 + v^2 s^2)^2} d\mu \times \mu(s, t).$$
(4.4)

Since μ_h is not a Dirac measure, supp $\mu \times \mu \nsubseteq \{(x, y) \mid |x| = |y|\}$ whence the expression in Equation (4.4) is strictly positive. This shows that g' < 0 on $]0, \infty[$. The image of g can be computed using formula (4.2). We observe that

$$\int_{\mathbb{R}} \frac{v^2}{1 + v^2 w^2} d\mu(w) \to \int_{\mathbb{R}} \frac{1}{w^2} d\mu(w) = \|h^{-1}\|_2^2, \qquad \int_{\mathbb{R}} \frac{v^2 w^2}{1 + v^2 w^2} d\mu(w) \to 1$$

as $v \to \infty$ and

$$\int_{\mathbb{R}} \frac{w^2}{1 + v^2 w^2} d\mu(w) \to \int_{\mathbb{R}} w^2 d\mu(w) = \|h\|_2^2, \qquad \qquad \int_{\mathbb{R}} \frac{1}{1 + v^2 w^2} d\mu(w) \to 1$$

as $v \to 0$, and collecting these results we obtain $g(]0, \infty[) =] ||h^{-1}||_2^{-2}, ||h||_2^2[$. It follows from Morera's Theorem that f (hence g and 1/g) is analytic in a neighbourhood of $]0, \infty[$. We define $\lambda = \lambda(v)$ by $\lambda^2 = g(v)$ and $k_{\lambda a}$ by

$$k_{\lambda a}(t) = \tau((1 - t\lambda a)^{-1}) = \frac{1}{1 - t^2\lambda^2}$$

for $t \neq \pm \lambda^{-1}$. Using s = iv, $t = i/(\lambda^2 v)$ we get $k_{\lambda a}(t) = 1 - f(v)$, and we are able to compute the product

$$(1 - sx) \left(1 - \frac{((1 - sx)^{-1})^{\circ} ((1 - t\lambda a)^{-1})^{\circ}}{k_x(s)k_{\lambda a}(t)} \right) (1 - t\lambda a)$$

= $(1 - sx) \left(1 - \frac{(1 - sx)^{-1} - k_x(s)}{k_x(s)} \cdot \frac{(1 - t\lambda a)^{-1} - k_{\lambda a}(t)}{k_{\lambda a}(t)} \right) (1 - t\lambda a)$
= $\frac{-iv}{1 - f(v)} (x + \lambda a).$

Then we are able to compute

$$L(T - \lambda 1) = L(x + \lambda a)$$

= $L(1 - sx) + L\left(1 - \frac{((1 - sx)^{-1})^{\circ}}{k_x(s)} \cdot \frac{((1 - t\lambda a)^{-1})^{\circ}}{k_{\lambda a}(t)}\right)$
+ $L(1 - t\lambda a) - \log v + \log(1 - f(v)).$

Observe that

$$\begin{aligned} \|((1-sx)^{-1})^{\circ}\|_{2}^{2} &= \|(1-sx)^{-1}\|_{2}^{2} - |\tau((1-sx)^{-1})|^{2} \\ &= \int_{\mathbb{R}} \frac{1}{1+|s|^{2}w^{2}} d\mu(w) - f(v)^{2} = \int_{\mathbb{R}} \frac{1}{1+v^{2}w^{2}} d\mu(w) - f(v)^{2} \\ &= f(v)(1-f(v)) \end{aligned}$$

and that $\|((1-t\lambda a)^{-1})^{\circ}\|_{2}^{2} = f(v)(1-f(v))$. Freeness of a and x implies that Proposition 4.1 applies to the product $((1-sx)^{-1})^{\circ} \cdot ((1-t\lambda a)^{-1})^{\circ}$ and we infer that

$$r(((1-sx)^{-1})^{\circ} \cdot ((1-t\lambda a)^{-1})^{\circ}) = f(v)(1-f(v)) = k_x(s)k_{\lambda a}(t)$$

Using the freeness assumption on a and x we see that $((1 - sx)^{-1})^{\circ} \cdot ((1 - t\lambda a)^{-1})^{\circ}$ has vanishing moments, and it follows then from Lemma 4.3 that

$$L\left(1 - \frac{((1 - sx)^{-1})^{\circ}}{k_x(s)} \cdot \frac{((1 - t\lambda a)^{-1})^{\circ}}{k_{\lambda a}(t)}\right) = 0.$$

Invertibility of 1 - sx and $1 - t\lambda a$ implies that we can compute L(1 - sx) and $L(1 - t\lambda a)$:

$$L(1 - t\lambda a) = \tau(\log|1 - t\lambda a|) = \frac{1}{2}\log\frac{1 + \lambda^2 v^2}{\lambda^2 v^2},$$

$$L(1 - sx) = \int_{\mathbb{R}} \log|1 - sw| \, d\mu(w) = \frac{1}{2}\int_{\mathbb{R}} \log(1 + v^2 w^2) \, d\mu(w),$$

and we have

$$L(T - \lambda 1) = \frac{1}{2} \int_{\mathbb{R}} \log(1 + v^2 w^2) \, d\mu(w) + \frac{1}{2} \log \frac{\lambda^2}{1 + v^2 \lambda^2}$$
(4.5)

for $\lambda = \lambda(v) \epsilon] \|h^{-1}\|_2^{-1}$, $\|h\|_2$ [. The mapping $v \mapsto \lambda(v)$ is analytic in a neighbourhood of $]0, \infty[$ hence of class C^2 on $]0, \infty[$. It then follows from Equation (4.5) that the mapping $v \mapsto L(T - \lambda(v)1)$ is real valued and of class C^2 on $]0, \infty[$. In addition $\lambda'(v) > 0$ for v > 0 hence v is a C^2 -function of λ . It follows that $\lambda \mapsto L(T - \lambda 1)$ is a C^2 -function on $\mathbb{C} \setminus \{0\}$.

We are now in a position to compute the Brown measure on circular annuli: Let $0 < v_1 < v_2 < \infty$ and put $\alpha = g(v_2)^{1/2}$, $\beta = g(v_1)^{1/2}$. Then

$$\begin{split} \mu_{T}([\alpha,\beta]\times_{p}[0,2\pi[)) &= \frac{1}{2\pi} \iint_{[\alpha,\beta]\times_{p}[0,2\pi[} \nabla^{2}H(\lambda_{1},\lambda_{2}) d\lambda_{1}d\lambda_{2} \\ &= \frac{\beta}{2\pi} \int_{0}^{2\pi} \operatorname{grad} H(\beta\cos\theta,\beta\sin\theta) \cdot {\cos\theta \choose \sin\theta} d\theta \\ &- \frac{\alpha}{2\pi} \int_{0}^{2\pi} \operatorname{grad} H(\alpha\cos\theta,\alpha\sin\theta) \cdot {\cos\theta \choose \sin\theta} d\theta \\ &\qquad \left(\stackrel{\text{(t)}}{=} \frac{\beta}{2\pi} \int_{0}^{2\pi} K'(\beta) {\cos\theta \choose \sin\theta} \cdot {\cos\theta \choose \sin\theta} d\theta - \frac{\alpha}{2\pi} \int_{0}^{2\pi} K'(\alpha) {\cos\theta \choose \sin\theta} \cdot {\cos\theta \choose \sin\theta} d\theta \\ &= \beta K'(\beta) - \alpha K'(\alpha), \end{split}$$

where $H(\lambda_1, \lambda_2) = L(x + (\lambda_1 + i\lambda_2)a)$, $K(\lambda) = H(\lambda, 0)$. At (†) we use the fact that H is rotation symmetric. We are able to compute $K'(\lambda)$:

$$\begin{aligned} K'(\lambda(v))\lambda'(v) &= \frac{d}{dv}L(x+\lambda(v)a) = \frac{d}{dv}\Big(\int_{\mathbb{R}} \log(1+v^2w^2)\,d\mu(w) + \frac{1}{2}\log\frac{\lambda^2}{1+v^2\lambda^2}\Big) \\ &= \frac{1-f(v)}{v} + \frac{\lambda'(v)}{\lambda(v)} - \frac{v\lambda(v)^2 + v^2\lambda(v)\lambda'(v)}{1+v^2\lambda(v)^2} = \lambda'(v)f(v)/\lambda(v), \end{aligned}$$

hence $f(v) = \lambda(v)K'(\lambda(v))$. This means that $\mu_T([\alpha, \beta] \times_p [0, 2\pi[) = f(v_1) - f(v_2)$. Letting v_1 tend to 0 we obtain

$$\mu_T([\alpha, ||h||_2[\times_p [0, 2\pi[)] = 1 - f(v_2))$$

for all $v_2 > 0$. Letting v_2 tend to ∞ we obtain

$$\mu_T(]\|h^{-1}\|_2^{-1}, \|h\|_2[\times_p[0, 2\pi[) = 1 - \mu_h(\{0\}).$$
(4.6)

If $\mu(\{0\}) = 0$ we see that $\operatorname{supp} \mu_T = [\|h^{-1}\|_2^{-1}, \|h\|_2] \times_p [0, 2\pi[$. Otherwise let p be the orthogonal projection onto Ker T. Then $\tau(p) = \mu_h(\{0\})$ and we can think of T as $T = \begin{pmatrix} 0 & R \\ 0 & S \end{pmatrix}$ where the decomposition is with respect to p and $p^{\perp} := 1 - p$, i.e., $T = pTp^{\perp} + p^{\perp}Tp^{\perp}$. Let $\lambda \neq 0$. Then $T - \lambda 1 = \begin{pmatrix} -\lambda_1 & R \\ 0 & S - \lambda_1 \end{pmatrix}$ and by Proposition 1.8 in [3] we have

$$\Delta(T) = \Delta \begin{pmatrix} -\lambda 1 & R \\ 0 & S - \lambda 1 \end{pmatrix} = \Delta_1 (-\lambda 1)^{\tau(p)} \Delta_2 (S - \lambda 1)^{\tau(p^{\perp})}$$

where Δ_1 and Δ_2 are the Fuglede-Kadison determinants on $p\mathcal{M}p$ and $p^{\perp}\mathcal{M}p^{\perp}$ computed with respect to the normalized traces on these two algebras. Put $L_i = \log \Delta_i$, i = 1, 2. Then

$$L(T) = \tau(p)L_1(-\lambda 1) + \tau(p^{\perp})L_2(S - \lambda 1) = \tau(p)\log|\lambda| + \tau(p^{\perp})L_2(S - \lambda 1)$$

hence the Brown measure for T is given by

$$\mu_T = \tau(p)\delta_0 + \tau(1-p)\mu_S$$

where $\delta_0 = (2\pi)^{-1} \nabla^2 \log |\lambda|$ is the Dirac measure at 0 and μ_S is the Brown measure of S relative to $p^{\perp} \mathscr{M} p^{\perp}$. Hence $\mu_T(\{0\}) \ge \tau(p)$. Combined with Equation (4.6) this gives $\mu_T(B(0, ||h||_2)) \ge 1$, but μ_T is a probability measure and we conclude that $\mu_T(\{0\}) = \mu_h(\{0\})$. Furthermore $||h^{-1}||_2^{-1} = 0$ and $\operatorname{supp} \mu_T = [||h^{-1}||_2^{-1}, ||h||_2] \times_p [0, 2\pi[$.

For v > 0 we have

$$\mu_T \big(B(0, \lambda(v)) \big) = 1 - \mu_T \big([\lambda(v), ||h||_2 [\times_p [0, 2\pi[)] = 1 - (1 - f(v)) = f(v),$$

and if v > 0 is small then

$$f(v) - 1 = \int_{\mathbb{R}} \frac{-v^2 w^2}{1 + v^2 w^2} \, d\mu(w) = \int_{\mathbb{R}} \frac{-v^2 w}{1 - (-v^2) w} \, d\mu_{sq}(w) = \psi_{\mu_{h^2}}(-v^2)$$

which means that $-v^2 = \chi_{\mu_h 2}(f(v) - 1)$, hence

$$\mathscr{S}_{\mu_{h^2}}(f(v)-1) = \frac{f(v)}{f(v)-1}\chi_{\mu_{h^2}}(f(v)-1) = \frac{v^2 f(v)}{1-f(v)} = \frac{1}{\lambda(v)^2}$$
(4.7)

for v in a neighbourhood of 0. Since f' < 0 on $]0, \infty[, f-1]$ is univalent in every v > 0hence we can construct an analytic function F on a neighbourhood of $f(]0, \infty[) - 1 =]\mu_h(\{0\}) - 1, 0[$ such that f(F(z)) - 1 = z for all z in $]\mu_h(\{0\}) - 1, 0[$. This implies that $\mathscr{S}_{\mu_h^2}$ can be continued analytically to a neighbourhood of $]\mu_h(\{0\}) - 1, 0[$, (4.7) holds for all v > 0 and that

$$\mu_T \left(B(0, \mathscr{S}_{\mu_{h^2}}(f(v) - 1)^{-1/2}) \right) = \mu_T \left(B(0, \lambda(v)) \right) = f(v)$$

for all v > 0. This means that $\mu_T(B(0, \mathscr{S}_{\mu_h^2}(t-1)^{-1/2})) = t$ for all t in $]\mu_h(\{0\}), 1[$. It is shown in [6] that $\mathscr{S}_{\mu_h^2}$ is analytic in a neighbourhood of 0 and $\mathscr{S}_{\mu_h^2}(0) = \tau(h^2)^{-1} =$ $\|h\|_2^{-2}$. Thus $\mathscr{S}_{\mu_h^2}$ has an analytic continuation to a neighbourhood of $]\mu(\{0\}) - 1, 0]$ and a continuity argument shows that $\mu_T(B(0, \|h\|_2)) = 1$. It follows from Equation (4.7) that $\mathscr{S}_{\mu_h^2} < 0$ on $]\mu_h(\{0\}) - 1, 0[$.

We remain to prove uniqueness of μ_T . Suppose that ν is a rotation symmetric probability measure satisfying $\nu(\{0\}) = \mu_h(\{0\})$ and $\nu(B(0, \mathscr{G}_{\mu_h^2}(t-1)^{-1/2})) = t$ for all t in $]\mu_h(\{0\}), 1]$. Then $\nu(B(0, r)) = \mu_T(B(0, r))$ for all $r > ||h^{-1}||_2^{-1}$ because ν is a probability measure. If $||h^{-1}||_2^{-1} > 0$ then $\mu_T(\{0\}) = 0$ and

$$\nu \left(B(0, \|h^{-1}\|_{2}^{-1}) \right) = \lim_{\varepsilon \to 0} \nu \left(B(0, \|h^{-1}\|_{2}^{-1} + \varepsilon) \right) = \lim_{\varepsilon \to 0} \mu_{T} \left(B(0, \|h^{-1}\|_{2}^{-1} + \varepsilon) \right)$$
$$= \mu_{T} \left(B(0, \|h^{-1}\|_{2}^{-1}) \right) = 0.$$

We conclude that $\nu(B(0,r)) = \mu_T(B(0,r))$ for all r > 0 which implies that ν and μ_T agree on all circular annuli of the form $[\alpha, \beta[\times_p[0, 2\pi[(0 < \alpha < \beta). \text{ Since } \nu \text{ and } \mu_T \text{ are rotation} \text{ symmetric they must be equal on sets of the form } [\alpha, \beta[\times_p[0, 2\pi/n[(0 < \alpha < \beta, n \in \mathbb{N}) \text{ hence they are equal on all sets of the form } [\alpha, \beta[\times_p[2\pi\gamma, 2\pi\delta[(0 < \alpha < \beta, 0 \leq \gamma < \delta \leq 1, \gamma, \delta \in \mathbb{Q}). \text{ Since these sets generate the Borel } \sigma\text{-algebra on } \mathbb{C} \text{ we conclude that } \nu = \mu_T.$

Corollary 4.5. With the notation as in Theorem 4.4 we have

- (i) the function $F(t) = \mathscr{S}_{\mu_{h^2}}(t-1)^{-1/2} :]\mu_h(\{0\}), 1] \to]||h^{-1}||_2^{-1}, ||h||_2]$ has an analytic continuation to a neighbourhood of its domain and F' > 0 on $]\mu_h(\{0\}), 1[$,
- (ii) μ_{uh} has a radial density function f on $]0, \infty[$ defined by

$$f(s) = \begin{cases} \frac{1}{2\pi s F'(F^{-1}(s))}, & s \in] \|h^{-1}\|_2^{-1}, \|h\|_2], \\ 0, & otherwise. \end{cases}$$
(4.8)

The radial density function has an analytic continuation to a neighbourhood of $\|\|h^{-1}\|_2^{-1}, \|h\|_2$.

Proof: (i) follows immediately from Theorem 4.4.

Let $\alpha = \mu(\{0\}), \beta = \|h^{-1}\|_2^{-1}$, and define $\nu = \alpha \delta_0 + f(|\lambda|) dm_2(\lambda)$ on the Borel-measurable sets. Let $t \in [\alpha, 1[$. Then

$$\nu(B(0, F(t))) = \alpha + \iint_{\substack{]0, F(t)[\times_{p}[0, 2\pi[}]} f(|\lambda|) \, dm_{2}(\lambda) = \alpha + 2\pi \int_{0}^{F(t)} f(r) r \, dr$$
$$= \alpha + \lim_{n \to \infty} \int_{\beta + \frac{1}{n}}^{F(t)} (F^{-1})'(r) \, dr = \alpha + \lim_{n \to \infty} \int_{F^{-1}(\beta + \frac{1}{n})}^{t} 1 \, ds$$
$$= t - \lim_{n \to \infty} F^{-1}(\beta + \frac{1}{n}) + \alpha = t.$$

The uniqueness of μ_{uh} shows that $\nu = \mu_{uh}$.

Note that $F' \circ F^{-1}$ is analytic in a neighbourhood of $]||h^{-1}||_2^{-1}$, $||h||_2]$ and that $F'(F^{-1}(s)) > 0$ for all s in $]||h^{-1}||_2^{-1}$, ||h||]. This implies that f can be continued analytically to a neighbourhood of $]||h^{-1}||_2^{-1}$, $||h||_2]$.

The Corollary shows that the radial density function for the Brown measure is determined by the distribution of h and the formula (4.8).

Now suppose $u, h, k \in \mathcal{M}, u$ is a Haar unitary, $h, k \ge 0, u, h$ are *-free, u, k are *-free and that $\mu_{uh} = \mu_{uk}$. Then it follows from Theorem 4.4 that $||h||_2 = ||k||_2, ||h^{-1}||_2 =$ $||k^{-1}||_2$ and from Corollary 4.5 that $(F_{h^2}^{-1})'(r) = (F_{k^2}^{-1})'(r)$ for $r \in I =]||h^{-1}||_2^{-1}, ||h||_2[=$ $]||k^{-1}||_2^{-1}, ||k||_2[$ from which we infer that $F_{h^2}^{-1}(r) - F_{k^2}^{-1}(r)$ is constant on I. But $F_{h^2}^{-1}(r) \to 1$ as $r \to ||h||_2$ and $F_{k^2}^{-1}(r) \to 1$ as $r \to ||k||_2 = ||h||_2$ so that $F_{h^2}^{-1} = F_{k^2}^{-1}$ on I. This implies that $\mathscr{S}_{\mu_{h^2}} = \mathscr{S}_{\mu_{k^2}}$ on $]\mu_{uh}(\{0\}) - 1, 0[$ and we conclude that $\mathscr{S}_{\mu_{h^2}} = \mathscr{S}_{\mu_{k^2}}$ in a neighbourhood of 0 using the Principle of Analytic Continuation. Therefore the distribution of h is uniquely determined by the Brown measure for uh.

Proposition 4.6. With the notation as in Theorem 4.4 we have

- (i) the Brown measure for uh is the uniform probability measure on $\alpha \mathbb{T}$ (for some $\alpha \ge 0$) if and only if $\mu_h = \delta_{\alpha}$, i.e., h is a scalar. Thus (i) in Theorem 4.4 holds if μ_h is a Dirac measure,
- (ii) if h is invertible then $\operatorname{sp} uh = \operatorname{supp} \mu_{uh}$,
- (iii) if h is not invertible then sp $uh = B(0, ||h||_2)$,
- (iv) $\operatorname{supp} \mu_{uh} \subsetneq \operatorname{sp} uh$ if and only if h is not invertible in \mathscr{M} and $\|h^{-1}\|_2 < \infty$.

Proof: If h is a scalar $\alpha \ge 0$, uh has spectrum $\alpha \mathbb{T}$ and $\mu_{uh} = (\mu_u)_{z \mapsto \alpha z}$ is the uniform probability measure on $\alpha \mathbb{T}$. (In the case $\alpha = 0$ this measure is δ_0 .) If, conversely, sp h has more than one point, Theorem 4.4 applies and we infer that $[||h^{-1}||_2^{-1}, ||h||_2] \subseteq \operatorname{supp} \mu_{uh}$.

Either $\mu_h(\{0\}) \neq 0$ or $\mu_h(\{0\}) = 0$. If $\mu_h(\{0\}) \neq 0$ we have $||h^{-1}||_2 = 0 < ||h||_2$. Otherwise we have

$$||h^{-1}||_2 \cdot ||h||_2 = \left(\int_{\mathbb{R}} t^{-2} d\mu_h(t)\right)^{1/2} \left(\int_{\mathbb{R}} t^2 d\mu_h(t)\right)^{1/2} \ge \int_{\mathbb{R}} 1_{\mathbb{R} \setminus \{0\}} d\mu_h(t) = 1.$$

We have equality in Hölders inequality only if the integrands are proportional a.e. w.r.t. μ_h . (This means that $\sup \mu_h = \operatorname{sp} h$ consists of a single point.) Therefore $\|h^{-1}\|_2^{-1} < \|h\|_2$ and we conclude that μ_{uh} is not the uniform measure on $\alpha \mathbb{T}$ for any $\alpha \ge 0$. This proves (i).

It follows from Corollary 3.2 that we can replace T = uh by ax where a and x are free selfadjoint symmetric distributed random variables, $a^2 = 1$, $x^2 = h^2$, and using Proposition 4.1 we get $r(uh) = r(ax) = ||a||_2 ||x||_2 = ||h||_2$ whence sp $uh \subseteq \overline{B(0, ||h||_2)}$. If h is invertible then it follows from Proposition 3.10 that $(uh)^{-1}$ is R-diagonal hence sp $(uh)^{-1} \subseteq \overline{B(0, ||h^{-1}||_2)}$. Summing up we have

$$\operatorname{sp} uh \subseteq [||h^{-1}||_2^{-1}, ||h||_2] \times_p [0, 2\pi[= \operatorname{supp} \mu_{uh} \subseteq \operatorname{sp} uh,$$

which shows (ii).

Now suppose that h is not invertible. To prove (iii) we assume without loss of generality that $||h^{-1}||_2 = \int_{\mathbb{R}} t^{-2} d\mu_x(t) < \infty$. Then $\mu_x(\{0\}) = \mu_h(\{0\}) = 0$, whence Ker $x = \{0\}$, so x has an (unbounded) inverse. Let E be the spectral resolution of x. Then x^{-1} (as an unbounded operator) is given by

$$x^{-1} = \int_{\mathbb{R}} \frac{1}{\lambda} dE(\lambda).$$

We introduce approximants: for m a natural number let

$$x_m = \int_{\mathbb{R}} \frac{1}{\lambda} \cdot 1_{]1/m,\infty[}(|\lambda|) \, dE(\lambda).$$

We note that the approximants are centered elements in (\mathcal{M}, τ) , that $\{x_m \mid m \in \mathbb{N}\}$ and $\{a\}$ are free, and that $(x_m)_m$ form a Cauchy sequence with respect to $\|\cdot\|_2$ on \mathcal{M} : for $m \leq m'$ we have

$$||x_m - x_{m'}||_2^2 = \int_{\mathbb{R}} \frac{1}{\lambda^2} \cdot \mathbf{1}_{]1/m', 1/m]}(|\lambda|) \, d\mu_x(\lambda) \leqslant \int_{\mathbb{R}} \frac{1}{\lambda^2} \cdot \mathbf{1}_{[0, 1/m]}(|\lambda|) \, d\mu_x(\lambda) \to 0$$

as $m \to \infty$ due to the assumption on $||h^{-1}||_2$. It follows that for any natural number *n*, the sequence $((x_m a)^n)_{m=1}^{\infty}$ is Cauchy with respect to $||\cdot||_2$: Fix *n* in N. For *m* and *m'* natural

numbers we get

$$\|(x_m a)^n - (x_{m'} a)^n\|_2 = \left\|\sum_{j=0}^{n-1} (x_{m'} a)^j (x_m a)^{n-j} - (x_{m'} a)^{j+1} (x_m a)^{n-1-j}\right\|_2$$

$$\leqslant \sum_{j=0}^{n-1} \|(x_{m'} a)^j (x_m - x_{m'}) (x_m a)^{n-1-j}\|_2$$

$$= \|x_m - x_{m'}\|_2 \sum_{j=1}^{n-1} \|x_{m'}\|_2^j \|x_m\|_2^{n-1-j}$$

$$\leqslant \|x_m - x_{m'}\|_2 \cdot n \cdot \|h^{-1}\|_2^{n-1}.$$

We denote by T^{-n} the limit of the sequence $((x_m a)^n)_m$ in $(L^2(\mathcal{M}), \|\cdot\|_2)$. We note that $xx_m \to \hat{1}$ in $L^2(\mathcal{M})$ as $m \to \infty$ hence $T(T^{-1}) = \hat{1}$ and $T(T^{-n-1}) = T^{-n}$ for any $n \ge 1$. We are able to compute norms of the vectors T^{-n} $(n \in \mathbb{N})$ too:

$$\|T^{-n}\|_{2} = \lim_{m \to \infty} \|(x_{m}a)^{n}\|_{2} \stackrel{(\ddagger)}{=} \lim_{m \to \infty} \|x_{m}\|_{2}^{n} = \lim_{m \to \infty} \left(\int_{\mathbb{R}} \frac{1}{\lambda^{2}} \cdot \mathbf{1}_{]1/m,\infty[}(|\lambda|) \, d\mu_{x}(\lambda) \right)^{n}$$
$$= \left(\int_{\mathbb{R}} \frac{1}{\lambda^{2}} \cdot \mathbf{1}_{]0,\infty[}(\lambda) \, d\mu(\lambda) \right)^{n} = \|h^{-1}\|_{2}^{n}.$$

Freeness of x_m and a implies equality at (\ddagger) . We define $f: B(0, ||h^{-1}||_2^{-1}) \to L^2(\mathscr{M})$ by $f(\lambda) = \sum_{n=0}^{\infty} \lambda^n T^{-n-1}$. The series is absolutely convergent hence f is analytic on its domain. Now suppose $T - \lambda_0 1$ is invertible for some λ_0 in $]0, ||h^{-1}||_2^{-1}[$. Then $\lambda_0 \notin \operatorname{sp} uh$ hence $\lambda_0 \mathbb{T} \cap \operatorname{sp} uh = \emptyset$ because $\operatorname{sp} uh$ is rotation symmetric. Thus $T - \lambda 1$ is invertible for all λ in $\lambda_0 \mathbb{T}$. For $\lambda \in \lambda_0 \mathbb{T}$ we find

$$(T - \lambda 1)f(\lambda) = \sum_{n=0}^{\infty} (T - \lambda 1)(\lambda^n T^{-n-1}) = \sum_{n=0}^{\infty} (\lambda^n T^{-n} - \lambda^{n+1} T^{-(n+1)}) = \hat{1}$$

and we conclude that $f(\lambda) = ((T - \lambda 1)^{-1})^{\widehat{}}$ (for $|\lambda| = \lambda_0$). We next note that the mapping $\theta \mapsto (T - \lambda_0 e^{i\theta} 1)^{-1} : [0, 2\pi] \to (\mathscr{M}, \|\cdot\|)$ is continuous, $S = (2\pi)^{-1} \int_0^{2\pi} (T - \lambda_0 e^{i\theta} 1)^{-1} d\theta$ belongs to \mathscr{M} and $\hat{S} = (2\pi)^{-1} \int_0^{2\pi} f(\lambda_0 e^{i\theta}) d\theta = T^{-1}$. We thus obtain $TS\hat{1} = T(\hat{S}) = \hat{1}$ and conclude that TS = 1. Finiteness of \mathscr{M} ensures us that ST = 1 and we see that T is invertible. This contradicts the assumption that $\lambda_0 \notin \operatorname{sp} T$.

Summing up we have proved that $]0, \|h^{-1}\|_2^{-1}[\subseteq \operatorname{sp} uh]$. Theorem 4.4 shows that $\operatorname{sp} uh$ contains $[\|h^{-1}\|_2^{-1}, \|h\|_2]$ and we conclude that $B(0, \|h\|_2) = \operatorname{sp} uh$. This proves (iii). The last assertion is a reformulation of (ii) and (iii).

Combining the facts that $\mu_{f(uh)} = (\mu_{uh})_f$ for f a polynomial, reciprocal function and involution with the change-of-variables theorem we have the following

Theorem 4.7. With the notation as in Theorem 4.4 and Corollary 4.5 we have

- (i) If $\alpha \neq 0$ then $f_{\alpha uh}(s) = |\alpha|^{-2} f_{uh}(s/|\alpha|)$ on $]0, \infty[$.
- (ii) If $p \in \mathbb{N}$ then $f_{(uh)^p}(s) = p^{-1} f_{uh}(s^{1/p}) s^{2(1/p-1)}$ on $]0, \infty[$.
- (iii) If h is invertible then $f_{(uh)^{-1}}(s) = s^{-4} f_{uh}(s^{-1})$ on $]0, \infty[$.
- (iv) $f_{(uh)^*} = f_{uh}$.

In the next examples we apply the main theorem to give a slight extension of Proposition 3.1 in [1].

Example 4.8. Let *h* be positive and invertible in (\mathcal{M}, τ) . Then $\mathscr{S}_{\mu_h}(-t)\mathscr{S}_{\mu_{h-1}}(t-1) = 1$ for $0 \leq t \leq 1$.

If h is a scalar the conclusion holds trivially. Otherwise μ_h is not a Dirac measure and Theorem 4.4 applies. Let $t \in]\mu_h(\{0\}), 1[=]0, 1[, s = \mathscr{S}_{\mu_h 2}(t-1)^{-1/2}, a = ||h^{-1}||_2^{-1}, b = ||h||_2$. Then $s \in]a, b[$, $supp \mu_{(uh)^{-1}} = [b^{-1}, a^{-1}] \times_p [0, 2\pi[$ and

$$t = \mu_{uh}(B(0,s)) = \mu_{uh}(]a, s[\times_{\mathbf{p}}[0, 2\pi[)] = \mu_{(uh)^{-1}}(]s^{-1}, a^{-1}[\times_{\mathbf{p}}[0, 2\pi[)] = 1 - \mu_{(uh)^{-1}}(]b^{-1}, s^{-1}[\times_{\mathbf{p}}[0, 2\pi[)]$$

whence $1 - t = \mu_{(uh)^{-1}}(B(0, s^{-1}))$. But Proposition 3.10 implies that $(uh)^{-1}$ is *R*-diagonal so $1 - t = \mu_{(uh)^{-1}}(B(0, \mathscr{S}_{\mu_{|(uh)^{-1}|^2}}(-t)^{-1/2}))$. Note that $\mu_{|(uh)^{-1}|^2} = \mu_{h^{-2}}$ whence

$$\mathscr{S}_{\mu_{h-2}}(-t)^{-1/2} = s^{-1} = \mathscr{S}_{\mu_{h^2}}(t-1)^{1/2}$$

for 0 < t < 1. Then Proposition 3.2 in [6] applies and we conclude that $\mathscr{S}_{\mu_{h^2}}$ and $\mathscr{S}_{\mu_{h^{-2}}}$ are analytic in a neighbourhood of [-1, 0].

From this formula it follows that $\chi_{\mu_{h^2}}(-t)\chi_{\mu_{h^{-2}}}(t-1) = 1$ for 0 < t < 1 and that $\psi_{\mu_{h^2}}(x) + \psi_{\mu_{h^{-2}}}(x^{-1}) = -1$ for x < 0 hence we have the idea for a simple proof of the formula: Let μ be a compactly supported probability measure on $]0, \infty[$. Then ψ_{μ} has an analytic continuation to $]-\infty, 0]$ given by

$$\psi_{\mu}(x) = \int_{\mathbb{R}} \frac{xs}{1 - xs} \, d\mu(s)$$

and analogously for $\mu^{-1} := \mu_{inv}$:

$$\psi_{\mu^{-1}}(x) = \int_{\mathbb{R}} \frac{xs}{1 - xs} d\mu^{-1}(s) = \int_{\mathbb{R}} \frac{x}{s - x} d\mu(s)$$

for $x \leq 0$. Then $\psi_{\mu}(x) + \psi_{\mu^{-1}}(x^{-1}) = -1$ and it follows that $\chi_{\mu^{-1}}(z) = (\chi_{\mu}(-1-z))^{-1}$ for all z in $\psi_{\mu}(]-\infty, 0[)$. Observe that $\psi_{\mu}(z) \to -1$ as $z \to -\infty$ and $\psi_{\mu}(0) = 0$ hence $\chi_{\mu^{-1}}(z)\chi_{\mu}(-1-z) = 1$ and $\mathscr{S}_{\mu^{-1}}(z)\mathscr{S}_{\mu}(-1-z) = 1$ for $z \in [-1,0[$. The formula shows that \mathscr{S}_{μ} has an analytic continuation to a neighbourhood of [-1,0]: In a suitably chosen finite non-commutative W^* -probability space (\mathscr{M},τ) we can find a positive element h whose distribution is μ and the conclusion follows as in the paragraph above.

Example 4.9. Let μ be a probability measure on $[0, \infty[$ and assume that μ is not a Dirac measure. Then μ is the distribution (as a measure) of a positive element h in some finite non-commutative W^* -probability space (\mathcal{M}, τ) with a faithful trace. Note that $\mu_{h^{1/2}}(\{0\}) = \mu_h(\{0\}) = \mu(\{0\})$. Then Theorem 4.4 shows that $\mathscr{S}_{\mu}' < 0$ on $]\mu(\{0\}) - 1, 0[$. But $\mathscr{S}_{\mu}'(0) = -\tau((h - \tau(h))^2)/\tau(h)^3$ hence $\mathscr{S}_{\mu}'(0) = 0$ if and only if h is a scalar, i.e., if and only if μ is a Dirac measure. We conclude that $\mathscr{S}_{\mu}' < 0$ on $]\mu(\{0\}) - 1, 0[$. If $\operatorname{supp} \mu \subseteq]0, \infty[$ the formula derived in Example 4.8 yields that $\mathscr{S}_{\mu}' < 0$ on [-1, 0]. We obtain $\mathscr{S}_{\mu}'(-t)\mathscr{S}_{\mu^{-1}}(t-1) = \mathscr{S}_{\mu}(-t)\mathscr{S}_{\mu^{-1}}'(t-1)$ for $0 \leq t \leq 1$, and it follows that $\mathscr{S}_{\mu}'(-1) = 0$ if and only if $\mathscr{S}_{\mu^{-1}}'(0) = 0$.

Proposition 4.10. Let (\mathcal{M}, τ) be a tracial non-commutative von Neumann probability space and let $a = uh \neq 0$ be an *R*-diagonal element in \mathcal{M} , i.e., *u* and *h* are *-free random variables in \mathcal{M} , *u* is a Haar unitary and $h \ge 0$. Let *b* be an invertible element in \mathcal{M} such that *a* and *b* are *-free.

Then bab^{-1} is *R*-diagonal if and only if *b* is a scalar times a unitary.

Proof: Let $b = \lambda v$ where $\lambda \in \mathbb{C} \setminus \{0\}$ and v is a unitary *-free from a. Then $bab^{-1} = vav^* \sim_{*\mathbb{D}} a$ which shows that bab^{-1} is R-diagonal.

Next suppose that bab^{-1} is *R*-diagonal. Let b = vk be the polar decomposition of *b*. Invertibility of *b* ensures that *v* is unitary. Then $bab^{-1} = vkak^{-1}v^*$ has the same Brown measure as *a*. If $\mu_{|bab^{-1}|}$ is a Dirac measure then $|bab^{-1}| = \alpha 1$ (for some $\alpha \ge 0$) whence $|a| = \alpha 1$ and $|bab^{-1}|^2 = |a|^2$. (Here we used the assumptions that bab^{-1} and *a* are *R*-diagonal.) If $\mu_{|bab^{-1}|}$ is not a Dirac measure then $\mu_{|a|}$ is not a Dirac measure, and we infer from Theorem 4.4 that $\mathscr{S}_{\mu_{|bab^{-1}|^2}} = \mathscr{S}_{\mu_{|a|^2}}$ which implies that

$$\tau(|a|^2) = \tau(|bab^{-1}|^2) = \tau((vkak^{-1}v^*)^*vkak^{-1}v^*) = \tau(|a|^2)\tau(k^2)\tau(k^{-2})$$

by the freeness assumption on a and b. Let μ denote the distribution of k. Then $\mu(\{0\}) = 0$ and

$$1 = \tau(k^2)^{1/2} \tau(k^{-2})^{1/2} = \left(\int_{\mathbb{R}} t^2 d\mu(t)\right)^{1/2} \left(\int_{\mathbb{R}} t^{-2} d\mu(t)\right)^{1/2}.$$

Equality holds if and only if the integrands are proportional, i.e., $t = \beta t^{-1}$ a.e. w.r.t. μ . ($\beta > 0$ is some constant.) It follows that μ is a Dirac measure thus k is a scalar.

The argument also shows that if u, u^*bu and b are *-free then b is a scalar times a unitary: Note first that u, u^*bu , b^{-1} are *-free such that u, u^*bub^{-1} are *-free. Then $bub^{-1} = uu^*bub^{-1}$ is R-diagonal and thus b is a scalar times a unitary.

Finally we note that Theorem 4.4(ii) implies that $\lim_{z\to\mu(\{0\})-1+} \mathscr{S}_{\mu}(z) = \mu(X^{-1}) \epsilon [0,\infty].$

5 Examples

Example 5.1. (Circular element.) Let x_1, x_2 be a free semicircular system (with the normalization $\tau(x_1^2) = \tau(x_2^2) = 1$) in a tracial W^* -probability space (\mathcal{M}, τ) . Put

$$y = \frac{1}{\sqrt{2}}(x_1 + ix_2). \tag{5.1}$$

Then y is a circular element in the sense of Voiculescu [13], and $\tau(y^*y) = 1$. By [13], y has polar decomposition y = uh, where u and h are *-free, u is a Haar unitary and $h \ge 0$ is quarter-circular distributed:

$$d\mu_h = \frac{1}{\pi}\sqrt{4 - x^2} \mathbf{1}_{[0,2]}(x) \, dx.$$

In particular y is R-diagonal. A simple computation shows that

$$\mathscr{S}_{\mu_{h^2}}(z) = \frac{1}{z+1}$$

(see the computation in Example 5.2 below for c = 1). Moreover $||h||_2 = 1$ and $||h^{-1}||_2 = \infty$. Hence by Theorem 4.4 and Proposition 4.6 sp $y = \{z \in \mathbb{C} \mid |z| \leq 1\} =: \overline{D}$, and

$$\mu_y(B(0,\sqrt{t})) = t, \qquad 0 < t < 1.$$

Since μ_y is rotation symmetric, this implies that the Brown measure for y is the uniform distribution on the disk \overline{D} given by

$$d\mu_y = \frac{1}{\pi} \mathbf{1}_{\bar{D}}(z) \, d\operatorname{Re} z \, d\operatorname{Im} z.$$
(5.2)

From the random matrix model for a semicircular system (Theorem 1.13 in [13]) one can obtain the following random matrix model for a circular element (cf. Remark 5.1.4 in [14]): Let for n any natural number $Y^{(n)}$ denote the random matrix

$$Y^{(n)} = (Y_{ij})_{i,j=1}^n \tag{5.3}$$

where for each n, $(\operatorname{Re} Y_{ij}, \operatorname{Im} Y_{ij})_{i,j=1}^{n}$ are $2n^{2}$ stochastically independent normal distributed centered random variables with variance $(2n)^{-1}$. Then $Y^{(n)}$ converges in *-distribution to the circular element (5.1) when we use the states $\tau_{n}, n = 1, 2, \ldots$ on $\operatorname{alg}(Y^{(n)}, (Y^{(n)})^{*}, 1)$ given by $\tau_{n} = \mathbb{E} \circ \operatorname{tr}_{n}$. Here \mathbb{E} is the expectation value and tr_{n} is the normalized trace on $M_{n}(\mathbb{C})$. In [5] Ginibre computed the eigenvalue distribution of the random matrix $Y^{(n)}$ for each natural number n, and proved that for $n \to \infty$ this eigenvalue distribution converges weakly to the measure μ_{y} given by (5.2). However, due to the discontinuity of the Fuglede– Kadison determinant, it appears to be difficult to deduce Equation (5.2) for the Brown measure of a circular element directly from Ginibres result. **Example 5.2. (Free Poisson Distribution.)** We consider a one-parameter family of Free Poisson distributions, cf. Section 3.7 in [14].

Let c > 0 and consider the measure

$$\nu_c = \max\{1 - c, 0\}\delta_0 + \frac{\sqrt{(x - a)(b - x)}}{2\pi x} \cdot 1_{]a, b[}(x) \, dx,$$

where $a = (\sqrt{c} - 1)^2$, $b = (\sqrt{c} + 1)^2$. Then

$$\mathcal{R}_{\nu_c}(z) = \frac{c}{1-z},$$

$$G_{\nu_c}(z) = \frac{z + (1-c) \pm \sqrt{(c-1)^2 - 2(c+1)z + z^2}}{2z},$$

$$\psi_{\nu_c}(z) = \frac{G_{\nu_c}(z^{-1})}{z} - 1 = \frac{1 - z(c+1) - \sqrt{1 - 2z(c+1) + z^2(c-1)^2}}{2z}$$

We are able to compute the S-transform too:

$$\mathscr{S}_{\nu_c}(z) = \frac{1}{z+c}.$$

Now consider a *-free pair (u, h) of elements in (\mathcal{M}, τ) where u is a Haar unitary and $h \ge 0$ with distribution given by $\mu_{h^2} = \nu_c$. The Brown measure μ_{uh} for uh is completely described by Theorem 4.4. We find then $||h||_2 = \sqrt{c}$ and using Corollary 4.5 we obtain an expression for the radial density f_{uh} of μ_{uh} :

$$f_{uh}(s) = \frac{1}{\pi} \cdot \mathbf{1}_{]||h^{-1}||_2^{-1},\sqrt{c}[}(s).$$

If $c \ge 1$ then $\mu_{uh}(\{0\}) = 0$ hence μ_{uh} has no point masses. Since $\mu_{uh}(B(0,\sqrt{c})) = 1$ we conclude that $\|h^{-1}\|_2^{-1} = \sqrt{c-1}$.

If 0 < c < 1 then $\mu_{uh}(\{0\}) = 1 - c$ and $||h^{-1}||_2^{-1} = 0$.

Finally we note that if h is quarter circular distributed with $\tau(h^2) = 1$ then $\mu_{h^2} = \nu_1$. Hence c = 1 gives the circular element treated in Example 5.1.

Example 5.3. (Bernoulli Distribution.) Let u and p be *-free random variables in (\mathcal{M}, τ) , and assume that u is a Haar unitary, p is a projection with trace $\alpha \in [0, 1[$. Then μ_p is the Bernoulli distribution with parameter α , i.e., $\mu_p = (1 - \alpha)\delta_0 + \alpha\delta_1$ and the S-transform $\mathscr{S}_{\mu_p^2}$ of $p^2 = p$ is $\mathscr{S}_{\mu_p}(z) = (z + 1)/(z + \alpha)$ for $z \neq -\alpha$, cf. Example 3.6.7 in [14]. Using Corollary 4.5 we obtain an expression for the radial density f_{up} of the Brown measure μ_{up} for up:

$$f_{up}(s) = \frac{1 - \alpha}{\pi (1 - s^2)^2} \cdot 1_{]0,\sqrt{\alpha}[}(s).$$

We can check that this gives the complete information:

$$\mu_{up} \left(B(0, \sqrt{\alpha}) \setminus \{0\} \right) = \iint_{B(0, \sqrt{\alpha}) \setminus \{0\}} f_{up}(|\lambda|) \, d\lambda = 2\pi \int_{0}^{\sqrt{\alpha}} s f_{up}(s) \, ds$$
$$= 2(1-\alpha) \int_{0}^{\sqrt{\alpha}} \frac{s}{(1-s^2)^2} \, ds = \alpha,$$

which together with $\mu_{up}(\{0\}) = \mu_p(\{0\}) = 1 - \alpha$ gives $\mu_{up}(B(0, \sqrt{\alpha})) = 1$.

In the two examples below, we compute the Brown measures for certain linear combinations of Haar unitaries. Let u_1, \ldots, u_n $(n \ge 2)$ be *-free generating Haar unitaries in $L(\mathbb{F}_n)$, let $\alpha_1, \ldots, \alpha_n \in \mathbb{C} \setminus \{0\}$ and put

$$T = \alpha_1 u_1 + \dots + \alpha_n u_n.$$

By the addition property of *-free *R*-diagonal elements we infer that *T* is *R*-diagonal. Next we note that the *-distribution (hence the spectrum and the Brown measure) for *T* only depends on $|\alpha_1|, \ldots, |\alpha_n|$: Let $\rho_j = \alpha_j/|\alpha_j|$ $(j = 1, \ldots, n)$ and observe that $\rho_j u_j$ has the same *-distribution as u_j . This implies that $\rho_j u_j \cong u_j$ whence

$$T = |\alpha_1|\rho_1 u_1 + \dots + |\alpha_n|\rho_n u_n \cong |\alpha_1|u_1 + \dots + |\alpha_n|u_n.$$

We therefore assume that $0 < \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$.

We are able to compute the Brown measure explicitly in two cases: the case $\alpha_1 = \cdots = \alpha_n = 1$ and the case n = 2.

Lemma 5.4. For any a in $\mathbb{C} \setminus [-1, 1]$ we have

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a^2 - x^2} dx = \pi (1 - \sqrt{1-a^{-2}}),$$

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a - x} dx = \int_{-1}^{1} \frac{\sqrt{1-x^2}}{a + x} dx = \pi (a - \sqrt{a^2 - 1}).$$
(5.4)

Proof: We first note that $\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a-x} dx = \int_{-1}^{1} \frac{\sqrt{1-x^2}}{a+x} dx$ and that $\frac{1}{a^2-x^2} = \frac{1}{2a} \left(\frac{1}{a-x} + \frac{1}{a+x}\right)$ (for |x| < a) so that $\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a^2-x^2} dx = \frac{1}{a} \int_{-1}^{1} \frac{\sqrt{1-x^2}}{a-x} dx$. Therefore we only need to prove (5.4). The case $a^2 = 1$ is straightforward so we next assume that a > 1. Then for $|x| \leq 1$ we

have $(1 - (x/a)^2)^{-1} = \sum_{n=0}^{\infty} (x/a)^{2n}$ and

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a^2 - x^2} dx = \sum_{n=0}^{\infty} \frac{1}{a^{2n+2}} \int_{-1}^{1} x^{2n} \sqrt{1-x^2} dx = \sum_{n=0}^{\infty} \frac{2}{a^{2n+2}} \int_{0}^{1} x^{2n} \sqrt{1-x^2} dx$$
$$= \sum_{n=0}^{\infty} \frac{1}{a^{2n+2}} \int_{0}^{1} t^{n-\frac{1}{2}} \sqrt{1-t} dt = \sum_{n=0}^{\infty} \frac{1}{a^{2n+2}} B\left(n + \frac{1}{2}, \frac{3}{2}\right)$$
$$= \pi \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{2n+2}} {\frac{1}{2} \choose n+1} = \pi \left(1 - \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{2n}} {\frac{1}{2} \choose n}\right)$$
$$= \pi (1 - \sqrt{1-a^{-2}}),$$

where *B* denotes the Beta function. Since $1 - a^{-2} \in \mathbb{C} \setminus [-\infty, 0]$ for $a \in \mathbb{C} \setminus [-1, 1]$ the right hand side of (5.4) is analytic on $\mathbb{C} \setminus [-1, 1]$. It follows from Morera's Theorem that the left hand side of (5.4) is analytic on $\mathbb{C} \setminus [-1, 1]$, and we conclude that (5.4) is valid for all *a* in $\mathbb{C} \setminus [-1, 1]$.

Example 5.5. (Sum of Haar unitaries.) We show below that the Brown measure for $T = u_1 + \cdots + u_n$ is rotation invariant, has support equal to $\overline{B(0,\sqrt{n})}$ (= sp T) and has radial density

$$f_T(r) = \begin{cases} \frac{n^2(n-1)}{\pi (n^2 - r^2)^2}, & 0 < r < \sqrt{n}, \\ 0, & \text{otherwise.} \end{cases}$$

To prove this we first compute some R- and S-transforms of a family of distributions. Then we use Corollary 4.5 to compute the Brown measure of T.

For c > 1 we let $s_c = 2\sqrt{c-1}$ and define the measure ν_c by

$$\nu_c = \max\left\{0, \frac{2-c}{2}\right\} (\delta_{-c} + \delta_c) + \frac{c\sqrt{s_c^2 - x^2}}{2\pi(c^2 - x^2)} \cdot 1_{]-s_c,s_c[}(x) \, dx.$$

It is easily seen that ν_c is a symmetric, compactly supported measure on \mathbb{R} and it follows from Lemma 5.4 that ν_c has total mass 1 for every c > 1. Fix z > 0 large and apply Lemma 5.4 to compute:

$$G_{\nu_c}(z) = \frac{z(c-2) - c\sqrt{z^2 - 4(c-1)}}{2(c^2 - z^2)},$$

which we can invert to obtain the *R*-transform of ν_c :

$$\mathscr{R}_{\nu_c}(z) = c \, \frac{\sqrt{1+4z^2} - 1}{2z} \tag{5.5}$$

for z in a neighbourhood of 0. By ν_c^2 we denote the measure $(\nu_c)_{sq}$. Then

$$G_{\nu_c^2}(z) = \frac{G_{\nu_c}(\sqrt{z})}{z} = \frac{(c-2)z \pm c\sqrt{z^2 - 4(c-1)z}}{2z(c^2 - z)}$$

from which we obtain:

$$\psi_{\nu_c^2}(z) = \frac{G_{\nu_c^2}(z^{-1})}{z} - 1 = \frac{c - 2c^2 z - c\sqrt{1 - 4z(c - 1)}}{2(c^2 z - 1)},$$
$$\mathscr{R}_{\nu_c^2}(z) = \frac{zc^2 - c + c\sqrt{z^2c^2 - 2z(c - 2) + 1}}{2z},$$
$$\mathscr{S}_{\nu_c^2}(z) = \frac{z + c}{c^2(z + 1)},$$

for z in a neighbourhood of 0. (The formulas hold in the case c = 1 too. In this case the transforms are the transforms of the distribution of a generating symmetry in $L(\mathbb{Z}_2)$.) The formula (5.5) shows that $(\nu_c)_{c\geq 1}$ is a semigroup with respect to free additive convolution.

Let h be a positive element in (\mathcal{M}, τ) with distribution

$$\mu_h = \max\{0, 2-c\}\delta_c + \frac{c\sqrt{4(c-1)-x^2}}{\pi(c^2-x^2)} \cdot \mathbf{1}_{[0,2\sqrt{c-1}[}(x)\,dx \tag{5.6}$$

and suppose that u is a Haar unitary in \mathscr{M} *-free from h. Then $\mu_{h^2} = \nu_c^2$ and we can state the Brown measure for uh using Theorem 4.4 and Corollary 4.5: $\mu_{uh}(\{0\}) = \mu_h(\{0\}) = 0$ and the radial density is

$$f_{uh}(s) = \frac{c^2(c-1)}{\pi(c^2 - s^2)^2} \cdot 1_{]0,\sqrt{c}[}(s).$$

In the case $T = u_1 + \cdots + u_n$ we use Proposition 3.5 to compute the distribution of |T|: $\widetilde{\mu}_{|T|} = (\widetilde{\mu}_1)^{\boxplus n}$ and hence

$$\mathscr{R}_{\widetilde{\mu}_{|T|}}(z) = n \mathscr{R}_{\widetilde{\mu}_1}(z) = n \frac{\sqrt{1+4z^2}-1}{2z}.$$

Then it follows that the distribution of |T| is

$$\mu_{|T|} = \frac{n\sqrt{4(n-1) - x^2}}{\pi(n^2 - x^2)} \cdot \mathbf{1}_{[0,2\sqrt{n-1}]}(x) \, dx.$$
(5.7)

We remark, that the symmetrizations of the measures (5.7) for n = 1, 2, ... were first studied by Kesten [7] in connection with random walks on free groups. Moreover the continuous family of "Kesten measures" $\tilde{\mu}_h$ (where μ_h is given by 5.6) as well as the measures ν_c in Example 5.6 below were first studied in [2, Theorem 4.3] with different parametrizations. **Example 5.6.** In relation to Example 5.5 we consider the family $(\nu_c)_{c>0}$ of symmetric measures on \mathbb{R} defined by

$$\nu_c = \frac{c\sqrt{t_c^2 - x^2}}{2\pi(c^2 + x^2)} \cdot 1_{]-t_c, t_c[}(x) \, dx$$

where $t_c = 2\sqrt{c+1}$. A straightforward application of Lemma 5.4 shows that ν_c is a probability measure and that

$$G_{\nu_c}(z) = \frac{(c+2)z \pm c\sqrt{z^2 - 4(c+1)}}{2(c^2 + z^2)}.$$

Then we are able to compute related transformations:

The formula (5.8) shows that $(\nu_c)_{c\geq 0}$ is a one-parameter convolution semigroup with respect to free additive convolution. (We let ν_0 denote the point measure δ_0 .)

If u and h are *-free random variables in a non-commutative W^* -probability space (\mathcal{M}, τ) , u is a Haar unitary, and h is positive and has distribution

$$\mu_h = \frac{c\sqrt{4(c+1) - x^2}}{\pi(c^2 + x^2)} \cdot \mathbf{1}_{[0,2\sqrt{c+1}[}(x) \, dx$$

then $\mu_{h^2} = \nu_c^2$, $\|h\|_2^2 = \tau(h^2) = (\mathscr{S}_{\nu_c^2}(0))^{-1} = c$, $\|h^{-1}\|_2^{-1} = 0$, $\mu_{uh}(\{0\}) = 0$ and the Brown measure for uh has radial density

$$f_{uh}(x) = \frac{c^2(c+1)}{\pi (c^2 + x^2)^2} \cdot 1_{]0,\sqrt{c}[}(x)$$

It is straightforward to check that $\int_{B(0,\sqrt{c})} f_{uh}(|\lambda|) d\lambda = 1$.

Example 5.7. (Linear combination of two Haar unitaries.) Suppose that α and β are real numbers such that $0 < \alpha < \beta$. The Brown measure μ_T for $T = \alpha^{1/2}u_1 + \beta^{1/2}u_2$ is

supported on $[\sqrt{\beta - \alpha}, \sqrt{\beta + \alpha}] \times_p [0, 2\pi[$, rotation invariant and has radial density function

$$f(r) = \frac{2}{\pi} \cdot \frac{(\alpha + \beta)r^4 - 2(\beta - \alpha)^2 r^2 + (\beta - \alpha)^2 (\alpha + \beta)}{(r^4 - 2(\alpha + \beta)r^2 + (\beta - \alpha)^2)^2} \cdot 1_{]\sqrt{\beta - \alpha}, \sqrt{\alpha + \beta}[}(r).$$

We apply Proposition 3.5 to compute the distribution of T^*T : $\tilde{\mu}_{|T|} = \tilde{\mu}_{\alpha^{1/2}1} \boxplus \tilde{\mu}_{\beta^{1/2}1}$ and hence

$$\begin{split} \mathscr{R}_{\tilde{\mu}_{|T|}}(z) &= \frac{\sqrt{1 + 4\alpha z^2} + \sqrt{1 + 4\beta z^2} - 2}{2z}, \\ G_{\tilde{\mu}_{|T|}}(z) &= \frac{\pm z}{\sqrt{(z^2 - (\alpha + \beta))^2 - 4\alpha\beta}}, \\ G_{\mu_{|T|^2}}(z) &= \frac{G_{\tilde{\mu}_{|T|}}(\sqrt{z})}{\sqrt{z}} = \frac{\pm 1}{\sqrt{(z - (\alpha + \beta))^2 - 4\alpha\beta}}, \\ \psi_{\mu_{|T|^2}}(z) &= \frac{1}{\sqrt{(1 - (\alpha + \beta)z)^2 - 4\alpha\beta z^2}} - 1, \\ \mathscr{R}_{\mu_{|T|^2}}(z) &= \frac{z(\alpha + \beta) - 1 + \sqrt{4\alpha\beta z^2 + 1}}{z}, \\ \mathscr{S}_{\mu_{|T|^2}}(z) &= \frac{(\alpha + \beta)(z + 1) - \sqrt{4\alpha\beta(z + 1)^2 + (\alpha - \beta)^2}}{(\alpha - \beta)^2 z}, \end{split}$$

and using Corollary 4.5 we obtain an expression for the radial density on $]\|h^{-1}\|_2^{-1}$, $\|h\|_2[=]\|h^{-1}\|_2^{-1}$, $\sqrt{\alpha + \beta}[$:

$$f_T(r) = \frac{2}{\pi} \cdot \frac{(\alpha + \beta)r^4 - 2(\beta - \alpha)^2 r^2 + (\beta - \alpha)^2 (\alpha + \beta)}{\left(r^4 - 2(\alpha + \beta)r^2 + (\beta - \alpha)^2\right)^2}.$$
 (5.9)

Note that the expression in (5.9) is positive for all r in $]\sqrt{\beta} - \sqrt{\alpha}, \sqrt{\beta} + \sqrt{\alpha}[$ and for ρ in this interval we find

$$\iint_{\substack{\rho,\sqrt{\alpha+\beta}[\times_{p}[0,2\pi[}]} f_{T}(|\lambda|) d\lambda = 2\pi \int_{\rho}^{\sqrt{\alpha+\beta}} rf_{T}(r) dr = 2 \Big[\frac{(\beta-\alpha)^{2} - (\alpha+\beta)r^{2}}{r^{4} - 2(\alpha+\beta)r^{2} + (\beta-\alpha)^{2}} \Big]_{\rho}^{\sqrt{\alpha+\beta}}$$
$$= \frac{2\rho^{2}(\rho^{2} - (\alpha+\beta))}{\rho^{4} - 2(\alpha+\beta)\rho^{2} + (\beta-\alpha)^{2}}.$$

This expression is 1 only when $\rho = \sqrt{\beta - \alpha}$, which means that $\|h^{-1}\|_2^{-1} = \sqrt{\beta - \alpha}$ and that the radial density function f_T for μ_T is

$$f_T(r) = \frac{2}{\pi} \cdot \frac{(\alpha + \beta)r^4 - 2(\beta - \alpha)^2 r^2 + (\beta - \alpha)^2 (\alpha + \beta)}{(r^4 - 2(\alpha + \beta)r^2 + (\beta - \alpha)^2)^2} \cdot 1_{]\sqrt{\beta - \alpha}, \sqrt{\alpha + \beta}[}(r).$$

Using the Stieltjes inversion formula we obtain an expression for the density of the distribution of $|T|^2$:

$$f_{\mu_{|T|^2}}(x) = \frac{1}{\pi\sqrt{(x-a)(b-x)}} \cdot 1_{]a,b[}(x)$$

where $a = (\sqrt{\beta} - \sqrt{\alpha})^2$, $b = (\sqrt{\alpha} + \sqrt{\beta})^2$. We have $\int_{\mathbb{R}} f_{\mu_{|T|^2}} dm = 1$ and we conclude that $d\mu_{|T|^2} = f_{\mu_{|T|^2}} dm$. (This holds in the case $\alpha = \beta$ too, which is easily verified by inspecting formula (5.7).) We note that $|T|^2$ has an arcus sinus distribution.

We see that sp $|T|^2 = [a, b]$ which contains 0 if and only if $\alpha = \beta$, thus T is invertible if and only if $\alpha \neq \beta$. We conclude using Proposition 4.6 that sp $T = [\sqrt{\beta - \alpha}, \sqrt{\beta + \alpha}] \times_p [0, 2\pi[.$

References

- H. Bercovici and D. V. Voiculescu. Lévy-Hinčine type theorems for multiplicative and additive free convolution. *Pacific Journal of Mathematics*, 153(2):217-248, 1992.
- [2] M. Bożejko, M. Leinert, and R. Speicher. Convolution and limit theorems for conditionally free random variables. *Pacific Journal of Mathematics*, 175(2):357–388, 1996.
- [3] L. G. Brown. Lidskii's theorem in the type II case. In Proceedings US-Japan, Kyoto/ Japan 1983, Pitman Research Notes, Math. Ser. 123, pages 1-35, 1983.
- [4] B. Fuglede and R. V. Kadison. Determinant theory in finite factors. Annals of Mathematics, 55(3):520-530, May 1952.
- [5] J. Ginibre. Statistical ensembles of complex, quaternionic and real matrices. J. Math. Phys., 6:440-449, 1965.
- [6] U. Haagerup. On Voiculescu's R- and S-transforms for free non-commuting random variables. In Free Probability Theory, volume 12 of Fields Institute Communications, pages 127–148, 1997.
- [7] H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336–354, 1959.
- [8] A. Nica. R-transforms of free joint distributions and non-crossing partitions. J. of Functional Analysis, 135:271-296, 1996.
- [9] A. Nica and R. Speicher. A "Fourier transform" for multiplicative functions on noncrossing partitions. J. of Algebraic Combinatorics, 6:141–160, 1997.

- [10] A. Nica and R. Speicher. *R*-diagonal pairs—a common approach to Haar unitaries and circular elements. In *Free Probability Theory*, volume 12 of *Fields Institute Communications*, pages 149–188, 1997.
- [11] A. Nica and R. Speicher. Commutators of free random variables. Duke Math. Journal, 92(3):553–592, 1998.
- [12] D. V. Voiculescu. Symmetries of some reduced free product C*-algebras. Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture notes in Mathematics, 1132:556-588, 1985.
- [13] D. V. Voiculescu. Circular and semicircular systems and free product factors. Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progress in Mathematics, 92:45–60, 1990.
- [14] D. V. Voiculescu, K. J. Dykema, and A. Nica. Free Random Variables. AMS, 1991.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SOUTHERN DENMARK, ODENSE UNIVERSITY CAMPUS, CAMPUSVEJ 55, DK—5230 ODENSE M, DENMARK

haagerup@imada.sdu.dk flemming@imada.sdu.dk