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Abstract

In 1983 L. G. Brown introduced a spectral distribution measure for non-normal
elements in a finite von Neumann algebra .# with respect to a fixed normal faithful
tracial state 7. In this paper we compute Brown’s spectral distribution measure in
case T" has a polar decomposition T'= UH where U is a Haar unitary and U and H
are x-free. (When KerT = {0} this is equivalent to that (7, 7*) is an R-diagonal pair
in the sense of Nica and Speicher.) The measure pr is expressed explicitly in terms
of the S-transform of the distribution 7«7 of the positive operator T*T'. In case T
is a circular element, i.e., T = (X| +iX2)/v2 where (X1, X3) is a free semicircular
system, then sp7 = D, the closed unit disk, and p7 has constant density 1/7 on D.

1 Introduction

In 1995 Nica and Speicher introduced the class of R-diagonal pairs in non-commutative
probability spaces (see [10]). A pair (a,b) in the non-commutative probability space (A, )
is called R-diagonal if the (2-dimensional) R-transform R of the joint distribution zi(, )
of (a,b) is of the form

H(a,b)

o0 o]
NEESAN: mwv = MU Q;NHS% + MU Q;Nwﬁ%
J=1 j=1

for arbitrary complex numbers a;. An R-diagonal element is a random variable in a
non-commutative s-probability space such that (a,a*) is an R-diagonal pair. In [10] Nica
and Speicher prove that if T' is an R-diagonal element in some tracial non-commutative
C*-probability space then T has the same x-distribution as a product UH where U and H
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are x-free random variables in some tracial non-commutative C*-probability space, U is a
Haar unitary and H is positive. When this happens H and |T'| have the same distribution,
and the x-distribution of T' is uniquely determined by the distribution of 7*T = |T|?. In
this paper we restrict to the case of tracial non-commutative W*-probability spaces. This
is not an essential restriction since a tracial C*-probability space can always be embedded
in a tracial W*-probability space via the GNS representation.

L. G. Brown introduced in the paper [3] a spectral distribution measure pp for not neces-
sarily normal operators 7" in a von Neumann algebra .# with a faithful normal tracial
state 7. The main purpose of this paper is to compute the spectrum sp 7’ as well as the
Brown measure i for every R-diagonal element T in (., 7). We find a general expression
for pr in terms of the S-transform of the distribution of T*T and in particular, we find
that the support of ur for an R-diagonal element T' is given by

supp i = {A e C | |77z <A< (1712} (1.1)

in case Ker T = {0} and T~ ¢ L?(.#, 7). Otherwise supp yr is the closed disk with radius
IT||2- The spectrum sp T coincides with supp pr unless T~' ¢ L? (., 7) \ .# in which case
supp g is the annulus (1.1), while sp T is the full closed disk with radius ||T'||]2. A key step
in the proof is to show, that when a and b are x-free elements in .# and 7(a) = 7(b) = 0,
then the spectral radius of ab is ||al|2 ||b||2-

The paper is organized as follows. In Section 2 we list, for easy reference, the theory we
need in this paper. In Section 3 we derive the basic properties of R-diagonal elements in
finite von Neumann algebras. In Section 4 we give a complete description of the spectrum
and the Brown measure of an R-diagonal element, and in Section 5 we compute concrete
examples of Brown measures.

2 Preliminaries and Notation

We use the notation (., 7) to denote a tracial non-commutative W*-probability space, i.e.,
a von Neumann algebra .# with a normal faithful tracial state 7. When needed we assume
that .# acts as a von Neumann algebra on its associated GNS Hilbert space L*(.#). When
clarity demands it we write @ to denote the element a € .# as an element of L*(.#). We
let ||-||» denote the norm arising from the inner product (é, b) = 7(b*a) on L?(.#). For h a
positive element in .# we let u;, be the unique compactly supported probability measure
on R such that 7(h") = [, " du,(t) and we extend ||-||2 to “inverse” positive elements by
the formula ||h "] == ([t dun(t))'/? € [0,00] for all b > 0. (We use the conventions
1/0 = oo and 1/o0o = 0 when computing these integrals.) This definition agrees with
the previous if h is invertible. By sp a we denote the spectrum of a and r(a) denotes the
spectral radius of a. A symmetry is a self-adjoint unitary.

For a measure p we let supp i denote the support of 1 and if f is a function, py is the
image measure of ;1 induced by f. The name inv stands for the map z — 27! on C\ {0},
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and sq is the map z — 22, If u is supported on R we let i be the symmetrization of u,
i.e., (A) = (u(—A) + u(A))/2. The point measure centered at « is d, and dm, d\ are
used to denote Lebesgue measure on R and C respectively. By x, we denote polar set
product: Ax, B = {ae” | a e A, 0 ¢ B} and we say that f is a radial density function for
the measure p if the absolute continuous part of p (with respect to Lebesgue measure) is
given by f(|\|) d\. By B(a,r) we denote the open ball with radius r centered at a.

We let A denote the Fuglede-Kadison-determinant on (., 7), cf. [4] and let L denote
log A. For easy reference we state the most important properties of A (expressed in terms
of the L-function): for an arbitrary element a in .# we have

L(a) = /log ¢ dpa(t) € [—o0, 00

and L(a) = L(a*a)/2 = L(a*). If b is an element in .# then L(ab) = L(a) + L(b), if u is
a unitary L(u) = 0, and if z is a scalar L(z1) = log|z|. If (a,) is a sequence of positive
elements, a, > a > 0 and a,, — a in norm then L(a,) — L(a), and if a is invertible then
L(a) = 7(log|al). In particular L(exp a) = Re7(a) for a > 0. In fact the formula

L(exp a) = ReT(a) (2.1)

holds for all a in .# (use [4, Lemma 3 with H = 1]). The functions L and A are continuous
on the invertible elements in (.#, ||-|]|) and in general upper semicontinuous on (., |-||)-

For an arbitrary element a in .# the function A — L(a — A1) is subharmonic on C and
harmonic on C\ sp a and the Riesz construction applied to (27r) "'L(a — A1) gives a regular

positive probability measure (denoted) p,. We call this measure the Brown measure for a,
cf. [3]. It is defined by

1
fa = Q—VZL(a —Al)dReAdIm A
m

where V? is the Laplace operator §%/9(Re\)? + 0%/0(Im \)? in the distribution sense.
(The notation d Re AdIm A will often be replaced by dA or dms(A).) The Brown measure
has the following properties: p, is the unique compactly supported measure (on the Borel
measurable sets) that fulfils L(a — A1) = [.log|z — A|dpe(2) for (almost) all complex
numbers A. The support of p, is contained in spa, and for p any natural number we
have 7(a?) = [ 2” dpo(z). Furthermore jia, = pye for arbitrary a and b in 4, and if f is
analytic in a neighbourhood of sp a, fi@) = (1ta)s. As consequences we have fi,-1 = (/1 )iny
if a is invertible and p,,-1 = pq Whenever b is invertible. If a is normal, p, is the trace
composed with the spectral measure for a hence the notation p, agrees with the previous
introduced notation for positive elements, and the Brown measure for a Haar unitary is
the Haar measure on T.

By a non-commutative probability space (A, ¢) we mean a unital algebra A (over the com-
plex numbers) equipped with a linear functional ¢ such that ¢(1) = 1. If A is a von Neu-
mann algebra and ¢ is a normal state, (A, ) is called a non-commutative W*-probability
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space. We refer to [14] for the basics of free probability theory. For easy reference we re-
state some of the notation and nomenclature: By a° we denote the centered part a — ¢(a)
of a, if p(a) = 0 we say that a is centered. We call the numbers ¢(a?) (p = 1,2,...)
the moments of a, and the distribution p of a is the linear functional p: C[X| — C de-
termined by u(P) = ¢(P(a)) for all P in C[X]. If all the odd moments of a vanishes
we say that a is symmetric distributed. If (B, ) is a non-commutative probability space,
a e A, be B we write a ~p b when a and b have the same distribution. If (A, ¢) and
(B, 1)) are s-probability spaces the notation a ~,p b means that a and b have the same
x-distribution. If (A, ) is a tracial non-commutative *-probability space, a,u € A, u is a
unitary we have that uau* and a have the same x-distribution. Note that if a, b, ¢, d are
random variables, a ~,p b, ¢ ~,p d, a, ¢ are x-free and b, d are x-free, then ac ~.p bd.
When forming free products of non-commutative probability spaces we often have a natu-
ral choice of functionals, and in such cases we omit specifying the functionals, i.e., A x B
is an abbreviation for (A, ¢) x (B,). By an isomorphism ®: (A, ¢) — (B,v) we mean
an isomorphism ®: A — B such that ¢ = 1) o ®. If (A, w) is a finite non-commutative
W*-probability space with a faithful trace w, a € 4, b e .4 and a ~,p b then there exists a
surjective x-isomorphism ®: (W*(a),7) — (W*(b),w) such that ®(a) = b. By the notation
i1 F# iy F -+ F Uy We mean iy # io, io F 13,... ,0p_1 7 Ip. A product xy---x, where
Tj € Ai;, 1y #1g # - # iy 18 called an alternating product.

If a is a self-adjoint random variable in .# there is a unique measure p, supported on
spa fulfilling 7(a") = [;t"du,(t). Faithfulness of 7 implies that suppp, = spa. If
it is a compactly supported probability measure on R the distribution of the identity
map id in (L*°(supp p, i), [ - dp) has the same moments as y, hence given a compactly
supported probability measure on R this measure represents the distribution of a self-
adjoint element in some finite non-commutative W*-probability space. If supp p C [0, 00|
then p corresponds to the distribution of a positive element. Using measures in place of
distributions we get the analytic version of the theory of R- and S-transforms: if y is a
compactly supported measure on R the Cauchy transform

Guo) = [ 1 duta) (2.2

z2—x
R

is defined and analytic on C \ supp pr and G, (2) ~ 27! as |z] = co. It is seen from (2.2)

that Im z-Im G, () < 0 for all z. These properties are the main tools used to determine the

Cauchy transform when solving quadratic equations. The Cauchy transform is invertible

in a neighbourhood of oo and the R-transform of p is obtained from the inverse function

G, ' as Z,(z) =G, (z) — 27! or equivalently

2 =Gu(z7 (14 2%,(2))) (2.3)

for z in a neighbourhood of 0, z # 0. If p is symmetric a simple computation shows that
G (2) = Gu(V/2) [z If [ tdu(t) # 0 we have the analytic version of the S-transform
too, cf. [14, Section 3.6]: The ¢-function is analytic in a neighbourhood of 0 and is given
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ww) = [ 2 du)

1—tu
R

Since ,,'(0) = [, tdu(t) # 0, 1, is invertible (with inverse y,) in a neighbourhood of 0.
Then the S-transform of 4 is given by .7, (w) = (w + 1)x,(w)/w and is analytic in a
neighbourhood of 0, cf. [6]. The Cauchy transform G, and 1, are related by the formula

uw(l+,(u) = Gu(u_l) (2.4)

for v in a neighbourhood of 0, u # 0. Now define z = z(u) = u(l + ¢, (uv)) for u ~ 0. It
follows from (2.3) and (2.4) that

= (1 2,()

IS

and hence that z/u — 1 = 2%,,(2) = ¥, (u). Then v = x,(Yu(v)) = xu(2%Z,(2)) and also

R(2)T (5 Bu(2)) = (1 + 2B ()X (5B (2) = = u = 2.

U

This relation is valid for z in a neighbourhood of 0. This proves the following connection
between %, and .7, first established in [9]:

25,(2) = (2%,(2)) ey (2.5)

where (-)~! means inversion with respect to composition. (Also note that if one of the
functions Z,,, v, and .7, is analytic in a neighbourhood of 0, the other two functions are
analytic too. Therefore (2.5) holds for all distributions p with u(X) # 0 because we can
apply the standard trick of truncating power series to polynomials.)

3 Basic Properties of R-diagonal Elements in Finite
von Neumann Algebras

Proposition 3.1. ([11], Theorem 4.5.) Let x and y be free self-adjoint symmetric dis-
tributed elements in a tracial non-commutative W*-probability space (.#, 7). Then zy is
R-diagonal.

We shall use the following immediate corollary of Proposition 3.1.

Corollary 3.2. Let (., 7) be as above and let a and x be free self-adjoint symmetric
distributed elements in .#, such that a*> = 1. Then ax is R-diagonal. Hence ax has
the same x-distribution as uh, where u and h are x-free elements in a non-commutative
W*-probability space (A ,w), u is a Haar unitary and h is positive with the same distri-
bution as |z|.



Lemma 3.3. Let (A, ¢) be a non-commutative probability space, and let a and x be free

symmetric distributed random variables in A. Suppose that a?> = 1. Define

P.={p | p is an even polynomial, ¢(p(x)) = 0}
P, ={p| p is an odd polynomial}
P=P.UP,

and let T be the set of products a™p,(x)a---pg(x)a™ where k € N, py,...

mo, my, € {0,1} and mo + (k — 1) + my + 37 deg p; e 2N.
Then alg(1, ax,za) = span({1} UT) and alg(1, ax,xa)® = spanT.

,kaP,

Proof: The last statement is an immediate consequence of the first statement. Put B =
alg(1, ax,za), S = span({1}UT). Then 1,ax,za ¢ S. We show that axS, zaS, Sax, Sxa C

S and it is enough to prove that azT, xal', Txa,Tax C S.

Let t = a™pi(z)a---pr(z)a™ e T. If mg = 1 then axt = axap;(x)a---py(x)a™ e T and

if mg = 0 then

axt = axpi(x)aps(x)a- - - pr(x)a™*.

If degp; is even then axt € T because id - p; € P, and

k
1+ (k—1) 4+ my + deg(id - py) + Zdegpj
j=2
k

:m0+(k—1)—|—mk+Zdegpj+262N.

j=1
Otherwise degp; is odd and we rewrite (3.1) to

my

art = azxpi(x)ape(z) - - - pr(z)a™ — @(zpi(x))p2(x)a- - - pp(r)a
+o(zpi(z))p2(z)a- - - pr(z)a™
= a(zpi () apa(2)a- - - pe(z)a™ + @(zpi(z))p2(2)a- - - pr(z)a

Here po(z)a- - pp(z)a™ € T because

k
(k—2)+my + Zdegpj
=2
k

=mo+ (k—1) +mk+Zdegpj — (1 +degpy) € 2N.

J=1

my

(3.1)



Since deg(id-p;)° = deg(id-p;) = 14+deg p1, we infer that a(zpi(x))°aps(z) - - - pp(x)a™ € T
because

k
14+ (k—1)+my+deg(id - p1)° + Zdegpj

j=2

k
:m0+(k—1)—|—mk+Zdegpj+262N.
j=1

This shows that axt € S.

Summing up we have proved that axT C S. The same argument applies to show that
xal,Tax,Tra C S. We conclude that S contains 1, ax, ra and is stable under multipli-

cation by ar and xa. But B is the smallest subspace of A with this property whence
BCS.

We remain to prove that S C B, and it suffices to prove that 7' C B. If p is an even
polynomial then p(s) = ¢(s®) for some polynomial ¢, and

p(z) = q(raax) € B,
ap(z)a = q(ar’a) € B.
If p is an odd polynomial then p(s) = sq(s*) = q(s?)s for some polynomial ¢ and
ap(x) = axq(raax) € B,
p(z)a = q(raax)ra € B.
It is then easy to see that an arbitrary element in 7" can be written as a product of elements

of the forms p(z), ap(z)a (p even) and ap(z), p(z)a (p odd). We conclude that S C B. O

Lemma 3.4. Let (A, ¢) be a non-commutative probability space and let a, (x;);c; be sym-
metric distributed random variables in A such that (x;);; Is a free family and {a} and
{z; | i eI} are free sets in A. Suppose that a* = 1.

Then the sets {ax;,x;a} (i € I) are free.
Proof: Put A; = alg(1, ax;, x;a). Lemma 3.3 shows that
A7 C span (Si UasS; U S;aUaS;a U S;aS; U - - )

o

where S; = alg(1, z;)°.
product

To show freeness of {ax;,z;a} (i € I) it suffices to show that the

X, X, (3.2)

is centered whenever n e N, X; ¢ A7 (j=1,...,n) and iy # --- # i,. By linearity of ¢
it is sufficient to assume that X; is a word in S;; U aS;, U Sj;aU - -- (for all j). In this
case the product (3.2) consists of alternating occurrences of words from the sets {a}, S;,
(j = 1,...,n), and the freeness assumptions implies that the product (3.2) is centered.

O



We note that the condition that all odd moments vanishes is necessary: If p(2?™ 1) # 0 and
p(y** 1) # 0 for some m, n then p(z*™ Laay® ') = p(z*™ 1y** ) = p(z*" p(y*" ) #
0, but p(z*™ 'a) = 0 and p(ay® ') = 0. If p(x*™ 1) =0 for all m € N but p(y** ') #0
for some n then ¢((xa)(ay* ') (za)(ay® ")) = p(2?)p(y**~1)? which in general is different
from 0.

The condition that a? = 1 is necessary too: if a,z,y are suitably chosen x-free unitaries
in L(Zy x Zy x Zy) then (za)(ayya)(ax) = 1 but za, ax and ayya = a® are centered. This
shows that {ax,za} and {ay,ya} are not free.

Proposition 3.5. ([10], [11].) Let r and s be x-free R-diagonal elements in a tracial
non-commutative W*-probability space (.#, 7). Then
(i) r+ s is R-diagonal.
(ii) The distribution of |r + s| can be obtained from the distributions of |r| and |s| by
the formula
Hyrs) = Hyr) B ).
where [ denotes the symmetrization of a measure p on R.

Proof: (i) follows immediately from the definition of R-diagonal elements in [10] and the
fact that

Rr—l—s,r*-i—s* (Zla Z2) = Rr,r* (Zla Z2) + Rs,s* (Zla Z2)

whenever r and s are x-free elements, cf. [8].

(ii) This can be extracted from Proposition 5.2 in [11]. For convenience of the reader, we
include a different proof based on Corollary 3.2 and Lemma 3.4. We can choose a tracial
non-commutative W*-probability space (.4, w), which contains three self-adjoint elements
a, * and y, such that (a,z,y) is a free family, > = 1 and a,  and y are symmetric
distributed with

Mg = ﬁ\r\a Hy = ﬁ|5\'

By Corollary 3.2 and Lemma 3.4 ' = ax and s’ = ay are x-free R-diagonal elements
with the same x-distributions as r and s respectively. Hence (r',s’) has the same (joint)
x-distribution as (r, s), so without loss of generality, we may assume that r = ax, s = ay
and 7 = w. Since x and y are free and symmetric, x 4+ y is symmetric distributed and
Pty = s B 1. We have r + s = a(x + y) and thus |r + s| = |z + y| whence

Hirts) = Hloty] = Haty = Ha B 1y = [z B gy = fjp B fijs)

This proves (ii). O



Proposition 3.6. ([10].) Let r and s be *-free R-diagonal elements in a finite non-
commutative W*-probability space (.#, 7). Then

(i) rs is R-diagonal.

(ii) The distribution of |rs| can be obtained from the distributions of |r| and |s| by the
formula

Pprsiz = Hirpz B g2
Proof: (i) This is a special case of Theorem 1.5 in [10].

(ii) This can be extracted from Corollary 1.8 in [10], but for convenience of the reader
we include a direct proof. We can choose 4 *-free elements u, v, h and k in a tracial
non-commutative W*-probability space (.4, w) such that u and v are Haar unitaries, h
and k are positive elements with the same distributions as |r| and |s| respecitively. Then
r'" = uh and s’ = vk are x-free R-diagonal elements with the same x-distributions as r and
s respectively, and hence (', s’) has the same (joint) x-distribution as (r, s). Thus, without
loss of generality, we may assume that r = uh, s = vk and 7 = w. Since w is a trace, we
have for all natural numbers p

w(|rs?) = w((v*h*vk?)P).
Thus |rs|? has the same distribution as (v*h?v)k? and since v*h?v and k?* are free, we get
Pirs|2 = o=n2o B gz = pip2 B g,
where the last equality follows from the trace property of w. This proves (ii). O

In the next lemma we collect some well-known facts about freeness obtained by encapsu-
lating sets with Haar unitaries.

Lemma 3.7. Let (A, p) be a non-commutative x-probability space, let u be a Haar unitary
in A. Assume that S is a set in A such that S and {u} are x-free.

Then for any natural number n we have that

(i) the sets S, uSu*, u?S(u*)?, ... are -free,
(ii) the sets S, uSu*,... ,u" " 'S(u*)""', {u"} are %-free,
(iii) the sets uSu*,...,u"S(u*)", {u"} are x-free.

Proof: Put Ay = alg({1} U S U S*) and for any natural number n put
A, =alg({1}Uu"Su ™ Uu"S*u ") = u"Agu ",

Note that (A4,)° = u™Aju™™.



Consider an alternating product z; - - -z, of centered elements from Ag, Ay,..., ie., iy #
-+ £, and x; = ubiy;u~ for some yy, ..., y, € A5. Then

Ty--- :Up — u“yluhfh Yo - - ulpfzp—lypufzp

where 49 — iy # 0,...,49, —ip—1 7# 0. The x-freeness assumption on {u} and S gives that
¢(zy -+ xp) = 0. This proves (i).

Let A_; = alg(u”, (u*)"). Suppose that z;---z, is an alternating product of centered
elements from A_;, Ay,...,A,—;. This means that z; € A7 for iy # s # -+ # ip,
i; € {—1,0,1,...,n — 1}. Since A%, = span{u™ | ¢ € Z\ {0}} it is sufficient to consider
the case where z; is of the form u"? whenever ¢; = —1. If i; # —1 we have z; = u%y;u™"
for some y; € Aj, and we assume without loss of generality that y; # 0.

We show that the occurring y’s are separated by elements from alg(u,u*)°. There are
two cases: FKither two neighbouring y’s come from consecutive x’s, otherwise there is
precisely one element of the form u" (¢ € Z \ {0}) between the corresponding z’s. In
the first case the y’s in question are y; and y; 1, for some j. But then y;u+ "%y,  is
a subword of x;---x, hence the y’s are separated. Otherwise we have for some j that

ij,142 € {0,...,n — 1} and 7;4; = —1. Then z;;; = u™ for some non-zero integer ¢ and
yutlithszy, o is a subword of xq -+ - a,. But ng — i; + i # 0 for any non-zero integer
q because 4,449 € {0,1,...,n — 1}. We conclude that in this case the y’s are separated

by an element of the form u” (r € Z \ {0}).

We have thus shown that z;---x, is an alternating product of centered elements from
alg(u, u*) and Ay respectively, and this shows (ii). (iii) follows by the same proof as
for (ii), since i;,7,42 € {1,...,n} and ¢ € Z\ {0} also implies that ng —i; +i;40 #0. O

The same method can be used to show that for example S, uSu*, u?, u>S(u*)> are x-free.

Lemma 3.8. Let (A, ¢) be a non-commutative probability space, let a be a random vari-

able in A satisfying o(a) = --- = ¢(a"™') = 0 and a™ = 1. Assume that S is a set in A
such that {a} and S are free.
Then S,aSa™ ', a?Sa™2,...,a" 'Sa are free.

Proof: As in the proof of Lemma 3.7 we put Ay = alg({1} U S), A; = alg({1} Ua/Sa™ )
for j =1,...,n — 1, and note that A; = a’Aga""7, AS = a/ Aga"7. Let z,---z, be an
alternating product of centered elements from Ay,..., A, 1, i.e., z; € Ag’j, i FE e FE
Then z; = a'iy;a™ % forsome y; € A3 (j =1,...,p)and zy - - - 1, = @l ypa™ T2 -y ",
Since i; # -+ # i, it follows from the assumptions on a that x;---x, is an alternating
product of centered elements, and the freeness assumption on S and {a} implies then that

xy-- -z, is centered. This shows that S,aSa"™',... a""'Sa are free. O

Lemma 3.9. ([10].) Let u and a be %-free elements in a finite non-commutative W*-prob-
ability space, such that u is a Haar unitary. Then ua and au are R-diagonal elements.

Proof: Since u is R-diagonal this follows from Theorem 1.5 in [10]. O
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Proposition 3.10.

(i) Letr be an R-diagonal element and let p be a natural number. Then r? is R-diagonal
and

X
fpre2 = pyrjz 2 B g2 (= 1yf2-)

~~

p factors

ii) If r is R-diagonal and invertible, then r ! is R-diagonal and 1, is the image
L

measure ({|)inv Of pyr| by the inversion map ¢t — ¢! on R\ {0}.

Proof: (i) Without loss of generality we may assume that » = uh, where u and h are
x-free, u is a Haar unitary and A > 0. Then

(uh)? = P ((u*)P~"huP ™) - - - (u*hu)h.

It is clear that u” is a Haar unitary. By Lemma 3.7 u? is *-free from the remaining p factors
in the above product. Hence by Lemma 3.9 (uh)? is R-diagonal. Moreover

|(uh)?|? = h(u*hu) - - ((u*)P~ hu? =) - (w*hu)h
so by the trace property, |(uh)?|? has the same distribution as
(u*hu) - - - ((u*)f”’lhu]”’l)2 - (u*hu)h?,
so by Lemma 3.7
L (uhye|2 = fy X g2

where y = (u*hu) - - - ((u*)”*1l7,u”*1)2 o+ (u*hu) = u*|(uh)?~?u. Thus by the trace prop-
erty

Hiuhyelz = Pianye=1jz X fine,

and hence, (i) follows by induction in p.

(i) Again, we may assume that r = uh, as in (i). Hence r ' = h~'u*. Since u* is a Haar
unitay and x-free from h~!, we get from Lemma 3.9 that r~' is R-diagonal. Moreover
|r='| = uh~'u* has the same distribution as h=" = |r|~". This proves (ii). 0

Example 3.11. Lemma 3.8 enables us to compute the Brown measure of an element ah
where a and h are free random variables in some non-commutative W*-probability space
(M;T), a*> =1, a = a*, T(a) = 0 and h is positive: We first note that ah is symmetric
distributed and that ., = pp1/2,51/2 Whence g, is supported in R, and then we compute
its square (which is supported in [0, 00(): (ftan)sq = Hahah = HahaXpn = pnX ey, because aha
and h are positive and free, cf. Lemma 3.8. Then u,, is the symmetrization of (1,8up) . /7.
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Example 3.12. Using Lemma 3.8 we can state the distribution of the real and imaginary
parts of an R-diagonal random variable T' = uh = az (where u, h, a and = are random
variables as stated in Corollary 3.2). We first note that 7" ~,p —i7T whence ReT and
Re —¢T" = ImT have the same distribution. Then 2ReT = T + T = ax + xa and it is
straightforward to verify that the odd moments of 2ReT" vanishes. Lemma 3.8 yields that
x and axa are free hence z+axa is symmetric distributed. In computing the even moments
we note that (az + ra)? = (v + axa)? and we conclude that ax + ra ~p = + axa. This

gives LoreT = Maztza = Hetaza = Mo B Haza = He B pg, cf. Application 1.3 in [11].

4 Brown Measures of R-diagonal Elements

Proposition 4.1. Let (.#, 1) be a non-commutative von Neumann probability space with
a faithful trace 7. Let a and b be x-free centered elements in /.

Then the spectral radius, r(ab), of ab is ||a||2 ||b]|2-

Proof: We can without loss of generality assume that ||al|s = ||b]|2 = 1. Put 4, = W*(a),
My =W?*(b) and let .#; denote the set of centered elements of .#;, j = a,b. It is no loss
of generality to assume that .# = .#, *x .#, and that .#, x .#), acts on its GNS Hilbert
space (7, &) = (L*(M#),1). Let (,,&,) and (H,&,) be the GNS spaces of (.#,,7,) and
(My, 1) (75 = T|.at;, J = a,b). Then by [12, Section 1] (J7,§) = (H3, &) * (H4,&), ie.,

H=Co @ #5004,
e
where #° = {&;}* C 7. Note also, that
Ao @A = LM M, G E

where [S] denotes the closed linear span of a set S. Put

Ho = C¢,
%:[%;%bo'”g]a gn:[%bo‘%;"'g]a neN,
— —

n

Qa2 Pe
n=0 n=1
Then clearly 7 = % @© Z. Since a € .#,; and b € .#,, we have
ab%g%-l-?a n:071727"'

and hence ab(#") C #. Therefore the 2 x 2-matrix representation of ab corresponding to
the decomposition 7 = % @& £ is
R S
ab = < 0 T)

12



where R = ab| ¢, S = Pyable, T = Pyab|y, and Py, Py denotes orthogonal projections
onto % respectively .Z. We have R(%#;,) C ;. , and the restriction of R to 7, is given
by

R(alblang s ) = aba1b1a262 s

which corresponds to tensoring from the left by a, ® b, € H,° @ H,° on AL @ HL @ - - .
Since ||all2 = ||b]]2 = 1, R maps .7, isometrically into %15, and hence R is an isometry
of # into #. In particular ||RP|| =1 for all p in N. Since

= (5 7).

Z is invariant under (ab)* = b*a* and T* = b*a*|» Using [|a*||s = |lalls = 1, [|0*]2 =
||b]l2 = 1 we get, as above, that T* maps .%, isometrically into .%o for any n > 1, and
hence T is an isometry. In particular ||T7|| = ||(T*)?|| = 1 for all p in N. Since

R 0\ %=/[0 Rrr-'STT
p _
(ab)_<0 T”>+Z<0 0 )

r=

we have
L < [[(ab)?P|| < 1+pl[S|| < 1+ pllabl]

hence r(ab) = lim, o [|(ab)?||*/? = 1 as desired. 0O
Corollary 4.2. If T is an R-diagonal element, then

17| < (L+p)|| T T )5~
forevery p=1,2,....

Proof: By Corollary 3.2 we can assume that T = ax, for some free self-adjoint and
symmetric distributed random variables a, x, where a?> = 1. In particular @ and x are
centered, ||all =1 and ||z||z = ||T||2, so by the proof of Proposition 4.1, we get

H<||:/T||2)p 7]

(AP
—1 -1
hence [|T|” < I T[5 + I TN ITIE™ < (UL +p)ITIHITIE™ O

X

]l

<1+pHa- Hzl—l—p

Lemma 4.3. Let (.#,7) be a non-commutative von Neumann probability space with a
faithful trace T. Suppose that a ¢ .# has vanishing moments, i.e., T(a") = 0 for n e N.

Then A(1 —a)=11if r(a) < 1.

Proof: We first assume that r(a) < 1. Then b = log(1 — a) is well defined, and expanding
log in a power series we obtain from (2.1)

log A(1 —a) =Rer(b) = —ReT(i ﬁ) = —Rei r(a") = 0.

n n
n=1

13



Next suppose that r(a) = 1. Then 1 —ta — 1 — a in norm as ¢t — 1~ and upper
semicontinuity of A gives

A(l —a) > limsup A(1 — ta) = 1.
t—1-
The reverse inequality follows from the maximum principle for subharmonic functions and
the fact that the mapping A — A(a — A1) is subharmonic on C: For s > 1 we have

A(l—a) < H\l&x A(Al —a) = I‘f\lﬁx sA(1—\"1a) = s.

We conclude that A(1 —a) = 1. O

Theorem 4.4. Let (.#,T) be a non-commutative von Neumann probability space with a
faithful trace 7. Let u and h be %-free random variables in .#, u a Haar unitary, h > 0
and assume that the distribution py, for h is not a Dirac measure.

Denote by pi,,, the Brown measure for uh. Then

(1) pupn is rotation invariant and
supp fun = [[|R 73 [1All2] X [0, 27

(ii) The S-transform .7,,, of the distribution of h* has an analytic continuation to (a
neighbourhood of) Ju({0}) — 1,0}, .. (un({0}) — 1,01) = [IlR[l;* [|h 3] and
S, <0 on]u,({0}) —1,0].

(iii) pun({0}) = pn({0}) and
fun (B0, 5 (= 1)7Y3)) = ¢, fort € Jun({0}),1]. (4.1)

(iv) puyn is the only rotation symmetric probability measure satisfying (iii).

In our attempt to compute L(uh — A1) in order to compute the Brown measure fi,, for uh,
it is computationally more convenient to convert uh to a product ax of free self-adjoint
symmetric distributed elements and compute L(z + Aa). The idea in this computation
is to use Lemma 3.3 in [6] to factorize x + Aa and separate computations involving the
distributions of @ and z: We then have to compute Fuglede-Kadison determinants of
functions of @ and x only. It turns out that it is not in general possible to factorize x + \a
but we can state a set of A\’s for which this is possible. For these specified values of A we
compute L(x + Aa) in terms of the distribution of z and this information enables us to
state the absolute continuous part of fi,.

Proof: Let T = uh. If p is a complex number of modulus 1 then pT = (pu)h = uh =T

because pu = u and u and h are x-free. Therefore the spectrum of T, the map A —
L(T — A1), the support of the Brown measure pg of T and the measure up are rotation

14



symmetric. Applying Corollary 3.2 we infer that 7" has the same *x-distribution as ax, where
a and x are free self-adjoint symmetric distributed random variables, a is a L(Z,)-symmetry
with distribution p, = (6_1 +01)/2 and the distribution p of z is determined by psq = pp2-

Define

k(o) = (1= 50) ) = [ = duw),

1—sw
R

£0) = halio) = [ 1) D [ dutw) = [ duw),

R R R

for s e C\ (spx) !, v > 0. At (x) we use the fact that y is symmetric. Note that 0 < f < 1
and f(v) — p({0}) as v — co. Thus we can define g on |0, 00| by

ﬂm:léﬁ;)_!g+muﬂ //1+Uw2 w). (4.2)

We show that g is strictly decreasing and g(]0,00[) = ]||h 7|32, ||A]|3[. Observe first that
g > 0 hence we can do logarithmic differentiation of g:

d g 21— F@) )+ uf ()
@8I0 =y T T = S )

(4.3)

dv

It follows that we can show monotonicity of g by showing the numerator in (4.3) is positive:
for v > 0 we find

2(1 = f(0)f(v) —vf'(v)

R R

2+ 2
:1)2/( )d,uxu(s,t)
R2

1+ v2t2)(1 + v2s?

) t? 52
- / ((1 + v2¢2)? * (1+ U282)2> dp > pls;t)

RQ

= v4/ a (" — 5)" B dp X (s, t). (4.4)

+ v%12)2(1 + v2s?

RZ

Since i, is not a Dirac measure, supp p x u € {(z,y) | |x| = |y|} whence the expression in
Equation (4.4) is strictly positive. This shows that ¢’ < 0 on ]0,00[. The image of g can

be computed using formula (4.2). We observe that
v? 1 s V22
/ 1+ v2w? d,u(w) - / ﬁ d:“/(w) = ||h ||2; /m du(w) —1
R R R

15



as v — oo and

w? . ) 1
R R R
as v — 0, and collecting these results we obtain g(]0,00[) = ]||h 7|32, [|A]|2]. Tt follows

from Morera’s Theorem that f (hence g and 1/g) is analytic in a neighbourhood of |0, oo|.
We define A = A\(v) by \? = ¢g(v) and k), by

B 1

1 - 2N

for t # £A"1. Using s = iv, t = i/(A\?v) we get kyo(t) = 1 — f(v), and we are able to
compute the product

Exa(t) = 7((1 —tha) 1)

(1 = sz) 71 ((1 — tAa) )"
(1 — sz) <1 - PRBEWE) )(1 — tha) )
= (1 — sx) (1 _a- Sﬂﬁk)x(s)— ka(s) (1= MZ)M(t)— ’fxa(t)>(1 — tha)
=1 f(v)(x—i-)\a).

Then we are able to compute
L(T — A1) = L(z + Xa)

(1 —s2)7H)° ((1—tAa)71)°
— L(1 - sz) + L(1 SRy S )
+L(1 — tha) — log v +log(1 — f(v)).

Observe that
1((1 = s2) " H)°[)3 = 11 = sz) M5 — [7((1 = sz) ~H)[?

1 9 1 2
:R{mdu(w)—f(v) —/mdﬂ(w)—f@)

R
= fv) (1 = f(v))
and that [|((1 —tXa) ')°||2 = f(v)(1 — f(v)). Freeness of a and x implies that Proposi-
tion 4.1 applies to the product ((1 — sx)~")°- ((1 — tAa) ~")° and we infer that
r(((1=s2) )7 (1= tAa) 1)°) = f(0)(1 = f(0)) = ka(s)kra(t)

Using the freeness assumption on a and x we see that ((1 — sz)~')°- ((1 — tAa)!)° has
vanishing moments, and it follows then from Lemma 4.3 that

OO A L

kx(s) kxa(t)
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Invertibility of 1 — sz and 1 — t\a implies that we can compute L(1 — sz) and L(1 — tAa):

)\v ’

1
L(1 —sx) = /log 11— sw|du(w) = 3 /log(l + v*w?) dp(w),
R R

L(1 —tha) = 7t(log |1 — tAa|) = log

and we have

1 )\2
2,,.2
/lOg(l + viw ) du(w) + —2 lOg 71 D2N\2 (45)

R

L(T = \1) =

NN

for A = A(v) e ]||h7Y|5", ||h]]2[. The mapping v — A(v) is analytic in a neighbourhood of
10, oo[ hence of class C? on |0, 00[. It then follows from Equation (4.5) that the mapping
v — L(T — A\(v)1) is real valued and of class C? on |0, oo[. In addition \'(v) > 0 for v > 0
hence v is a C%-function of \. It follows that A — L(T — A1) is a C*-function on C \ {0}.

We are now in a position to compute the Brown measure on circular annuli: Let 0 < v; <
vy < 00 and put a = g(vy)'/?, 8 = g(vy)"/?. Then

pr([ev, 8] %[0, 27])
// V2H (A1, Ag) dAidAy

2T
[@,8] xp [0,27]

= ;/gradH(ﬁcosﬁ,ﬁsinﬁ) - (4%%) do
™

2w
—% grad H(acosd, asinf) - (Z?rfg) df
2w
02 / 50 - (nf) do— / K'(0)(58) - (20) o
BK

B) — aK'(a),

where H (A1, A2) = L(z + (A1 +iX2)a), K(A\) = H()X,0). At () we use the fact that H is
rotation symmetric. We are able to compute K'(\):

RN = oo+ 20)0) = g ( [ loslt+0%0) dute) + G108 1)

- 1_Uf(v) + ))\\I((;)) - U)\(U)1 ::z)\/\(( ))X( e X () f(v)/A(v),
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hence f(v) = A(v)K'(A(v)). This means that pr([a, 5] x,[0,27]) = f(v1) — f(v2). Letting
v; tend to 0 we obtain

pr([o [|All2[xp [0, 27]) =1 — f(v2)

for all v > 0. Letting v, tend to co we obtain

pr (A5 (1Al x5 [0, 27]) = 1 — i ({0}). (4.6)

If 11({0}) = 0 we see that supp ur = [||h |5, ||All2] Xp[0,27[. Otherwise let p be the
orthogonal projection onto Ker T'. Then 7(p) = p,({0}) and we can think of T'as T = (J %)
where the decomposition is with respect to p and pt := 1 —p, i.e., T = pTp- + p*Tp*.
Let A # 0. Then T — A1 = (7' ;%) and by Proposition 1.8 in [3] we have

Al R . o
A(T) :A< 0 5—)\1> = A (=A1)"® A, (S — \1)"P)

where A; and A, are the Fuglede-Kadison determinants on p.#p and p*.#p* computed
with respect to the normalized traces on these two algebras. Put L; = log4,;, i = 1,2.
Then

L(T) = 7(p)Li(=A1) + 7(p™) La(S — A1) = 7(p) log [A| + 7(p™) La(S — A1)
hence the Brown measure for 1" is given by

pr = 7(p)do + 7(1 — p)us

where g = (27) 'V?log|A| is the Dirac measure at 0 and pg is the Brown measure of
S relative to p-.#p*. Hence ur({0}) > 7(p). Combined with Equation (4.6) this gives
pur(B(0,[|h]]2)) = 1, but ur is a probability measure and we conclude that pr({0}) =
1n({0}). Furthermore ||h =Y, = 0 and supp pr = [|[h 7|5, ||Rl2] %, [0, 27].

For v > 0 we have
pr(B(0,A(v)) = 1 — pr ([Mw), [Alla[ xp[0,27[) =1 = (1 = f(v)) = f(v),

and if v > 0 is small then

2,12 2
1) =1 = [ g ) = [ T dinal0) = s (<09
R R

which means that —v? = x,,,(f(v) — 1), hence

ol 10) =) = v -0 = L - A
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for v in a neighbourhood of 0. Since f" < 0 on ]0,00[, f — 1 is univalent in every v > 0
hence we can construct an analytic function F' on a neighbourhood of f(]0,00[) — 1 =
Jun({0}) — 1,0] such that f(F(z)) — 1 = z for all z in Ju,({0}) — 1,0[. This implies that
Z2 can be continued analytically to a neighbourhood of |, ({0}) — 1, 0], (4.7) holds for
all v > 0 and that

pr (B0, 7 (£(0) = 1)) = ur (B0, A1) = £(v)

for all v > 0. This means that ur(B(0,.7,.(t — 1)7Y/2)) =t for all ¢ in u,({0}),1]. Tt
is shown in [6] that .7, is analytic in a neighbourhood of 0 and .#,,,(0) = 7(h?) ! =
|h||32. Thus .7, . has an analytic continuation to a neighbourhood of |u({0}) — 1, 0] and
a continuity argument shows that pr(B(0, ||h||2)) = 1. It follows from Equation (4.7) that
Sy < 0on lu({0}) —1,0[.

We remain to prove uniqueness of pr. Suppose that v is a rotation symmetric probability
measure satisfying v({0}) = u,({0}) and v(B(0, .7, (t—1)"1/2)) = t for all  in |1, ({0}), 1].
Then v(B(0,7)) = pur(B(0,7)) for all » > ||h~!|,* because v is a probability measure. If
|h=t]5 " > 0 then ur({0}) = 0 and

V(BO. A7) = limp (B(O, A5+ )) = lim ur (BO, 117 + 2))
= (B, [Ih ) = 0.
We conclude that v(B(0,7)) = ur(B(0,7)) for all » > 0 which implies that v and pr agree
on all circular annuli of the form [a, 8] X, [0, 27 (0 < @ < ). Since v and pr are rotation
symmetric they must be equal on sets of the form [a, 5] x,[0,27/n] (0 < a < §, n € N)
hence they are equal on all sets of the form [a, 8] X, [277,2m0[ (0 < @ < 3,0 < v < § < 1,

7,0 € Q). Since these sets generate the Borel o-algebra on C we conclude that v = purp.
O

Corollary 4.5. With the notation as in Theorem 4.4 we have

(i) the function F(t) = .%,,(t — 1)"Y2: |up({0}),1] = ]I ~Y|5 ", [|h]]2) has an analytic
continuation to a neighbourhood of its domain and F' > 0 on |u,({0}), 1],

(ii) pyn has a radial density function f on ]0,00[ defined by

1 —1 -1
f(S) — QWSF/(F—I(S))’ §€ ]“h’ ||2 v“h’“?]a (48)

0, otherwise.

The radial density function has an analytic continuation to a neighbourhood of
HIA=HI " (R ]2)-

Proof: (i) follows immediately from Theorem 4.4.
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Let o = p({0}), B = ||hY||5;", and define v = ady+ f(|A]) dma(N) on the Borel-measurable
sets. Let t € |a, 1[. Then

F(t)

v(B(0, F (1)) = // FON) dma(A )—a+27r/f(r)rdr
e )

=a+ lim (F~Y'(r)dr = a+ lim / 1ds

n—o0 n—0o0
B2 F-1(3+1)
=t—lim F'(B+1)+a=t

n—o0

The uniqueness of ji,;, shows that v = fiyy,.

Note that F'oF~! is analytic in a neighbourhood of ]|~ ||5"*, ||2/|2] and that F'(F ~'(s)) >
0 for all s in ]||h=Y|;", ||k]|]. This implies that f can be continued analytically to a
neighbourhood of ]||A Y| %, [|2]|2)- 0

The Corollary shows that the radial density function for the Brown measure is determined
by the distribution of h and the formula (4.8).

Now suppose u, h,k ¢ #, v is a Haar unitary, h,k > 0, u, h are *-free, u, k are *-free
and that i, = pue. Then it follows from Theorem 4.4 that [|hls = [|kll2, [|h 7Y =
|5 7|2 and from Corollary 4.5 that (F,;")'(r) = (F,5")'(r) for r e I =]||h 15, [|All2[ =

&5, [[k]|2] from which we infer that F,;" (r)—F,;" (r) is constant on I. But F,;'(r) — 1

as v — ||hllz and F,*(r) — 1 as r — ||k||> = ||h]|2 so that F,," = F,;* on I. This implies

that .7, = 7> on |p,,({0}) —1, 0] and we conclude that .%,,, = .7, in a neighbourhood
of 0 using the Principle of Analytic Continuation. Therefore the distribution of A is uniquely

determined by the Brown measure for uh.

Proposition 4.6. With the notation as in Theorem 4.4 we have

(i) the Brown measure for uh is the uniform probability measure on aT (for some oo > 0)
if and only if p, = d,, i.e., h is a scalar. Thus (i) in Theorem 4.4 holds if py, is a
Dirac measure,

(i) if h is invertible then sp uh = supp fiup,
(iii) if h is not invertible then sp uh = B(0, ||h||2),
(iv) supp puun G spuh if and only if h is not invertible in .# and ||h~"||; < oco.

Proof: If h is a scalar a > 0, uh has spectrum aT and pup = (fiu)zsa. 1 the uniform
probability measure on oT. (In the case o = 0 this measure is dg.) If, conversely, sp h has
more than one point, Theorem 4.4 applies and we infer that [||[h='(|5", ||k|l2] € supp prus.
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Either p,({0}) # 0 or p;,({0}) = 0. If 24,({0}) # 0 we have ||h '] = 0 < ||h|]2. Otherwise

we have

Il = ([ din®) ([ 2 am@)" > [ 10 a0 = 1.

R R

We have equality in Holders inequality only if the integrands are proportional a.e. w.r.t.
ft. (This means that supp u;, = sp h consists of a single point.) Therefore ||h=!||;" < ||A]]2
and we conclude that g, is not the uniform measure on oT for any o > 0. This proves (i).

It follows from Corollary 3.2 that we can replace 7' = uh by ax where a and z are free self-
adjoint symmetric distributed random variables, a? = 1, 22 = h%, and using Proposition 4.1
we get r(uh) = r(azx) = ||all2 ||z||2 = ||h||2 whence spuh C B(0, ||h||2). If his invertible then
it follows from Proposition 3.10 that (uh) ="' is R-diagonal hence sp (uh) ™" C B(0, [[h~1||2).
Summing up we have

spuh C ([l [[All2] %[0, 27 = supp prun € sp b,

which shows (ii).

Now suppose that h is not invertible. To prove (iii) we assume without loss of generality
that [|[h7"|]s = [it7>dpa(t) < oo. Then p,({0}) = 1, ({0}) = 0, whence Kerz = {0}, so
z has an (unbounded) inverse. Let E be the spectral resolution of x. Then ! (as an
unbounded operator) is given by

z! :/%dE()\).

R

We introduce approximants: for m a natural number let

1
2= [ 5 D (N) 4B
R

We note that the approximants are centered elements in (., 7), that {z,, | m € N} and
{a} are free, and that (z,,), form a Cauchy sequence with respect to ||-||o on .#: for
m < m' we have

1 1
||xm _ xm,“% = / ﬁ . 1}1/m’,1/m}(|)\|) dum()\) < /ﬁ : 1[0,1/m](|)‘|) d,uw()‘) — 0

R R

as m — oo due to the assumption on ||h 5. Tt follows that for any natural number n, the

sequence ((z,a)")_, is Cauchy with respect to [|-||2: Fix n in N. For m and m' natural
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numbers we get,

)" = (a0l = | 3 e 1m0 — ()

n—1
<D @wa @ = @) (@na)" s
j=0

n—1
= lzm = el Y Nl 13 ol 5~
j=1

< Nlm — Tmellz- - B

We denote by 7" the limit of the sequence ((x,,a)"),, in (L?(.#),||-||2). We note that
Ty — 1in L?*(A4) as m — oo hence T(T ') =1 and T(T ") = T~" for any n > 1.
We are able to compute norms of the vectors 7" (n e N) too:

7 = i )2 g ol = i ([ 5 UymetAD i)

m—00
R

1 n 1um
= ([ 55+ otV ()" = 13

R

Freeness of z,,, and a implies equality at (). We define f: B(0,||h 7|, ') — L?(.#) by
fA) = Y02 AT "1 The series is absolutely convergent hence f is analytic on its
domain. Now suppose T' — )¢l is invertible for some Ag in ]0, [|h (|5 '[. Then Ao ¢ spuh

hence \oT N spuh = () because sp uh is rotation symmetric. Thus 7" — A1 is invertible for
all A in \yT. For X\ € AT we find

(T = AN =D (T =A)A'T ) = (AT = AT i) =
n=0 n=0
and we conclude that f(\) = ((T'— A1) 1)~ (for |A\| = Ag). We next note that the mapping
0 — (T — Xe1)71: [0,27] — (A, ]| is continuous, S = (27)* 027r(T — Xo€?1) 1 db
belongs to .4 and S = (2r) 027r f(Noe?)df = T-'. We thus obtain TS1 = T(S) = 1
and conclude that 7'S = 1. Finiteness of .# ensures us that ST =1 and we see that T is
invertible. This contradicts the assumption that A\ ¢ sp 7.

Summing up we have proved that |0, [|[h~|;'[ € spuh. Theorem 4.4 shows that spuh
contains [||h~Y|,*, ||h]]2] and we conclude that B(0, ||h]|z) = spuh. This proves (iii). The
last assertion is a reformulation of (ii) and (iii). O

Combining the facts that jepwn) = (tun)s for f a polynomial, reciprocal function and
involution with the change-of-variables theorem we have the following
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Theorem 4.7. With the notation as in Theorem 4.4 and Corollary 4.5 we have

(i) If @ # 0 then faun(s) = |72 fun(s/|a) on |0, o0l

)

(i) Ifp e N then funy(s) =p L fun(s/7)s*1/P~D on 10, ool.

(iii) If h is invertible then fep)-1(s) = s™* fun(s™") on |0, col.
) = fuh-

(iv

In the next examples we apply the main theorem to give a slight extension of Proposition 3.1
in [1].

Example 4.8. Let & be positive and invertible in (.#, 7). Then .7, (=t).7, _, (t—1) =1
for0 <t < 1.

If h is a scalar the conclusion holds trivially. Otherwise uy is not a Dirac measure and
Theorem 4.4 applies. Let ¢ € ]uh({()}) [ =101, s = St —1)7Y2 a = ||h7Y,"
b =||h||2. Then s €]a,b[, supp puny-1 = [0+, a 1] x,[0,27[ and

t = pun(B ( 5)) = tun(la, s[ X, [0,27]) = pruny-+(Js 71, a7 [ %, [0, 27))
=1 — puny—1 (b7, s %, [0, 2])
(

whence 1 —t = ~1(B(0,s71)). But Proposition 3.10 implies that (uh) ! is R-diagonal
sol—t= u(uh)— ( ( n . 1|2(—75)_1/2)). Note that ju@n)-112 = p-2 whence
yuh—2 (_t)_1/2 =s"'= Finz (t— 1)1/2

for 0 < ¢ < 1. Then Proposition 3.2 in [6] applies and we conclude that .7, and .7, _,
are analytic in a neighbourhood of [—1,0].

From this formula it follows that x, ,(—t)xu, _,(t —1) = 1 for 0 < ¢ < 1 and that
Uy, (¥) + 4y, _,(x7") = —1 for x < 0 hence we have the idea for a simple proof of the
formula: Let ;2 be a compactly supported probability measure on ]0, oo[. Then 1), has an
analytic continuation to |—oo, 0] given by

wula) = [ dns)

1—uxs
R

and analogously for g1 := finy:

0= [roge= [

R R

for 2 < 0. Then ¢, (z) + ¢,-1(z~") = —1 and it follows that x,-1(2) = (xu(-1—2)) !
for all z in ¢, (]—o00,0[). Observe that ¢,(z) — —1 as z — —oo and ¢,(0) = 0 hence
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Xu-1(2)xu(—1 —2) =1 and .7, -1(2)Lu(—1 — z) =1 for z € |-1,0[. The formula shows
that .7, has an analytic continuation to a neighbourhood of [—1,0]: In a suitably chosen
finite non-commutative W*-probability space (., 7) we can find a positive element h whose
distribution is p and the conclusion follows as in the paragraph above.

Example 4.9. Let p be a probability measure on [0,00[ and assume that g is not a
Dirac measure. Then p is the distribution (as a measure) of a positive element A in
some finite non-commutative W*-probability space (.#, T) with a faithful trace. Note that
pn2({0}) = pn({0}) = 1({0}). Then Theorem 4.4 shows that .," < 0 on |u({0}) — 1,0
But .%,/(0) = —7((h — 7(h))?)/7(h)? hence .#,'(0) = 0 if and only if h is a scalar, i.e.,
if and only if p is a Dirac measure. We conclude that ., < 0 on u({0}) — 1,0]. If
supp ¢ C 10, 00[ the formula derived in Example 4.8 yields that .7, < 0 on [—1,0]: We
obtain .&,'(=t).7,-1(t — 1) = S, (=), 1(t — 1) for 0 < ¢ < 1, and it follows that
/(1) = 0 if and only if ./ _,(0) = 0.

Proposition 4.10. Let (.#,7) be a tracial non-commutative von Neumann probability
space and let a = uh # 0 be an R-diagonal element in ., i.e., v and h are x-free random
variables in ., u is a Haar unitary and h > 0. Let b be an invertible element in .# such
that a and b are x-free.

Then bab~"' is R-diagonal if and only if b is a scalar times a unitary.

Proof: Let b = Av where A € C\ {0} and v is a unitary *-free from a. Then bab™! =
vav* ~,p a which shows that bab—! is R-diagonal.

Next suppose that bab ' is R-diagonal. Let b = vk be the polar decomposition of b.
Invertibility of b ensures that v is unitary. Then bab ' = vkak 'v* has the same Brown
measure as a. If fi,q-1] is @ Dirac measure then |bab™'| = a1 (for some a > 0) whence |a| =
al and |bab™" > = |a]?>. (Here we used the assumptions that bab~" and a are R-diagonal.)
If p1jpap-1) is not a Dirac measure then piq is not a Dirac measure, and we infer from
Theorem 4.4 that .7, = S, Which implies that

l"‘\bab*1|2
7(|a]*) = 7(|bab™'[*) = 7((vkak ~"v*)*vkak ~'v*) = 7(|a?)T(K*) 7 (k%)
by the freeness assumption on a and b. Let p denote the distribution of k. Then p({0}) =0

and
1 :T(k2)1/2T(k—2)1/2 _ </t2 du(t)>1/2 </t_2dﬂ(t))1/2_

R R

Equality holds if and only if the integrands are proportional, i.e., t = St ! a.e. w.r.t. p.
(B > 0 is some constant.) It follows that u is a Dirac measure thus k is a scalar. O

The argument also shows that if u, u*bu and b are x-free then b is a scalar times a unitary:
Note first that u, u*bu, b~ are *-free such that u, u*bub ' are s-free. Then bub ' =
uu*bub~! is R-diagonal and thus b is a scalar times a unitary.

Finally we note that Theorem 4.4(ii) implies that lim,_,,go})—1+ 7u(2) = p(X 1) €]0, 00].
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5 Examples

Example 5.1. (Circular element.) Let 1,25 be a free semicircular system (with the
normalization 7(z%) = 7(z%) = 1) in a tracial W*-probability space (.#, 7). Put

_1
V)

Then y is a circular element in the sense of Voiculescu [13], and 7(y*y) = 1. By [13], y has
polar decomposition y = uh, where u and h are *-free, u is a Haar unitary and h > 0 is
quarter-circular distributed:

(21 + ixy). (5.1)

1
d/j,h = ; V4 — x? 1[0,2](27) dx.

In particular y is R-diagonal. A simple computation shows that

1
241

T2 (2)

(see the computation in Example 5.2 below for ¢ = 1). Moreover ||hlls = 1 and [[2 || = oo.
Hence by Theorem 4.4 and Proposition 4.6 spy = {z € C | |2| < 1} =: D, and

1y (B(0,V1)) = t, 0<t<l.

Since p, is rotation symmetric, this implies that the Brown measure for y is the uniform
distribution on the disk D given by

dp, = %1D(z)dRezdImz. (5.2)
From the random matrix model for a semicircular system (Theorem 1.13 in [13]) one can
obtain the following random matrix model for a circular element (cf. Remark 5.1.4 in [14]):
Let for n any natural number Y™ denote the random matrix
Yy = (Y;j)ijl (5-3)
where for each n, (ReYj;, Im Yj;)?,_; are 2n? stochastically independent normal distributed
centered random variables with variance (2n) ~'. Then Y™ converges in #-distribution to
the circular element (5.1) when we use the states 7,, n = 1,2,... on alg(Y™ (Y(™)* 1)
given by 7, = E o tr,,. Here E is the expectation value and tr,, is the normalized trace on
M, (C). In [5] Ginibre computed the eigenvalue distribution of the random matrix Y™ for
each natural number n, and proved that for n — oo this eigenvalue distribution converges
weakly to the measure 11, given by (5.2). However, due to the discontinuity of the Fuglede—
Kadison determinant, it appears to be difficult to deduce Equation (5.2) for the Brown
measure of a circular element directly from Ginibres result.
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Example 5.2. (Free Poisson Distribution.) We consider a one-parameter family of
Free Poisson distributions, cf. Section 3.7 in [14].

Let ¢ > 0 and consider the measure

VE—at-1) |

v, = max{1l — ¢,0}dp + 5 - Lgpp(z) dz,

where a = (v/c — 1), b= (y/c + 1)%. Then

t%VC(Z) = 1 _Z7

Lzt (=) /(c—1)2 =2(c+ 1)z + 22
ve(2) = 2% ;

G, (271 - 1—z(c+1)—/1—-2z(c+1) +22(c— 1)2'
z 2z

Uy (2) =

We are able to compute the S-transform too:

B 1
z+4c

S (Z)

Now consider a x-free pair (u,h) of elements in (.#,7) where u is a Haar unitary and
h > 0 with distribution given by un2 = v.. The Brown measure pu,,, for uh is completely
described by Theorem 4.4. We find then ||h||; = \/c and using Corollary 4.5 we obtain an
expression for the radial density f,, of piun:

|
Fun(s) = — - Ly o (5)-

If ¢ > 1 then 1,,({0}) = 0 hence p,, has no point masses. Since p,,(B(0,/c)) = 1 we
conclude that ||h~'||;" = Ve — 1.

If 0 < c<1then p1,,({0}) =1—cand ||h7!;' =0.

Finally we note that if h is quarter circular distributed with 7(h?) = 1 then pp2 = vy.
Hence ¢ = 1 gives the circular element treated in Example 5.1.

Example 5.3. (Bernoulli Distribution.) Let v and p be x-free random variables in
(A, T), and assume that u is a Haar unitary, p is a projection with trace « € 0, 1[. Then
i, is the Bernoulli distribution with parameter «, i.e., p, = (1 — a)dy + ad; and the
S-transform .7, , of p* = pis .7, (2) = (2 + 1)/(z + @) for z # —a, cf. Example 3.6.7
in [14]. Using Corollary 4.5 we obtain an expression for the radial density f,, of the Brown
measure /i, for up:

11—«

fup(s) = A=) Ljo,v/a[(5)-
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We can check that this gives the complete information:

va
iy (B(0, /@) \ {0}) = / Fun(IA]) dX = 27 / S fupl(5) ds
B(0,y/a)\{0} 0

Ja

1—a/ 5 ds = a,
1—s?)

which together with 11,,({0}) = 1,({0}) = 1 — « gives g, (B(0, V) =

o

In the two examples below, we compute the Brown measures for certain linear combinations
of Haar unitaries. Let uy,... ,u, (n > 2) be x-free generating Haar unitaries in L(IF,), let
ag,...,a, € C\ {0} and put

T =oquy + - -+ apuy,.

By the addition property of x-free R-diagonal elements we infer that 7" is R-diagonal. Next
we note that the x-distribution (hence the spectrum and the Brown measure) for 7" only
depends on |ai,...,|an|: Let p; = /|| (j = 1,...,n) and observe that p;u; has the
same *-distribution as ;. This implies that pju; = u; whence

T = |ai|prur + -+ + |l ppn = Jonfur + -+ - + |y |ug.

We therefore assume that 0 < oy < as <+ < ay,.

We are able to compute the Brown measure explicitly in two cases: the case ay = --- =
o, = 1 and the case n = 2.

Lemma 5.4. For any a in C\ |—1, 1] we have

IE=C

a? — 32

=n(l—vV1—-a2), (5.4)

feza

=m(a—Va®-1).
a—x a—+x
Proof: We first note that fl vi—e? ‘”2 dx 11 ”alﬂfz dr and that —— x? = %(— + H—x)

(for |x| < a) so that fl o dr = 1 fjl Valjfz dz. Therefore we only need to prove (5.4).

The case a®> = 1 is straightforward so we next assume that @ > 1. Then for |z] < 1 we
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have (1 — (z/a)?) 1 =327 (z/a)?" and

1
\/1—2 =1 2. 2
/ * Z /xZ”\/l—dex:Za /xQ”\/l—xde
3

where B denotes the Beta function. Since 1 —a™2 € C\ |—o00,0] for a € C\ [—1, 1] the right
hand side of (5.4) is analytic on C\ [—1, 1]. It follows from Morera’s Theorem that the left
hand side of (5.4) is analytic on C\ [—1, 1], and we conclude that (5.4) is valid for all a in
C\[-1,1]. O

Example 5.5. (Sum of Haar unitaries.) We show below that the Brown measure for
T = uy + --- + u, is rotation invariant, has support equal to B(0,y/n) (= sp7T) and has

radial density
n?(n —1)
m, 0<r< \/ﬁ,

0, otherwise.

fr(r) =

To prove this we first compute some R- and S-transforms of a family of distributions. Then
we use Corollary 4.5 to compute the Brown measure of T'.

For ¢ > 1 we let s, = 2y/c — 1 and define the measure v, by

2 _ 2
c\/s:—x

271 (c? — 22)

V(5o +6,) +

ve = max{0, Li—s,s.(2) d.

It is easily seen that v, is a symmetric, compactly supported measure on R and it follows
from Lemma 5.4 that v. has total mass 1 for every ¢ > 1. Fix z > 0 large and apply
Lemma 5.4 to compute:

G,.(x) = 22 S de-1),

which we can invert to obtain the R-transform of v,:

2 _
() = T (5.5)
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for z in a neighbourhood of 0. By v? we denote the measure (1,)sq. Then

Ga(2) = G,.(V/2) _ (c—2)zxey/22 —4(c— 1)z

c z 22(c? — 2)

G,2(z71) c—2c2 —cy/1—4z(c— 1)
2(Z)=——"7""—7"-1= ;
Vi (2) z 2(c?z — 1)
a(z) = zc? —c+c\/222 — 22(c — 2) + 17
° 2z
z+c
Lp(2) = ——
v2(2) 2(z+1)

for z in a neighbourhood of 0. (The formulas hold in the case ¢ = 1 too. In this case the
transforms are the transforms of the distribution of a generating symmetry in L(Z5).) The
formula (5.5) shows that (;)c>1 is a semigroup with respect to free additive convolution.

Let h be a positive element in (., 7) with distribution

cy/4(c—1) — 2?2
pn, = max{0,2 — c}d. + o Ly aye=t((%) dz (5.6)

and suppose that v is a Haar unitary in .# -free from h. Then p,> = v? and we can state
the Brown measure for uh using Theorem 4.4 and Corollary 4.5: p,,({0}) = un({0}) =0
and the radial density is

A(c—1)

w(c? — s2)? ' 1]07\/5[(3)'

fuh(s) =
In the case T'= uy + - - - + u, we use Proposition 3.5 to compute the distribution of |T'|:
fir) = (f1)®" and hence

V1+422 -1
‘-@ﬁm (Z) = n‘%ﬁl (Z) =-n—

2z
Then it follows that the distribution of |T'| is
ny/4(n — 1) — 22
L e N Lipoymt((7) da. (5.7)
We remark, that the symmetrizations of the measures (5.7) for n = 1,2,... were first

studied by Kesten [7] in connection with random walks on free groups. Moreover the
continuous family of “Kesten measures” i, (where gy, is given by 5.6) as well as the
measures v, in Example 5.6 below were first studied in [2, Theorem 4.3] with different
parametrizations.
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Example 5.6. In relation to Example 5.5 we consider the family (v,).~¢ of symmetric
measures on R defined by

cy/t? — 22

Ve = 2m(c? + x2)

. ]']*tc,tc[(x) dl‘

where t. = 2v/c+ 1. A straightforward application of Lemma 5.4 shows that v. is a
probability measure and that

(c+2)ztc\/22—4(c+1)

Gro(2) = 2(c% + 2?)

Then we are able to compute related transformations:

1—+1—4z22

t%Vc (Z) =c 2Z ) (58)
2 _
Ga(2) = (c+2)zEcy/22 —4(c+ l)z,
e 22(c? + 2)
c—2¢%2 —cy/1—4(c+ 1)z
vals) = 2(1+ 22) !
N 7] Py Py
ﬁyz(z):c ?z — /2 (c+2)z+ ’
° 2z
c—z
yuz(z)—m-

The formula (5.8) shows that ()50 is a one-parameter convolution semigroup with respect
to free additive convolution. (We let vy denote the point measure dy.)

If u and h are x-free random variables in a non-commutative W*-probability space (., T),

u is a Haar unitary, and h is positive and has distribution

c/4(c+1) —a?
m(c? + x?)

Uy = . 1[072\/C+—1[($) dx

then w2 = 2, ||b]|3 = 7(h?) = (S,2(0) ' =¢, |h 3" =0, pun({0}) = 0 and the Brown
measure for uh has radial density

fun(z) = % - Lo, e (2)-

It is straightforward to check that fB(O Ve) fun(JA]) dX = 1.

Example 5.7. (Linear combination of two Haar unitaries.) Suppose that o and 3
are real numbers such that 0 < o < 3. The Brown measure pp for T = a/?uy + Y%u, is
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supported on [V/3 — a, V3 + a] x,[0, 27[, rotation invariant and has radial density func-
tion

2 (a+B)r' =28 - a)’r’ + (8 —a)*(a+p)
@ (rt=2(a+ B)r2+ (6 — a)2)2

We apply Proposition 3.5 to compute the distribution of T*T": fijr| = fia/2) B fig1/2, and
hence

fr) = Lyp=a,vars(r)-

\/1+4a22+\/1+4522—2

‘%ﬁm (Z) - 2z
+z
Grin (2) = V(22— (a+8)?—4daf’
GanVE) 41
Gy (2) = Ve o (e (a+B)? —4aB
g (2) = 1 - b

V(= (a+ B)2)? — 4aB2?
z(a+p) — 1+ /dafz?+1

(@MT\?(Z) =
(a+6)z+1 4af(z + 1) + (o — ()2
ZL\TP (Z) = (;/_ 5)22 )
and using Corollary 4.5 we obtain an expression for the radial density on ]||h ~!(|5", ||A]|o[ =
A= Iy, Var+ Bl
2 (a4 )" —2(B—a)’r’+ (8- a)’(a+f)
= . . 5.9
fT(T) T (r4—2(a+ﬁ)r2+(ﬂ—a)2)2 ( )

Note that the expression in (5.9) is positive for all r in |/8 — /&, /B + y/a| and for p in
this interval we find

Votp (8= a)?— (a+ B)r? Votp
// fr([Al) dA = 27 / TfT(r)dr:2[r4—2(a+ﬁ)r2+(5—a)2 p
Jo/a+B[xp 0,27 ’

__ (P~ (a+h)
pt=2a+p)p*+(F - )

This expression is 1 only when p = /B — «, which means that |||, = /B — a and

that the radial density function fr for ur is

(@ +B)rt = 2(5 — a)’r® + (6 — a)’(a + f)
(rt = 2(a+ B)r2 + (6 — a)Z)2

2
frr)=—- 1 5=a,varpl(r)-
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Using the Stieltjes inversion formula we obtain an expression for the density of the distri-
bution of |T'|?:

1
/@~ )b 1)

where a = (V3 — V)%, b= (Va+/B)*. We have [; f, ., dm =1 and we conclude that
dpyrp = fum2 dm. (This holds in the case a = 3 too, which is easily verified by inspecting

fM|T\2 (ZL‘) = ’ 1}‘1717[(37)

formula (5.7).) We note that |7|* has an arcus sinus distribution.

We see that sp |T|?> = [a, b] which contains 0 if and only if & = 3, thus T is invertible if and
only if @ # . We conclude using Proposition 4.6 that sp7T" = [\/3 — o,/ + a] X, [0, 27[.
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