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1 Introduction

We consider a model of optimal consumption and portfolio selection which captures the notion of
local substitution. This optimization problem was �rst suggested and studied in detail by Hindy
and Huang [19] for di�usion processes using veri�cation theorems. Later, Alvarez [1] studied the
problem in a viscosity solution framework. A viscosity solution approach has also been pursued
by Hindy, Huang, and Zhu [20] for a certain generalization of this problem. The main motivation
for the present paper is to generalize the results by Hindy and Huang [19] and Alvarez [1] to
statistically sound models for the asset price process.

An agent wants to divide her wealth between an uncertain asset with price St and a bond Bt

with interest rate r. She wants to allocate her wealth and at the same time consume in order to
optimize the functional

E
hZ 1

0

e��tU (Y �;C
t ) dt

i
:

where � = �t denotes the fraction of wealth allocated in the uncertain investment and C = Ct
is the cumulative consumption at time t. This functional describes the agent's preferences over
consumption patterns. The agent's utility is described by U , discounted by the rate �. The special
feature of this problem introduced by Hindy and Huang [19] is the process Yt modelling the average
past consumption. This process will be derived from the total consumption up till time t and a
weighting factor (see equation (2.7)). This model says that the agent derives satisfaction from past
consumption. In addition, the control problem incorporates the idea of local substitution which
says that consumption at nearby dates are almost perfect substitutes. Advancing or delaying
consumption has little e�ect on the consumer's satisfaction. With this model of satisfaction,
optimal consumption was shown by [19] to be periodic in the sense of a local time on a boundary.
Every time the wealth process hits a boundary, consumption takes place. We have chosen to
consider the case of an agent with in�nite investment horizon.

The standard model for stock prices in the Black-Scholes world is the geometric Brownian
motion

St = S0e
�t+�Wt ;

where � is the expected log-return and � the volatility. This model imposes a normal distribution
on the logreturns of an observed stock price. Empirical work by Eberlein and Keller [13] and
Rydberg [33] shows that the normal distribution poorly �ts the logreturn data. Among other
things, the data have heavy tails. They suggest modelling logreturns by generalized hyperbolic
distributions, which are shown to �t data extremely well. Barndor�-Nielsen [6] introduces the
normal inverse Gaussian distribution which is throughly studied on �nancial time series by Rydberg
[33]. Eberlein and Keller [13] use the hyperbolic distribution. The model for stock prices becomes

St = S0e
�t+Lt ;

where Lt is a L�evy process and L1 is distributed according to a normal inverse Gaussian law
in [6, 33] and a hyperbolic law in [13]. It is worth noticing that in both cases Lt will be a
pure jump L�evy process, i.e., it does not have any Brownian motion part in its L�evy-Khintchine
representation. The generator of St will thus have no second order term, and our control problem
{ as will be explained later { will be a �rst order integro-di�erential variational inequality. We
shall assume here that the stock price is driven by a general pure jump L�evy process Lt. However,
we will also treat the more general case with a Brownian motion and a pure-jump L�evy process
as driving noise in the stock price model.

By the Bellman principle we can associate a Hamilton-Jacobi-Bellman equation (variational
inequality) to our optimization problem. This equation is set in an unbounded domain and
consists of a nonlinear �rst order integro-di�erential equation subject to a gradient constraint, a
so-called integro-di�erential variational inequality (see Section 2). Since we allow for consumption
processes which are not necessarily absolute continuous with respect to the Lebesgue measure, we
have a so-called singular control problem. These problems give rise to a gradient constraint in
the variational inequality, see, e.g., Fleming and Soner [14]. In our general set-up, it is natural
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to consider the variational problem in the framework of viscosity solutions, as done by Alvarez
[1] for the geometric Brownian motion case. We recall that the notion of viscosity solutions was
introduced by Crandal and Lions [9] for �rst order equations and by Lions [29, 30] for second order
equations. The notion of viscosity solutions for integro-di�erential equations was later pursued by
Soner [37, 38] and Sayah [34, 35] for certain problems involving a �rst order local operator, and
by Alvarez and Tourin [2] and Pham [32] for problems involving a second order local operator.
For control problems and their associated Hamilton-Jacobi-Bellman equations, this weak solution
concept has proven to be extremely useful due to the fact that it allowsmerely continuous functions
to be solutions of fully nonlinear second order partial di�erential equations. We refer to the user's
guide [10], the lecture notes in [4], and the books [3, 5, 14] for an overview of the theory of viscosity
solutions and its applications.

For our problem, we need to consider constrained viscosity solutions since we are not allowed
to consume more than the present wealth, e.g., the control cannot push the wealth process into
the negative real line. The notion of constrained viscosity solutions was �rst introduced by Soner
[36, 37] and later Capuzzo-Dolcetta and Lions [12] for �rst order equations, see also Lasry and Lions
[27], Lions and Ishii [23], and Katsoulakis [26] for second order equations. In the present paper,
we �rst prove that the value function of our control problem is a constrained viscosity solution
of the associated integro-di�erential variational inequality (see Section 4). As observed by Lions
(see, e.g., [30]), the general fact that value functions of control problems can be characterized as
viscosity solutions of certain partial di�erential equations is a direct consequence of the dynamic
programming principle. For singular control problems, however, the classical approach of Lions
fails because the state process may jump due to the singular control and it needs thus not stay
in a small ball for small t. This problem has usually been circumvented by either relying on the
existence of an optimal control (see, e.g., [11, 20]) or by establishing appropriate estimates for
the state process (see, e.g., [14]). In [1], Alvarez presented a more direct argument showing that
the value function of the singular control problem in [19] is a viscosity solution of the associated
variational inequality. We adopt his argument to our singular control problem (where the state
process itself can also jump) and its associated integro-di�erential variational inequality.

Our second result is a comparison principle for the state constraint problem for integro-
di�erential variational inequalities, which ensures that the value function is the only solution
of our problem, see Section 4. The �rst comparison principles (uniqueness results) for viscosity
solutions were given by Crandall and Lions [9] (see also Crandall, Evans, and Lions [8]) for �rst
order equations. Concerning the uniqueness theory for second order equations (as in Section 5),
important contributions are due to Jensen [24], Jensen, Lions, and Souganidis [28], Lions and
Souganidis [31], Ishii [22], Jensen [25], and Ishii and Lions [23]. We refer to the user's guide of
Crandall, Ishii and Lions [10], the lecture notes of Crandall [7], and the books [3, 5, 14] for an
up-to-date overview of the uniqueness machinery for viscosity solutions.

Following the ideas set forth by the general uniqueness theory for viscosity solutions, compar-
ison principles for integro-di�erential equations were obtained by Soner [37, 38], Sayah [34, 35],
Alvarez and Tourin [2], and Pham [32]. Under some assumptions, uniqueness results in the class
of bounded uniformly continuous (semiconcave) functions were obtained in [38], see also [37]. The
main result of [34] is a comparison theorem between bounded uniformly continuous subsolutions
and supersolutions. In [35], this result is extended �rst to semicontinuous and then to unbounded
sub- and supersolutions. In [2], the authors consider nonlinear integro-di�erential equations of
parabolic type and obtain a comparison principle for semicontinuous, bounded and unbounded
sub- and supersolutions. In [32], a comparison principle is proved for unbounded sub- and super-
solutions of a integro-di�erential variational inequality associated with the optimal stopping time
problem in a �nite horizon of a controlled jump-di�usion process.

We consider here a class of integro-di�erential variational inequalities for which the comparison
results in the literature do not (directly) apply. We prove for this class of variational inequalities a
comparison theorem between unbounded continuous subsolutions and supersolutions. Inspired by
Ishii and Lions [23] in their treatment of general boundary value problems, we handle the gradient
constraint by producing strict supersolutions that are close to the supersolution in question. A
similar approach has also been used in, e.g., [11] for a singular stochastic control problem (without

2



an integral operator), see also [1]. To handle the state constraint we adapt the proof of Soner
[36, 37], which here consists in building a test function so that the minimum associated with
the supersolution cannot be on the boundary. When dealing with unbounded domains, it is well
known that one has to specify the asymptotic behaviour of the functions being compared. However,
due to the choice of a strict supersolution, it is su�cient to restrict our attention to a bounded
domain when proving the comparison principle. This fact was also exploited in [1]. In Section
5, we extend our existence and uniqueness results to a class of second order degenerate elliptic
integro-di�erential variational inequalities and point out some possible applications.

If we specialize to a utility function of HARA type, we are able to construct an explicit solution
to the control problem. The derivation of our solution is motivated from Hindy and Huang [19].
In the jump process case, however, we are not able to �nd explicit expressions for all constants,
but are only able to state integral equations which must be satis�ed. This is the topic of Section 6.
In Section 7 we consider a slight simpli�cation of our control problem, namely Merton's problem
with consumption. We carry through the calculations for the pure-jump process case, and state
the necessary integral equations which must be solved to have a solution. We note that this is
also treated by Framstad et al. [15], however, with a di�erent model for the stock price than ours.
They consider a stock price process which solves a geometric stochastic di�erential equation with
jumps. By a veri�cation theorem they provide an explicit solution of Merton's problem.

In the �nal section we discuss related models where the price is the solution to a stochastic
di�erential equation with jumps. We show how to relate these models to our results.

For similar and other applications of viscosity solutions in mathematical �nance, we refer to
the lecture notes by Soner [39] and the references therein.

2 Formulation of the problem and the main result

Let (
;P;F) be a probability space and (Ft) a given �ltration satisfying the usual assumptions.
We consider a �nancial market consisting of a stock and a bond. Assume that the value of the
stock follows the stochastic process

St = S0e
�t+Lt ;(2.1)

where � is a constant and Lt is a pure-jump L�evy process with L�evy-Khintchine decomposition

Lt = �t+

Z t

0

Z
jzj<1

z ~N (ds; dz) +

Z t

0

Z
jzj�1

z N (dt; dz):

Here � is a constant, N (dt; dz) is Poisson random measure on IR+ � IR with intensity measure
dt� �(dz), �(dz) is a �-�nite Borel measure on IRnf0g with the propertyZ

IRnf0g
min

�
1; z2

�
�(dz) <1;(2.2)

and ~N (dt; dz) = N (dt; dz) � dt�(dz) is the compensator of N . The measure �(dz) is called the
L�evy measure. We choose to work with the unique c�adl�ag version of Lt and denote this also by
Lt. By Itô's formula (see, e.g., [21]) we obtain the di�erential form of St:

dSt =
�
� + � +

Z
IRnf0g

�
ez1jzj<1 � 1� z1jzj<1

�
�(dz)

�
St dt

+ St�

Z
IRnf0g

�
ez1jzj<1 � 1

�
~N(dt; dz) + St�

Z
IRnf0g

�
ez1jzj�1 � 1

�
N (dt; dz);

(2.3)

where 1A is the indicator function of a measurable set A. For this di�erential form to be well
de�ned, we need to impose the following additional integrability condition on the L�evy measure:Z

IRnf0g

��ez1jzj�1 � 1
�� �(dz) <1:(2.4)
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Note that condition (2.4) is e�ective only when z � 1 due to (2.2), and says essentially that ez is
�(dz) - integrable on fjzj � 1g. Under condition (2.4) we can rewrite the di�erential form of St as

dSt =
�
� + � +

Z
IRnf0g

�
ez � 1� z1jzj<1

�
�(dz)

�
St dt+ St�

Z
IRnf0g

�
ez � 1

�
~N (dt; dz):(2.5)

Note that under condition (2.4),
R t
0 E[Ss] ds <1.

We let the bond have dynamics
dBt = rBt dt;

where r > 0 is the interest rate. Assume furthermore that r < �̂, where we have introduced the
short-hand notation

�̂ = �+ � +

Z
IRnf0g

�
ez � 1� z1jzj<1

�
�(dz):(2.6)

Here, r < �̂ means that the expected return of the stock is higher then the return of the bond. In
(2.6), note that ez � 1� z � 0 for all z 2 IR. Consider an investor who wants to put her money in
the stock and the bond so as to maximize her utility. Let �t 2 [0; 1] be the fraction of her wealth
invested in the stock at time t, and assume that there are no transaction costs in the market.

If we denote her cumulative consumption up to time t by Ct, we have the wealth process X�;C
t

given as

X�;C
t = x�Ct +

Z t

0

�
r + (�̂� r)�s

�
X�;C
s ds+

Z t

0

�s�X
�;C
s�

Z
IRnf0g

�
ez � 1

�
~N(ds; dz)

where x is the initial wealth. To incorporate the idea of local substitution, Hindy and Huang [19]

introduce the process Y �;C
t modelling the average past consumption. The process has dynamics

Y �;C
t = ye��t + �e��t

Z
[0;t]

e�s dCs;(2.7)

where y > 0 and � is a positive weighting factor. We shall frequently use the notation Yt for
Y �;C
t and Xt for X

�;C
t . The integral is interpreted pathwise in a Lebesgue-Stieltjes sense. The

di�erential form of Yt is
dYt = ��Yt dt+ � dCt:

The objective of the investor is to �nd an allocation process ��t and a consumption pattern C�t
which optimizes the expected discounted utility over an investment horizon. We shall here focus
on an investor with an in�nite investment horizon. We de�ne the value function as

V (x; y) = sup
�;C2Ax;y

E
hZ 1

0

e��tU (Y �;C
t ) dt

i
;(2.8)

where � > 0 is the discount factor and Ax;y is a set of admissible controls. Let

D =
n
(x; y) 2 IR2 : x > 0; y > 0

o
:

We say that a pair of controls is admissible for x; y 2 D and write �;C 2 Ax;y if:

(ci) Ct is an adapted process that is right continuous with left-hand limits (c�adl�ag), nondecreasing,
with initial value C0� = 0 and satis�es E[Ct] <1. Note that Ct refers to the whole process
so the inequality is to be understood for all t � 0.

(cii) �t is progressively measurable with values in [0; 1].

(ciii) X
�;C
t � 0, Y �;C

t � 0 almost everywhere for all t � 0.
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Note that condition (ciii) introduces a state space constraint into our control problem. The utility
function U : [0;1)! [0;1) is assumed to have the following properties:

(ui) U 2 C([0;1)) is nondecreasing and concave.

(uii) There exists a constant K > 0 and  2 (0; 1) such that � > k() and U (x) � K(1 + x) for
all nonnegative x, where

k() = max
�2[0;1]

h
(r + (�̂� r)�) +

Z
IRnf0g

��
1 + �(ez � 1)

�
� 1� �(ez � 1)

�
�(dz)

i
:(2.9)

By a Taylor expansion we see that the integral term of k() is well-de�ned in a neighbourhood
of zero. The condition (2.4) ensures that the integral is �nite outside this neighbourhood, which
shows that (2.9) is �nite for  2 (0; 1]. Recall that in the case of no integral operator in (2.9) (see
[1]), k() maps [0;1) onto [0;1) with k(0) = 0 and is increasing. This is not the case when the
integral operator is present. Then k() : (0;1) ! IR can be negative as well as non-monotone.
Let us also mention that condition (uii) guarantees that the value function of the related Merton
problem is well-de�ned, see Section 7.

In this paper we will assume that the dynamic programming principle holds; i.e., for any
stopping time � and t � 0,

V (x; y) = sup
�;C2Ax;y

E
hZ t^�

0

e��sU (Y �;C
s ) ds + e��(t^�)V (Xt^� ; Yt^� )

i
;(2.10)

where a ^ b = min(a; b). This intuitive but important principle can be proved by using methods
from, e.g., [40]. The Hamilton-Jacobi-Bellman equation of our optimization problem is a nonlinear
�rst order integro-di�erential equation subject to a gradient constraint:

max
n
�vy � vx;U (y) � �v � �yvy + max

�2[0;1]

h
(r + (�̂ � r)�)xvx +Z

IRnf0g

�
v(x+ �x(ez � 1); y) � v(x; y) � �xvx(x; y)(e

z � 1)
�
�(dz)

io
= 0 in D:

(2.11)

Note that x + �x(ez � 1) � 0 for all x � 0 and z 2 IR. In Section 4 we prove that if v is C2

and sublinearly growing, then (2.11) is well-de�ned. Moreover, if the value function V satis�es
these conditions, then by Itô's formula one can easily prove that V solves (2.11). Although (2.11)
only contains �rst order derivatives, the requirement V 2 C2 comes from the fact that the L�evy
measure �(dz) is possibly singular in zero.

In many applications the value function is not necessarily smooth, or it can be very di�cult
to prove su�cient regularity. Therefore we introduce an appropriate concept of weak solutions,
namely viscosity solutions. With this concept at hand, we are able to prove that the value
function V is the (only) solution of (2.11), even when it is not necessarily di�erentiable. However,
if a viscosity solution is su�ciently regular, then, as is well known, it is a solution in the classical
sense. The viscosity solution approach is by now a well established approach to control theory
problems, see, e.g., the books [14, 3].

Our main result is the following theorem, which follows immediately from the results stated
and proved in the Sections 3 and 4:

Theorem 2.1. The value function V is the unique constrained viscosity solution of the integro-
di�erential variational inequality (2.11), i.e., V is a subsolution of (2.11) in D and a supersolution
of (2.11) in D. The value function V satis�es the growth condition

0 � V (x; y) � K(1 + x+ y) ; 8x; y 2 D:

Moreover, V is uniformly continuous in D. If for some � 2 (0; 1], � > k(�), and U 2 C0;�([0;1)),
then V 2 C0;�(D). If � > k(1 + �) and U 2 C1;�([0;1)), then V 2 C1;�(D).
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Before ending this section, we show that the normal inverse Gaussian L�evy process introduced
by Barndor�-Nielsen [6] satis�es the condition in (2.4). First, recall from [6] and [33] that the
normal inverse Gaussian distribution is a mean-variance mixture of a normal distribution and an
inverse Gaussian with density

nig(x;�; �; �; �) =
��

�
exp

�
�
p
�2 � �2 + �(x� �)

� K1

�
�
p
�2 + (x� �)2

�
p
�2 + (x� �)2

;

where K1 is the modi�ed Bessel function of the third kind and index 1 given as (for y > 0)

K1(y) =
1

2

Z 1

0

exp
�
�1
2y(x + x�1)

�
dx;

and x 2 IR; � 2 IR; � > 0; 0 � j�j � �. The parameters have the following meaning; � is the
steepness of the distribution, � the asymmetry, � the location and � the scale1. If � = 0 then the
distribution is symmetric. In empirical studies one usually center the data and let � = 0. In this
case the L�evy measure is

�(dz) =
��

�jzj
e�zK1(�jzj) dz:

For z � 1, we have

(ez � 1) exp
�
�1
2
�z(x+ x�1

�
� exp

�
�1
2
(�� 1)z(x+ x�1)

�
since x+x�1 � 2 for positive x. By adjusting the � parameter to ��1 we have that (ez�1) �(dz)
for z � 1 is dominated by another L�evy measure coming from a normal inverse Gaussian L�evy
process. On the other hand, when z � �1 we know that jez � 1j � 1. Since all L�evy measures
integrate 1 for jzj � 1, we have that (2.4) holds whenever � > 1. In conclusion, when � > 1 the
normal inverse Gaussian L�evy process satis�es the conditions in (2.4).

We recall from empirical studies by Rydberg [33] that the estimated � for two German and
two Danish stocks were far greater than 1. For instance, the estimated parameters of Deutsche
Bank for day-to-day ticks in the period October 1st, 1989 to December 29th, 1995 (1562 data
points) were (see [33]) (�; �; �) = (75:49;�4:089; 0:012). We conclude that a stock price model St
for Deutsche Bank, where the logreturns are modelled by a normal inverse Gaussian distribution
with the parameters above, will �t the framework presented in this paper.

3 Properties of the value function

In this section we prove that the value function V de�ned in (2.8) possesses certain growth,
monotonicity, and regularity properties. The proofs of these results are inspired by the proofs of
the corresponding results in [1].

Lemma 3.1. The value function V is well de�ned in D and satis�es 0 � V (x; y) � K(1+x+y)

in D. Furthermore, V (x; y) is nondecreasing and concave in D.

Proof. The arguments used to prove that V is nondecreasing and concave on its convex domain are
classical and thus omitted. We concentrate here on the growth condition. First, observe that for
every x; y 2 D, Ax;y is nonempty. This is so because for every �t, X

�;0 is obviously nonnegative.
Moreover, since the associated gain

R1
0
e��tU (ye��t) dt is nonnegative, V is also nonnegative.

The upper bound is established in the following manner. Let y > 0 and �;C 2 Ax;y. For n > 0,

consider the stopping time �n = inf
�
t � 0 : X�;C

t > n
	
. The process Zt = Xt + Yt=� is bounded

away from zero since Yt � ye��t. Moreover, Zt is a solution of

dZt =
�
(r + (�̂ � r)�t)Xt � Yt

�
dt+ �t�Xt�

Z
IR nf0g

�
ez � 1

�
~N (dt; dz)

1The parameters � and � are unrelated to the discounting factors in the control problem. The notation of the
parameters used here are simply chosen to be consistent with the notation in [6] and [33].
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with initial value z = x + y=�. Applying Itô's formula, the nonnegativity of Xt; Yt, and the
observation that Xt

Zt
; �t

Xt

Zt
2 [0; 1], we obtain

E
�
Z
t^�n

�
= z + E

hZ t^�n

0

Z�1
s

�
(r + (�̂ � r)�s)Xs � Ys

�
ds
i

+ E
hZ t^�n

0

�Z
IRnf0g

��
Zs + �sXs(e

z � 1)
�
�Z

s � �sZ
�1
s Xs(e

z � 1)
�
�(dz)

�
ds
i

= z + E
hZ t^�n

0

Z
s

�
(r + (�̂� r)�s)

Xs

Zs
� Ys

Zs

�
ds
i

+ E
hZ t^�n

0

Z
s

�Z
IRnf0g

��
1 + (�s

Xs

Zs
)(ez � 1)

�
�1� (�s

Xs

Zs
)(ez � 1)

�
�(dz)

�
ds
i

� z +E
hZ t^�n

0

Z
s

�

�
r + (�̂� r)(�s

Xs

Zs
)
�

+

Z
IRnf0g

��
1 + (�s

Xs

Zs
)(ez � 1)

�
� 1� (�s

Xs

Zs
)(ez � 1)

�
�(dz)

�
ds
i

� z +E
hZ t^�n

0
Z
s ds

i
k();

where k() is de�ned in (2.9). Gronwall's lemma now yields E
�
Z
t^�n

�
� zek()t. Letting n!1,

we have by Fatou's lemma that

E
�
Y 
t

�
� K(x+ y)ek()t:(3.1)

Note that this bound also holds when y = 0 by continuity. The growth condition on the utility
function U then implies that (recall � > k())

E
hZ 1

0

e��tU (Yt) dt
i
� K

Z 1

0

e��t
h
1 + (x+ y) ek()t

i
dt � K(1 + x+ y) :

Maximizing over Ax;y yields the desired upper bound.

Theorem 3.2. The value function V is uniformly continuous in D. If for some � 2 (0; 1],
� > k(�), and U 2 C0;�([0;1)), then V 2 C0;�(D). Furthermore, if � > k(1 + �) and U 2
C1;�([0;1)), then V 2 C1;�(D).

Proof. We �rst show how to compare admissible trajectories starting from di�erent points. For

x; y; x0; y0 2 D, let �;C 2 Ax;y and de�ne the stopping time � = inf
�
t � 0 : Xx0�;C

t < 0
	
. When

x0 � x we observe that � =1. Set

C0t = Ct1t<� +
�
�X0�;C

� +X0 �;C
�� + C�

�
1t�� ;

�t = Ct � C0t =
�
Ct ��X 0 �;C

� �X 0 �;C
�� � C�

�
1t�� :

We see that C0t = Ct and �t = 0 when x0 � x. Since �X0 �;C
� = ��C� + ���X

0 �;C
��

�
e�L� � 1

�
,

we can show that �X0 �;C
� +X0 �;C

�� + C� � C�� + (1 � ���)X
0 �;C
�� . We immediately see that C0t

is nondecreasing since X 0 �;C
�� � 0. Similarly we have that � is nondecreasing. We now calculate

X0 �;C
t 1t<� = X0 �;C

t^� +
�
��X0�;C

� �X0 �;C
��

�
1t��

= x0 � C0t +

Z t^�

0

(r + (�̂� r)�s)X
0 �;C
s ds +

Z t^�

0

�s�X
0 �;C
s�

Z
IRnf0g

�
ez � 1

�
~N (ds; dz)

= x0 � C0t +

Z t

0

(r + (�̂� r)�s)X
0 �;C
s 1s<� ds

7



+

Z t

0

�s�X
0�;C
s� 1s<�

Z
IRnf0g

�
ez � 1

�
~N (ds; dz)

By uniqueness we have X0 �;C0

t = X 0 �;C
t 1t<� . This implies that X0 �;C0

t � 0 and, when x > x0,

(X�X0)�;�t = X�;C
t �X0 �;C0

t = X�;C
t �X0 �;C

t 1t<� � 0. This in particular leads to the conclusion
that �;C0 2 Ax0;y0 and �;� 2 Ajx�x0j;jy�y0j. Note that this is is trivial when x0 � x. From the

explicit form of Yt, we get jY
�;C
t � Y 0 �;C

0

t j � jY � Y 0j�;�t and thus

E
hZ 1

0

e��tU (Y �;C
t ) dt

i
� E

hZ 1

0

e��tU (Y 0 �;C
0

t ) dt
i
+E

hZ 1

0

e��t!U(jY � Y 0j�;�t ) dt
i

� V (x0; y0) + !V (jx� x0j; jy � y0j);

where !U denotes a modulus of continuity for U . We have used the notation !V for the value
function when we replace U by !U . Maximizing over Ax;y and exchanging x; y and x0; y0, we obtain
jV (x; y)�V (x0; y0)j � !V (jx�x0j; jy�y0j). In the case U 2 C0;�([0;1)), we choose !U (z) = Kz�

and since � > k(�), we conclude from (3.1) that !V � K(x + y)� in D. Hence V 2 C0;�(D). In
general we choose !U(z) = inf">0("+K"z

 ) and obtain as before !V (z) � inf">0("+K"z
 ) since

� > k(). This implies that V is uniformly continuous. The proof of the C1;� regularity is similar
and we therefore omit the details, see instead [1].

4 Viscosity solutions

In this section we characterise the value function (2.8) as the unique constrained viscosity solution
of the integro-di�erential variational inequality (2.11). To simplify the presentation, we will on
several occasions employ the following notations: X = (x1; x2) 2 D, DX = (@x1 ; @x2), G(DXv) =
�vx2 � vx1 , and

B� (X; v) =

Z
IRnf0g

�
v(x1 + x1�(e

z � 1); x2) � v(x1; x2)� �x1vx1 (X)(ez � 1)
�
�(dz);

F (X; v;DXv;B
�(X; v)) = U (x2) � �v � �x2vx2 + max

�2[0;1]

h
(r + (�̂� r)�)x1vx1 + B�(X; v)

i
:

Then (2.11) takes the following form

max
�
G(DXv);F (X; v;DXv;B

�(X; v))
�
= 0 in D:(4.1)

Recall that the L�evy measure �(dz) is a positive �-�nite measure on IRnf0g with a possible
singularity in zero so that (2.2) holds. We thus need to be more speci�c about the meaning of the
integro-di�erential operator B� . To this end, de�ne the set

C`(D) =
n
� 2 C(D) : sup

D

j�(X)j

(1 + x1 + x2)`
<1

o
; ` � 0:

For any � 2 (0; 1), X 2 D, � 2 C1(D), P = (p1; p2) 2 IR
2, we de�ne

B�;�(X;�; P ) =

Z
jzj>�

�
�(x1 + x1�(e

z � 1); x2)� �(X) � �x1p1(e
z � 1)

�
�(dz):

The integrand of B�;�(X;�; P ) is bounded by Const(X;P; �) �
�
1 + jez � 1j

�
and, thanks to (2.4),

the integral is convergent and bounded uniformly in � for every positive �. For � 2 (0; 1), X 2 D,
� 2 C2(D), we de�ne

B�� (X;�) =

Z
jzj��

�
�(x1 + x1�(e

z � 1); x2)� �(X) � �x1�x1(X)(ez � 1)
�
�(dz):
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Note that �(x1+x1�(e
z�1); x2) = �(X)+�x1(X)

�
x1�(e

z�1)
�
+�x1x1(a; x2)

�
x1�(e

z�1)
�2
, where

a is some point on the line between X and (x1+x1�(e
z�1); x2). Hence the integrand of B�� (X;�)

is bounded by Const(X;�) � jez � 1j2, and the integral is convergent and bounded uniformly in �
since every L�evy measure integrates 1

z2 in a neighbourhood of zero, see (2.2). Furthermore,

lim
�!0+

B�� (X;�) = 0:(4.2)

We now de�ne for all � 2 C2(D) \ C1(D) the integro-di�erential operator B�(X;�) by

B�(X;�) := B�;�(X;�;DX�) + B�� (X;�):(4.3)

Consequently, the Hamilton-Jacobi-Bellman (4.1) is well de�ned for all v 2 C2(D)\C1(D). How-
ever, in many applications the value function de�ned in (2.8) is not C2 or even C1 (see Sections 3,
6, and 7). and the equation (4.1) should be interpreted in a weaker sense. As discussed in Section
1, we here suitably adopt the notion of constrained viscosity solutions [36, 37, 12]. Constrained
viscosity solutions are functions that are supersolutions of (2.11) in D and subsolutions of (2.11)
in D. The latter requirement plays the role of a boundary condition, see [36, 37, 12].

The precise de�nition goes as follows:

De�nition 4.1. (i) Let O � D. Any v 2 C(D) is a viscosity subsolution (supersolution) of (4.1)
in O if and only if we have, for every X 2 O and � 2 C2(D) \ C1(D) such that X is a global
maximum (minimum) relative to O of v � �,

max
�
G(DX�);F (X; v;DX�;B

�(X;�))
�
� 0 (� 0):(4.4)

(ii) Any v 2 C(D) is a constrained viscosity solution of (4.1) if and only if v is a supersolution of
(4.1) in D and v is a subsolution of (4.1) in D.

Hereafter we use the terms subsolution and supersolution instead of viscosity subsolution and
viscosity supersolution, respectively. For � > 0, � 2 C2(D), v 2 C1(D) let us introduce the
function

F (X; v;DX�;B
�;�(X; v;DX�);B

�
� (X;�))

= U (x2) � �v � �x2�x2 + max
�2[0;1]

h
(r + (�̂� r)�)x1�x1 + B�;�(X; v;DX�) + B�� (X;�)

i
:

Note that B�;�(X; v;DX�) and B
�
� (X;�) are well de�ned and bounded independently of �.

We now have an equivalent formulation of viscosity solutions in C1(D).

Lemma 4.1. Let v 2 C1(D) and O � D. Then v is a viscosity subsolution (supersolution) of
(4.1) in O if and only if we have, for every � 2 C2(D) and � > 0,

max
�
G(DX�);F (X; v;DX�;B

�;�(X; v;DX�);B
�
� (X;�))

�
� 0 (� 0)(4.5)

whenever X 2 O is a global maximum (minimum) relative to O of v � �.

Proof. We prove the statement only for the subsolutions, the supersolution case can be proved
similarly. Suppose v 2 C1(D) satis�es

F (X; v;DX�;B
�;�(X; v;DX�);B

�
�(X;�)) � 0;(4.6)

where X 2 O is a global maximumrelative to O of v��, � 2 C2(D). Then, since X 2 O is a global
maximum, v(Y ) � v(X) � �(Y ) � �(X) for all Y 2 O. Consequently, since B�;�(X;�;DX�) �
B�;�(X; v;DX�), we can use (4.3) and (4.6) to conclude that

F (X; v;DX�;B
�(X;�) = F (x; v;DX�;B

�;�(X;�;DX�);B
�
�(X;�)) � 0:
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This implies that v is a subsolution of (4.1) in O if (4.5) holds.
Conversely, let v 2 C1(D) be a subsolution of (4.1) in O and assume that

F (X; v;DX�;B
�(X;�)) � 0;

where X 2 O is a global maximum relative to O of v � �, � 2 C2(D). Let �n be a smooth
function satisfying 0 � �n � 1, �n(Y ) = 1 for Y 2 N (X;x1(e

� � 1� 1
n
)) \O, and �n(Y ) = 0 for

Y 2 On
�
N (X;x1(e

� � 1))\O
�
. Here N (X;R) denotes the open ball centred in X with radius R.

Then de�ne the test function  n(Y ) = �n(Y )�(Y )+ (1��n(Y ))vn(Y ), where vn 2 C2(D) is such
that vn ! v a.e. in On

�
N (X;x1(e� �1))\O

�
. Observe that  n = � in N (X;x1(e� �1� 1

n
))\O,

 n ! � in N (X;x1(e� � 1)) \ O,  n = vn in On
�
N (X;x1(e� � 1)) \ O

�
, and X is a global

maximum relative to O of v �  n. Therefore,

0 � F (X; v;DX n;B
�(X; n)) = F (X; v;DX�;B

�;�(X; n; DX n);B
�
�(X; n))

! F (X; v;DX�;B
�;�(X; v;DX�);B

�
�(X;�));

where we have used Lebesgue's dominated convergence theorem to conclude that

B�;�(X; n; DX n) = B�;�(X; vn; DX�)! B�;�(X; v;DX�); B�� (X; n)! B�� (X;�):

This implies that (4.5) holds if v 2 C1(D) is a subsolution of (4.1) in O.

It is convenient to use De�nition 4.1 when proving existence of a constrained viscosity solution,
whereas the formulation based on Lemma 4.1 is more convenient when proving uniqueness. We
also note that Lemma 4.1 is an adaption of a similar lemma in Soner [36], see also Sayah [34].

The following easy result will be useful when proving Theorem 4.3 below.

Lemma 4.2. If (x0; y0) 2 D and (x; y) 2 D satisfy x = x0 � c and y = y0 + �c for some c > 0,
then V (x; y) � V (x0; y0).

We next characterize V as a viscosity solution of the Hamilton-Jacobi-Bellman equation (2.11).

Theorem 4.3. The value function V (x; y) is a constrained viscosity solution of (2.11).

Proof. We �rst prove that V is a supersolution in D. Let � 2 C2(D)\C1(D) and (x; y) 2 D be a
global minimizer of V � �. Without any loss of generality we may assume that (V � �)(x; y) = 0.
For every c 2 (0; x], we choose C0 = c and t = 0 in the dynamic programming principle (2.10),
which then yields

�(x; y) = V (x; y) � V (x� c; y + �c) � �(x� c; y + �c):

Dividing by c and sending c! 0, we conclude

�x(x; y) � ��y(x; y) � 0:(4.7)

Let �� be the exit time from the closed ball N� with radius � and centre at (x; y). By choosing �
small enough, N� � D. Applying the dynamic programming principle (2.10) with h ^ ��, �t = �,
Ct = 0, Itô's formula, and the inequality V � �, we obtain

0 �E
hZ h^��

0
e��tU (Y �;C

t ) dt+ e��(h^�� )V (Xh^�� ; Yh^�� )
i
� �(x; y)

� E
hZ h^��

0

e��t
n
U (Y �;C

t )� ��� �Yt�y + (r + (�̂� r)�)Xt�x + B�((Xt; Yt); �)
o
dt
i

� E
h1� e��(h^�� )

�

i
inf

(x;y)2N�

h
U (y) � �V � �y�y + (r + (�̂� r)�)x�x + B�((x; y); �)

i
:
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By the right continuity of the paths, �� > 0 a.s. Hence, by Lebesgue's dominated convergence

theorem, limh!0 E
h
1�e��(h^��)

h

i
= �. Dividing the inequality by h, sending h ! 0, and then

sending �! 0, we obtain

U (y) � �V � �y�y + (r + (�̂ � r)�)x�x + B� ((x; y); �) � 0;

for every � 2 [0; 1]. Hence, from this and (4.7), we have proven that V is a viscosity supersolution.
We now prove that V is a subsolution in D. Let � 2 C2(D)\C1(D) and (x; y) 2 D be a global

maximizer of V ��. Without any loss of generality we may assume (V ��)(x; y) = 0 and that the
maximum is strict. Arguing by contradiction, we suppose that the subsolution inequality (4.4) is
violated. Then, by continuity, there is a nonempty open ball N centred at (x; y) and " > 0 such
that ��y � �x � 0 and

U (y) � �V � �y�y + max
�2[0;1]

h
(r + (�̂� r)�)x�x ++B� ((x; y); �)

i
� �"� in N \D;

as well as V � � � " on @N \ D. For �;C 2 Ax;y, let �
� be the exit time from N \D. Since

Ct is a singular control with a possible jump at t = 0, the state process (Xt; Yt) might jump out
of N \D at once. If the control Ct makes the state process jump out of N \D, we know the
direction of the jump and from Lemma 4.2 that V is nonincreasing in this direction. However,
in our case the L�evy processes itself can cause the state process to jump out of N \D. In this
case, V is not necessarily nonincreasing in the direction of the jump. To overcome this problem
we introduce �L, the �rst time the state process jumps because of the L�evy process, and note that
�L > 0 a.s. We have now two cases to consider.

If �� < �L we know that the control Ct has made the state process jump out of N \D. For
�� � 1, let (x0; y0) be the intersection between @N and the line between (X��; Y��) and (X� ; Y� ).
Note that the slope vector of this line is (�1; �) and that � is nonincreasing along this line in
N \D. Thanks to Lemma 4.2, we also know that V is nonincreasing along this line in D. Hence,

V (X�� ; Y�� ) � V (x0; y0) � �(x0; y0)� " � �(X���; Y���) � ":

Using the inequalities above and Itô's formula for semimartingales, we obtain (with Cc
t denoting

the continuous part of Ct)

E
hZ 1^��

0

e��tU (Y �;C
t ) dt+ e��(1^�

� )V (X1^�� ; Y1^��)
i

� E
hZ 1^��

0

e��tU (Y �;C
t ) dt+ e��(1^�

� )�(X1^���; Y1^���) � "e��(1^�
� )
i

� �(x; y)� "E
h
e���

�

1���1

i

+ E
hZ 1^��

0

e��t
n
U (Y �;C

t ) � ��� �Yt�y + (r + (�̂ � r)�)Xt�x + B�((Xt; Yt); �)
o
dt
i

+ E
hZ 1^��

0

e��t
�
��x + ��y

�
dCc

t

i
+ E

h X
[0;1]\[0;��)

e��t
�
�(Xt� +�Ct; Yt�)� �(Xt�; Yt�)

�i

� �(x; y)� "E
h
e���

�

1���1 + (1� e��(1^�
� ))
i
� �(x; y)� "(1 � e��):

The dynamic programming principle (2.10) with t = 1 gives a contradiction since (V ��)(x; y) = 0.
If �� � �L, let � be a stopping time such that 0 < � < ��. Using that V � � and Itô's formula

for semimartingales, we obtain

E
hZ 1^�

0

e��tU (Y �;C
t ) dt+ e��(1^�)V (X1^� ; Y1^� )

i
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� E
hZ 1^�

0
e��tU (Y �;C

t ) dt+ e��(1^�)�(X1^� ; Y1^� )
i

� �(x; y) + E
hZ 1^�

0

e��t
n
U (Y �;C

t )� ��� �Yt�y + (r + (�̂� r)�)Xt�x + B�((Xt; Yt); �)
o
dt
i

+ E
hZ 1^�

0

e��t
�
��x + ��y

�
dCc

t

i
+E

h X
[0;1]\[0;� ]

e��t
�
�(Xt� +�Ct; Yt�)� �(Xt�; Yt�)

�i

� �(x; y)� "E
h
(1� e��(1^�))

i
:

The proof is now �nished after observing that the dynamic programming principle (2.10) with
t = 1 also in this case gives a contradiction since (V � �)(x; y) = 0.

We next demonstrate that it is possible to construct strict supersolutions of (4.1) in D. To
simplify the presentation, we employ the notations provided by (4.1).

Lemma 4.4. For 0 > 0 such that � > k(0), let v 2 C0(D) be a supersolution of (4.1) in D.
Choose  > max(; 0) such that � > k(), and let

w = K + � ; �(X) =
�
1 + x1 +

x2
2�

�
:

Then for K large enough, w 2 C1(D) \C(D) is a strict supersolution of (4.1) in D. Moreover,
for � 2 (0; 1], the function

v� = (1 � �)v + �w 2 C(D)

is a strict supersolution of (4.1) in D.

Proof. We �rst claim that

max
�
G(DXw);F (X;w;DXw;B

�(X;w))
�
� �f;(4.8)

for some strictly positive f 2 C(D). Observe that G(DXw) = �wx2 � wx1 = �
2�

�1. Next,
exploiting that x1

� ; �
x1
� 2 [0; 1], we have

F (X;w;DXw;B(X;w)) = U (x2) � �(K + �) � 1
2x2�

�1 + max
�2[0;1]

h
(r + (�̂ � r)�)x1�

�1

+

Z
IRnf0g

�
(�+ �x1(e

z � 1)) � � � �x1�
�1(ez � 1)

�
�(dz)

i

= U (x2)� �K � 1
2x2�

�1 +
�
�� + max

�2[0;1]

h
(r + (�̂� r)�)x1�

+

Z
IRnf0g

��
1 + � x1� (e

z � 1)
�
� 1� � x1� (e

z � 1)
�
�(dz)

i�
�

� U (x2)� �K +
�
�� + max

�2[0;1]

h
(r + (�̂� r)�)

+

Z
IRnf0g

��
1 + �(ez � 1)

�
� 1� �(ez � 1)

�
�(dz)

i�
�

= U (x2)� �K +
�
k()� �

�
� � �1

by choosing, e.g., �K = 1 + supD
�
U (x2)�

�
� � k()

�
�
�
. Note that �K < 1 since � > k() and

 > . Consequently, our claim (4.8) holds provided we set f = min(1; 2�
�1).

Next, we claim that v� is a strict supersolution of (4.1) in D. Note that for any � 2 C2,
X 2 D is a global minimum of v � � if and only if X is a global minimum of v� � ��, where
�� = (1��)�+�w. First, since v is a supersolution of (4.1) inD, we haveG(DX�) = ��x2��x1 � 0
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and hence G(DX�
�) = (1� �)(��x2 � �x1) + �(�wx2 � wx1) � �� 2�

�1. Letting �� 2 [0; 1] be a
maximizer of (r + (�̂� r)�)x1�

�
x1 + B�(X;��), we can calculate as follows

F (X; v� ; DX�
�;B�(X; v�)) = (1� �)U (x2)� �(1� �)v � �x2(1� �)�x2

+ (r + (�̂ � r)��)x1(1� �)�x1 + (1� �)B�
�

(X;�)

+ �U (x2)� ��w � �x2�wx2 + (r + (�̂� r)��)x1�wx1 + �B�
�

(X;w)

� (1� �)F (X; v;DX�;B
�(X;�)) + �F (X;w;DXw;B

�(X;w)) � ��f:

Summing up, we have just shown that

max
�
G(DX�

�);F (X; v�; DX�
�;B�(X;��)

�
� ��f:

Following the general viscosity solution technique, we next present a comparison principle for
constrained viscosity solutions of (2.11). This comparison principle immediately implies that the
value function (2.8) is the only solution of (2.11). For orientation, we mention once more that the
comparison results in [37, 38, 34, 35, 2, 32] do not apply in our context. Having said this, we do
not hesitate to point out that our comparison principle is nevertheless inspired by these results.
To simplify the presentation, we use again the notations provided by (4.1).

Theorem 4.5. Let 0 > 0 be such that � > k(0). Assume v 2 C0(D) is a subsolution of (4.1)
in D and v 2 C0(D) is a supersolution of (4.1) in D. Then v � v in D.

Proof. Choose  > 0 such that � > k() and then introduce the function

w = ~K +
�
1 + x1 +

x2
2�

�
:

Now choose ~K so large that, by Proposition 4.4, v� = (1 � �)v + �w, � 2 (0; 1], is a strict
supersolution of (4.1) in D. Instead of comparing v and v, we will compare v and v�. Then by
simply sending � ! 0+, we obtain the desired comparison result v � v in D. Observe that

v(X) � v�(X) � Const � (1 + x1 + x2)
0 � �

�
1 + x1 +

x2
2�

�
!�1 as X !1:(4.9)

In view of (4.9), we can choose R > 0 so large that v � v� in fx1; x2 � Rg. Although D is
unbounded, we can then nevertheless restrict our attention to the bounded domain

K =
n
(x1; x2) : 0 < x1 < R+ Re1; 0 < x2 < R

o
(4.10)

and prove that v � v� in K. To this end, assume to the contrary that

M := sup
K

(v � v�) = (v � v�)(Z) > 0(4.11)

for some Z 2 K. Observe that we have only the two cases Z 2 (0; R) � (0; R) and Z 2 �SC to
consider, where

�SC =
n
(x1; x2) : x1 = 0; 0 � x2 < R or 0 � x1 < R; x2 = 0

o
:(4.12)

is the state constraint boundary restricted by R.
Case I: Let us �rst consider the case Z 2 �SC. The construction presented below is a suitable

adaption of the construction of Soner [36, 37]. Since @K is piecewise linear there exist positive
constants h;R and a uniformly continuous map � : K ! IR2 satisfying

B(X + t�(X); Rt) � K for all X 2 K and t 2 (0; h]:(4.13)
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For any � > 1 and 0 < " < 1, de�ne the function �(X;Y ) on K �K by

�(X;Y ) = v(X) � v�(Y )� j�(X � Y ) + "�(Z)j2 � "jX � Zj2:(4.14)

LetM� = supK�K �(X;Y ). We then haveM� �M > 0 for any � > 1 and " � "0, where "0 is some

�xed small number. Let (X�; Y�) 2 K�K be a maximizer of �, i.e.,M� = �(X�; Y�). By (4.13),
we assume that � is so large that Z + "

�
�(Z) 2 K. The inequality �(X�; Y�) � �(Z;Z + "

�
�(Z))

reads

j�(X� � Y�) + "�(Z)j2 + "jX� � Zj2

� v(X�)� v�(Y�)�
�
v � v�

�
(Z) + v�(Z + "

�
�(Z)) � v�(Z):

Since v;�v� are bounded on K, it follows that j�(X�� Y�)j
2 is bounded uniformly in � and thus

X� � Y� ! 0 as �!1. Consequently, for some modulus of continuity !(�), we get

j�(X� � Y�) + "�(Z)j2 + "jX� � Zj2

� lim sup
�!1

�
v(X�) � v�(Y�)

�
�
�
v � v�

�
(Z) + !( 1

�
) = !( 1

�
)! 0 as �!1;

which implies �(X� � Y�) + "�(Z) ! 0 and X�; Y� ! Z as � ! 1. Moreover, we have
lim sup�!1

�
v(X�) � v�(Y�)

�
= M . Therefore, using also the uniform continuity of �, Y� =

X� + "
��(Z) + o( 1� ) = X� + "

��(X�) + o( 1�) and we thus use (4.13) to get Y� 2 K for � large
enough. In fact, we must have Y� 2 (0; R)� (0; R) for � large enough. Now set

 (Y ) = v(X�) � j�(X� � Y ) + "�(Z)j2 � "jX� � Zj2;

�(X) = v�(Y�) + j�(X � Y�) + "�(Z)j2 + "jX� � Zj2:

Finally, set

P = DX�(X�) = 2�[�(X� � Y�) + "�(Z)] + 2"(X� � Z);

Q = DY  (Y�) = 2�[�(X� � Y�) + "�(Z)]:

Since v� � takes its minimum at Y� 2 K and v� is a strict supersolution in K, G(Q) < ��f and
F (Y�; v

�; Q;B�(Y�;  )) < ��f . Repeating the proof of Lemma 4.1, we see that the latter strict
inequality implies

F (Y�; v
�; Q;B�;�(Y�; v

�; Q);B��(Y�;  )) < ��f:(4.15)

We next claim that G(P ) � 0. Assume to the contrary that G(P ) > 0. Then it follows that

��f > G(Q)�G(P ) = �(q2 � p2) � (q1 � p1) = �2�"
�
x�2 � z2

�
� 2"

�
x�1 � z1

�
;

which tends to zero as � ! 1, a contradiction to the fact that f is strictly positive. Thus
our claim holds. Then since v � � takes its maximum at X� 2 K and v is a subsolution in K,
F (X�; v; P;B�(X�; �)) � 0. This in turn implies that

F (X�; v; P;B
�;�(X�; v; P );B

�
�(X�; �)) � 0:(4.16)

Using (4.15) and (4.16), we can calculate as follows

0 < F (X�; v; P;B
�;�(X�; v; P );B

�
�(X�; �))� F (Y�; v

�; Q;B�;�(Y�; v
�; Q);B��(Y�;  ))

�
�
U (x�2)� U (y�2)

�
� �
�
v(X�)� v�(Y�)

�
� �
�
x�2�x2(X�)� y�2 y2(Y�)

�
+ max

�2[0;1]

h
(r + (�̂ � r)�)

�
x�1�x1(X�)� y�1 y1(Y�)

�
+
�
B�;�(X�; v; P )� B�;�(Y�; v

�; Q)
�
+
�
B�� (X�; �)� B

�
� (Y�;  )

�i
:

(4.17)
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Let us start by estimating the integral terms. To this end, observe �rst that, thanks to (4.2),
B�� (X�; �) and B�� (Y�;  ) both tend to zero as � ! 0 (for any �nite �). Next, for simplicity of
presentation, introduce the short-hand notation

T �(z;X) = (x1 + x1�(e
z � 1); x2)

and note that jT �(z;X) � T �(z;Y )j � jx1 � y1j jez � 1j. Then

B�;�(X�; v; P )� B
�;�(Y�; v

�; Q) = I1 + I2;

where, for A1 = f� < jzj < 1g and A2 = fjzj � 1g,

I` =

Z
A`

��
v(T �(z;X�)) � v�(T �(z;Y�))

�
�
�
v(X�)� v�(Y�)

�
� �

�
x�1�x1(X�) � y�1 y1(Y�)

�
(ez � 1)

�
�(dz); ` = 1; 2:

(4.18)

We consider �rst the term I2. Observe that, for i = 1; 2,�
x�i�xi(X�)� y�i yi(Y�)

�
= (x�i � y�i)2�[�(x�i� y�i) + "�i(Z)] + 2"x�i(x�i � zi)] = !1(

1
�
);

(4.19)

for some continuity modulus !1. Since obviously supD(v � v�) � sup[0;R)�[0;R)(v � v�) � M , we
get, for some continuity modulus !2,

I2 �

Z
jzj�1

�
M + v�(T �(z;X�))� v�(T �(z;Y�)) �M�

�
�
x�1�x1(X�)� y�1 y1(Y�)

�
(ez � 1)

�
�(dz)

�
�
M �M� + !1(

1
�) + !2(jx�1� y�1j)

�Z
jzj�1

jez � 1j �(dz)! 0 as �!1;

where we have exploited condition (2.4), estimate (4.19), and that M� !M as �!1.
We next estimate I1. To this end, observe that X�; Y� 2 [0; R) � [0; R) for � large enough.

Consequently, T �(z;X�); T
�(z;Y�) 2 K and thus

�
�
T �(z;X�); T

�(z;Y�)
�
��(X�; Y�) � 0:(4.20)

A calculation reveals that the integrand of I1 equals

�
�
T �(z;X�); T

�(z;Y�)
�
� �(X�; Y�) +

�
�2[�(x�1� y�1)]

2 + "�2x2�1

�
(ez � 1)2;

which, thanks to (4.20), is less than or equal to
�
[�(x�1� y�1)]2 + "x2�1

�
(ez � 1)2. Hence

I1 �
�
[�(x�1 � y�1)]

2 + "x2�1

�Z
�<jzj<1

(ez � 1)2 �(dz):

Note that the integral is convergent since every L�evy measure integrates 1
z2 in a neighbourhood of

zero, see (2.2). Since �(x�1� y�1)! "�1(Z) as �!1, we conclude that lim"!0 lim�!1 I1 � 0.
Finally, in view of the estimates derived above, we send (in that order) � ! 0, � ! 1, and

"! 0 in (4.17) to obtain the desired contradiction

�
�
v(Z) � v�(Z)

�
< 0:(4.21)

Case II: Let us now consider the case Z 2 (0; R)� (0; R). For any � > 1 and 0 < " < 1, de�ne
the function �(X;Y ) on K� K by

�(X;Y ) = v(X) � v�(Y )� �
2
jX � Y j2:
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LetM� = supK�K�(X;Y ). We then haveM� � M > 0 for all� > 1. Let (X�; Y�) be a maximizer
so that M� = �(X�; Y�). Next, we note that the inequality �(X�; X�)+�(Y�; Y�) � 2�(X�; Y�)
implies

�
2 jX� � Y�j

2 � v(X�) � v(Y�) + v�(X�) � v�(Y�):(4.22)

Consequently, jX� � Y�j � K
q

1
�
, where K > 0 is a constant that depends on supK v and

supK(�v
�). Inserting this estimate into (4.22) and using uniform continuity of v; v� in K, we see

that �
2 jX� � Y�j2 ! 0 as �!1. Moreover, for a subsequence of (X�; Y�) converging to (X̂; Ŷ ),

we have X̂ = Ŷ . Using M �M�, it then follows that

0 = lim sup
�!1

n
j�(X� � Y�) + "�(Z)j2 + "jX� � Zj2

o
� lim sup

�!1

n
v(X�)� v�(Y�)�M

o
= v(X̂) � v�(X̂) �M � 0:

We thus conclude, passing if necessary to a subsequence, M� !M as �!1.
Since (4.11) holds and, thanks to Case I, v � v� on @

�
(0; R)� (0; R)

	
, we conclude that any

limit point of (X�; Y�) belongs to (0; R)�(0; R). Hence for large enough �,X�; Y� 2 (0; R)�(0; R).
Following the classical viscosity theory, let

 (Y ) = v(X�)�
�
2 jX� � Y j2; �(X) = v�(Y�) +

�
2 jX � Y�j

2:(4.23)

Finally, set

P = DX�(X�) = �(X� � Y�); Q = DY  (Y�) = �(X� � Y�):

Since v� �  takes its minimum at Y� and v� is a strict supersolution, we have G(Q) < ��f
and F (Y�; v

�; Q;B�(Y�;  ) < ��f , which also implies

F (Y�; v
�; Q;B�;�(Y�; v

�; Q);B��(Y�;  )) < ��f:(4.24)

Assume that G(P ) > 0. Then it follows that ��f > G(Q) � G(P ) � 0, which is a contra-
diction. Thus, G(P ) � 0. Now since v � � takes its maximum at X� and v is a subsolution,
F (X�; v; P;B�) � 0, which also implies

F (X�; v; P;B
�;�(X�; v; P );B

�
�(X�; �)) � 0:(4.25)

Using (4.24) and (4.25), we get (consult Case I)

0 < F (X�; v; P;B
�;�(X�; v; P );B

�
�(X�; �))� F (Y�; v

�; Q;B�;�(Y�; v
�; Q);B��(Y�;  ))

�
�
U (x�2)� U (y�2)

�
� �
�
v(X�) � v�(Y�)

�
� �

�
x�2�x2(X�)� y�2 y2(Y�)

�
+ max

�2[0;1]

h
(r + (�̂� r)�)

�
x�1�x1(X�) � y�1 y1(Y�)

�
+ I2 + I2 +

�
B�� (X�; �)� B

�
� (Y�;  )

�i
;

(4.26)

where I1; I2 are de�ned in (4.18) with �;  de�ned in (4.23). Appealing once more to (4.2), we
know that B�� (X�; �) and B�� (Y�;  ) tend to zero as � ! 0. Moreover, lim�!1 I2 � 0 (consult
Case I). To estimate the integral I1, we note that the integrand equals

�
�
T �(z;X�); T

�(z;Y�)
�
� �(X�; Y�) + �2 �2 (x�1 � y�1)

2(ez � 1)2:

Obviously, T �(z;X�); T
�(z;Y�) 2 K and thus �

�
T �(z;X�); T

�(z;Y�)
�
� �(X�; Y�) � 0. Since

�
2 jX� � Y�j2 ! 0 as �!1, we obtain (consult Case I)

I1 �
�
2
(x�1 � y�1)

2

Z
�<jzj<1

(ez � 1)2 �(dz)! 0 as �!1:

Sending (in that order) � ! 0, � ! 1, and " ! 0 in (4.26), we obtain as in Case I the
contradiction (4.21). This concludes the proof of the theorem.
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5 An extension to the second order case

In this section we generalize our stock price model to also include a Brownian motion term Bt.
More precisely, we consider St given by

St = xe�t+�Bt+Lt ;(5.1)

for some constant �. Here Bt is assumed to be independent of Lt. There are several reasons for
studying such a model. First of all, from the L�evy-Khintchine representation we know that every
L�evy process can be decomposed into a pure-jump L�evy process and a Wiener process, where
the Wiener process is the continuous martingale part. Hence, from a theoretical point of view,
the model (5.1) is an extension of (2.1) with a general L�evy process as driving noise. However,
we can also consider (5.1) as a model of the stock price where Lt is a pure-jump L�evy process
accounting for the \big" jumps in the price. The Brownian motion part, on the other hand, models
the \small" or \normal" variations in the price movements. This is the modelling perspective of
Honor�e [17], although he considers a slightly di�erent price process, see Section 8.

It is worth mentioning that in Rydberg [33] an approximation procedure for the normal inverse
Gaussian L�evy process Lt is suggested where the process is decomposed into a Brownian motion
part and a jump part, i.e., Lt = �Bt + ~Lt. For a given ", the jump process ~Lt is assumed to be a
L�evy process with L�evy measure ~�(dz) = 1(�";") �(dz), where �(dz) is the L�evy measure of Lt and

�2 =
R "
�" z

2 �(dz). We remark that this approximation procedure is not restricted to the normal
inverse Gaussian process alone.

Under the condition (2.4) the di�erential form of St reads

dSt = �̂St dt+ �St dBt + St�

Z
IRnf0g

�
ez � 1

�
~N (dt; dz);

where �̂ = � + � + �2

2 +
R
IRnf0g

�
ez � 1� z1jzj<1

�
�(dz). The wealth process is therefore

X�;C
t = x�Ct +

Z t

0

�
r + (�̂� r)�s

�
X�;C
s ds+ �

Z t

0

�sX
�;C
s dBs

+

Z t

0

�s�X
�;C
s�

Z
IRnf0g

�
ez � 1

�
~N (ds; dz):

The Hamilton-Jacobi-Bellman equation associated to the control problem reads

max
n
�vy � vx;U (y) � �v � �yvy + max

�2[0;1]

h
(r + (�̂� r)�)xvx +

�2

2 �
2x2vxx +Z

IRnf0g

�
v(x + �x(ez � 1); y)� v(x; y) � �xvx(x; y)(e

z � 1)
�
�(dz)

io
= 0 in D:

(5.2)

In the present context, we see that the Hamilton-Jacobi-Bellman equation is a degenerate elliptic
integro-di�erential variational inequality. We assume � > k(), where

k() = max
�2[0;1]

h
(r + (�̂� r)�) + ( � 1)�

2

2 �
2

+

Z
IRnf0g

��
1 + �(ez � 1)

�
� 1� �(ez � 1)

�
�(dz)

i

and  2 (0; 1) is as before the growth exponent of the utility function. Our main result in this
section is the following theorem:

Theorem 5.1. The value function V (x; y) de�ned in (2.8) is the unique constrained viscosity so-
lution of the integro-di�erential variational inequality (5.2). Moreover, the value function satis�es
0 � V (x; y) � K(1 + x + y) for all x; y 2 D. The value function V is uniformly continuous in
D. Furthermore, if for some � 2 (0; 1], � > k(�), and U 2 C0;�([0;1)), then V 2 C0;�(D). If
� > k(1 + �) and U 2 C1;�([0;1)), then V 2 C1;�(D).
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As in the �rst order case (see (4.1)), we simplify the presentation by writing (5.2) as

max
�
G(DXv);F (X; v;DXv;D

2
Xv;B

�(X; v))
�
= 0 in D;(5.3)

where D2
X = (@2xixj )i;j=1;2, B

� is exactly as before, and

F (X; v;DXv;D
2
Xv;B

�(X; v)) = U (x2) � �v � �x2vx2

+ max
�2[0;1]

h
(r + (�̂ � r)�)x1vx1 +

�2

2 �
2x21vx1x1 + B�(X; v)

i
:

Note that (5.2) is well de�ned for all v 2 C2(D) \ C1(D). To deal with value functions that are
not C2 in the present context, we extend De�nition 4.1 as follows:

De�nition 5.1. (i) Let O � D. Any v 2 C(D) is a viscosity subsolution (supersolution) of (5.3)
in O if and only if we have, for every X 2 O and � 2 C2(D) \ C1(D) such that X is a global
maximum (minimum) relative to O of v � �,

max
�
G(DX�);F (X; v;DX�;D

2
X�;B

�(X;�))
�
� 0 (� 0):

(ii) Any v 2 C(D) is a constrained viscosity solution of (4.1) if and only if v is a supersolution of
(5.3) in D and v is a subsolution of (5.3) in D.

For � > 0, � 2 C(D), v 2 C1, let us de�ne

F (X; v;DX�;D
2
X�;B

�;�(X; v;DX�);B
�
� (X;�)) = U (x2) � �v � �x2�x2

+ max
�2[0;1]

h
(r + (�̂� r)�)x1�x1 +

�2

2 �
2x21�x1x1 + B�;�(X; v;DX�) + B�� (X;�)

i
;

where B�;� and B�� are exactly as in the �rst order case, see Section 4. Then we obtain an
equivalent formulation of viscosity solutions in C1(D).

Lemma 5.2. Let v 2 C1(D) and O � D. Then v is a viscosity subsolution (supersolution) of
(4.1) in O if and only if we have, for every � 2 C2(D) and � > 0,

max
�
G(DX�);F (X; v;DX�;D

2
X�;B

�;�(X; v;DX�);B
�
�(X;�))

�
� 0(5.4)

whenever X 2 O is a global maximum (minimum) relative to O of v � �.

This lemma is a straightforward extension of Lemma 4.1 and the proof is omitted.
By more or less repeating the arguments from Section 3 and Section 4, we can prove that the

value function V (x; y) de�ned in (2.8) has the regularity stated in Theorem 5.1, is sublinearly
growing, and is a constrained viscosity solution of (5.2). To prove that the value function is the
only solution of (5.2), we need a comparison principle similar to Theorem 4.5. To prove comparison
results for viscosity solutions of second order equations, it is convenient to use a formulation of a
viscosity solution based on the notions of subjet and superjet.

De�nition 5.2. Let SN denotes the set of N � N symmetric matrices, O � D, v 2 C(O), and

X 2 O. The second order superjet (subjet) J
2;+(�)
O v(X) is the set of (P;A) 2 IR2 � S2 such that

v(Y ) � (� 0) v(X) + hP; Y �Xi + 1
2 hA(Y �X); Y �Xi + o(jX � Y j2) as O 3 Y ! X:

Its closure J
2;+(�)
O v(X) is the set of (P;A) for which there is a sequence (Pn; An) 2 J

2;+(�)
O v(Xn)

such that (Xn; v(Xn); Pn; An)! (X; v(X); P;A).

Let v 2 C(D) and O � D. Then using the arguments in, e.g., [14] one can easily prove that

(P;A) 2 J
2;�(+)
O v(X) if and only if there exists � 2 C2(D) such that DX�(X) = P , D2

X�(X) = A,
and v � � has a global minimum (maximum) relative to O at X. In view of the above discussion,
the following formulation of viscosity solutions in C1 is now immediate.
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Lemma 5.3. Let v 2 C1(D) be a subsolution (supersolution) and O � D. Then, for all � 2 (0; 1),

X 2 O, (P;A) 2 J
2;�(+)
O v(X), there exists � 2 C2(D) such that

max
�
G(P );F (X; v; P;A;B�;�(X; v; P );B��(X;�))

�
� 0 (� 0):

The test function � is such that v � � has a global maximum relative to O at Xn with Xn ! X.

A similar formulation is also used in Pham [32]. To prove a comparison principle for (5.3), we
shall need the following lemma from Crandall, Ishii, and Lions [10]:

Lemma 5.4 ([10]). Let O � IRN be locally compact. Let u1;�u2 be upper semicontinuous and �
twice continuously di�erentiable in a neighbourhood of O�O. Suppose (X̂; Ŷ ) 2 O�O is a local
maximum of u1(X)� u2(Y )� '(X;Y ) relative to O �O. Then there exists A;B 2 SN such that

�
DX'(X̂; Ŷ ); A

�
2 J

2;+
O u1(X̂);

�
�DY '(X̂; Ŷ ); B

�
2 J

2;�
O u2(Ŷ );

and for any & > 0,

�
�kD2'(X̂; Ŷ )k+

1

&

�
I �

 
X 0

0 �Y

!
� D2'(X̂; Ŷ ) + &

�
D2'(X̂; Ŷ )

�2
:(5.5)

A slight re�nement of this lemma can be found as the \Theorem on Sums" in Crandall [7].
Let v 2 C(D) be a subsolution of (5.3) in D and v 2 C(D) a supersolution of (5.3) in D.

Choosing ~K and  properly, one can, following closely the proof of Proposition 4.4, show that

w = ~K +
�
1+ x1+

x2
2�

�
and thus v� = (1� �)v + �w (� 2 (0; 1]) are strict supersolutions of (5.3)

in D. We claim that v � v� in D, which immediately implies that the comparison principle holds
between v and v. Except for the treatment of the second order term, which relies in an essential
way on Lemma 5.4, the proof of our claim is very similar to the proof of Theorem 4.5, which we
also refer to for the details that are not found below.

As in the �rst order case, it is su�cient to prove that v � v� in K, where K de�ned in (4.10).
Assume to the contrary that (4.11) holds for some Z 2 K. Then either Z 2 (0; R) � (0; R) or
Z 2 �SC, where R is used in (4.10) and �SC is de�ned in (4.12). Here we consider only the
latter case, the case Z 2 K is treated similarly (consult Case II in the proof of Theorem 4.5). Let
(X�; Y�) be a maximizer of the function �(X;Y ) : K � K ! IR de�ned in (4.14). Using Lemma
5.4 with '(X;Y ) = j�(X � Y ) + "�(Z)j2 + "jX � Zj2, u1 = v, u2 = v�, and O = K, we conclude
that there exist A = (aij)i;j=1;2; B = (bij)i;j=1;2 2 S2 such that

(P;A) 2 J
2;+

K v(X�); P = DX'(X�; Y�) = 2�[�(X� � Y�) + "�(Z)] + 2"(X� � Z);

(Q;B) 2 J
2;�

K v�(Y�); Q = �DY '(X�; Y�) = 2�[�(X� � Y�) + "�(Z)]:

Furthermore, as easy calculation reveals that

D2'(X�; Y�) = 2�2

 
I �I

�I I

!
+ 2"

 
I 0

0 0

!
:

and then following, e.g., [10] it is not di�cult to show that (5.5) implies

lim sup
�!1

�
�2

2 �x
2
�1a11 �

�2

2 �y
2
�1b11

�
� 0:(5.6)

Since v� is a strict supersolution of (5.3) in D there exists, thanks to Lemma 5.2,  2 C2(D) such
that

F (Y�; v
�; Q;B;B�;�(Y�; v

�; Q);B��(Y�;  )) < 0:(5.7)
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Similarly, since v is a subsolution of (5.3) in D, there exists � 2 C2(D) such that

F (X�; v; P;A;B
�;�(X�; v; P );B

�
�(X�; �)) � 0:(5.8)

Having (5.6) in mind, we now subtract (5.7) from (5.8) and send �!1, which eventually leads
to the contradiction (4.21) (consult Case I in the proof of Theorem 4.5).

Summing up, we have proven the following comparison theorem:

Theorem 5.5. Let 0 > 0 be such that � > k(0). Assume v 2 C0(D) is a subsolution of (5.3)
in D and v 2 C0(D) is a supersolution of (5.3) in D. Then v � v in D.

6 An example with HARA utility

In this section we study an example where we can construct an explicit solution to the control
problem. Our example is taken from Hindy and Huang [19]. They construct an explicit solution
to the optimization problem when the utility function is of HARA (Hyperbolic Absolute Risk
Aversion) type and the price of the stock follows a geometric Brownian motion. We show in this
section that a more realistic price model with a L�evy process instead of Brownian motion leads to
a similar solution. We consider a pure-jump L�evy process which leads to the �rst order integro-
di�erential variational inequality (2.11). We are able to solve this equation, and construct optimal
consumption and portfolio allocation strategies by closely following the arguments in [19]. Note,
however, that our results are not as explicit as those in [19]. For instance, the optimal allocation
strategy �� is the solution of an integral equation involving the L�evy measure of the noise process.
We remark that a Brownian motion term in the price process (see Section 5) can easily be included
in the calculations below.

For  2 (0; 1), consider the utility function U (y) = y

 . Here the parameter  indicates the

degree of risk aversion. Motivated by Hindy and Huang [19], we guess that the optimization
problem has a constrained viscosity solution of the form

V (x; y) =

8><
>:
k1y

 + k2y

h x
ky

i�
; 0 � x < ky;

k3

�y + �x

1 + �k

�
; x � ky > 0;

(6.1)

for some constants k1; k2; k3; k, and � > . This solution is constructed from the assumption that
we can split the state space into two parts, on which each of the terms in the variational inequality
(2.11) is e�ective. Hence, for 0 � x < ky, we construct the solution from the assumption that

y

 � �V � �yVy + max
�2[0;1]

h
(r + (�̂� r)�)xVx +Z

IRnf0g

�
V (x+ �x(ez � 1); y) � V (x; y)� �xVx(x; y)(e

z � 1)
�
�(dz)

i
= 0

(6.2)

and, when x � ky > 0,

�Vy � Vx = 0:(6.3)

We see that the integral in (6.2) is well de�ned by the conditions in (2.4). In what follows, all
the displayed integrals are convergent by the same conditions. In the rest of this section we
derive expression for the di�erent constants in the solution, and �nd the optimal allocation and
consumption processes. Optimize the kernel of (6.2) with respect to � to �nd the �rst order
condition for an optimum

(�̂� r)xVx +

Z
IRnf0g

�
Vx(x+ �x(ez � 1); y)x(ez � 1)� xVx(x; y)(e

z � 1)
�
�(dz) = 0:
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Inserting the guessed solution (6.1) for x < ky, we get the expression

(�̂� r) +

Z
IRnf0g

��
1 + �(ez � 1)

���1
(ez � 1)� (ez � 1)

�
�(dz) = 0:(6.4)

Assume from now on that �� is a solution of (6.4)). Note that �� is constant with respect to time
which gives that the investment rule is to hold a constant fraction of the wealth in the stock. With
this ��, we can �nd equations for the unknown constants k1 and �. Inserting (6.1) into (6.2), we
obtain

y
�
1

� �k1 � �k1

�
+ k2y


h x
ky

i�n
�� � �( � �) + (r + (�̂� r)��)�

+

Z
IRnf0g

��
1 + ��(ez � 1)

��
� 1� ���(ez � 1)

�
�(dz)

o
= 0:

The only way this can be zero is when

(r + (�̂ � r)�� + �)� = � + � �

Z
IRnf0g

��
1 + ��(ez � 1)

��
� 1� ���(ez � 1)

�
�(dz)(6.5)

and k1 =
1

(� + �)
. The �rst equation is an expression for �.

From now on we assume that (6.4) and (6.5) have a solution (��; �) 2 [0; 1]� (; 1). We can
�nd expressions for k2 and k3 by imposing a smooth �t condition along the boundary x = ky.
From continuity we easily get k1+ k2 = k3. Moreover, if the derivatives of V are to be continuous
as well, we need to have Vx = �Vy when x = ky for the solution (6.1) (x � ky). But di�erentiating
and equating give

k2 =
�k1

�=k � �( � �)
=

�k

(� + �)(�(1 + �k) � �k)
:

We complete the proof that V is a constrained viscosity solution of the Hamilton-Jacobi-
Belmann equation (2.11). For x � ky, we need to show that �Vy � Vx � 0. Direct di�erentiation
gives

Vx = k2y

h x
ky

i��1 �
ky

= k2
�

k
y�1

h x
ky

i��1
Vy = k1y

�1 + k2( � �)y���1
hx
k

i�
= k1y

�1 + k2( � �)y�1
h x
ky

i�
:

Hence

�Vy � Vx = y�1
�
k1� + �k2( � �)

h x
ky

i�
� k2

�

k

h x
ky

i��1�
:

Inserting the expressions for k1 and k2 yields

�Vy � Vx =
�y�1

� + �

�
1� (1� �)

h x
ky

i�
� �
h x
ky

i��1�
:

We see that �Vy � Vx � 0 if and only if h(z) := 1� (1 � �)z� � �z��1 � 0 for all z 2 [0; 1]. But
h(1) = 0 and h0(z) = �(1 � �)z��2(1� z) � 0. Hence h(z) is an increasing function on [0; 1] with
maximum h(1) = 0, which implies h(z) � 0. This completes the proof of �Vy �Vx � 0 for x � ky.

For the second case we specify the value of k to be the same as in [19] and show that this

gives the desired inequality. Let k =
1� �

�(� � )
. This gives k3 =

�(1 � )

(� � )(� + �)
and thus

V (x; y) = c(y + �x) for x � ky, where

c =
�

(� + �)

�1� 

� � 

�1�
:
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We show next that

y


� �V � �yVy + max

�2[0;1]

h
(r + (�̂ � r)�)xVx +Z

IRnf0g

�
V (x+ �x(ez � 1); y)� V (x; y) � �xVx(e

z � 1)
�
�(dz)

i
� 0;

whenever x � ky. Inserting the expression for V (x; y) in the left-hand side of the above inequality
and using �x=(y + �x) 2 (0; 1), we get

y

 � �c(y + �x) + c(y + �x) max
�2[0;1]

h
(r + (�̂ � r)�) �x

y+�x � � y
y+�x +Z

IRnf0g

��
1 + �x

y+�x�(e
z � 1)

�
� 1�  �x

y+�x�(e
z � 1)

�
�(dz)

i
� y

 � c(y + �x)
�
� � k()

�
:

But since x � ky and � � k() and c are both positive, we have

y

 � c(� � k())(y + �x) � y

 � c(� � k())(1 + �k)y

= y
�
1

� c(� � k())(1 + �k)

�
;

which is less than or equal to zero if and only if 1
 � c(� � k())(1 + �k) � 0. But this happens

if and only if

�(1 � )

� � 
�

� + �

� � k()
:(6.6)

By construction V is a constrained viscosity solution in fx � 0; y > 0g. Note that a subsolution
in fx � 0; y > 0g is also a subsolution in D. We refer to the �rst remark in Section 3 in [1] for
a proof of this. Thanks to Theorem 4.5, V is thus the unique constrained viscosity solution of
(2.11). Summing up, we have proven the following theorem:

Theorem 6.1. For  2 (0; 1), let U (y) = y

 and assume (6.6) holds. Then the value function

V (x; y) associated with our optimization problem is explicitly given by (6.1), where

k1 =
1

(� + �)
; k2 =

1� �

(� � )(� + �)
; k3 =

�(1 � )

(� � )(� + �)
; k =

1� �

�(� � )
:

The optimal allocation of money in the stock is given by �� where �� 2 [0; 1] and � 2 (; 1] are
solutions (when such exist) to the system of equations

(�̂� r) +

Z
IRnf0g

�
1 + �(ez � 1)

���1
(ez � 1)� (ez � 1) �(dz) = 0;

(r + (�̂ � r)� + �)� = � + � �

Z
IRnf0g

��
1 + �(ez � 1)

��
� 1� ��(ez � 1)

�
�(dz):

Note that k1; k2, and k3 are equal to the constants found by Hindy and Huang [19]. However,
our expressions for � and �� are quite di�erent. Furthermore, �� is independent of time and thus
gives a constant fraction of wealth to be invested in the stock.

An optimal consumption process C�t (not necessarily unique) is provided by the following
theorem:

Theorem 6.2. An optimal consumption process C�t is given as

C�t = �C�0 +

Z t

0

X�
t

1 + �k
dZs; k =

1� �

�(� � )
;
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�C�0 = max
n
0;
x� kY0�
1 + �k

o
; Zt = sup

0�s�t

h
ln
X̂t

Ŷt
� ln k

i+
; Ŷt = (Y0 + ��C�0 )e

��t;

and

X̂t = (x��C�0) +

Z t

0

�
r + (�̂� r)��

�
X̂s ds+

Z t

0

��X̂s�

Z
IRnf0g

�
ez � 1

�
~N(ds; dz):

The processes X� and Y � are the state variables associated with C�.

Proof. This argument follows closely the proof in [19, Prop. 5]. From the results in [19], we need
to �nd a k ratio barrier policy which ensure that X�

t =Y
�
t � k, P�a.s. at every time instant t. This

leads to an initial jump of C�t if x=Y0� > k, from where we get the expression of �C�0 . Now de�ne

Zt = sup
0�s�t

h
ln
X̂t

Ŷt
� ln k

i+

and let ln(X�
t =Y

�
t ) be the \regulated" process de�ned by

ln
X�
t

Y �t
= ln

X̂t

Ŷt
� Zt:(6.7)

Note that the processes X̂t and Ŷt are unregulated in the sense that we do not apply any con-
sumption process except for the initial jump. The process Zt is easily seen to be nondecreasing,
Z0(!) = 0, and increasing only when ln(X�

t =Y
�
T ) = lnk. Applying Itô's formula, we �nd that

d ln
X�
t

Y �t
= d lnX�

t � d lnY �t �

�
1

X�
t

+
�

Y �t

�
dC�t

= (r + � + (�̂ � r)��) dt�

�
1

X�
t

+
�

Y �t

�
dC�t

+

Z
IRnf0g

ln
�
1 + ��(ez � 1)

�
~N (dt; dz)

+

Z
IRnf0g

�
ln
�
1 + ��(ez � 1)

�
� ��(ez � 1)

�
�(dz)

and

d ln
X̂t

Ŷt
= d ln X̂t � d ln Ŷt = (r + � + (�̂� r)��) dt

+

Z
IRnf0g

ln
�
1 + ��(ez � 1)

�
~N (dt; dz)

+

Z
IRnf0g

�
ln
�
1 + ��(ez � 1)

�
� ��(ez � 1)

�
�(dz):

Thus, relation (6.7) is ful�lled exactly when

Zt =

Z t

0

�
Y �s + �X�

s

X�
sY

�
s

�
dC�s or C�t =

Z t

0

X�
sY

�
s

Y �s + �X�
s

dZs =

Z t

0

X�
s

1 + �k
dZs:

Here the relation for C�t follows since Zt only increases when X�
t =Y

�
t = k. This completes the

proof of the theorem.
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7 Merton's problem with consumption and HARA utility

In this section we consider Merton's problem with consumption when the stock price is modelled
as (2.1). Merton's problem can be thought of as the case when � ! 1 in the particular model
considered in Section 6. In this problem we thus optimize the expected utility of the consumption
directly. The consumption process is assumed to be absolute continuous with respect to the
Lebesgue measure on the real positive half-line, and can thus be speci�ed on the formCt =

R t
0
cs ds,

where cs is the consumption rate at time s. The value function will only be dependent on one
variable, namely the intimal fortune x. We note that this problem has been treated by Framstad
et al. [15] when the price process St is modelled as the solution of a stochastic di�erential equation
with jumps, see also the paper [16] where they take into account transaction costs. Their model
also include a Brownian motion term. However, they have a more restrictive condition on the
L�evy measure in a neighbourhood of zero. For example, the normal inverse Gaussian L�evy process
of Barndor�-Nielsen [6] does not �t into the framework of [15, 16]. Even though we concentrate
our calculations to the pure-jump case, one can easily incorporate a Brownian motion term in the
stock price (as in Section 5) and derive analogous expressions to those found below.

In the present context, the wealth process is given as

dXt =
�
r + (�̂ � r)�t

�
Xt dt� ct dt+Xt��t�

Z
IRnf0g

�
ez � 1

�
~N (dt; dz)

with initial wealth X0 = x. We consider the optimal control problem

V (x) = sup
c;�2Ax

Ex
hZ �

0

e��t
h
c

t



i
dt
i
; for  2 (0; 1);

where the set of admissible controls Ax is de�ned as follows: �; c 2 Ax if

(cmi) ct is a positive and adapted process such that
R t
0 E[cs] ds <1 for all t � 0.

(cmii) �t is progressively measurable with values in [0; 1].

(cmiii) ct is such that X�;c
t � 0 almost everywhere for all t � 0.

Note that condition (cmiii) introduces a state space constraint into our control problem. The
Hamilton-Jacobi-Bellman equation for this problem is

max
c�0;�2[0;1]

h
(r + (�̂� r)�)xv0(x) � cv0(x)� �v(x) + c


+Z

IRnf0g

�
v(x+ �x(ez � 1))� v(x) � �xv0(x)(ez � 1)

�
�(dz)

i
= 0 in fx > 0g:

(7.1)

Note that the integral in (7.1) as well as the other integrals displayed in this section are convergent
by the conditions in (2.4). We now construct an explicit (unique) constrained viscosity solution
to this problem. First maximize with respect to c to obtain

�V 0(x) + c�1 = 0 =) c = [V 0(x)]
1

�1 :

Maximizing with respect to � gives the expression

(�̂ � r)xV 0(x) +

Z
IRnf0g

�
V 0(x+ �x(ez � 1))x(ez � 1)� xV 0(x)(ez � 1)

�
�(dz) = 0:

We guess a solution on the form V (x) = Kx . Then a straightforward calculation gives the
following integral equation for �:Z

IRnf0g

��
1 + �(ez � 1)

��1
(ez � 1)� (ez � 1)

�
�(dz) = r � �̂:(7.2)
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Note that a � solving this equation will be independent on t. Using the guessed solution, we can
obtain an expression for c as well:

c = x � (K)
1

�1 :(7.3)

This expression gives us an explicit consumption rule, that is, consume the fraction (K)1=�1

of your total wealth. We now set out to �nd the constant K. Inserting (7.3) into the Hamilton-
Jacobi-Bellman equation (7.1), we get

max
�2[0;1]

h
(r + (�̂� r)�) � (K)

1
�1 � � + 1

 (K)


�1K�1

+

Z
IRnf0g

��
1 + �(ez � 1)

�
� 1� �(ez � 1) �(dz)

�i
Kx = 0:

We thus conclude that K = 1


h
1�

��k()

i1�
, where k() is de�ned in (2.9). Note that the condition

� > k() imposed in Section 2 implies that K is positive.
We state a condition ensuring the existence of a unique solution � 2 [0; 1] to (7.2). To this

end, de�ne the function

f(�) =

Z
IRnf0g

��
1 + �(ez � 1)

��1
(ez � 1)� (ez � 1)

�
�(dz) + (�̂� r):

Inserting � = 0 and � = 1, we obtain

f(0) = �̂� r > 0; f(1) = (�̂� r) +

Z
IRnf0g

�
e(�1)z(ez � 1)� (ez � 1)

�
�(dz)

= (�̂� r)�

Z
IRnf0g

�
1� e�(1�)z

�
(ez � 1) �(dz):

In order to have a solution in [0; 1], we need f(1) < 0, i.e.,Z
IRnf0g

�
1� e�(1�)z

�
(ez � 1) �(dz) > (�̂ � r):

This solution is unique since

f 0(�) = ( � 1)

Z
IRnf0g

�
1 + �(ez � 1)

��2
(ez � 1)2 �(dz) < 0:

It is well known that in the classical case of St = S0 exp(�t + �Bt), a geometric Brownian
motion, the optimal allocation of money in the portfolio is also independent of time; namely,

��GBM = �+�2=2�r
(1�)�2

. On the other hand, we have seen that St given as in (2.1) also gives a constant

fraction, denoted by ��J , which solves (7.2). It is of practical interest to see how the two optimal
investment strategies relate. This depends on the sign of f(��GBM). However, for any practical
purposes, this sign can only be checked when we have �tted both price models to the same set of
logreturn data. We remark that the conclusion in [15] is not correct from the point of view of a
practitioner with two pricing models for the same asset. Framstad et al. [15] observe that in the
jump di�usion pricing model you invest less in the stock than in the standard geometric model.
However, this conclusion is based on the fact that their jump model is simply geometric Brownian
motion with additional multiplicative jump-noise. The parameters of the drift and di�usion terms
are the same in both models. Thus, since you simply add noise (e.g., volatility) in the jumpmodel,
their conclusion is obvious from a practical investment point of view. To reach a useful conclusion
you must adjust the parameters in the jump model accordingly to the data series when �tting.
Where to put the most of your fortune is no longer clear.
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8 Other models and concluding remarks

Instead of modelling the price process St directly as in (2.1) or (5.1), one can let St be the solution
of a stochastic di�erential equation with jumps

dSt = �St dt+ �St dBt + St�

Z 1

�1

z ~N (dt; dz):(8.1)

Note that St is positive due to the restriction of the jump size to be greater than �1. Condition
(2.4) must be substituted by Z 1

1

z �(dz) <1:(8.2)

Under this restriction on the L�evy measure we can show, by arguing as before, that the value func-
tion V (x; y) is the unique constrained viscosity solution of the Hamilton-Jacobi-Belman equation

max
n
�vy � vx;U (y) � �v � �yvy + max

�2[0;1]

h
(r + (�� r)�)xvx +

1
2�

2�2x2vxx +Z 1

�1

�
v(x+ �xz; y) � v(x; y) � �xzvx(x; y)

�
�(dz)

io
= 0 in D:

(8.3)

The condition (8.2), which ensures that (8.3) is well de�ned for all sublinearly growing v 2 C2,
is satis�ed for the normal inverse Gaussian L�evy process discussed in Section 2 and for �-stable
L�evy processes with � > 1.

In [15], the price model (8.1) is chosen for the analysis of Merton's problem with consump-
tion. Using veri�cation theorems, they show that the value function in Merton's problem with
consumption (see Section 7) is a unique classical solution of (8.3) under the condition (8.2) and
�(f(�1;1)g) < 1. Honor�e [17] has developed estimation techniques for price processes of the
kind (8.1). This opens for a numerical comparison of the di�erent stock price models. In future
work we will investigate the relation between the models discussed in the present paper when they
are �tted to market data.

Finally, except for a few special cases such as those considered in Sections 6 and 7, the Hamilton-
Jacobi-Bellman equation (2.11) cannot be solved explicitly and one has to consider numerical
approximations. The construction and analysis (within the viscosity solution framework) of nu-
merical schemes for integro-di�erential variational inequalities will be reported in future work.
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