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~r

0
@

1
A = x � y � h

Figure 1. The resolution ~r of a double point.

where N = 0; 1; 2; : : : . It is clear that H+ is a module over the ring
R+ = proj limN (R=(x� y)NR). The transformation H 7! H+ extends
in the obvious way to a functor from the category of R-modules into
the category of R+-modules.
In Section 2 we shall construct for each pair of non-negative integers

p and q an R-homomorphism

tp;q : Q! ~Ap+q= ~Ap+q+1:

Let tn : Qn+1 ! ~An= ~An+1 be the direct sum of the R-homomorphisms
tp;n�p:

tn = �n
p=0t

p;n�p : Qn+1 ! ~An= ~An+1

where Qn+1 is the direct sum of n+ 1 copies of Q. By functoriality, tn

induces a R+-homomorphism tn+ : Qn+1
+ ! ( ~An= ~An+1)+.

Theorem 1.1. For every n � 0, the homomorphism tn+ : Qn+1
+ !

( ~An= ~An+1)+ is surjective.

Now, we shall specify algebraic conditions on R; x; y; h which will
ensure that the homomorphism in this theorem is an isomorphism.
Recall that a di�erential in R is an additive homomorphism d : R!

R such that d(ab) = ad(b) + d(a)b for any a; b 2 R. We shall impose
the following condition:
(�) There exist an invertible element r of R and di�erentials d1; d2 :

R! R such that

d1(x� y) d2(xh
�1)� d2(x� y) d1(xh

�1) = r mod (x� y):(1.1)

Below we give examples of tuples (R; x; y; h) satisfying this condition.
Now we can state our main theorem which computes the +-completions

of the higher skein modules of M in terms of the �rst skein module Q.

Theorem 1.2. Under condition (�), the homomorphism tn+ : Qn+1
+ !

( ~An= ~An+1)+ is an isomorphism for all n � 0.

Examples. Let R = K[x�1; h�1] be the ring of Laurent polynomials
on variables x; h with coe�cients in a commutative ring with unity
K. The condition (�) is satis�ed for any monomial y = kxphq with
k 2 K; p; q 2 Z such that p + q � 1 is invertible in K. Indeed, it
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su�ces to take d1 =
@
@x
; d2 =

@
@h

and r = (p+ q� 1)xh�2. For instance,
in the case K = Z the condition (�) is satis�ed for y = kxph�p and
y = kxph2�p with k; p 2 Z. To cover the standard choice y = x�1 it
su�ces to assume that 1=2 2 K.
The next theorem is a step towards determining the structure of the

modules ( ~A= ~An)+.

Theorem 1.3. Under condition (�), for every n � 0, the short exact
sequence

0! ~An= ~An+1 ! ~A= ~An+1 ! ~A= ~An ! 0

induces a short exact sequence

0! ( ~An= ~An+1)+ ! ( ~A= ~An+1)+ ! ( ~A= ~An)+ ! 0:(1.2)

An easy induction yields the following corollary.

Corollary 1.4. If condition (�) is satis�ed and Q+ is a projective R+-
module, then for each n � 0, the exact sequence (1.2) splits and

( ~A= ~An)+ =
n�1M
i=0

( ~Ai= ~Ai+1)+ = Q
n(n+1)=2
+ :

The assumption of this corollary holds for instance for M = S3,
R = Q [x�1 ; h�1] and y = kxphq with k 2 Q ; p; q 2 Z such that k 6=
0; p+ q 6= 1. Indeed, in this case Q is a free module of rank 1 generated
by the trivial knot. This computes the modules ( ~A= ~An)+ associated
with S3. Choosing y = 1 and quotienting by x � 1 we recover the
results of [1].
The paper is organized as follows. In Section 2 we de�ne several

useful transformations of links and prove Theorem 1.1. In Section 3
we prove Theorems 1.2 and 1.3. In Section 4 we discuss in more detail
the case M = S3.

2. Transformations of links

2.1. Transformations u and t1. For any oriented link L � M we
can consider the union L q O of L with an oriented trivial knot O
in an embedded ball in MnL. The mapping L 7! L q O extends by
R-linearity to a homomorphism ~A! ~A denoted u.
A more interesting R-homomorphism t1 : ~A ! ~A is de�ned on the

link generators of ~A by inserting the singular tangle T1 drawn in Figure
2. More precisely, for an oriented link L �M , we choose a small subarc
of L, replace it with T1 and apply the resolution ~r to this singular link
with one double point. The resulting element t1(L) of ~A does not
depend on the choice of the subarc on L: by de�nition of ~r, we have
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t1(L) = (x � y)L � hu(L). The mapping L 7! t1(L) extends to a
R-linear endomorphism, t1, of ~A. Clearly, t1 = (x � y) � hu where
x� y is multiplication by x� y 2 R. The de�nition of t1 implies that
t1( ~An) � ~An+1 for all n � 0. Hence t1 induces an R-homomorphism
~An= ~An+1 ! ~An+1= ~An+2 denoted also t1.

Figure 2. Singular tangles T1 and T2.

Iterating t1 we obtain for each non-negative integer q an endomor-
phism tq1 of ~A. It is clear that tq1 acts on the generator represented by
an oriented link L by inserting q copies of T1 at q disjoint small subarcs
of L and applying ~r.

2.2. Transformation tq2. The transformations tq2 with q = 0; 1; 2; :::
are de�ned similarly to tq1 except that instead of T1 we use the singular
tangle T2, drawn in Figure 2. Thus, tq2 acts on an oriented link L by
inserting q copies of T2 at disjoint small subarcs of L and applying
~r. In contrast to t1, this transformation does not give a well de�ned
endomorphism of ~A (unless q = 0). We have a weaker result as follows.

Lemma 2.1. For each q � 0, the mapping L 7! tq2(L) extends by R-
linearity to a well de�ned R-homomorphism tq2 : ~A= ~A1 ! ~Aq= ~Aq+1.

Proof. The proof is based on the identity shown in Figure 3. To prove
this identity we observe that both singular tangles on the right-hand
side contain one double point which is a self-crossing of a strand. We
apply the resolution ~r to these double points. This transforms the right-
hand side into an algebraic sum of six terms. Four of them cancel and
the remaining two terms give exactly the expression on the left-hand
side.
The identity in Figure 3 shows that inserting q copies of T2 at disjoint

small subarcs of an oriented link and applying ~r we obtain an element
of ~Aq= ~Aq+1 independent of the choice of the subarcs. This implies our
claim.

2



HIGHER SKEIN MODULES 5

� = h�1

0
@ �

1
A

Figure 3. Inserting T2 at di�erent arcs.

2.3. Transformation tp;q. Recall the notation Q = ~A= ~A1. For each
pair of non-negative integers p; q, we consider an R-homomorphism

tp;q = tp1t
q
2 : Q! ~Ap+q= ~Ap+q+1

de�ned as the composition of tq2 : Q ! ~Aq= ~Aq+1 and tp1 : ~Aq= ~Aq+1 !
~Ap+q= ~Ap+q+1. The following Proposition directly implies Theorem 1.1.

Proposition 2.2. For each n � 0, the module ( ~An= ~An+1)+ is gener-
ated by the images of the homomorphisms tp;n�p+ : Q+ ! ( ~An= ~An+1)+
with p = 0; 1; :::; n.

The proof goes by adjusting the arguments of [1], Section 2 to our
present setting. We begin with the following fundamental 8T-relation.

Lemma 2.3. We have the identity in Figure 4, once all double points
are resolved as in Figure 1.

It is understood that all eight local pictures in Figure 4 represent
singular tangles in a ball B � M . They are completed by one and
the same singular tangle in MnIntB to form eight singular links in M .
Alternatively, one can view the identity in Figure 4 as a formal relation
between singular tangles which lies in the kernel of the resolution map
~r.

y � y + x � x

+ h

0
@y � y + x � x

1
A = 0

Figure 4. The 8T-relation.

Proof. Consider the strand leading from the second input to the sec-
ond output in the �rst four pictures. This strand contains one double
point and one over/under-crossing. Resolve this double point in each
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of these four pictures. This yields an algebraic sum of eight terms with
coe�cient containing no power of h and of four terms linear in h. The
eight terms cancel while the sum of four terms is exactly the opposite
of the sum in the second row in Figure 4.

2

2.4. Proof of Proposition 2.2. It su�ces to prove that the im-
ages of tp;n�p : Q ! ~An= ~An+1 with p = 0; 1; :::; n span the quotient
( ~An= ~An+1)=(x� y). Observe that

( ~An= ~An+1)=(x� y) = ~An=((x� y) ~An + ~An+1):

We begin by deriving a few consequences of the 8T-relation. Let B
be a closed 3-ball in M . For any singular (3; 3)-tangle in MnIntB with
n� 1 double points we complete the eight singular tangles in B drawn
in Figure 4 with that tangle so as to obtain eight singular links in
M . The �rst four singular tangles in Figure 4 yield after resolution of
double points elements of ~An+1, which shall be ignored in the following
calculations proceeding in ~An= ~An+1. Thus we can complete the second
row in Figure 4 by any singular (3; 3)-tangle with n� 1 double points
and obtain a 4-term relation in ~An= ~An+1. In particular, let us connect
the middle top strand to the bottom left strand and add a negative
crossing at the bottom in the four pictures in the second row of Figure
4. By the argument above, we obtain an identity in ~An= ~An+1 shown in
Figure 5.

h

0
BB@y � y + x � x

1
CCA = 0 mod ~An+1

Figure 5. An identity in ~An= ~An+1.

Observe that the left-most term in Figure 5 is in

u ~An � (x� y) ~An � t1( ~An) � (x� y) ~An + ~An+1:

Dividing by hx, we obtain a basic relation in ~An=((x� y) ~An + ~An+1),
see Figure 6.
Let L � M be a singular link with n double points. Applying the

basic relation to all double points of L we obtain an expansion of ~r(L)
mod ((x� y) ~An+ ~An+1) as a sum of 2n terms. Each of these terms has
the form ~r(K) where K is obtained from a certain non-singular link by
inserting p copies of T1 and n�p copies of T2 with 0 � p � n. Therefore
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= yx�1 + mod ((x� y) ~An + ~An+1)

Figure 6. The basic relation in ~An=((x� y) ~An + ~An+1).

~r(L) mod ((x� y) ~An+ ~An+1) belongs to the submodule generated by
the images of tp;n�p. This completes the proof of the proposition.

2

3. Proof of Theorems 1.2 and 1.3

3.1. Preliminaries on di�erentials. Each di�erential d : R ! R
induces an additive homomorphism d : ~A! ~A by

d(
X
i

kiLi) =
X
i

d(ki)Li;(3.1)

where ki 2 R and fLigi are oriented links in M . Clearly,

d(ka) = kd(a) + d(k)a

for any k 2 R and a 2 ~A.
The following lemma is established in [1], Lemma 5.2.

Lemma 3.1. For each n � 0, d( ~An+1) � ~An.

The obvious formula d((x� y)N) = 0 mod (x � y)N�1 implies that
the di�erential d in R induces a di�erential in R+.
Let d1; d2 be di�erentials in R satisfying (�). By Lemma 3.1, both

d1 and d2 induce R-homomorphisms ~An= ~An+1 ! ~An�1= ~An for any
n � 0. Therefore the composition (d1)

p(d2)
n�p induces an R-linear

homomorphism ~An= ~An+1 ! ~A= ~A1 = Q for any n � p � 0. We denote
the latter homomorphism by dp;n�p.

Proposition 3.2. Let dn : ~An= ~An+1 ! Qn+1 be the direct sum of
the homomorphisms dp;n�p where p = 0; :::; n. Then the induced R+-
homomorphism dn+ : ( ~An= ~An+1)+ ! Qn+1

+ is an isomorphism.

Proof. We can extend the di�erential dj with j = 1; 2 to linear combina-
tions of tangles with coe�cients in R (or R+): it su�ces to use Formula
3.1 where Li are tangles. For a singular tangle T , set dj(T ) = dj(~r(T )).
Clearly, dj(kT ) = kdj(T ) + dj(k)T for any k 2 R. Observe also that
the usual gluing of tangles extends by linearity to their linear combi-
nations. It is clear that if TT 0 is the result of gluing of two tangles (or
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their linear combinations) T; T 0 then

dj(TT
0) = dj(T )T

0 + Tdj(T
0):(3.2)

Now we shall compute the action of d1; d2 on the singular tangles
T1; T2 drawn in Figure 2. Denote by I the unknotted vertical strand
oriented upwards. The formula ~r(T1) = (x � y)I � huI implies that
uI = h�1(x� y)I mod ~r(T1). It follows from de�nitions that for j =
1; 2,

dj(T1) = dj(x�y)I�dj(h)uI = dj(x�y)I�dj(h)h
�1(x�y)I mod ~r(T1):

Set
�j = dj(x� y)� dj(h)h

�1(x� y) 2 R:

Then
dj(T1) = �jI mod ~r(T1):

To compute the derivatives of T2, observe that ~r(T2) = xH�yuI�hI
where H is the tangle drawn in Figure 7. Therefore,

H = x�1(yu+h)I mod ~r(T2) = x�1(yh�1(x�y)+h)I mod ~r(T1); ~r(T2):

It follows from de�nitions that

dj(T2) = dj(x)H � dj(y)uI � dj(h)I = �jI mod ~r(T1); ~r(T2)

where

�j = dj(x)x
�1(yh�1(x� y) + h)� dj(y)h

�1(x� y)� dj(h) 2 R:

Set

� = det

�
�1 �2

�1 �2

�
:

It is easy to compute that

� = xh�2(d1(x�y)d2(xh
�1)�d2(x�y)d1(xh

�1)) = xh�2r mod (x�y)

where r is the invertible element of R provided by the condition (�).
Now, a standard algebraic argument shows that � is inverible in R+.
This allows us to introduce two formal linear combinations of T1; T2
over R+ by

E1 = ��1�2T1 ���1�2T2 and E2 = ���1�1T1 +��1�1T2:

By de�nition, ~r(E1) = ��1�2~r(T1)��
�1�2~r(T2) and ~r(E2) = ���1�1~r(T1)+

��1�1~r(T2). We can easily compute the derivative dj of E1; E2 mod-
ulo ~r(T1); ~r(T2). Indeed, for any linear combination aT1 + bT2 with
a; b 2 R+ we have

dj(aT1 + bT2) = adj(T1) + bdj(T2) mod ~r(T1); ~r(T2):

This implies
dj(Ei) = �ji I mod ~r(T1); ~r(T2)
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where �ji is the Kronecker delta.

Figure 7. The tangle H.

For each p = 0; :::; n we de�ne a R+-linear homomorphism ep;n�p :
Q+ ! ( ~An= ~An+1)+ in the same way as tp;n�p but using E1; E2 instead
of T1; T2. Thus, e

p;n�p acts on an oriented link L by inserting p copies of
E1 and n�p copies of E2 at n disjoint small subarcs of L and applying
the resolution ~r. It is clear that each ep;n�p is a linear combination
of the homomorphisms t0;n+ ; t1;n�1+ ; :::; tn;0+ . Therefore ep;n�p is a well
de�ned homomorphism. Note that we can express both T1 and T2
as linear combinations of E1; E2 with coe�cients in R+. Thus, each
tp;n�p+ is a linear combination of the homomorphisms e0;n; e1;n�1; :::; en;0.

Proposition 2.2 implies that the module ( ~An= ~An+1)+ is generated by
the images of the homomorphisms e0;n; e1;n�1; :::; en;0. Denote by en :
Qn+1

+ ! ( ~An= ~An+1)+ the direct sum of the homomorphisms (p! (n �

p)!)�1ep;n�p : Q+ ! ( ~An= ~An+1)+ where p = 0; 1; :::; n. It is clear that
en is surjective.
The computations above and Formula 3.2 imply that

d1 � e
p;n�p = pep�1;n�p : Q+ ! ( ~An�1= ~An)+

and

d2 � e
p;n�p = (n� p)ep;n�p�1 : Q+ ! ( ~An�1= ~An)+:

Therefore

dp
0;n�p0 � ep;n�p = p!(n� p)!�pp0 e

0;0 = p!(n� p)!�pp0 idQ+:

We can rewrite these equalities in the form dn+�e
n = id. The surjectivity

of en implies that en and dn+ are mutually inverse isomorphisms.

2

3.2. Proof of Theorem 1.2. Theorem 1.1 implies that tn+ is sur-
jective. It is injective because Ker tn+ � Ker en = 0 where en is the
homomorphism introduced in the proof of Proposition 3.2.

2
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3.3. Proof of Theorem 1.3. The general properties of projective lim-
its imply that the sequence (1.2) is exact except possibly in the term
( ~An= ~An+1)+. We need to prove that the homomorphism ( ~An= ~An+1)+ !
( ~A= ~An+1)+ induced by the inclusion ~An= ~An+1 ! ~A= ~An+1 is injective.
By Lemma 3.1, the di�erentials d1; d2 induce additive (but not R-

linear) homomorphisms ~A= ~An+1 ! ~A= ~An for any n � 0. There-
fore the composition (d1)

p(d2)
n�p induces an additive homomorphism

~A= ~An+1 ! Q for any n � p � 0. Denote the latter homomorphism by
Dp;n�p.
An easy induction shows thatDp;n�p((x�y)Na) = 0 mod (x�y)N�n

for any a 2 ~A= ~An+1 and all N � n. Therefore Dp;n�p induces an
additive homomorphism ( ~A= ~An+1)+ ! Q+ denoted Dp;n�p

+ .
It follows from de�nitions that Dp;n�p � in = dp;n�p where in is the

inclusion ~An= ~An+1 ,! ~A= ~An+1. Hence

Dp;n�p
+ � in+ = dp;n�p+ : ( ~An= ~An+1)+ ! Q+:

Thus, the kernel of in+ : ( ~An= ~An+1)+ ! ( ~A= ~An+1)+ is annihilated by
the homomorphisms d0;n; d1;n�1; :::; dn;0. Proposition 3.2 implies that
this kernel is zero so that in+ is injective.

4. Case M = S3

Throughout this section, we assume that M = S3. If y is invertible
in R then the standard arguments show that the skein module Q of
the 3-sphere is a free module of rank 1 generated by an unknot. In
the sequel we assume that y = x�1 2 R = Q [x�1 ; h�1]. Note that
the condition (�) is satis�ed for d1 =

@
@x
; d2 =

@
@h
. In the following we

will write dx = @
@x
; dh = @

@h
. We can explicitly describe the module

( ~A= ~An)+ as follows.

Theorem 4.1. For each n � 0,

( ~A= ~An)+ =
M
l;m�0

l+m<n

R+ ~r(Gl
l+m)

where Gl
l+m is the singular link in S3 shown in Figure 8.

Proof. This theorem directly follows from Theorem 1.2, Corollary 1.4
and the de�nition of tn given in Sections 1 and 2.

2
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m

l

Figure 8. The singular link Gl
l+m.

Corollary 4.2. There are unique R-linear homomorphisms ~rl;m : ~A!
R+ numerated by pairs of non-negative integers (l; m) such that for any
a 2 ~A,

a =
X
l;m

~rl;m(a) ~r(G
l
l+m) 2 proj limn( ~A= ~An)+:

Applying this to any oriented link L � S3 we obtain an expansion

L =
X
l;m

~rl;m(L) ~r(G
l
l+m) 2 proj limn( ~A= ~An)+:

Substituting x = 1 in ~rl;m(L), we obtain the link polynomial rl;m(L)
introduced in [1].
Clearly, ~r = ~r0;0 is the Homy polynomial which can be described

as the (unique) mapping from the set of isotopy classes of oriented links
in S3 into the ring R such that
(i) the value of ~r on an unknot is equal to 1;
(ii) for any three oriented links X+; X�; X0 coinciding outside a 3-

ball and looking as in Figure 9 inside this ball, we have that

x ~r(X+)� x�1 ~r(X�) = h ~r(X0):

X+ X� X0

Figure 9. X+; X�; X0.

It follows from Theorem 4.1 that for each n � 0, the set f ~rl;m j l +

m < ng is a basis of the freeR+-module ( ~A= ~An)
�
+ = HomR(( ~A= ~An)+; R+).

Another basis of the same module can be derived from the Homy poly-
nomial as follows. For p; q � 0, denote by (d�x)

p(d�h)
q( ~r) the R-linear

mapping ~A! R sending each oriented link L into @p+q ~r(L)=@px@qh 2
R. Below we prove the following theorem.
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Theorem 4.3. For p; q � 0, the homomorphism (d�x)
p(d�h)

q( ~r) anni-

hilates ~Ap+q+1. For every n � 0, the set f(d�x)
p(d�h)

q ~r j p+ q < ng is a

basis of the free R+-module ( ~A= ~An)
�
+.

Using the transformation matrix relating the two bases of ( ~A= ~An)
�
+

constructed above we can express each polynomial ~rl;m as a linear com-

bination of the derivatives of ~r. More precisely, we have the following
corollary.

Corollary 4.4. There are unique cl;mp;q 2 R+ where l; m; p; q � 0 and
p+ q � l +m such that for any l; m and any oriented link L � S3,

~rl;m(L) =
X

p;q�0;p+q�l+m

cl;mp;q ((d
�
x)

p(d�h)
q( ~r))(L):

For instance, c0;00;0 = 1. A direct comparison on the generators

~r(G0
0); ~r(G

0
1); ~r(G

1
1) of ( ~A= ~A2)+ shows that

~r0;1 = z�1(�(1 + x�2)d�h( ~r)� h�1(x� x�1)d�x( ~r));

~r1;0 = z�1((x�1h+ 2x�1h�1 � 2x�3h�1)d�h( ~r) + d�x( ~r))

where

z = det

�
�(1 + x�2) �h�1(x� x�1)

(x�1h + 2x�1h�1 � 2x�3h�1) 1

�

is invertible in R+. In particular, substituting x = 1 in ~rl;m(L), we

obtain r0;1 = d�h(r) and r1;0 = �(h=2)d�h(r)� (1=2)d�x( ~r)jx=1 where

r = ~rjx=1 is the Conway polynomial. The �rst of these formulas was
already obtained in [1].
The following more general formula computes cl;mp;q in the case l+m =

p+ q in terms of �1; �2; �1; �2;� introduced in the proof of Proposition
3.2:

cl;mp;q = (�1)m+p(p!q!)�1��p�q

min(p;l)X
r=max(0;l�q)

�
p

r

��
q

l � r

�
�q+r�l1 �p�r2 �l�r1 �r2:

This expression can be deduced from the computations in the proof of
Proposition 3.2 (cf. the argument in the next subsection).

Corollary 4.5. If K1 and K2 are two links which have the same Hom-
y polynomial, then we have that K1 � K2 projects to zero in all
( ~A= ~An)+.

This follows directly from Theorem 4.3.
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4.1. Proof of Theorem 4.3. The �rst claim is obtained following the
lines of [1], Section 5. The second claim is deduced by induction from
Proposition 3.2 using the formula

((d�x)
p(d�h)

n�p( ~r))(a) = (�1)n ~r(dp;n�p(a))

for any a 2 ~An= ~An+1.
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