HIGHER SKEIN MODULES, II
JORGEN ELLEGAARD ANDERSEN AND VLADIMIR TURAEV

ABSTRACT. In our previous paper [1] we introduced a notion of
higher Conway skein modules of links. In this paper we introduce
higher Homfly skein modules of links in an oriented 3-manifold and
partially compute them in terms of the first skein module.

1. INTRODUCTION

Let R be a commutative ring with unity. Fix three elements z,y, h €
R such that z,h are invertible in R. For an oriented 3-manifold M,
denote by A = A(M) the free R-module generated by the isotopy
classes of oriented (non-empty) links in M. By a singular link in M,
we mean an immersion of a finite system of oriented circles in M with
only double transversal intersections. Using the formula

F(X.) =X, —yX_ — hX,

(cf. Figure 1) we resolve each singular link L C M with n double
points into a formal sum #(L) € A of 3" terms. Denote by A, the
R-submodule of A generated by 7(L) where L runs over all singular
links with n double points. Clearly,
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The R-module A/A; is a version of the Homfly skein module of M.
We shall denote this module by @@ = Q(M). We call the R-modules
N»s\xz;t with n =1,2,... the higher Homfly skein modules of M. Of
course, all these modules depend on the choice of x, y, h. In this paper
we shall partially compute these modules in terms of the first skein
module ). From now on, we fix an oriented 3-manifold M.

Each R-module H admits a completion

H. = projlimy (H/(z —y)" H)
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K

FIGURE 1. The resolution 7 of a double point.

=

where N = 0,1,2,.... It is clear that H, is a module over the ring
Ry = projlimy(R/(x — y)NR). The transformation H — H, extends
in the obvious way to a functor from the category of R-modules into
the category of R, -modules.

In Section 2 we shall construct for each pair of non-negative integers
p and ¢ an R-homomorphism

e, Q — Ap+q/Ap+q+l-

Let t" : Q"' — fln/ﬁnﬂ be the direct sum of the R-homomorphisms
{pn—p.

th = @g:()tp’n_p : Qn+1 — An/An—l—l
where Q™! is the direct sum of n + 1 copies of (). By functoriality, ¢"
induces a R -homomorphism ¢} : Tl = (An/Ans1)+-

Theorem 1.1. For every n > 0, the homomorphism t, : QTPI —
(An/Ani1) s is surjective.

Now, we shall specify algebraic conditions on R,z,y, h which will
ensure that the homomorphism in this theorem is an isomorphism.

Recall that a differential in R is an additive homomorphism d : R —
R such that d(ab) = ad(b) + d(a)b for any a,b € R. We shall impose
the following condition:

(%) There exist an invertible element r of R and differentials d, d5 :
R — R such that

(1.1)  di(z —y)dy(zh™) — dy(z — y) di(zh™") =r mod (z —y).

Below we give examples of tuples (R, x,y, h) satisfying this condition.
Now we can state our main theorem which computes the +-completions
of the higher skein modules of M in terms of the first skein module Q.

Theorem 1.2. Under condition (x), the homomorphism 17} : QU —
(An/ A1)+ is an isomorphism for all n > 0.

Examples. Let R = K[z*!, h*!] be the ring of Laurent polynomials
on variables x, h with coefficients in a commutative ring with unity
K. The condition (x) is satisfied for any monomial y = kaPh? with
k € K,p,q € Z such that p + ¢ — 1 is invertible in K. Indeed, it
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suffices to take d; = 3%, dy = % and r = (p+¢—1)zh 2. For instance,

in the case K = Z the condition (x) is satisfied for y = kaPh™? and
y = kaPh*P with k,p € Z. To cover the standard choice y = 71 it
suffices to assume that 1/2 € K.

The next theorem is a step towards determining the structure of the
modules (A/A,).

Theorem 1.3. Under condition (%), for every n > 0, the short exact
sequence o o o
0— A, /A1 — AJApy — AJA, — 0
induces a short exact sequence
(1.2) 0= (An/Ans1)s = (A/Ani)y = (A/A) = 0.
An easy induction yields the following corollary.

Corollary 1.4. If condition () is satisfied and Q) is a projective R -
module, then for each n > 0, the exact sequence (1.2) splits and

n—1

(A/An)s = P (AifAir)s = Q"2

1=0

The assumption of this corollary holds for instance for M = S3,
R = Q[z*!', h*'] and y = kaPh? with k € Q,p,q € Z such that k #
0,p+q # 1. Indeed, in this case @ is a free module of rank 1 generated
by the trivial knot. This computes the modules (A/A,), associated
with S3. Choosing y = 1 and quotienting by z — 1 we recover the
results of [1].

The paper is organized as follows. In Section 2 we define several
useful transformations of links and prove Theorem 1.1. In Section 3
we prove Theorems 1.2 and 1.3. In Section 4 we discuss in more detail
the case M = S3.

2. TRANSFORMATIONS OF LINKS

2.1. Transformations v and t¢;. For any oriented link L C M we
can consider the union L II O of L with an oriented trivial knot O
in an embedded ball in M\L. The mapping L — L IT O extends by
R-linearity to a homomorphism A — A denoted .

A more interesting R-homomorphism ¢; : A — A is defined on the
link generators of A by inserting the singular tangle 77 drawn in Figure
2. More precisely, for an oriented link L. C M, we choose a small subarc
of L, replace it with 77 and apply the resolution 7 to this singular link
with one double point. The resulting element ¢;(L) of A does not
depend on the choice of the subarc on L: by definition of 7, we have
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t1(L) = (xr — y)L — hu(L). The mapping L + t;(L) extends to a

R-linear endomorphism, t;, of A. Clearly, t, = (z — y) — hu where

r — y is multiplication by z —y € R. The definition of ¢; implies that

tl(A ) C An+1 for all n > 0. Hence ¢; induces an R-homomorphism
/An+1 — An+1/An+2 denoted also ;.

oo P

FIGURE 2. Singular tangles T and 7.

Iterating t; we obtain for each non-negative integer ¢ an endomor-
phism ¢ of A. It is clear that ¢! acts on the generator represented by
an oriented link L by inserting ¢ copies of 17 at ¢ disjoint small subarcs
of L and applying 7.

2.2. Transformation ¢I. The transformations ¢t with ¢ = 0, 1,2, ...
are defined similarly to ¢ except that instead of T} we use the singular
tangle Ty, drawn in Figure 2. Thus, tJ acts on an oriented link L by
inserting ¢ copies of T, at disjoint small subarcs of L and applying
7. In contrast to ¢, this transformation does not give a well defined
endomorphism of A (unless ¢ = 0). We have a weaker result as follows.

Lemma 2.1. For each ¢ > 0, the mapping L tq(L) extends by R-
linearity to a well defined R-homomorphism t3: A/A; — Aq/AqH

Proof. The proof is based on the identity shown in Figure 3. To prove
this identity we observe that both singular tangles on the right-hand
side contain one double point which is a self-crossing of a strand. We
apply the resolution 7 to these double points. This transforms the right-
hand side into an algebraic sum of six terms. Four of them cancel and
the remaining two terms give exactly the expression on the left-hand
side.

The identity in Figure 3 shows that inserting ¢ copies of 15 at disjoint
small subarcs of an oriented link and applying 7 we obtain an element
of A,/A,.1 independent of the choice of the subarcs. This implies our
claim.
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b ()

FIGURE 3. Inserting T3 at different arcs.

2.3. Transformation "7, Recall the notation = A/A;. For each
pair of non-negative integers p, ¢, we consider an R-homomorphism

tp,q — tzl)tg : Q — AIH‘L]/A]H»L]*}*I

defined as the composition of t§ : Q@ — A,/A, 1 and % : A,JA 41 —
Apiq/Apigr1- The following Proposition directly implies Theorem 1.1.

Proposition 2.2. For each n > 0, the module (An/AnH)Jr is gener-
ated by the images of the homomorphisms t5" " : Q1 — (An/Ani1)+
with p =0,1,...,n.

The proof goes by adjusting the arguments of [1], Section 2 to our
present setting. We begin with the following fundamental 8T-relation.

Lemma 2.3. We have the identity in Figure 4, once all double points
are resolved as in Figure 1.

It is understood that all eight local pictures in Figure 4 represent
singular tangles in a ball B C M. They are completed by one and
the same singular tangle in M\IntB to form eight singular links in M.
Alternatively, one can view the identity in Figure 4 as a formal relation
between singular tangles which lies in the kernel of the resolution map
T.

RN

FIGURE 4. The 8T-relation.

Proof. Consider the strand leading from the second input to the sec-
ond output in the first four pictures. This strand contains one double
point and one over/under-crossing. Resolve this double point in each
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of these four pictures. This yields an algebraic sum of eight terms with
coefficient containing no power of h and of four terms linear in h. The
eight terms cancel while the sum of four terms is exactly the opposite
of the sum in the second row in Figure 4.

O

2.4. Proof of Proposition 2.2. It suffices to prove that the im-
ages of " P : QQ — A,/A,,1 with p = 0,1,...,n span the quotient
(An/Ans1)/(x —y). Observe that

(An/Ani1)/(x —y) = An/((z — y) A + Antr).

We begin by deriving a few consequences of the 8T-relation. Let B
be a closed 3-ball in M. For any singular (3, 3)-tangle in M \IntB with
n — 1 double points we complete the eight singular tangles in B drawn
in Figure 4 with that tangle so as to obtain eight singular links in
M. The first four singular tangles in Figure 4 yield after resolution of
double points elements of A, ;, which shall be ignored in the following
calculations proceeding in A, / flnﬂ. Thus we can complete the second
row in Figure 4 by any singular (3, 3)-tangle with n — 1 double points
and obtain a 4-term relation in A, / flnﬂ. In particular, let us connect
the middle top strand to the bottom left strand and add a negative
crossing at the bottom in the four pictures in the second row of Figure
4. By the argument above, we obtain an identity in A, / finH shown in
Figure 5.

FIGURE 5. An identity in An/fln“.

Observe that the left-most term in Figure 5 is in
uA, C (xr —y)A, —t1(A,) C (z — y) A, + Apyr.

Dividing by hz, we obtain a basic relation in A, /((z — y) A, + Ani1),
see Figure 6.

Let L. C M be a singular link with n double points. Applying the
basic relation to all double points of L we obtain an expansion of 7(L)
mod ((z —y)A, + A,11) as a sum of 2" terms. Each of these terms has
the form 7(K) where K is obtained from a certain non-singular link by
inserting p copies of 77 and n—p copies of T, with 0 < p < n. Therefore
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X

FIGURE 6. The basic relation in A, /((z — y)A, + Api1).

mod ((x — y);ln + An_'_l)

#(L) mod ((x —y)A, + Api1) belongs to the submodule generated by
the images of t*"7P, This completes the proof of the proposition.

O

3. PROOF OF THEOREMS 1.2 AND 1.3

3.1. Preliminaries on differentials. ~EauchNdifferential d: R — R
induces an additive homomorphism d : A — A by

(3.1) d0> kL) = d(k:)L;,

where k; € R and {L;}; are oriented links in M. Clearly,
d(ka) = kd(a) + d(k)a

for any k € R and a € A.
The following lemma is established in [1], Lemma 5.2.

Lemma 3.1. For each n > 0, d(ﬁnﬂ) CA,.

The obvious formula d((z — y)Y) =0 mod (z — y)V ! implies that
the differential d in R induces a differential in R, .

Let dy,dy be differentials in R satisfying (x). By Lemma 3.1, both
d, and dy induce R-homomorphisms An/flnﬂ — A, /fln for any
n > 0. Therefore the composition (d;)?(d2)" P induces an R-linear
homomorphism fin/fln“ — A/Al = (@ for any n > p > 0. We denote
the latter homomorphism by dP"P.

Proposition 3.2. Let d" : fln/ﬁnﬂ — Q™! be the direct sum of
the homomorphisms dP"™P where p = 0,...,n. Then the induced R, -
homomorphism d™ : (A, /Ani1)+ — Q1 is an isomorphism.

Proof. We can extend the differential d; with j = 1, 2 to linear combina-
tions of tangles with coefficients in R (or R ): it suffices to use Formula
3.1 where L; are tangles. For a singular tangle 7', set d;(T") = d,;(7(T)).
Clearly, d;(kT) = kd;(T) + d;(k)T for any k € R. Observe also that
the usual gluing of tangles extends by linearity to their linear combi-
nations. It is clear that if 77" is the result of gluing of two tangles (or
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their linear combinations) T, T" then

Now we shall compute the action of dy,d, on the singular tangles
Ty, T, drawn in Figure 2. Denote by I the unknotted vertical strand
oriented upwards. The formula #(T}) = (x — y)I — hul implies that
ul = h™Y(x —y)I mod 7(Ty). Tt follows from definitions that for j =
1,2,
d;(Th) = dj(x—y)[—d;(h)ul = d;(x—y)[—d;(h)h" (x—y) mod 7(T}).
Set

aj = dj(w —y) — d(hh™ (z —y) € R.
Then
dj(Tl) = ij[ mod 7:(T1)

To compute the derivatives of Ty, observe that 7(T5) = © H —yul —hI
where H is the tangle drawn in Figure 7. Therefore,
H =27 (yu+h)I mod 7(Ty) = 2~ (yh~ (x—y)+h)] mod #(17), 7(13).
It follows from definitions that

dj(Tg) = d](a:)H — d](y)uf — d](h)j = ﬂ]I mod 7Z(T1), f(Tg)
where
B = dy(@) (wh @ — ) + ) — di()h Ma —y) — dy(h) € R.
Set

. Q1 Qo
A—det{ﬁ1 52].

It is easy to compute that
A = xh™2(dy(z—y)do(xh™ ") —da(z—y)di (zh™")) = zh™?r mod (z—y)

where 7 is the invertible element of R provided by the condition (x).
Now, a standard algebraic argument shows that A is inverible in R, .
This allows us to introduce two formal linear combinations of 17,75
over R, by

E1 = AilﬂQTl - A710QT2 and E2 = —AilﬂlTI + AfloleQ.

By deﬁnition, F(El) == A_lﬁgf(Tl)—A_IOég’F(TQ) and ’F(EQ) = —A_lﬁlf(Tl)—F
A~'ay7(Ty). We can easily compute the derivative d; of Ey, B> mod-

ulo 7(T1),7(Ts). Indeed, for any linear combination aTj + b7, with

a,b € R, we have

dj(aT1 + bTQ) = adj(Tl) + bd] (Tg) mod 7:(T1), F(Tg)

This implies .
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where 67 is the Kronecker delta.

¢

FIGURE 7. The tangle H.

For each p = 0,...,n we define a R -linear homomorphism e’"~? :
Q4+ — (A,/An1)4 in the same way as t*" 7 but using Ey, E instead
of T, T5. Thus, eP"~P acts on an oriented link L by inserting p copies of
E; and n — p copies of F; at n disjoint small subarcs of L and applying
the resolution 7. It is clear that each e”"7P is a linear combination
of the homomorphisms 3", ¢! ... #7°. Therefore e’ P is a well
defined homomorphism. Note that we can express both T} and T5
as linear combinations of Fy, Ey with coefficients in R,. Thus, each
""" is a linear combination of the homomorphisms e%", =1 ™0,
Proposition 2.2 implies that the module (A, /A,.1), is generated by
the images of the homomorphisms ", e""~!, . €™’ Denote by " :
Q' — (A,/A, 1) the direct sum of the homomorphisms (p! (n —
p)) e P s Qy — (A,/Any1) 4 where p = 0,1,...,n. It is clear that
e™ is surjective.

The computations above and Formula 3.2 imply that

dyo el P =peP VP Qy — (A, /ALy
and
dyo €™ P = (n —p)eP" P Q= (A1 /AL
Therefore
A e i pl(n — p)!éﬁ, e = pl(n — p)!éﬁ, idg, .

We can rewrite these equalities in the form d’} oe™ = id. The surjectivity
of " implies that e” and d’} are mutually inverse isomorphisms.

O

3.2. Proof of Theorem 1.2. Theorem 1.1 implies that ¢’ is sur-
jective. It is injective because Kert, C Kere” = 0 where €” is the
homomorphism introduced in the proof of Proposition 3.2.
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3.3. Proof of Theorem 1.3. The general properties of projective lim-
its imply that the sequence (1.2) is exact except possibly in the term
(A,/A,41)+. Weneed to prove that the homomorphism (A, /A, 1), —
(A/AnH)Jr induced by the inclusion An/flnﬂ — A/Anﬂ is injective.

By Lemma 3.1, the differentials d;,d, induce additive (but not R-
linear) homomorphisms A/A,,; — A/A, for any n > 0. There-
fore the composition (d;)?(dy)" P induces an additive homomorphism
fl/flnﬂ — @ for any n > p > 0. Denote the latter homomorphism by
prep,

An easy induction shows that DP"?((z—y)Va) =0 mod (z—y)¥ "
for any a € A/Anﬂ and all N > n. Therefore DP" P induces an
additive homomorphism (A/A, 1), — @, denoted D”" .

It follows from definitions that DP"7P o ™ = dP""~P where " is the
inclusion An/flnﬂ — A/Anﬂ. Hence

Dﬁ’n_p ®) 'Lz = d{tn_p . (An/An+1)+ — Q+.

Thus, the kernel of i : (A,/A,1)y — (A/A,.1)y is annihilated by
the homomorphisms d%" d*" ! ..., d*° Proposition 3.2 implies that
this kernel is zero so that ; is injective.

4. CASE M = S3

Throughout this section, we assume that M = S3. If y is invertible
in R then the standard arguments show that the skein module () of
the 3-sphere is a free module of rank 1 generated by an unknot. In
the sequel we assume that y = 27! € R = Q[z*!, h*!]. Note that
the condition (x) is satisfied for d; = Z,d, = 2. In the following we
will write d, = 3%, dp, = We can explicitly describe the module
(A/A,)4 as follows.

0
%.
Theorem 4.1. For each n > 0,

(A/An)-l-: @ Ry f(G§+m)
lfk,:lion

where G§+m is the singular link in S shown in Figure 8.

Proof. This theorem directly follows from Theorem 1.2, Corollary 1.4
and the definition of ¢" given in Sections 1 and 2.
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FIGURE 8. The singular link G}, ,.

Corollary 4.2. There are unique R-linear homomorphisms @l,m A
R, numerated by pairs of non-negative integers (I, m) such that for any
a€ A,

o= Vin(a)#(G,,) € projlim,(4/A4,) .
I,m

Applying this to any oriented link L C S? we obtain an expansion
L= Viu(L)#(G},,,) € projlim, (4/A,),.
I,m

Substituting = 1 in V;,,,(L), we obtain the link polynomial V;,,(L)
introduced in [1].

Clearly, V = @070 is the Homfly polynomial which can be described
as the (unique) mapping from the set of isotopy classes of oriented links
in S?% into the ring R such that

(i) the value of V on an unknot is equal to 1;

(ii) for any three oriented links X, X_, X coinciding outside a 3-
ball and looking as in Figure 9 inside this ball, we have that

V(X)) — 2 'V(X ) = hV(Xy).

FIGURE 9. X, X_, X,.

It follows from Theorem 4.1 that for each n > 0, the set {V;, |l +
m < n} is a basis of the free R, -module (4/A4,)% = Homp((A/A,), R,).
Another basis of the same module can be derived from the Homfly poly-
nomial as follows. For p,¢ > 0, denote by (d%)?(d%)?(V) the R-linear
mapping A — R sending each oriented link L into 9?9V (L)/dPz0%h €

R. Below we prove the following theorem.
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Theorem 4.3. For p,q > 0, the homomorphism (d;)p(dZ)q(@) anni-
hilates Apyq41. For every n > 0, the set {(d%)P(d)IV |p+q < n} is a
basis of the free Ry-module (A/A,)* .

Using the transformation matrix relating the two bases of (4/A4,)*
constructed above we can express each polynomial V, ,,, as a linear com-

bination of the derivatives of V. More precisely, we have the following
corollary.

Corollary 4.4. There are unique c " € R, where [,m,p,q > 0 and
p+q <1+ m such that for any [,m and any oriented link L C S3,

Vim(L)= Y GRld)(d) (V)(D).

9,g>0,p+q<l4+m

0 = 1. A direct comparison on the generators
of (A/A;)4 shows that
(=@

Ay (V) = b @ = 2 dy(V)),

0,
For instance, Co

HGh), 7(GY), 7 (Gy
@071 =z

Vie=2z 'z th+22 th !t =22 3h Hd} (V) + di(V))
where

—(1+z7?) —h Yz -1

7 = det (x7'h + 227 'h=! — 2273R71) 1

is invertible in R,. In particular, substituting x = 1 in @l,m(L), we
obtain Vo, = di(V) and V5 = —(h/2)d;(V) — (1/2)d5(V)|.=1 where
V= @|m:1 is the Conway polynomial. The first of these formulas was
already obtained in [1].

The following more general formula computes c ', in the case [+m =
p—+q in terms of aq, as, 81, B2, A introduced in the proof of Proposition
3.2

min(p,l)
lm _ (__1\m+ —1 A —p— p q q+rlp l—r
ey = (=1)" 7 (plgh)~t AT ;;l )() (z_r>“ BB
r=max(0,l—q

This expression can be deduced from the computations in the proof of
Proposition 3.2 (cf. the argument in the next subsection).

Corollary 4.5. If K; and K5 are two links which have the same Hom-
fly polynomial, then we have that K, — Ky projects to zero in all
(A/An)+-

This follows directly from Theorem 4.3.
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4.1. Proof of Theorem 4.3. The first claim is obtained following the
lines of [1], Section 5. The second claim is deduced by induction from
Proposition 3.2 using the formula

()P ()" 2(V)) (@) = (=1)"V (" 7*(a))
for any a € fln/flnﬂ.
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