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1 Introduction

Martingale estimating functions are useful for drawing statistical infer-
ence about di�usion models from discrete time data, see Bibby and
S�rensen (1995, 1997), S�rensen (1997) and Kessler and S�rensen (1998).
For some models, such as stochastic volatility models (see Example 1.1),
there either is no natural martingale on which to base a class of estimat-
ing functions, or the natural martingales are too complicated to be useful
in practice. One way around this problem is to use simple, explicit esti-
mating functions of the type proposed by Kessler (1996). Another idea is
studied in the present paper: A generalization of the martingale estimat-
ing functions is proposed that is shown to have most of the nice properties
of the martingale estimating functions. These new estimating functions
are based on predictors of functions of the observed process. Particu-
lar attention is given to classes of prediction-based estimating functions
given by a �nite-dimensional space of predictors. For such a class, a
simple expression is found for the optimal estimating function. This
particular type of prediction-based estimating functions only involve un-
conditional moments, in contrast to the martingale estimating functions
where conditional moments are required. Thus for applications to dis-
cretely observed continuous time models, a considerably smaller amount
of simulation is, in general, needed for these new estimating functions
than for martingale estimating functions. This is also true of the optimal
prediction-based estimating functions where the calculation of the opti-
mal weights require extra computation. The prediction-based estimating
functions are closely related to the method of prediction error estimation
that is used in the stochastic control literature, see e.g. Ljung and Caines
(1979), see Section 2. In this paper we consider application of the new
method to di�usion compartment models, sums of Ornstein-Uhlenbeck
processes, and stochastic volatility models. Obviously, the method will
be useful for more general hidden Markov models too.

In Section 2, the prediction based estimating functions are presented,
while the optimal estimating functions based on a �nite-dimensional pre-
dictor space is derived in Section 3.

In Section 4, the use of prediction-based estimating functions for in-
ference based on discrete time data about stochastic volatility models of
the di�usion type is studied in considerable detail. It is discussed how to
calculate optimal prediction-based estimating functions. In particular,
it is demonstrated that for inference about the Hull and White (1988)
model, an explicit optimal prediction-based estimating function can be
found so that no simulations are needed. For the Chesney and Scott
(1989) model too, an explicit optimal estimating function can be found.
In general a certain amount of simulation is necessary. Prediction-based
estimating functions can also be applied to inference about more general
stochastic volatility models, for instance models with a leverage e�ect or
the models proposed by Barndor�-Nielsen and Shephard (1998).
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Other methods have previously been proposed for stochastic volatil-
ity models. One is indirect inference or the so-called e�cient method of
moments (which is actually only e�cient under rather strong regularity
conditions), see Gourieroux, Montfort, and Renault (1993), Gallant and
Tauchen (1996), and Gallant and Long (1997). For an interesting ap-
plication of the e�cient method of moments technology to a stochastic
volatility model, see Andersen and Lund (1998). These indirect inference
methods are based on very extensive simulations. Probably the meth-
ods proposed in this paper require considerably less computer time. A
di�erent type of estimators was proposed by Genon-Catalot, Jeantheau
and Lar�edo (1998b) based in limit results (where the time between obser-
vations goes to zero) in Genon-Catalot, Jeantheau and Lar�edo (1998a).
This estimation method is simpler than the indirect inference methods
and that of prediction-based estimation functions, but is probably less
e�cient, it can be biased if the time between observations is large, and
only parameters appearing in the invariant measure can be estimated.
In Genon-Catalot, Jeantheau and Lar�edo (1998c), estimators based on
empirical moments were proposed that are consistent without the as-
sumption that the time between observations goes to zero. Ruiz (1994)
proposed a pseudo-likelihood method based on a Gaussain approxima-
tion that allowed her to apply the Kalman �lter. An estimation method
based on nonlinear �lters was proposed by Nielsen, Vestergaard and Mad-
sen (1999), who in particular studied the use of a second order �lter.

In Section 5, two other type of models are considered briey: di�usion
compartment models and sums of Ornstein-Uhlenbeck type processes.
In Section 6, asymptotic results about the estimating functions and the
estimators are proved using results for mixing stochastic processes. In
particular, conditions are given that ensure the existence, consistency and
asymptotic normality of the estimators. For many stochastic volatility
models it turns out that a result with simpler conditions hold.

We conclude this introduction by considering three examples of pro-
cesses for which prediction-based estimating functions seem to be useful.

Example 1.1 The Simple Stochastic Volatility Model. Consider the
model

dXt =
p
vtdWt (1.1)

dvt = b(vt; �)dt+ c(vt; �)dBt;

where W and B are independent standard Wiener processes. We assume
that v is an ergodic, positive di�usion with invariant measure ��, and that
v0 � �� and is independent of B. This type of model is used in mathe-
matical �nance, where X is, for instance, a model for the logarithm of the
price of a stock. More complicated models are sometimes used, where X
also has a drift dependent on v, or where the two Wiener processes are
dependent (leverage). The model (1.1) is, however, su�ciently complex
to illustrate the usefulness of the prediction-based estimating functions
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and some problems met when applying them. The estimating functions
proposed in this paper can also be applied to the more complex models,
but for these more simulation is needed than for the simple stochastic
volatility model (1.1).

Suppose the process X has been observed at discrete time points
X0; X�; X2�; : : : ; Xn�. The process X is not a Markov process, so it is
not clear what martingale estimating function to use. Also likelihood
inference is usually out of the question because it is impossible to �nd
an explicit expression for the likelihood function.

In view of the structure of the model, it is natural to base the sta-
tistical inference on the di�erences Yi = Xi� �X(i�1)�. When X is the
logarithm of a stock price, the Yi-s are the (continuous-time) returns
between the observation times. However, martingale estimating func-
tions based on f(Yi) � E�(f(Yi)jYi�1; : : : ; Y1) is not a feasible approach
because of the problems involved in calculating the conditional expec-
tation, analytically as well as numerically. In Section 4 we shall show
that prediction-based estimating functions can be applied to this type of
models.

2

Example 1.2 Sums of Ornstein-Uhlenbeck type processes. Consider the
model given by

Yt =
mX
i=1

X
(i)
t ; (1.2)

whereX(i), i = 1; : : : ; m, are independent, stationary Ornstein-Uhlenbeck-
type processes satisfying the stochastic di�erential equations

dX
(i)
t = �iX(i)

t dt+ dZ
(i)
t ; i = 1; : : : ; m: (1.3)

Here i > 0, i = 1; : : : ; m, and Z(i), i = 1; : : : ; m, are independent (and
possibly quite di�erent) L�evy processes the distributions of which can
also depend on unknown parameters. The process X(i) can be expressed
as

X
(i)
t = e�itX

(i)
0 +

Z t

0
e�i(t�s)dZ(i)

s : (1.4)

This model type was introduced and studied in Barndor�-Nielsen, Jensen
and S�rensen (1998). A process Y of this simple type has properties that
make it, for instance, useful as a model for the velocity in a turbulent
uid, see Barndor�-Nielsen, Jensen and S�rensen (1990, 1993). In such
an application the X(i)-s describe what happens at di�erent time-scales,
where the dependence structure is very dissimilar. The process type is
also useful as a model for other phenomena, where there the dependence
structure varies considerably over time-scales. In �nance such a situation
could be caused by groups of investors with di�erent time horizons.

As in the previous example the model is non-Markovian, and when
the data are observations at discrete time points, X0; X�; X2�; : : : ; Xn�,
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there is neither a natural martingale estimating function nor an explicit
likelihood function to use for inference about the parameters of the model.
We shall return to this model type in Section 5 and see how prediction-
based estimating function can be applied.

2

Example 1.3 Consider the di�usion compartment model with d com-
partments de�ned by the stochastic di�erential equation

dXt = A(�)Xtdt+ �(Xt; �)dWt; X0 = x0; (1.5)

where the jth coordinate, X
(j)
t , of the d-dimensional process Xt is the

amount of material in the jth compartment at time t. The ijth non-
diagonal entry of the d � d-matrix A(�), the compartmental matrix, is
interpreted as the ow of material from compartment j to compartment
i relative to the amount of material in compartment j. The ith diagonal
element of A(�) is usually negative and is interpreted as the ow out
of compartment i relative to the amount of material in it. The process
W is a d1-dimensional standard Wiener process, and �(x; �) is a d� d1-
matrix satisfying that �(x; �)�(x; �)T is invertible. Here and later, MT

denotes the transpose of the matrix M . The parameter � is assumed
to belong to an open subset � � IRp such that the equation (1.5) has
a unique solution for all � 2 �. Usually the data are observations at
discrete time points of the amount of material in only a subset of the
compartments, X

(1)
t ; : : : ; X(m) (m < d) say. Let Y denote the vector of

observed compartment amounts. The compartmental di�usion models
of this type were introduced and studied by Bibby (1995b), who has
also studied the more restrictive situation where � is constant so that
the model is Gaussian. In the Gaussian case the likelihood function is
tractable, see Bibby (1994, 1995a), but in the non-Gaussian case the
fact that the observed process Y is not Gaussian can cause problems.
Bibby (1995b) proposed an algorithm similar to the EM-algorithm, but
based on martingale estimating functions, for estimation. In Section 5
we shall consider inference for di�usion compartment models by means
of prediction-based estimating functions.

2

2 Prediction-based estimating functions.

Suppose as a model for the data Y1; Y2; : : : ; Yn that they are observations
from a stochastic process model indexed by a p-dimensional parameter
� 2 � (� � IRp). The model could be a continuous time model, and in
that case the observation time points need not be equidistant.

Assume that fj, j = 1; : : : ; N , are one-dimensional functions, de�ned
on the state space of Y , such that E�(fj(Yi)

2) <1 for all � 2 � and for
i = 1; : : : ; n. We denote the expectation when � is the true parameter
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value by E�(�). Let Fi be the �-algebra generated by Y1; Y2; : : : ; Yi, letH�
i

denote the L2-space of square integrable Fi-measurable one-dimensional
random variables when � is the true parameter value, and let P�

i;j, j =
1; � � � ; N be closed linear subspaces of H�

i . A subspace P�
i;j can be

interpreted as a set of square integrable predictors of fj(Yi+1) given
Y1; Y2; : : : ; Yi. In this paper we shall study estimating functions of the
form

Gn(�) =
nX
i=1

NX
j=1

�
(i�1)
j (�)[fj(Yi)� �̂

(i�1)
j (�)]; (2.1)

where �
(i�1)
j (�) = (�

(i�1)
1;j (�); : : : ; �

(i�1)
p;j (�))T is a p-dimensional stochastic

vector, the coordinates of which belong to P�
i�1;j, and where �̂

(i�1)
j (�) is

the minimum mean square error predictor of fj(Yi) in P�
i�1;j. As is well-

known, �̂
(i�1)
j (�) is the orthogonal projection of fj(Yi) on P�

i�1;j with
respect to the inner product in H�

i . The projection exists and is uniquely
determined by the normal equations

E�

�
�[fj(Yi)� �̂

(i�1)
j (�)]

�
= 0 (2.2)

for all � 2 P�
i�1;j. It follows from (2.2) that Gn(�) is an unbiased esti-

mating function. We will refer to estimating functions of the type (2.1)
as prediction-based estimating functions.

An important and well-studied particular type of prediction-based
estimating functions are the martingale estimating functions. These are
obtained when P�

i�1;j = H�
i�1. In this case, the projection �̂

(i�1)
j (�) is

the conditional expectation E�(fj(Yi)jY1; Y2; : : : ; Yi�1), so that Gn(�) is
a �-martingale. In some models it is, however, very di�cult to �nd
E�(fj(Yi)jY1; Y2; : : : ; Yi�1), even numerically. In such cases other prediction-
based estimating functions can be useful.

We shall be particularly interested in prediction-based estimating
functions where each of the sets P�

i�1;j is �nite-dimensional. In this
case a su�ciently explicit expression can be given for the projection to
allow a study of optimal estimation and asymptotic properties of es-
timators. Thus we shall from now on assume that P�

i�1;j is spanned

by Z
(i�1)
j0 ; Z

(i�1)
j1 ; : : : ; Z

(i�1)
jqij of the form Z

(i�1)
jk = h

(i)
jk (Y1; Y2; : : : ; Yi�1),

k = 1; : : : ; qij, which are linearly independent in H�
i�1. Note that we

assume that we can choose the functions h
(i)
jk to be independent of �. To

ensure that the minimummean square error predictor of fj(Yi) in P�
i�1;j is

unbiased, we assume that Z(i�1)
j0 is constantly equal to 1. In this case, the

predictors in P�
i�1;j have the form a0+a

TZ
(i�1)
j , where aT = (a1; : : : ; aqij )

and Z
(i�1)
j = (Z

(i�1)
j1 ; : : : ; Z

(i�1)
jqij )T . By the normal equations (2.2), the

minimum mean square error predictor of fj(Yi) in P�
i�1;j is given by

�̂
(i�1)
j (�) = â

(i�1)
j0 (�) + â

(i�1)
j (�)TZ

(i�1)
j ; (2.3)

6



where
â
(i�1)
j (�) = Ci�1;j(�)

�1b
(i�1)
j (�) (2.4)

and
â
(i�1)
j0 (�) = E� (fj(Yi))� â

(i�1)
j (�)TE�

�
Z
(i�1)
j

�
: (2.5)

Here Ci�1;j(�) denotes the covariance matrix of Z
(i�1)
j when � is the true

parameter value, while

b
(i�1)
j (�) =

�
Cov�

�
Z
(i�1)
j1 ; fj(Yi)

�
; : : : ;Cov�

�
Z
(i�1)
jqij ; fj(Yi)

��T
: (2.6)

Thus a prediction-based estimating function can be calculated provided
only that we can calculate the covariances in Ci�1;j(�) and b

(i�1)
j (�). Since

�̂
(i�1)
j (�) depends exclusively on the �rst and second order moments of

the random vector
�
fj(Yi); Z

(i�1)
j1 ; : : : ; Z

(i�1)
jqij

�
, only parameters appearing

in these moments for at least one j can be estimated using (2.1). This
is intuitively obvious and indeed follows from conditions given in Section
6. Of course, other fj-s and/or other predictor spaces can be used if it
is required to estimate other parameters.

In most models the moments needed must be calculated numerically,
typically by simulations. That is usually not a problem because un-
conditional moments are much easier to determine by simulation than
the conditional moments appearing in martingale estimating functions.
In a number of models it is possible to calculate the required moments
explicitly for certain choices of the fj-s; see Section 4.

Example 2.1 Suppose that the observations are one-dimensional, that
N = 1 (j = 1 is suppressed in the notation in this example), that f(x) =
x2, and that

P�
i�1 =

n
a0 + a1Y

2
i�1 + � � �+ aqY

2
i�q j aj 2 IR; j = 0; 1; : : : ; q

o
: (2.7)

Then Ci�1(�) is the covariance matrix of the stochastic vector Z(i�1) =�
Y 2
i�1; : : : ; Y

2
i�q

�T
, and b(i�1)(�) =

�
Cov�

�
Y 2
i ; Y

2
i�1

�
; : : : ;Cov�

�
Y 2
i ; Y

2
i�q

��T
.

If moreover the process Y is stationary, Ci�1(�) and b
(i�1)(�) do not de-

pend on i, so
�̂(i�1)(�) = â0(�) + â(�)TZ(i�1);

where â(�) is given by (2.4), but does not depend on i, and where

â0(�) = E�

�
Y 2
1

�
(1� [â(�)1 + � � �+ â(�)q]) : (2.8)

With this choice of predictor space, the sum in (2.1) can only be for
i = q + 1; : : : ; n. The problem can, of course, be avoided by choosing
qi = i � 1 in (2.7). When the volatility process is �-mixing, q need
not be very large because in that case the coe�cients â(�)i decreases
exponentially with i. 2
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To briey indicate the connection of prediction based estimating func-
tions to prediction error estimation, consider the contrast function

K(�) =
nX
i=1

�
f(Yi)� �̂(i�1)(�)

�2
where f and �̂(i�1)(�) are as in (2.1) and (2.3) with N = 1, and where �
is one-dimensional. Under weak di�erentiability conditions, an estimator
�̂ that minimizes K(�) will also solve the estimating equation K 0(�̂) = 0,
where K 0 denotes the derivative of K. The estimating function K 0(�) is
of the type (2.1), but it will, in general, not be the optimal estimating
function based on f and �̂(i�1)(�). In the following section, we shall see
how to �nd the optimal prediction-based estimating function.

Finally note that a non-optimal prediction-based estimating func-
tion is obtained by di�erentiating the logarithm of the pseudo-likelihood
function obtained by pretending that the process ff(Yi)g is Gaussian
with the correct �rst and second order moments and multiplying the
Gaussian conditional densities of f(Yi) given (f(Yi�1); : : : ; f(Yi�q)) for

i = q+1; : : : ; n. The set of predictors is then spanned by 1 and Z
(i�1)
k =

f(Yi�k), k = 1; : : : ; q.

3 Optimal estimation based on linear pre-

dictors

In this section, we will give results on how to �nd the optimal estimat-
ing function in a class of prediction-based estimating functions given by
�nite-dimensional predictor-sets, P�

ij, i = 1; : : : ; n, j = 1; : : : ; N . The
notation is as in the previous section. It is, however, convenient to use a
more compact notation too.

The `th coordinate of the vector �
(i�1)
j (�) in (2.1) has the form

�
(i�1)
`;j (�) =

qijX
k=0

a
(i)
`jk(�)Z

(i�1)
jk ;

where, as earlier, Z
(i�1)
j0 = 1. De�ne p�PN

j=1(qij + 1)-matrices by

A(i)(�) = (3.1)

0BB@
a
(i)
110(�) � � � a

(i)
11qi1(�) � � � � � � a

(i)
1N0(�) � � � a

(i)
1NqiN

(�)
...

...
...

...

a
(i)
p10(�) � � � a

(i)
p1qi1(�) � � � � � � a

(i)
pN0(�) � � � a

(i)
pNqiN

(�)

1CCA ;
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i = 1; : : : ; n, and
PN

j=1(qij + 1)-dimensional vectors by

H(i)(�) =

0BBBBBBBBBBBBBBBBBBB@

Z
(i�1)
10

h
f1(Yi)� �̂

(i�1)
1 (�)

i
...

Z
(i�1)
1qi1

h
f1(Yi)� �̂

(i�1)
1 (�)

i
...
...

Z
(i�1)
N0

h
fN(Yi)� �̂

(i�1)
N (�)

i
...

Z
(i�1)
NqiN

h
fN(Yi)� �̂

(i�1)
N (�)

i

1CCCCCCCCCCCCCCCCCCCA

; i = 1; : : : ; n: (3.2)

Then the estimating function Gn(�) can be written as

Gn(�) =
nX
i=1

A(i)(�)H(i)(�): (3.3)

If we, moreover, de�ne the p�
�
n
PN

j=1(qij + 1)
�
-matrixDn(�) =

h
A(1)(�)

: : : A(n)(�)
i
, and the

�
n
PN

j=1(qij + 1)
�
-dimensional vector Kn(�)

T =�
H(1)(�)T ; : : : ; H(n)(�)T

�
, then

Gn(�) = Dn(�)Kn(�): (3.4)

Proposition 3.1 Suppose that for all � 2 � the covariance matrix of
Kn(�) is invertible and E�(@�TKn(�)) has rank p. Then the estimating
function

G�n(�) = D�

n(�)Kn(�); (3.5)

where
D�

n(�) = �E�

�
@�Kn(�)

T
� �
E�

�
Kn(�)Kn(�)

T
���1

; (3.6)

is optimal within the class of estimating functions of the form (3.4) for
which Dn(�) has rank p. The estimating function G�n(�) satis�es the
second Bartlett-identity with Godambe-information

E�(@�Kn(�)
T )(E�(Kn(�)Kn(�)

T ))�1E�(@�TKn(�))

.

Proof: By Theorem 2.1 in Heyde (1997), G� is optimal if and only if

E� (@�TGn(�))
�1E�

�
Gn(�)G

�

n(�)
T
�

= E� (@�TG
�

n(�))
�1E�

�
G�n(�)G

�

n(�)
T
�

(3.7)

for all G of the form (3.4). This is the case when

E�

�
Gn(�)G

�

n(�)
T
�
= �E� (@�TGn(�)) (3.8)

9



for all G of the form (3.4), which obviously holds when D�
n(�) is given by

(3.6), because

E�

�
Gn(�)G

�

n(�)
T
�
= Dn(�)E�(Kn(�)Kn(�)

T ))D�

n(�)
T

and
E� (@�TGn(�)) = Dn(�)E�(@�TKn(�)):

2

This result is not terribly interesting in practice when the dimension
of the covariance matrix of Kn(�) is large, which it is when n is large.
Simpler and more useful results can be given when the process Y is sta-
tionary, provided that we choose as the basis of P�

i�1;j vectors of the form

Z
(i�1)
jk = hjk(Yi�1; : : : ; Yi�s), k = 0; : : : ; qj, where hjk is a function (inde-

pendent of i) from IRs into IR, and where s 2 IN. As usual Z
(i�1)
j0 = 1.

Note that qj+1, the dimension of P�
i�1;j, does not depend on i. For some

values of j and k the function hjk(x1; : : : ; xs) will usually depend only

on a subset of fx1; : : : ; xsg. Note that the Z(i�1)
jk -s are well-de�ned only

when i � s+1, and that the process (Yi; Z
(i�1)
11 ; : : : ; Z(i�1)

NqN
) is stationary.

In view of these considerations, we consider estimating functions of
the form (2.1) except that the sum starts at i = s + 1, and that the
p�PN

j=1(qj+1)-matrix A(i)(�) de�ned by (3.1) is equal to a �xed matrix
A(�) for all i. Obviously,

�̂
(i�1)
j (�) = âj0(�) + âj(�)

TZ
(i�1)
j (3.9)

where âj0(�) and âj(�) do not depend on i. Speci�cally,

âj(�) = Cj(�)
�1bj(�) (3.10)

where Cj(�) is the covariance matrix of Z(s)
j =

�
Z(s)
j1 ; : : : ; Z

(s)
jqj

�T
, while

the k-th entry of the qj-dimensional vector bj(�) is Cov� (Z
(s)
jk ; fj(Ys+1)).

The j-th coordinate of the N -dimensional vector â0(�) is given by (2.5)
with for instance i = s + 1. In the following we will use r = s+ 1.

We can write estimating functions of the type just described as

Gn(�) = A(�)
nX
i=r

H(i)(�); (3.11)

where the
PN

j=1(qj+1)-dimensional vectorsH(i)(�); i = r; : : : ; n, are given

by (3.2). The process H(i)(�) is stationary, cf. (3.9). We assume that

p �
NX
j=1

(qj + 1)

and de�ne the
�PN

j=1(qj + 1)
�
� p-matrix

U(�) = �C(�)@�T â(�); (3.12)

10



where �C(�) = diag
�
~C1(�); : : : ; ~CN(�)

�
with

~Cj(�) =
n
E�

�
Z
(r�1)
jk Z

(r�1)
j`

�o
k;`=0;:::;qj

(as usual Z
(r�1)
j0 = 1) and

â(�)T = (â10(�); â11(�); : : : ; â1q1(�); : : : ; âN0(�); : : : âNqN (�))
T : (3.13)

Note that ~Cj(�) can be related to the matrix Cj(�) that was used earlier
by

~Cj(�) =

0BB@
0 � � � 0
... Cj(�)
0

1CCA+ E�

�
~Z
(r�1)
j

�
2
;

where v
2 = vvT for a vector v. Here ~Z
(r�1)
j =

�
Z
(r�1)
j0 ; Z

(r�1)
j1 ; : : : ; Z

(r�1)
jqj

�T
.

Proposition 3.2 Suppose that for all � 2 � the matrix @�T â(�) has
rank p and that 1; f1; : : : ; fN are linearly independent on the support of
the conditional distribution of Yn given Y n�1 = (Y1; : : : ; Yn�1). Then the
matrix

�Mn(�) = E�

�
H(r)(�)H(r)(�)T

�
+ (3.14)

n�rX
k=1

(n� r � k + 1)

(n� r + 1)

h
E�

�
H(r)(�)H(r+k)(�)T

�
+ E�

�
H(r+k)(�)H(r)(�)T

�i
is invertible, and the estimating function

G�n(�) = A�(�;n)
nX
i=r

H(i)(�); (3.15)

where
A�(�;n) = U(�)T �Mn(�)

�1; (3.16)

is optimal within the class of estimating functions of the form (3.11)
for which A(�) has rank p. The estimating function G�n(�) satis�es the
second Bartlett-identity with Godambe-information

U(�)T �Mn(�)
�1U(�): (3.17)

Proof: Using the stationarity of the process fH(i)(�) : i = r; r + 1; : : :g
it is not di�cult to see that the covariance matrix of the random vec-
tor

Pn
i=rH

(i)(�) is (n � r + 1) �Mn(�) given by (3.14). If this covariance
matrix is not strictly positive de�nite, there exists a non-trivial linear
combination of the coordinates of the random vector

Pn
i=rH

(i)(�) which
is identically equal to zero. This implies that there exists a j, j = 1 say,
such that

f1(Yn) =
NX
j=2

cj(Y n�1)fj(Yn) + d(Y n�1);

11



but this contradicts the assumption made about f1; : : : ; fN . Hence the
matrix �Mn(�) is invertible.

Now, it follows from (3.9) that U(�) = �E�

�
@�TH

(r)(�)
�
, so

E�

�
Gn(�)G

�

n(�)
T
�
= (n� r + 1)A(�) �Mn(�)A

�(�;n)T

and
E� (@�TGn(�)) = (n� r + 1)A(�)U(�):

Since the coordinates of ~Z
(r�1)
j form a basis of P�

r�1;j, the matrices ~Cj(�)
are strictly positive de�nite. Hence so is �C(�), and thus the matrices U(�)
and A�(�;n) both have rank p if and only if @�T â(�) has rank p. Now
the proposition follows in complete analogy with the proof of Proposition
3.1.

2

Note that in Proposition 3.2 it was in particular assumed that the con-
ditional distribution of Yn given Y n�1 is not concentrated in one point.
This follows from the condition on f1; : : : ; fN . Note also that the condi-
tion on f1; : : : ; fN is satis�ed for a stochastic volatility model provided
that 1; f1; : : : ; fN are linearly independent on IR and that the volatility
process is non-degenerate conditionally on the past, i.e. it is a proper
stochastic volatility model. For instance, f1(y); : : : ; fN(y) could be dif-
ferent powers of y.

When p =
PN

j=1(qj + 1) the theorem is rather empty, because in
that case A�(�;n) is invertible and thus does not inuence the estimator.
In this uncommon case, A�(�;n) only ensures that the second Bartlett-
identity holds.

It follows from (3.10) that

@�k âj(�) = Cj(�)
�1 (@�kbj(�)� (@�kCj(�)) âj(�)) ; (3.18)

while @�T âj0(�) is �nally found using (2.5). Thus if we know Cj(�),

bj(�), E�(Z
(r�1)
j ), E�(fj(Yr)), j = 1; : : : ; N , their derivatives with re-

spect to �, and the moments appearing in (3.14), we can calculate the
optimal prediction-based estimating function. Note that only moments
and derivatives of moments are needed. Note also that Cj(�), bj(�),

E�(Z
(r�1)
j ), and E�(fj(Yr)) were needed earlier to �nd the predictor

�̂
(i�1)
j (�), so the only new requirements here are the derivatives and the

moments in (3.14).
If the process Y is su�ciently mixing (see the Section 6), the matrix

�Mn(�) converges to a matrix M(�) as n ! 1. Asymptotically, is does
not matter whether we use U(�)T �Mn(�)

�1 or U(�)TM(�)�1 to de�ne
the optimal estimating function. The asymptotic variance of the two
estimators will be the same, see Section 6.
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4 Stochastic volatility models

In this section we will consider application of prediction-based estimating
functions to inference for the stochastic volatility model in Example 1.1
when the data are X0; X�; X2�; : : : ; Xn�. As mentioned in Section 1, it
is natural to base the statistical inference on the di�erences Yi = Xi� �
X(i�1)�, i = 1; : : : ; n. Since

Yi =
Z i�

(i�1)�

p
vtdWt (4.1)

it follows that the process fYig is stationary, that the Yi-s are uncorre-
lated, but not independent, and that

Yi =
q
SiZi; (4.2)

where

Si =
Z i�

(i�1)�
vtdt (4.3)

and where the Zi-s are independent, identically standard normal dis-
tributed random variables, and independent of fSig.

First we study the class of estimating functions given in Example 2.1,
i.e. estimating functions of the form

Gn(�) = (4.4)
nX

i=q+1

�(i�1)(�)
h
Y 2
i � â0(�)� â1(�)Y

2
i�1 � � � � � âq(�)Y

2
i�q

i

with �(i�1)(�) = A(�) ~Z(i�1), where A(�) is a p � (q + 1)-matrix and
~Z(i�1) =

�
1; Y 2

i�1; : : : ; Y
2
i�q

�
.

In order that the minimum mean square error predictor of Y 2
i in P�

i�1

is de�ned, we must assume that E�(Y
4
i ) < 1, and in order to �nd it,

i.e. to �nd â0(�); â1(�); � � � ; âq(�), cf. (3.9), we must calculate E�(Y
2
i ),

Var� (Y
2
i ) and Cov� (Y

2
i ; Y

2
i+j), j = 1; : : : ; q. It is easy to see (by Jensen's

inequality) that E�(v
�=2
t ) < 1 implies E�(Y

�
i ) < 1 for � � 2. For

� � 2, E�(vt) < 1 implies that E�(Y
�
i ) < 1. In the following we shall

see that we can actually calculate the moments of the observations that
we need from moments of the volatility process.

Obviously, E�(Y
2
i ) = E�(S1), Var� (Y

2
i ) = 3Var� (S1) + 2E�(S1)

2, and
Cov� (Y

2
i ; Y

2
i+j) = Cov� (S1; S1+j). De�ne

�(�) = E�(vt) (4.5)

!(�) = Var�(vt) (4.6)

r(u; �) = Cov�(vt; vt+u)=!(�): (4.7)
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It is not di�cult to see that

E�

�
Y 2
n

�
= ��(�) (4.8)

Var�
�
Y 2
n

�
= 6!(�)R�(�; �) + 2�2�(�)2 (4.9)

Cov�
�
Y 2
n ; Y

2
n+i

�
= !(�) [R�(�(i+ 1); �) (4.10)

� 2R�(�i; �) +R�(�(i� 1); �)] ;

where

R�(t; �) =
Z t

0

Z s

0
r(u; �)duds;

see Barndor�-Nielsen and Shephard (1998). The formula (4.10) is mainly
useful when a simple explicit expression for R�(t; �) is available. It is
less useful when R�(t; �) must be found numerically because it expresses
a possibly small number as a di�erence between large quantities. For
numerical calculations it is perhaps more useful that

Cov�
�
Y 2
n ; Y

2
n+i

�
= !(�)

Z i�

(i�1)�

Z s+�

s
r(u; �)duds; (4.11)

which follows by easy calculations. In the following, we will use the
notation �(i; �) = Cov�

�
Y 2
n ; Y

2
n+i

�
.

If one of the sub-optimal prediction-based estimating functions is suf-
�cient for the purpose we have in mind (for instance, if we just need ap
n-consistent estimator), we can �nd an explicit estimating function

provided only that we can explicitly calculate the �rst and second order
moments of the volatility process. This is simple if the volatility process
has a linear drift (mean reversion), under mild regularity conditions on
the di�usion coe�cient.

In order to �nd the optimal choice of the matrixA(�) in the expression
for �(i�1)(�) in (4.4), i.e. the optimal matrix A�(�;n) in Proposition 3.2,

we also need to calculate the covariances E�

�
H(r)(�)jH

(r+i)(�)k
�
, where

H(i)(�)j is the j-th coordinate of

H(i)(�) =

0BBBBBBBB@

Y 2
i � â0(�)� â1(�)Y

2
i�1 � � � � � âq(�)Y

2
i�q

Y 2
i�1

h
Y 2
i � â0(�)� â1(�)Y

2
i�1 � � � � � âq(�)Y

2
i�q

i
...

Y 2
i�q

h
Y 2
i � â0(�)� â1(�)Y

2
i�1 � � � � � âq(�)Y

2
i�q

i

1CCCCCCCCA
; (4.12)

i = 1; : : : ; n. For these covariances to exist, we must assume that
E�(Y

8
i ) <1. Straightforward calculations show that if j 6= 0 and k 6= 0,

then

E�

�
H(r)(�)jH

(r+i)(�)k
�

=
qX

�=0

qX
�=0

b�(�)b�(�)E�

�
Y 2
r��Y

2
r+i��Y

2
r�jY

2
r+i�k

�

+ â0(�)
qX

�=0

b�(�)
h
E�

�
Y 2
r+i��Y

2
r�jY

2
r+i�k

�
+ E�

�
Y 2
r��Y

2
r�jY

2
r+i�k

�i
+ â0(�)

2
h
�(jj � k + ij; �) + �2�(�)2

i
; (4.13)
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where

b�(�) =

( �1 for � = 0
â�(�) for � = 1; : : : ; q:

When k = 0 and j 6= 0,

E�

�
H(r)(�)jH

(r+i)(�)0
�

=
qX

�=0

qX
�=0

b�(�)b�(�)E�

�
Y 2
r��Y

2
r+i��Y

2
r�j

�

+ â0(�)
qX

�=0

b�(�) [�(jj � � + ij; �) + �(jj � �j; �)]

� â0(�)
2��(�); (4.14)

and when j = k = 0,

E�

�
H(r)(�)0H

(r+i)(�)0
�

=
qX

�=0

qX
�=0

b�(�)b�(�)�(j� � � + ij; �): (4.15)

A number of times we have used the identity
Pq

�=0 b�(�) = �â0(�)=(��(�)),
cf. (2.8). The expression for E�

�
H(r)(�)0H

(r+i)(�)j
�
(j 6= 0) is obtained

from (4.14) by interchanging r and r+ i in the �rst line and changing the

sign of i in the second line. Another expression forE�

�
H(r)(�)jH

(r+i)(�)k
�

with j 6= 0 and k 6= 0 is

qX
�=0

qX
�=0

b�(�)b�(�)E�

h
Y 2
r�jY

2
r+i�k

�
Y 2
r�� ���(�)

� �
Y 2
r+i�� ���(�)

�i
:

A similar expression can be found when j = 0 or k = 0. If, for instance,
j = 0, the random variable Y 2

r�j should simply be removed under the
expectation sign. Analogously when k = 0.

We see that apart from the moments we already have considered, we
need moments of the form E�

�
Y 2
i Y

2
j Y

2
1

�
and E�

�
Y 2
i Y

2
j Y

2
k Y

2
1

�
, where we

can assume that i � j � k. The stationarity of the process Y implies
that we can always take the smallest index to equal one. Obviously the
value of these moments depends on whether some of the indices coincide.

De�ne

'(s; t; u; �) = E� (vsvtvu)

 (s; t; u; z; �) = E� (vsvtvuvz)

and

T3 = f(s; t; u) : s > t > ug
T4 = f(s; t; u; z) : s > t > u > zg
B3 = [(i� 1)�; i�]� [(j � 1)�; j�]� [0;�] \ T3

B4 = [(i� 1)�; i�]� [(j � 1)�; j�]� [(k � 1)�; k�]� [0;�] \ T4:
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Moreover, for a positive integer �, de�ne c� = �!
Q�

i=1(2i�1). If � indices
coincide

E�

�
Y 2
i Y

2
j Y

2
1

�
= c�

Z
B3

'(s; t; u; �)dsdtdu: (4.16)

If the three indices are di�erent, � = 1 and c1 = 1. For E�

�
Y 2
i Y

2
j Y

2
k Y

2
1

�
the situation is a bit more complicated. If all indices are di�erent (� = 1)
or if there is only one set of coinciding indices of size � > 1, then

E�

�
Y 2
i Y

2
j Y

2
k Y

2
1

�
= c�

Z
B4

 (s; t; u; z; �)dsdtdudz: (4.17)

If there are two pairs of indices, each of which has the same value (with
a di�erent value for the two pairs), then

E�

�
Y 2
i Y

2
j Y

2
k Y

2
1

�
= c22

Z
B4

 (s; t; u; z; �)dsdtdudz: (4.18)

When there are no coinciding indices these formulae are straightfor-
ward since, for instance, E�

�
Y 2
i Y

2
j Y

2
1

�
= E� (SiSjS1)E� (Z

2
1)

3
, where

E� (Z
2
1) = 1. In this case, the integral in (4.16) is over the whole set

[(i � 1)�; i�] � [(j � 1)�; j�] � [0;�]. If there are two indices that

are identical, then E�

�
Y 2
i Y

2
j Y

2
1

�
= E� (SiSjS1)E� (Z

4
1 )

2
E� (Z

2
1 ), where

E� (Z
4
1) = 3. Here it is not necessary to integrate over the whole box

[(i� 1)�; i�]� [(j � 1)�; j�]� [0;�] because the value of the function
'(s; t; u; �) does not change when the arguments s; t; u are permuted.
Thus it is enough to integrate over the set B3 and then multiply by
f�12 = 2, where f2 is the ratio of the volume of the set B3 to the volume
of the whole box over which we should integrate. The formulae for the
other cases are obtained similarly. The constant c� is simply the product
of E�

�
Z2�
1

�
=
Q�

i=1(2i � 1) and f�1� = �!, where f� is the ratio of the

volume of the set over which we actually integrate (B3 or B4) to the
volume of the whole box over which we should integrate.

To �nish we only need to �nd the moments in (4.5) { (4.7) and in
the functions ' and  . The marginal moments (4.5) and (4.6) are rel-
atively easy to calculate from the marginal distribution of vt, for which
a simple expression exists in terms of the drift and di�usion coe�cients
of the volatility process. The other moments require knowledge of the
dependence structure of the volatility process, and for most models these
moments must be obtained by simulation. The extent of the simulations
is considerably smaller than that needed for martingale estimating func-
tions because only unconditional moments must be calculated, which can
be obtained from a single long trajectory.

There are, however, models for which it is possible to give explicit
expressions for the moments needed because certain conditional moments
can be explicitly found. Assume for instance that the eigenfunctions of
the generator of the volatility process are polynomials. Recall that the
generator is the di�erential operator

L� = b(x; �)
d

dt
+ 1

2c
2(x; �)

d2

dx2
; (4.19)
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and that a function h is called an eigenfunction for L� if there exists a
positive number � (called the eigenvalue) such that L�h = ��h. Suppose
that

hi(x; �) =
iX

j=0

�ij(�)x
j; i = 1; 2; 3; (4.20)

where �ii(�) 6= 0, are eigenfunction for L� with eigenvalues �1(�); �1(�); �3(�).
Under weak regularity conditions, see e.g. Kessler and S�rensen (1998),

E�(hi(vt; �)jv0 = x) = e��i(�)thi(x; �):

Thus inserting vt for x and taking the conditional expectation given v0
on both sides of (4.20) yields

e��i(�)thi(v0; �) =
iX

j=0

�ij(�)�j(x; t; �) i = 1; 2; 3;

where �k(x; t; �) = E�(v
k
t jv0 = x). In particular, �0(x; t; �) = 1. From

this linear equation it is easy to get explicit expressions for the conditional
moments �i(x; t; �):

�i(x; t; �) =
iX

j=0

�ij(t; �)x
j;

where

�10(t; �) = �11(�)
�1�10(�)

�
e��1(�)t � 1

�
�11(t; �) = e��1(�)t

�20(t; �) = �22(�)
�1
h
�20(�)

�
e��2(�)t � 1

�
��21(�)�11(�)�1�10(�)

�
e��1(�)t � 1

�i
�21(t; �) = �22(�)

�1�21(�)
�
e��2(�)t � e��1(�)t

�
�22(t; �) = e��2(�)t

�30(t; �) = �33(�)
�1
n
�30(�)

�
e��3(�)t � 1

�
� �32(�)�22(�)

�1�20(�)
�
e��2(�)t � 1

�
+
h
�32(�)�22(�)

�1�21(�)� �31(�)
i
�11(�)

�1

��10(�)
�
e��1(�)t � 1

�o
�31(t; �) = �33(�)

�1
n
�31(�)

�
e��3(�)t � e��1(�)t

�
��32(�)�22(�)�1�21(�)

�
e��2(�)t � e��1(�)t

�o
�32(t; �) = �33(�)

�1�32(�)
�
e��3(�)t � e��2(�)t

�
�33(t; �) = e��3(�)t:
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Now, repeated iterations of conditional expectations show that for s >
t > u > z (which is enough)

E� (vsvt) = (4.21)

�
E�(v

2
t ) + �11(�)

�1�10(�)�(�)
�
e��1(�)(s�t) � �11(�)

�1�10(�)�(�);

'(s; t; u; �) = �10(s� t; �)
1X

j=0

�1j(t� u; �)E�(v
j+1
t ) (4.22)

+ �11(s� t; �)
2X

j=0

�2j(t� u; �)E�(v
j+1
t );

and

 (s; t; u; z; �) = (4.23)

[�10(s� t; �)�10(t� u; �) + �11(s� t; �)�20(t� u; �)]

�
1X

j=0

�1j(u� z; �)E�(v
j+1
t )

+ [�10(s� t; �)�11(t� u; �) + �11(s� t; �)�21(t� u; �)]

�
2X

j=0

�2j(u� z; �)E�(v
j+1
t )

+ �11(s� t; �)�22(t� u; �)
3X

j=0

�3j(u� z; �)E�(v
j+1
t ):

The marginal moments E�(v
2
t ), E�(v

3
t ), and E�(v

4
t ) can be found from

the stationary distribution for which an explicit expression is available
in terms of the drift and the di�usion coe�cient.

Example 4.1 Consider the volatility process given by

dvt = ��(vt � �)dt+ �
p
vtdBt: (4.24)

This stochastic volatility model was proposed by Hull and White (1988),
and was also considered by Heston (1993).

The process (4.24) is ergodic and its stationary distribution is the
gamma distribution with shape parameter 2����2 and scale parameter
2���2 provided that � > 0, � > 0, � > 0, and 2�� � �2. Thus

E�;�;�

�
vit
�
=

 
� +

(i� 1)�2

2�

!
E�;�;�

�
vi�1t

�
; i = 1; 2; : : : :

In particular, �(�; �; �) = �, E�;�;�(v
2
t ) = �(� + �2=(2�)), E�;�;�(v

3
t ) =

�(� + �2=(2�))(� + �2=�), E�;�;�(v
4
t ) = �(� + �2=(2�))(� + �2=�)(� +

3�2=(2�)), and Var�;�;�(vt) = ��2=(2�).
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The eigenfunctions of the generator are Laguerre polynomials evalu-
ated at 2�x��2, see e.g. Karlin and Taylor (1981). Speci�cally, the i-th
eigenfunction is the i-th order polynomial with coe�cients

�ij(�; �; �) =
(�2���2)j

j!

 
i+ 2����2 � 1

i� j

!
;

j = 0; : : : ; i, i = 1; 2; : : :. The corresponding eigenvalue is i�. It fol-
lows that r(u;�; �; �) = e��u. Explicit expressions for the functions
'(s; t; u;�; �; �) and  (s; t; u; z;�; �; �) too follow from (4.22) and (4.23).

2

Example 4.2 Consider the volatility process given by vt = exp(Ut),
where U is a stationary Gaussian Ornstein-Uhlenbeck process, dUt =
��(Ut � �)dt + �dBt with � > 0 (Wiggins (1987); Chesney and Scott
(1989); Melino and Turnbull (1990)). The model can be obtained as a
limit of the EGARCH(1,1) model, see Nelson (1990).

Also for this model the moments necessary to �nd the optimal prediction-
based estimating function can be calculated explicitly, because U is Gaus-
sian. For instance,

 (s; t; u; z; �; �; �) = E�;�;� [exp (Us + Ut + Uu + Uz)] ;

which is the Laplace transform of a known Gaussian distribution.
2

It is important to have alternatives to the simple estimating function
discussed so far in this section. It might, for instance, be the case that
the moments needed in the optimal estimating function do not exist. An
alternative could be estimating functions of the form

Gn(�) = (4.25)
nX

i=q+1

�(i�1)(�) fjYij � â0(�)� â1(�)jYi�1j � � � � � âq(�)jYi�qjg

with �(i�1)(�) = A(�) ~Z(i�1) and ~Z(i�1) = (1; jYi�1j; : : : ; jYi�qj). Here
 is some suitably chosen positive real number. If, for instance,  = 1

2

we need to assume only that E�(Y
2
i ) < 1 for the optimal estimating

function of the type (4.25) to exist. The price is that it is not as easy to
calculate the moments needed.

For the estimating function (4.25) the analysis goes much like the
analysis above with Y 2

i replaced by jYij. The problem is that the ex-
pression (4.2) for Yi �ts estimating functions with  = 2 particularly
well. In order to �nd the minimum mean square error predictor of Y 2

i in
P�
i�1, we need E�(jYij), Var� (jYij) and Cov� (jYij; jYi+jj), j = 1; : : : ; q.

Obviously,

E�(jYij) = E�(S
=2
1 )E�(jZ1j) (4.26)

= E�(S
=2
1 )2=2�(( + 1)=2)=

p
�;
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E� (jYij2) = E�(S

1 )E�(jZ1j2) (4.27)

= E�(S

1 )2

�( + 1=2)=
p
�;

and

E�(jYijjYi+jj) = E�(S
=2
1 S

=2
1+j)2

�(( + 1)=2)2=�; (4.28)

where � denotes the gamma-function. Unfortunately, there is not in
general a simple way of relating the moments E�(S

�
1 ) to the moments

of the volatility process v when � is not an integer. Therefore the non-
integer moments of S1 must be found by simulation, which on the other
hand is not di�cult. If  = 1, we can of course �nd E�(S


1 ) by using the

results derived earlier.
In order to �nd the optimal choice of the matrix A(�) in the ex-

pression for �(i�1)(�) in (4.25), we need to calculate the covariances

E�

�
H(r)(�)jH

(r+i)(�)k
�
. Calculations similar to those made earlier in

this section show that what we further need are moments of the form
E� (jYijjYjjjYkjjY1j) and E� (jYijjYjjjY1j) (i � j � k). As above
these moments can be related to moments of a standard normal distri-
bution and the moments E�(S

=2
i S

=2
j S

=2
k S

=2
1 ) and E�(S

=2
i S2

j S
=2
1 ). In

a few cases where some indices coincide and where  = 1 or  = 1
2
, these

moments can be calculated by results given earlier, but in most cases
they must be found by simulation. As the details are rather similar to
those for the case  = 2 they are omitted.

If computing time is important, it might be an idea to sacri�ce some
e�ciency by replacing Si by �v(i�1)� when calculating the moments used

in the optimal choice of the vectors Aj(�). For instance, E�(S
=2
i S2

j S
=2
1 )

could be approximated by �3=2E�

�
v
=2
(i�1)�v

=2
(j�1)�v

=2
0

�
.

5 Other models

In this section we will briey consider two other types of models, the dif-
fusion compartment models and sums of Ornstein-Uhlenbeck-type pro-
cesses.

5.1 Di�usion compartment models

First we consider the two compartment model Xt = (X
(1)
t ; X

(2)
t )T given

by (1.5). The data are Y1; : : : ; Yn, where Yi = X
(1)
i� . A natural choice of

prediction-based estimating function is one with N = 2, f1(y) = y, and
f2(y) = y2. It might simplify matters to choose di�erent spaces of predic-
tors for each of the two functions fj. Here, however, we specify a single

space of predictors by the choice Z
(i�1)
j = (Yi�1; : : : ; Yi�q; Y

2
i�1; : : : ; Y

2
i�q)

T ,
j = 1; 2.

To �nd the optimal estimating function, we need moments of the
form E�

�
Y �1
i1 Y

�2
i2 Y

�3
i3 Y

�4
i4

�
with �j 2 f0; 1; 2g. Some of the indices ij
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might coincide. Under weak regularity conditions on �, the conditional
moments �t(x; �) = E�(XtjX0 = x) can be found explicitly, because
�t(x; �) satis�es the di�erential equation

d�t(x; �)

dt
= A(�)�t(x; �);

the solution of which can be expressed in terms of a matrix exponential
function. For a particular model, Bibby (1994) gave an explicit expression
for the solution. If also the marginal second moment of Yi is known
explicitly, the moments Yi1Yi2 can be found. If higher order marginal
moments are known, we can also �nd a few other mixed moments. Except
for very special models, the other moments must be found numerically.

5.2 Sums of Ornstein-Uhlenbeck-type processes

For a model given by (1.2), one could try a prediction-based estimating
function like then one considered in the previous subsection. Also for this
type of models the marginal moments and the moments of the form Yi1Yi2
can be calculated explicitly, whereas the rest must be found numerically.
For the discrete time versions of these models (see Barndor�-Nielsen,
Jensen and S�rensen (1998)), the necessary moments can, as least in
principle, be calculated explicitly.

The idea behind models that are sums of Ornstein-Uhlenbeck type
processes is, however, that the processes in the sum (1.2) represent what
happens at di�erent time scales, and the estimating function ought to
be chosen in accordance with this. One way of doing so is to use the
same functions fj as in subsection 5.1, but to use a number of dif-
ferent spaces of predictors for each of them. If m = 2, two spaces
of predictors could, for instance, be speci�ed by the choices Zi�1

1 =
(Yi�1; : : : ; Yi�q1; Y

2
i�1; : : : ; Y

2
i�q1) and Zi�1

2 = (Yi�q2; : : : ; Yi�q3; Y
2
i�q2; : : : ;

Y 2
i�q3

) for appropriate choices of q1; q2 and q3 (q2 < q3).

6 Asymptotic results

In this section we give asymptotic results for prediction-based estimating
functions and the corresponding estimators when the observed process Y
is stationary. We will consider estimating function of the general form

Gn(�) = An(�)
nX
i=r

H(i)(�); (6.1)

where fAn(�)g is a sequence of p � PN
j=1(qj + 1)-matrices, and where

H(i)(�) is given by (3.2) with Z-s of the type de�ned after the proof of
Proposition 3.1 and with �̂-s given by (3.9).

The asymptotic results are based on results for mixing stochastic
processes. An extensive review of such results are given in the book by
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Doukhan (1994). A very useful review is also contained in Genon-Catalot,
Jeantheau and Lar�edo (1998c).

Theorem 6.1 Suppose Y is stationary and �-mixing with mixing coef-
�cients �k(�), k = 1; 2; : : :, and that there exists a � > 0 such that

1X
k=1

�k(�)
�=(2+�) <1 (6.2)

and

E�0

����H(r)(�)j
���2+�� <1; j = 0; : : : ; q: (6.3)

Then as n!1,
�Mn(�)!M(�); (6.4)

where �Mn(�) is given by (3.14) and where

M(�) = E�

�
H(r)(�)H(r)(�)T

�
+ (6.5)

1X
k=1

h
E�

�
H(r)(�)H(r+k)(�)T

�
+ E�

�
H(r+k)(�)H(r)(�)T

�i
:

Assume, moreover, that An(�)! A(�) as n!1. Then as n!1,

n�1Var� (Gn(�))! V (�) = A(�)M(�)A(�)T ; (6.6)

and
1p
n
Gn(�)! N (0; V (�)) (6.7)

in distribution provided that the matrix A(�) is such that A(�)M(�)A(�)T

is strictly positive de�nite.

Proof: Next note that since H(i)(�) is a function of Yi�s; : : : ; Yi (see

the de�nition of Z
(i�1)
jk after Proposition 3.1), it follows that the process

H(i)(�), i = s+ 1; s+ 2; : : : is �-mixing with mixing coe�cients �k+s(�),
k = 1; 2; : : :. To prove asymptotic normality, it is enough to consider the
one-dimensional process vTGn(�) for every v 2 IRpnf0g (Cram�er-Wold
device). Hence the theorem follows from Theorem 1 in Section 1.5 of
Doukhan (1994).

2

In several models, the sequence of mixing coe�cients �k(�) decreases
exponentially so that (6.2) is automatically satis�ed. This is, for instance,
often the case for stochastic volatility models, see Subsection 6.1 below.
A weaker condition ensuring that a central limit theorem holds can be
found in Doukhan, Massart and Rio (1994).

It follows from Theorem 6.1 that also the optimal estimating function
G�n(�) given by (3.15) and (3.16) is asymptotically normal, i.e.

1p
n
G�n(�)! N (0; V �(�))
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in distribution as n!1, under the conditions of the theorem, provided
that the limit matrix A�(�) = limn!1U(�)

T �Mn(�)
�1 is �nite and that

the limit covariance matrix

V �(�) = A�(�)M(�)A�(�)T = A�(�)U(�)

is strictly positive de�nite. A su�cient condition for this is that the limit
covariance matrix M(�) is strictly positive de�nite and that the matrix
@�T â(�) has full rank (rank p). The vector â(�) is given by (3.13). In this
case A�(�) = U(�)TM(�)�1 and V �(�) = U(�)TM(�)�1U(�). Note that
the estimating function where An(�) is equal to U(�)

TM(�)�1 for all n is
optimal too.

Theorem 6.1 implies a result about the estimator obtained from an
estimating function Gn(�) of the form (6.1), in particular G�n(�). In the
following �0 denotes the true value of the parameter vector.

Theorem 6.2 Suppose the conditions of Theorem 6.1 hold for � in a
neighbourhood e� of �0 and that

(1) The vector â(�) given by (3.13) and the matrix An(�) are twice con-
tinuously di�erentiable with respect to �,

(2) The matrices @�T â(�0) and A(�0) have rank p,

(3) The matrices An(�), @�iAn(�) and @�i@�jAn(�) converge to A(�),

@�iA(�) and @�i@�jA(�), respectively, uniformly for � 2 e�.
Then for every n � r, an estimator �̂n exists that solves the estimat-
ing equation Gn(�̂n) = 0 with a probability tending to one as n ! 1.
Moreover,

�̂n ! �0 (6.8)

in probability and

p
n(�̂n � �0)

D�! N
�
0 ; D(�0)

�1V (�0)(D(�0)
�1)T

�
(6.9)

as n!1 with D(�0) = A(�0)U(�0), where U(�0) is given by (3.12).

Proof: The theorem follows from Corollary 2.7 and Theorem 2.8 in
S�rensen (1998) with �� = �0. To simplify the notation we will only
consider the case where � is one-dimensional. The general case is proved
in exactly the same way, apart from notational complications and the
fact that it must be checked that the matrix D(�0) is invertible, which is
straightforward under the conditions imposed (cf. (3.12)).

De�ne Mn = f� 2 � : j� � �0j � �=
p
ng (� > 0). Conditions 2.6 (i)

and (iv) in S�rensen (1998) are obviously satis�ed. Condition (v) follows
because (3) implies that there exists n0 2 IN such that when n � n0,
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the absolute value of the coordinates of the vectors An(�), @�An(�) and
@2�An(�) are bounded by some M > 0 for all � 2 e�. Hence for n � n0

sup
�2Mn

n�1jGn(�)j � M
NX
j=1

qjX
k=1

 
jn�1Fn(�0)jkj

+ sup
�2Mn

jâjk(�)� âjk(�0)j
qjX
`=1

n�1
nX
i=r

jZ(i�1)
jk Z

(i�1)
j` j

!
;

where Fn(�) =
Pn

i=rH
(i)(�). Now use that âjk(�) is continuous, that

n�1Fn(�0) ! 0, and that n�1
Pn

i=r jZ(i�1)
jk Z

(i�1)
j` j ! E�

�
Z
(s)
jk Z

(s)
j`

�
, which

is �nite.
To check Condition (ii) in S�rensen (1998), note that

jn�1@�Gn(�) +D(�0)j (6.10)

� j@�An(�)n
�1Fn(�)j+ j(An(�)� A(�0))n

�1@�Fn(�)j
+ jA(�0)n�1(@�Fn(�)� @�Fn(�0))j+ jA(�0)(n�1@�Fn(�0) + U(�0))j:

The �rst term on the right hand side is treated exactly as n�1Gn(�) in
the previous condition (with An(�) replaced by @�An(�)), and the last
term goes to zero because n�1@�Fn(�0)! �U(�0)). That the supremum
over Mn of the second term goes to zero follows because An(�)! A(�0)
uniformly in e�, while the coordinates of n�1@�Fn(�) onM1 can be domi-
nated by a convergent sequence (because @�â(�) is continuous). To �nally
treat the third term, we use that

jA(�0)n�1(@�Fn(�)� @�Fn(�0))j
�M

X
jk

sup
�2Mn

j@�âjk(�)� @�âjk(�0)j
X
`

n�1
nX
i=r

jZ(i�1)
jk Z

(i�1)
j` j;

which goes to zero because @�âjk(�) is continuous.
For Condition (iii), we use that

@2�Gn(�) = @2�An(�)n
�1Fn(�)

+ 2@�An(�)n
�1@�Fn(�) + An(�)n

�1@2�Fn(�):

The �rst term is treated as n�1Gn(�) was treated when checking Condi-
tion (v) (with An(�) replaced by @

2
�An(�)). The second term is dominated

by an expression like the sum of the last three terms in (6.10) with An(�)
and A(�) replaced by @�An(�) and @�A(�), respectively, and the sum
is treated in the same way. The last term is dominated by a similar
expression, now with @�â replaced by @2� â.

2

Note that if An(�) does not depend on n, condition (3) of Theorem
6.2 is trivially satis�ed.

For the optimal estimating function, V �(�0) = A�(�0)U(�0), so the
asymptotic variance of the optimal estimator is simply V �(�0)

�1. This
is no surprise because the second Bartlett identity is satis�ed for the
optimal estimating function.
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6.1 Stochastic volatility models

For the stochastic volatility model given by (1.1), �-mixing of the volatil-
ity process v implies �-mixing of the observed return process Y .

Lemma 6.3 Suppose the volatility process v is �-mixing with mixing
coe�cients �t(�), t > 0. Then Y is �-mixing with the mixing coe�cients
~�k(�) � �k(�), k = 1; 2 : : :.

Proof: Let Fv denote the �-algebra generated by the volatility process
v. Then for Borel subsets M1 and M2 of IR

t and IR`+1, respectively,

jP ((Y1; : : : ; Yt) 2M1)P ((Yt+k; : : : ; Yt+k+`) 2M2)�
� P (f(Y1; : : : ; Yt) 2M1g \ f(Yt+k; : : : ; Yt+k+`) 2M2g) j
=

����E �P ��qS1Z1; : : : ;
q
StZt

�
2M1

����Fv
��

� E
�
P
��q

St+kZt+k; : : : ;
q
St+k+`Zt+k+`

�
2M2

����Fv
��
�

� E
�
P
���q

S1Z1; : : : ;
q
StZt

�
2M1

�
\
��q

St+kZt+k; : : : ;
q
St+k+`Zt+k+`

�
2M2

�����Fv
������

= jE [f1 (S1; : : : ; St)]E [f2 (St+k; : : : ; St+k+`)]

� E [f1 (S1; : : : ; St) f2 (St+k; : : : ; St+k+`)]j

= jCov (f1 (S1; : : : ; St) ; f2 (St+k; : : : ; St+k+`))j � �k(�0)

where

f1 (S1; : : : ; St) = P
��q

S1Z1; : : : ;
q
StZt

�
2M1

����S1; : : : ; St�
and

f2 (St+k; : : : ; St+k+`)

= P
��q

St+kZt+k; : : : ;
q
St+k+`Zt+k+`

�
2M1

����St+k; : : : ; St+k+`� ;
and where we have used that the Zis are mutually independent and
independent of Fv. The last inequality follows from (1') in Doukhan
(1994, p. 3) because 0 � fi � 1, i = 1; 2.

2

A more general result that covers hidden Markov models was given
independently by Genon-Catalot, Jeantheau and Lar�edo (1998c).

For the one-dimensional, ergodic di�usion process v there are a num-
ber of relatively simple criteria ensuring �-mixing with exponentially
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decreasing mixing coe�cients. If, for instance, the spectrum of the gen-
erator of v (cf. (4.19)) has a discrete spectrum then the process is �-
mixing. If �1 denotes the smallest non-zero eigenvalue, then the mixing
coe�cients satisfy

�t(�0) � e�t�1 ;

see Doukhan (1994, p. 112). Thus v is geometrically mixing, and the
condition (6.2) in Theorem 6.1 is satis�ed.

The volatility process (4.24) has a discrete spectrum with �1 = �,
see Example 4.1. For this example a �rst numerical experiment has
been carried out. For � = 2, � = 0:5, � = 1 and � = 1 a sample of 1000
observation were simulated. The parameters were estimated using a non-
optimal prediction-based estimating function of the type considered in
Example 2.1 with q = 20. The estimates were �̂ = 2:01, �̂ = 0:64 and
�̂ = 1:30. It is not surprising that � seems to be the easiest parameter
to estimate. A serious simulation study is planned.

Doukhan (1994) gives other criteria for geometrical mixing too; see
also Genon-Catalot, Jeantheau and Lar�edo (1998c). Rather general cri-
teria for �-mixing of di�usion processes expressed in the language of
Malliavin calculus were given by Kusuoka and Yoshida (1997).
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