Packing Densities and Simulated Tempering

for Hard Core Gibbs Point Processes

March 19, 1999

S. Mase!, J. Mgller2?, D. Stoyan®, R.P. Waagepetersen*, G. Doge?

L Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-
Okayama, 2-12-1, Meguro-Ku, Tokyo, 152-8552, Japan.

2 Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7E, DK-
9220 Aalborg @, Denmark.

3 Institute of Stochastics, Bergakademie Freiberg, Bernhard-von-Cotta-Str. 2, D-09596 Frei-
berg, Germany.

4Department of Agricultural Systems, P.O. Box 50, Research Centre Foulum, DK-8830
Tjele, Denmark.

Abstract: Certain monotonicity and convergence properties of the intensity of local and
global hard core Gibbs point processes are investigated and compared to the closest packing
density. For such processes simulated tempering is shown to be an efficient alternative to
commonly used Markov chain Monte Carlo algorithms. We study empirically the behaviour
of the area fraction and various spatial characteristics of the pure hard core process using
samples obtained with the simulated tempering algorithm.

Keywords: closest packing density; hard core Gibbs point processes; intensity; Markov
chain Monte Carlo; Metropolis-Hastings; phase transition; simulated tempering; spatial
statistics; statistical physics; stochastic geometry.

AMS 1991 MATHEMATICS SUBJECT CLASSIFICATION: 62H11, 60K35, 62M30.

1 Introduction

This paper is concerned with hard core Gibbs point processes from the standpoint of pri-
marily spatial statistics and stochastic geometry and secondarily statistical physics. Hard
core Gibbs point processes are of interest in spatial statistics and stochastic geometry as
they provide models for marked point processes of discs (or balls) exhibiting a much higher



degree of regularity than other types of hard core point processes such as Matern’s hard
core models and ‘simple sequential inhibition’ processes (for definitions of these models, see
Diggle, 1983; Stoyan et al., 1995; Stoyan and Schlather, 1999). In statistical physics, phase
transition behaviour of hard core Gibbs point processes has been a topic of intense study
since Metropolis et al. (1953) investigated the classical hard disc model in two dimensions;
see, for example, Strandburg (1988), Fernandez et al. (1995), Weber et al. (1995), and the
references therein.

So far only a few probabilistic properties of hard core Gibbs point processes have been
established, most of them being related to questions of importance in statistical physics.
A fundamental characteristic such as the intensity (that is the mean number of points
per unit volume) of a hard core Gibbs point process is known until now only by various
approximations in the physical literature, see Stillinger et al. (1965), Salsburg et al. (1967),
Hoover and Ree (1969) and Hansen and McDonald (1986). In this paper we establish some
monotonicity and convergence properties of the intensity of local and global hard core Gibbs
point processes. Moreover, we discuss how such processes can be simulated in an efficient
way and we present some experimental results.

In Section 2 we consider finite pairwise interaction point processes defined on a bounded
region and where the pair-potential is stable, hard core, and invariant under translations.
We show that the intensity of the process is an increasing function of the so-called fugacity
parameter z > 0 (—log z is also called the chemical activity). As both z and the region
tend to infinity, the intensity of the process is shown to attain the closest packing density
p defined as follows. For G C R, define the closest packing number Mg as the maximal
number of non-overlapping open unit balls included in GG. Further, let B be the closed unit
ball with center at the origin of the d-dimensional space. Then

. MT‘B

p = limsup B[ (1)
Clearly, p < 1/|B|, where |G| denotes the volume of a Borel set G. In the terminology of
stochastic geometry, if d = 2 then A** = p|B| is the maximal area fraction or maximal
packing density, while if d = 3 then V** = p|B| is the maximal volume fraction. It is
known that A%™ = 7 lim, M,g/|rB| = 7/(2v/3) ~ 0.907 is attained by close-packed hard
discs whose centers form an equilateral triangular lattice in R?; see, e.g., T6th (1972).
According to Kepler’s conjecture, Vi?®* = 7/1/18 ~ 0.740 which corresponds to a lattice
of equilateral tetrahedrons in R3. A proof of this conjecture is given in a series of papers
by Hales (1997a, 1997b, 1998a, 1998b, 1998c, 1998d) and Ferguson and Hales (1998). We
can replace “limsup” in (1) by “lim” for d < 3, but to the best of our knowledge it is open
problem if this also holds when d > 4.

In Section 3 we consider hard core Gibbs point processes defined on R? in order to
ensure that the process exists, the pair-potential is now also assumed to be of finite range.
We verify that the so-called local intensity is an increasing function of z and that in a
certain sense it converges to p as z — oo. Further, we establish a similar result for global
intensities when restricting attention to stationary hard core Gibbs processes. Furthermore,



in the non-phase transition regime, we show that local intensities converge to the global
intensity and that the latter is a non-decreasing function of z.

Various theoretical and simulation results seem to suggest the existence of phase tran-
sitions for a pure hard core Gibbs point process defined on R¢ (i.e. the simplest case of
a hard core Gibbs point process also called a Poisson hard core process), see Alder and
Wainwright (1957, 1962) and especially Weber et al. (1995). For example, it is known that
two physically important characteristics such as the intensity and the pressure have finite
radii of convergence as analytic functions of z, see Ruelle (1983). Physicists believe that
so-called critical values of z are scarce for pure hard core processes. We believe but are
unable to prove that the global intensity is non-decreasing in the phase transition regime
too; possibly there may be some irregularity at the critical values of z. Another question,
in the two dimensional case, is to what extend realisations of a pure hard core Gibbs point
process look like the configuration of vertices of an equilateral triangular lattice.

Due to their analytical intractability, simulation algorithms play an important role in
the study of hard core Gibbs point processes, though simulations have been seriously lim-
ited by computer running times. In statistical physics mostly the ordinary Metropolis et
al. (1953) algorithm and molecular dynamics (Strandburg, 1988; Allen and Tildesley, 1987)
have been used with a constant number of points/balls (within some bounded region). In
Section 4.1 we consider both the fixed and random number of points cases and we im-
prove the mixing properties of certain Metropolis-Hastings algorithms (Geyer and Mgller,
1994; Geyer, 1999; Moller, 1999) by using simulated tempering (Marinari and Parisi, 1992;
Geyer and Thompson, 1995). Finally, in Section 4.2 we discuss some empirical findings for
pure hard core Gibbs point processes. Though the number of points in our experiments
is relatively small compared to what physicists think is appropriate (usually several thou-
sands of points), it is certainly within the range of what is common for applications in
spatial statistics and stochastic geometry — we leave more extensive simulation studies to
physicists like Fernandez et al. (1995), who report on computer work performed on many
workstations over a year’s time.

2 Local Hard Core Gibbs Processes

In this section we study some properties of the intensity of hard core Gibbs point processes
defined on a bounded region. We start by introducing some assumptions, terminology, and
notation used throughout this paper.

We consider a potential ® which is stable and has a hard core distance R > 0 — without
loss of generality we can assume that R = 2, which is the minimal distance between centers
of non-overlapping unit balls as considered in Section 1. Specifically, ® : R¢ — (=B, 0]
is an even measurable function with ®(z) = oo if ||z|| < R and ®(z) is finite otherwise,
where B > 0 is a so-called stability constant. For Borel sets F' C R¢, let C(F') denote the
set of configurations (i.e. locally finite subsets) of F.. We let C(F') be equipped with the
usual o-algebra (see, e.g., Daley and Vere-Jones (1988)). The restriction of a configuration
¢ to aset G is denoted by £ = ENG. The total energy of a finite configuration ¢ is defined
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setting H(()) = 0. The mutual interaction energy between two disjoint configurations &
and 7 is given by

HEn)= ), dz—-y)
z€E,YEN
setting H(&, n) =0if E=0 or n = 0.
Henceforth we let G C R? denote a bounded Borel set, z > 0 a so-called fugacity
parameter, and ¢ € C(RY) a feasible boundary condition, that is ||z — y|| > R for all
distinct x,y € £. The grand partition function corresponding to z, GG, and £ is defined by

00 o e C
Zz,G(g) = Z E/ d(x)n@ H((z)n)—H((@)n,¢c ),
n=0 "

where the conventions (z), = {z1,z2,... ,2,} and d(x), = dx,dxy - - - dx, are used. Since
® is stable, the grand partition function is finite. The local Gibbs measure P, (- |£) with
boundary condition £ is the probability measure on C(G) defined by

1

e —H((@)n)=H ()0, €ce)

for non-negative measurable functions f. Clearly, Z, ¢(¢) and P, ¢(- |£) do not depend on
&q. Finally, if |G| > 0, we define the conditional local intensity Ag(z| &) on G as the mean
number of points per unit volume under P, (- |£),

#X

Aa(z]€) = WPZ,G(dX|§)

i 2_7: fGn d(x)n ne—H{(@)n)—H((x)n,Ece)
n=0

/ FXOP.G(dX|€) =

Gl 7 & o , (2)
Z_:O 2 [ d(@)y e~ (@)= H((@)n, Ece)

where #X denotes the cardinality of X € C(G).

Remark 1. Asdistances between points of a sample configuration with respect to P, ¢(-[€)
cannot be less than R, the denominator and numerator of the right hand side of (2) are
polynomials in z of the same order. Let

NG(&) = max {n : / d(ZU)n G*H((w)n)*H((m)nnyc) > 0}

be the order of these polynomials. Note that Ng (&) depends only on (R, G, £ge) and neither
on z or the particular type of hard core process considered.
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Lemma 1. For any bounded Borel set G C R® with |G| > 0, the conditional local intensity
Aq(z|€) is increasing in z, and its supremum lim,_, o A (2| ) is equal to Ng(§)/|G].

Proof. The first property follows as the derivative of the right hand side of (2) with respect
to z is equal to 1/|G| times the variance of #X under P, ¢(-|£). The second property follows
from Remark 1 and by taking the limits of the numerator and the denominator of the right
hand side of (2) after dividing each of them by 2V&(®), O

In the rest of this section we consider a local Gibbs measure P, ¢(-) = P, (- |0) with
the free boundary condition & = ). We set Ag(z) = Ag(z, ).

Proposition 1. The conditional local intensities of local hard core Gibbs processes with
free boundary condition attain the closest packing density, that is, we have

limsup lim A\,g(z) = lim limsup A\,g(z) = p. (3)

r—00 2Z—00 Z—00 Tr—00
Proof. Lemma 1 ensures that, for any 6 > 0 and r > 0,

NTB

V() ~ g

for sufficiently large z. We verify first the following useful inequalities,
My, _1B < N, < M;m, r> 1. (4)

Since we can include M, disjoint unit balls in (r—1)B, we can include the same number
of disjoint balls with radius r/(r—1) > 1 in rB. So we can include not only M, 1)g disjoint
unit balls but also their translates by vectors h in rB whenever ||h|| < 1/(r — 1). Hence
the first inequality holds. The second inequality is trivial. Now, (4) gives that

M(r—l)B M,
——— =0 <\ < —= 4+
[ I T
for all > 1 and for z large enough, whereby (3) follows. O

Remark 2. If “limsup” in (1) can be replaced by “lim” as in the two-dimensional case,
we can also replace “limsup” by “lim” in Proposition 1. In fact lim,, ,  A\:B(2) = p. Also
note that the restriction to the case of balls, G = rB, is by no means essential and we
can take any homothetic sets G = rC instead if C C RY is a convex set with non-empty
interior. If C is rectangular and we consider the corresponding torus 7" (i.e. use the periodic
boundary condition, which is often imposed in computer simulations), we obtain the same
results.

Remark 3. Arguments similar to those in the proof of Lemma 1 lead to the relation

‘ 4X 2 [ Ng 2
[ (Ter) Peota0= (750)
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This implies

< #X
llll N — .
z—>1 00 WP { |G| !

Consequently, the sample intensity of a hard core Gibbs process fluctuates very little if the
activity is large enough. Further, if “limsup” in the relation (3) can be replaced by “lim”,
it is straightforwardly shown that there exists an r. for every € > 0 such that

X
Per P_€§#—§P 21_6
’ rB|

for every r > r. if z is sufficiently large.

3 Global Hard Core Processes

In this section we consider intensities of global hard core Gibbs processes.

We let the situation be as in the previous section and consider again a potential ® which
is stable and has a hard core distance R > 0; as before we can without loss of generality
take R = 2. In addition we assume that ® is of finite range ro > R, i.e. ®(x) = 0 whenever
||z|| > ro. Then there exists a global Gibbs measure P,, that is a probability measure
on C(RY), which assigns probability 1 to the feasible configurations in C(R?), and which
satisfies the Dobrushin-Lanford-Ruelle relation

/f(X)PZ(dX) = /PZ(dY) /C(G) F(XUYee)P, ¢(dX| Yee) (5)

for every bounded Borel set G C R and non-negative measurable function f. In the
special case rp = R, i.e. when ®(z) = oo if ||z]| < R and ®(z) = 0 otherwise, P, is a
so-called pure hard core Gibbs process.

The existence of P, is ensured as @ is superstable, lower regular, and [ |1— e 2@ |dx <
00, see Ruelle (1970). In fact, at least one stationary Gibbs measure exists for every z > 0,
where stationarity means that the distribution is invariant with respect to translations of
configurations. But there may be more than one Gibbs measure for some z — if this is
the case, we say that a phase transition occurs. This phenomena is studied fairly well for
the discrete (lattice) case, but although physicists have drawn much attention to the phase
transition phenomenon for the continuous state space case (see Section 4) mathematical
knowledge about it is rather limited, see Georgii and Haggstrom (1996).

Now, for bounded Borel sets G C R? with volume |G| > 0, we define the local intensity
AF(z) on G as the mean number of points in G per unit volume under P,,

36 = [EZEPax) = o1 Pax), (6)

Note that, if P, is stationary, A% (z) = A*°(z) is independent of G and coincides with the
usual definition of the intensity for a stationary point process.
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Proposition 2. The local unconditional intensities of global hard core Gibbs processes
attain the closest packing intensity, that is,

lim limsup \J3(2) = limsup lim inf A7} (2) = limsup limsup A\ (2) = p. (7)
Z=00  r—o00 r—oo 270 r—00 )

Moreover, if “limsup” in (1) can be replaced by “lim”,

lim Ag(2) =p. (8)

Z,r—00

Finally, if we choose a stationary P, for each z,

lim A\*°(z) = p. 9)

Z—>00
Proof. By Lemma 1, for any 6 > 0, r > rq, and Y € C(R%), we have that
N,s(Y) ‘

Aa(2]Y) - < (10)

rBj

for sufficiently large z. By the finite-range assumption, H((2),, YrB)-) = 0 if (2), C
(r—ro)B. Hence, if 7 > 7,

/ (), e~ H@n=H(@ 0 Yomye) > / (), e=H (@) (1)
(rB)" (r—ro)B)"

Since the maximal number of points with mutual distances > 2 included in G is less than
|G @ B|/|B| (& stands for Minkowski addition of sets), we see that, for r > ry + 1, the left
hand side in (11) is bounded by

/ (), (D o+ B H ()
rB)"

from above, where B is the stability constant. Therefore it can be assumed that (10) holds
uniformly in Y € C((rB)°).
Since always

Mg 28 < Np—1B < N;s(Y) < Npy1)B < Mpri9)B
it follows from (10) that

M(r—2)B
"Bl

M(H—Q)B
7B

— 5 < Ap(2]Y) < +6

for each r > max(2,ry + 1) if z is large enough. Taking the expectation with respect to
P,(dY) yields

M _2)B M 42)B
— 0 < A%(2) < J.
B 0SBl S TRt
Thereby (7) and (8) follow. If P, is stationary, A% (z) is independent of G and (9) follows
immediately from the first assertion. O



Remark 4. Using the integral characterization of Gibbs processes due to Nguyen & Zessin
(1979a), if P, is stationary,

/ #X,g P,(dX) = z|rB] / e~ HULO P (dX).
Therefore, for any stationary pure hard core process P,,

lim :P,{XN(2B) =0} =p.

Z2—00
Also, as in Remark 3, it can be shown that

X
lim lim sup Varp, {# TB} =0.

Z—00  Tr—00 |7”B|

It is plausible that the global intensity like the conditional intensity is increasing in
z, but it seems difficult to verify this because of the possible existence of phase transi-
tions. Our final result (Proposition 3 below) shows that the global intensity is indeed
non-decreasing possibly except for those values of z for which phase transition occur.

We need first some technical results, where {G;} is a given sequence of increasing
bounded convex subsets of R? so that the supremum of the radii of balls lying in G|
converges to oo.

Lemma 2 (Nguyen & Zessin, 1979b, Lemma 3.1). Let
Aj={(x1,...,xq);ji—1/2 < < ji +1/2,1 < i < d}

be the unit hyper-cube with center j = (j1,...,ja) € Z%. Further, for h = 1,2,..., let
GI (resp. GI') be the union of those hA; which intersect with (resp. are included in) G.
Furthermore, let GI' be the set of those x € R® which is within distance h from the boundary
of Gi. Then |G!|/|Gi| — 1, |GIN\G!/|Gi| — 0, and |G}/|G)] — 1 as | — .

The next lemma is the key to the proof of Proposition 3. In the following we only
consider the free boundary condition and let Z, ¢ = Z, ¢(0). Further, E, ; denotes expec-
tation with respect to P, ¢ =P, o(- | 0).

Lemma 3. Consider a z > 0 so that P, is unique and hence stationary. Let A C G be
two bounded Borel sets with |A| > 0 and set

(X NA)
)\AG # |A| ZG(dX)

Then there is a subsequence {G";} of {G,} such that

AA,G’, (Z) — A® (Z)



Proof. This result follows from Ruelle (1970, Theorem 5.5). Let pX ((7)n) be the m-point
density function of X N A for P, ¢, that is, form =0,1,...,

n-+m

/ d(y) e (@ b @)
n! (G\A)"

if (7)m C A and pR 5((7)m) = 0 otherwise. It is seen that

(@) = —— 3 2

Z
z,G n=0

[HE N8P0 =3 2 [ d@n (@) ol

Then Ruelle showed that there is a subsequence {G’;} such that the following limit exists
uniformly in (x),,,

Jim pX g (2)m) = oX ((2)m) -

Here {0} is the system of m-point density functions of the marginal distribution of X N A
under P,. Since #(X N A) is always bounded by |A @ B|/|B],

Mo = 3o [ @ e (@)

This completes the proof. O

Remark 5. The construction of the system of m-point density functions {o%'} as a limit
of {pX ¢} is the basic idea of the distinguished existence proof of global Gibbs processes
due to Ruelle (1970). The system {0} } exists even if there occurs a phase transition at
z, but it may depend on the choice of subsequences.

Proposition 3. Let I be the set of values z where the global Gibbs point process P, is
unique. Then the local intensity converges to the global intensity, that is,

lim Ag, (2) = AX®(2) for ze€l.

[—00

In particular, the global intensity A\*°(z) is non-decreasing on I.

Proof. The second assertion follows from the first assertion combined with Lemma 1. By
Lemma 3, for any given € > 0 there is an r > 0 such that

Aana(2) = A(2)| < €



whenever G; O Ay @ rB. Note that also |Aa; ¢, (2) — A°(2)] < eif G; D A; @ rB. For
sufficiently large [, GG; can be decomposed as the mutually disjoint union

=(Ua)Us

JED,
where D; is the set of those j for which A; ® rB C G;. Consequently,

o0 5 (0]
D) =G S o 3 P& -AE) o () - X7()
P> el
D13 .
< Btes Pl -l

Using Lemma 2 it can be shown that |S;|/|Gi| — 0, #D;/|Gi| — 1, and Ag, ¢, (2) is
uniformly bounded in [. This verifies the first assertion. O

4 Markov chain Monte Carlo for hard core Gibbs pro-
cesses

For specificity consider a planar stationary global pure hard core Gibbs process, i.e. d = 2,
®(x) = oo for ||z|| < R and ®(x) = 0 otherwise. Proposition 3 establishes the monotonic-
ity of the intensity A(z) = A°°(z), but many other questions concerning the qualitative
behaviour of A(z) are still open, in particular the question concerning existence of discon-
tinuities of A(z) or its derivatives. Equivalently we may consider the area fraction

Ax(z) = M2)TR? /4 (12)

of non-overlapping discs of diameter R and centered at the points in the process; note that
A(z) but not A4(z) depends on R.

Discontinuities of A 4(2), if they exist, could be associated with critical points for phase
transitions. Experimental results indicate the existence of a critical point between the
“freezing point” A4 = 0.69 and the “melting point” A4 = 0.716 (Weber et al., 1995; Mitus
et al., 1997; Truskett et al., 1998). It is expected that also changes from short to long range
order of the spatial distributional behaviour of the global pure hard core Gibbs process
appear at the phase transition point(s), but it is not clear whether this change happens
continuously or abruptly as a function of z.

In order to investigate such properties one has to resort to computer simulations of a
local pure hard core Gibbs process defined on a bounded region G. In our simulations
G = [0, a]? is a square and we use the periodic boundary condition, i.e. our target density
with respect to the unit rate Poisson process on G is proportional to

m(€) = #1Na,y € €1 lo—yl| > Rif o # 9] (13)

10



where 1[-] denotes the indicator function. Here and henceforth,
||z||* = (min(xl,a — ml))Q + (min(xg,a — 1'2))2, r=(x1,19) € G

denotes geodesic distance when G is wrapped on a torus. Note that if we fix the number
of points in (13) to be #& = n, then 7, can be considered as a conditional density with
respect to the Bernoulli process with n i.i.d. points in G. Clearly this conditional density
does not depend on the value of z.

The simulation problem becomes difficult when z increases. In order to obtain a sim-
ulation algorithm with good mixing properties we combine various Metropolis-Hastings
algorithms with simulated tempering in Section 4.1. The experimental results concerning
the area fraction, the pair correlation function and some other characteristics are discussed
in Section 4.2.

4.1 Algorithms

Our basic algorithm is the Metropolis-Hastings algorithm (MH) studied in Geyer and
Moller (1994), Geyer (1999) and Moller (1999). Section 4.1.1 provides a short description
of the this MH algorithm; note that it covers the canonical ensemble (i.e. the fixed number
case) as well as the grand canonical ensemble (i.e. when the number of points fluctuates).
The combination of the MH algorithm and simulated tempering (Marinari and Parisi, 1992;
Geyer and Thompson, 1995) is studied in Section 4.1.2.

4.1.1 Basic algorithm

For latter purposes it is convenient to describe the MH algorithm when we want to simulate
from any unnormalized density g, i.e. ¢ is a non-negative integrable function with respect
to the unit rate Poisson process on G.

Assume that n with g(n) > 0 is the current state of the Markov chain generated by the
MH algorithm. It is then proposed to either ((a)) add, ((b)) delete, or ((c)) move a point
with probabilities p;(n), p2(n), and 1 — p1(n) — p2(n), respectively. The proposal 1’ for the
next state in the chain is given as follows:

(a) n' =nU {x} where the new point x € G is sampled from a density b(n,-) on G;
(b) n' = n\{z} where x € 7 is chosen with probability d(n, z) (if n = () we set ' = n);

(c) n' = (n\{z})U{y} where x € n is chosen with probability d(n, z) and y is sampled
from a density m(n \ {z},z,-) (if n =0 we set ' = 0).

The proposed state n' is finally accepted with probabilities min{1,r(n,7')}, where the
Hastings ratio r(n,n') depends on the type of transition and is given by

g(n)p2(n)d(n', )
(a) b Y

g(mp1(n)b(n, x)

11



D (i = then r(n, o) = r(0, 0) = 1):

(©) g(') A =pi(n') = pa(n)) d(n', y)m(n \ {z}, y,7)
g(m) (L —=pi(n) — pa(n)) d(n, x)m(n \ {z},z,y)

If 1’ is rejected, the Markov chain remains in 7.

In our simulations, pi(n) = p2(n) = p are constant with 0 < p < 1/2; the densities
d(n,-) and b(n,-) are uniform on 7 and G, respectively; and the density m(n \ {z},z,-) is
uniform on a square of side length 2 x € centered in . Note that the Metropolis algorithm
(Metropolis et al., 1953) is the special case p = 0 where the number of points is fixed.

Theoretical properties of the MH algorithm are studied in Geyer and Mpller (1994),
Geyer (1999) and Mpgller (1999). By construction the Markov chain is reversible with
invariant density specified by g with respect to the unit rate Poisson process on G if p > 0
or with respect to the Bernoulli process on G if p = 0. In particular, if ¢ = 7, is the target
density (13), the Markov chain is uniformly ergodic when p > 0, and also when p = 0
provided that R is sufficiently small (this is needed to ensure irreducibility).

For large values of z, however, the chain, despite the property of uniform ergodicity,
converges very slowly and produces highly autocorrelated samples. As an example we
applied the MH algorithm with p = 0.1 and ¢ = 0.3 for simulation of the process with
g=m,, G=1[0,10]?, R =1 and logz = 12.62. Figure 1 shows time series and estimated
autocorrelations for two statistics, viz. the number of points and the empirical mean of the
first coordinates of the points in the point pattern. The time series of length 10000 were
obtained by subsampling each 5000th state of the chain given by 5 x 107 basic updates, i.e.
either insert, delete or move. The time series are highly autocorrelated and the algorithm
has not even converged. In particular the chains get stuck after about the first 7000
subsamples. The estimated acceptance probabilities for insert, delete and move are 2x105,
3 x 1075 and 0.12, respectively. The two first acceptance probabilities had to be equal for
a chain in equilibrium.

4.1.2 Simulated tempering

Much better results are obtained when the MH algorithm is combined with simulated
tempering as described in the following.

The equilibrium distribution of our implementation of simulated tempering is a mixture
of repulsive point process models with unnormalized densities gy, ..., gn, n > 2, where the
MH algorithm for g; mixes well when ¢ is small, while it produces highly autocorrelated
samples when ¢ increases towards n. Specifically, for ¢t =1,... ,n,

; E yl| < R)+c
2 52 b(0, R/2)]
zFy
with 0 = v <% < - <Y1 <7 = o0 and ¢ > 0, and where we set 0 x oo = 0.

The terms v;1(||z — y|| < R) and v;c|b(xz, R/2) N b(y, R/2)|/|b(0, R/2)| both introduce a

12
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Figure 1: Time series and estimated autocorrelations obtained with the Metropolis-
Hastings algorithm. Upper row: number of points. Lower row: statistic given by the
empirical mean of the first coordinates in the point pattern.

penalty whenever two hard discs overlap; the latter term enables us to distinguish between
point patterns with the same number of overlapping pairs of discs, but where the degree
of overlap differs. In particular, g, = 7, is the target density with z = z,, while ¢;
specifies the Poisson process with rate z;. The penalizing parameter ~; is by analogy with
physics often referred to as an inverse temperature, so that the Poisson process is the “hot”
distribution and the target process is the “cold” distribution. For the simulations reported
in this paper, the value ¢ = 10 was chosen as a result of some pilot simulations. We discuss
below how to choose the other parameters in order to obtain an algorithm which inherits
the good mixing properties of the MH algorithms for small .

Simulated tempering generates a Metropolis-Hastings chain (X, I;);>¢ whose equilib-
rium distribution is given by the (unnormalized) density

g(n,i) = gi(n)d;, necC(G),i=1,...n,
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Figure 2: Time series and estimated autocorrelations for the coldest chain in simulated
tempering. Upper row: number of points. Lower row: statistic given by the empirical
mean of the first coordinates in the point pattern.

where §; > 0 is specified as follows. Suppose that (X,I) ~ g where I is a so-called
auxiliary variable. The marginal distribution of X is then the mixture Y " | g;0;; g; is the
(unnormalized) conditional density of X|I = i; and P(I = i) x d;¢; where ¢; denotes the
normalizing constant (grand partition function) of g;. Estimates ¢; of ¢;, i =1,... ,n, can
up to a constant of proportionality be obtained in different ways as described in Geyer
and Thompson (1995). One possibility is to use stochastic approximation, another is
reverse logistic regression (Geyer, 1991) where the normalizing constants are estimated from
preliminary samples obtained with Metropolis-coupled Markov chains. Our experience is
that stochastic approximation is not feasible for large n while reverse logistic regression
is computationally demanding but secure. By choosing ¢; = 1/¢; an approximate uniform
mixture is obtained.

Now, for the simulated tempering algorithm a proposal kernel @ on {1,... ,n} is de-
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fined by Q(,i +1) = Q(i,i — 1) = 1/2 for 1 < i < n and Q(1,2) = Q(n,n — 1) = 1.
Given a current state (7,4), the two components are updated in turn using first the MH
update n — 1’ for the density g;(-), and secondly the kernel @) is used to propose an up-
date (n',i) — (n,7'): we return (n,4") with probability min{1,r(i,|n')} and retain (7', )
otherwise, where r(i,7'|n') = g(n/,i")Q(',i)/(g(n',9)Q(i,i')). By construction the Markov
chain (Xj, ;) is reversible with invariant density g; in particular (X;);>1.1,=, has equilibrium
density g¢,. As shown in Appendix A, geometric or uniform ergodicity of the simulated
tempering chain can be established under mild conditions; thereby the strong law of large
numbers and central limit theorems apply for the Monte Carlo calculations, see e.g. Mgller
(1999, Appendix A) and the references therein.

Regeneration may be useful for estimation of Monte Carlo errors as explained in Geyer
and Thompson (1995). A regeneration step can be done at the hot temperature, i.e. if the
simulated tempering chain reaches a state (Xj, 1), the point pattern X; is replaced by a
completely new generated point pattern with the Poisson process density g;.

Provided that the pairs of parameter values (z;,y;) and (241, 7;+1) are chosen sufficiently
close so that reasonable acceptance rates between 20% and 40% for transitions (n,i) <>
(n,7 £ 1) are obtained, the chain (X;);>1.;,=n yields a well-mixed sample from the target
model g,. Let (p;, €;) denote the parameter values for each of the MH algorithms combined
in the simulated tempering algorithm, ¢ = 1,... ,n. We choose the parameter ¢; to be
decreasing as a function of 7 so that reasonable accept rates for proposed moves are obtained
for each temperature. The values of p; are also taken to be decreasing since insert or delete
proposals have low acceptances probabilities for the low temperatures. The intensity of the
Poisson process with density g is chosen as z; = 1/R?. This value corresponds to the area
fraction A4(z) = w/4 = 0.785 of a planar stationary global pure hard core Gibbs process
with the same intensity. The remaining parameters are chosen as

logz; = logz +t; (logz, —log z)

and
o tys forl<i<n
T = oo fori=n
with n normalized "temperatures” 0 = t; < t5 < ... < t, = 1 and a value of v* such

that there are almost no overlapping discs in the (n — 1)th chain (Xj);>1.1,=p—1. Finally,
the adjustment of n and (¢;);—1_. , to obtain reasonable acceptance rates for transitions
(n,i) <> (n,i £ 1) are done similarly to Geyer and Thompson (1995, Section 2.3).

For comparison with Figure 1, Figure 2 shows the time series and estimated autocor-
relations computed from the coldest states (X;);>1.;,=n of a simulated tempering sample
with n = 17 temperatures and of length 17 x 5 x 107; the parameters for g, are again
G =[0,10]?, R =1 and log z,, = 12.62. The time series were obtained by subsampling the
cold chain in order to obtain time series with lengths 10000 as in Figure 1; another plot
(not shown here) confirms that each (/;) is approximately uniformly distributed as desired.
The estimated acceptance probabilities for the cold chain are 3 x 107%, 3 x 10~% and 0.10,
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for insert, delete and move, respectively. The cost of obtaining the simulated tempering
sample is approximately 17 times the cost for the usual MH algorithm, but convergence is
now achieved and autocorrelations are very much reduced.

In Section 4.2.2 below we further consider results obtained with the simulated tempering
algorithm.

4.2 Results

In the following we report on some simulated results for the area fraction (Section 4.2.1) and
some other characteristics (Sections 4.2.2-4.2.4) under the target model (13). These char-
acteristics seem to describe various aspects of certain “discontinuities” around the phase
transition between the freezing and melting points. Moreover some of the characteristics
measure the degree of order in the point patterns compared to an equilateral triangular
lattice.

For each considered value of z we used the simulated tempering algorithm for the grand
canonical ensemble (i.e. all p; > 0) in the simulation study of the area fraction, while for the
other characteristics we used the less computer intensive method of simulated tempering
for the canonical ensemble (i.e. all p; = 0).

4.2.1 Area fraction

By (12) and the periodic boundary condition, we estimate A4(z) by

- TR2N(z)
A =a

where N(z) is the empirical mean number of discs in the cold chain.

For G = [0,10]?, R = 1 and log 2,, between 3 and 14 we obtained the increasing curve
of estimated area fraction A4 (z) shown in Figure 3. In the simulated tempering chain, for
each considered value of z, we generated a sample of length between 5 x 10® and 10'°. The
calculation of N(z) is based on the sample for the cold chain of length between 2 x 107
and 10%; here we used an appropriate burn-in (about 10% of the sample).

Figure 3 shows that for a wide range of z values the curve of AA(Z) nearly coincides
with the curve obtained by a Padé approximation (see Appendix B). This indicates that for
values of log z < 9 (corresponding to A4 < 0.65) both the Padé formula and our simulations
yield good approximations of A4(z). Notice the change in the A4(z) curve at values close
to the freezing point A4 = 0.69 and the melting point point A4 = 0.716 mentioned after
equation (12); in particular this indicates a jump in the curve at the melting point. The
behaviour of the curve of Ay (z) for logz > 13.3 raises doubt about if sufficiently long
simulated tempering chains have been used for the values of logz > 13.3. Particularly
we believe that the curve should increase further and not show a flat behaviour as for the
largest values of log z in Figure 3.

16



Aa
0.76 - -

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58

0.56

0.54

0.52

0.50

0.48

0.46

0.44 7= T T T T T T T T T T —
4 5 6 7 8 9 10 11 12 13 14 15 1082

Figure 3: Estimated values of A,(z) using simulated tempering (solid line) and Padé
approximation (broken line).

4.2.2 Pair correlation function

For the results in this and subsequent sections we used G = [—20,20]?, R = 1 and deter-
mined the number N of points for every value of area fraction A4, = 0.65, 0.67, 0.69, 0.696,
0.701, 0.707, 0.71, 0.715, 0.721, 0.735, so that A4 = TR?N/(4|G|) in accordance with (12).
Hence N is ranging from 331 to 374. For the estimation of each considered statistic (pair
correlation function, hexagonality number, and so on) we used for various reasons subsam-
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ples of 100 point patterns of the cold chain obtained from mucher longer runs of the ST
chain: The estimation was first done for each point pattern, then we averaged over the 100
estimates; but the cost of the estimation for one point pattern is about 500 times the cost
of one step in the simulated tempering chain. Moreover, because of the small changes in
the simulated tempering chain, estimates based on subsequent point patterns look almost
the same. Therefore, for the 100 point patterns, we used a spacing of at least 10Nn.

The pair correlation function pcf is a well-known characteristic for point processes, see
e.g. Stoyan and Stoyan (1994), Stoyan et al. (1995) and Truskett et al. (1998). In R?,
assuming stationarity and isotropy of the hard core Gibbs point process, A(z)*pcf(r)(md?)?
can be interpreted as the probability of observing a point in each of two infinitesimally
small discs of radius 0 and with arbitrary but fixed centers located in distance r > 0
from each other. Under the target model (13), when the number of points is fixed and
G is identified with a torus, (N/|G|)*pcf(r)(md?)? has a similar interpretation (using the
periodic boundary condition when calculating inter point distances).

The pair correlation function can be estimated by non-parametric kernel methods as
described in Stoyan and Stoyan (1994) apart from the following modifications. We replaced
the intensity A with N/|G|. Furthermore, because of the the high number of points per
sample and since we averaged over 100 samples, we used a very small band width in
the kernel (of value 0.03, see Stoyan and Stoyan, 1994, page 285). Reducing the band
width reduces the bias in the estimator and by the averaging we still obtain a smooth
curve. Furthermore, because of the averaging, the variance in the estimator is substantially
reduced.

Estimated pair correlation functions with A4 = 0.65 and A, = 0.735 are shown in
Figure 4. As expected, with increasing A 4 the pair correlation function reflects more order.
The peaks of the estimated pair correlation functions can be compared with the modes
at r = 1, 1.732, 2, ... for the pair correlation function of the limiting regular hexagonal
pattern of hard discs with diameter R = 1. Clearly the curve for A, = 0.735 is in better
agreement to the limiting case than the curve for A4 = 0.65. In particular the second
mode for the curve with A4 = 0.65 splits into two modes as A, increases.

As mentioned at the end of Section 1, in statistical physics mostly the ordinary Metropo-
lis algorithm (i.e. the MH algorithm for the canonical ensemble) and molecular dynamics
have been used for simulations. Molecular dynamics (MD) is based on the equations of
motion of N molecules described by a local Gibbs process (see e.g. Strandburg, 1988; Allen
and Tildesley, 1987). The theoretical convergence properties of MD are not well under-
stood, but numerical evidence, e.g. obtained by comparison with results produced by the
ordinary Metropolis algorithm, supports that MD produces reliable results for pure hard
core Gibbs processes (Torquato, 1998, personal communication). This is also supported
by our results: Figure 4 is in agreement with the results in Truskett et al. (1998) obtained
by MD.
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Figure 4: Estimated pair correlation functions for A4 = 0.65 (dashed line) and A4 = 0.735
(solid line).

4.2.3 Alignment function

The alignment function zp(r) is a kind of third-order characteristic which is well adapted
to show if there are linear chains of points as for lattice-like point patterns (Stoyan and
Stoyan, 1994). For r > 0, consider any » € R? with ||[r|| = r and let B, be a square
centered at r/2 and of side length ar, where one side is parallel to r and 0 < a < 1 is
a user-specified parameter. In R2, assuming stationarity and isotropy of the hard core
Gibbs point process, \(z)|B,|zg(r) can be interpreted as the mean number of points in B,
under the condition that there is a point in each of the locations o = (0,0) and 7. For
r = 2, this mean number is exactly 1 in the limiting case of a regular hexagonal pattern of
discs with diameter 1. For a stationary Poisson point process we have that zg = 1, while
if e.g. zg(r) > 1, then B, contains on the average more points than an arbitrarily placed
rectangle of the same area. Large and small values of zg(r) for suitable r may thus indicate
a tendency of alignment in the point pattern. In particular, if « is sufficiently small, one
may expect zp(2) to be an increasing function of A4 with limit 0.2165/a? obtained at the
maximal area fraction A4 = 0.907.

The statistical estimation of zg(r) follows the same lines as in Stoyan and Stoyan (1994,
page 294) except that we again replace A(z) with N/|G| (since the number of points is fixed)
and use the torus convention. After some experimentation we decided to use a = 0.1.

Simulations show as expected that zp(2) increases with increasing A 4; but z5(2) = 1.83
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for A4 = 0.735 and this is far from the maximum value 21.65 obtained at A4 = 0.907.
The alignment of the point patterns is more apparent for slightly increased r, e.g. r = 2.2.
Figure 5 shows estimates of zp(2.2) and zp(3) as functions of A4. Also zp(2.2) is an
increasing function of A4. Note that the curve of zp(2.2) is steepest for values of Ay
between the freezing and melting points. The value 14.96 of z5(2.2) for A4 = 0.735 is not
very far from the upper bound 17.89 obtained by assuming that A(z)|B,|z(r) < 1 (which
holds as z — 0o0). However the curve of z5(3) decreases nearly linearly and slowly towards
0; perhaps surprisingly, this curve is not showing any change at the freezing and melting
points.

=
» o
1 1
1 1

ZB(22) B

e e el
oORFRr N
L1 1 1
LI

. ZB(3) =

O FRP NWbHOUIO N 0O
1
1

065 066 067 0.68 069 070 071 072 073 Aa

Figure 5: The alignment functions zp(2.2) (upper curve) and zg(3) (lower curve) versus
area fraction.

4.2.4 Hexagonality number

The idea behind any hexogonality characteristic is to look for deviations from the hexagonal
arrangement of neighbouring points to a point in an equilateral triangular lattice.

A first possibility is to use Ripley’s K function (see e.g. Stoyan and Stoyan, 1994). In
R?, assuming stationarity, A\(z)K (r) is the mean number of points in a disk of radius r
centred at the typical point (which is not counted). It vanishes for r < 1 and takes the
value 6 for values of r a bit larger than 1 in the case of an equilateral triangular lattice
with side length 2. Thus, for the hard core Gibbs point process when r is a bit larger
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than 1 and the number of points is fixed, one should expect an abrupt change of the
values of K(r) for A4 in the phase transition region. This, however, was not observed
in our simulations, where we observed a continuous and nearly linear dependence of A4
(estimation of (N/|G|)K (r) and the other characteristics considered below follow the same
lines as in Stoyan and Stoyan, 1994).

Quite different is the behaviour of the ”hexagonality number” H (r), the probability that
a disk of radius r centred at the typical point contains exactly 6 other points. Figure 6
shows the estimated H(1.3) as an increasing function of A4. The curve is steepest when
Ay is between the freezing and melting points.

Weber et al. (1995) consider another characteristic () defined as the norm of the mean
of the following sum taken over all points of the hard core Gibbs point process contained
in a disk of radius r centred at the typical point:

Z £5i¢i
J

where ¢ denotes the imaginary unit and ¢; is the angle between the z-axis and the line
through the typical point and the jth point contained in the disk. Clearly, this character-
istic is well adapted to quantify the degree of hexagonality in a point pattern. Figure 7,
which shows the estimated (1.3) as a function of A,, is similar to Figure 6.
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Figure 6: Estimated hexagonality number H(1.3) versus area fraction.
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Figure 7: Estimated hexagonality statistic ¢(1.3) versus area fraction.
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Appendix A: Geometric ergodicity of the simulated tempering
algorithm

Recall that for the i*" MH algorithm in the simulated tempering algorithm described in
Section 4.1.2, we have that p; € [0,1/2] and b(n,-), d(n,-), m(n\ {z},z,-) are uniform on
G, 1, Sy, respectively, where G = [0,a]? is wrapped on a torus and S, ; is a square on the
torus of side length 2 x ¢; centered in x (see Section 4.1.1). Under these conditions and
setting p, = min; p; and p* = max; p; we verify below that

e if p, > 0, then the simulated tempering chain defined on the state space supp(g) =
{(n,7) : gi(n) > 0} is ergodic and satisfies a geometric drift condition which ensures
geometric fast convergence towards the unique invariant distribution specified by g,
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that is the chain is geometric ergodic;

e if p* = 0, so that we have fixed the number of points to be m < oo then the simulated
tempering chain restricted to supp(gy,) is uniformly ergodic with unique invariant
distribution specified by gm(n,7) = g(n, i)1{#n = m).

The proofs below are much inspired by proofs in Geyer and Moller (1994), Mgller (1999)
and particularly Geyer (1999, Propositions 2 and 3). For background material on the
theory of Markov chains we refer to Meyn and Tweedie (1993).

Consider first the case p, > 0. Notice that each of the densities g; is locally stable in
the sense that there exists a constant K; > 0 so that g;(nU{z}) < K;g;(n) for all n € C(G)
and z € G. Choose any number K so that K > max; K; and (for convenience later on)
K > 1 and K|G| > 1. Then for the Hastings ratio r(n,n'|7) in the i*® MH chain we have
an upper bound for births,

rlnu ) = SIS < EEL it ) € suppia),

and similarly a lower bound for deaths,

g(mFHn+1) _ #n+1
ginu{z})|G| = KI|G|

rinU{z},nl) = if (nU {z},4) € supp(g)-

Since z;_1 < z; and v;,_1 < 7; we further get that

~

Zi—1 C;

)#n

i —1|n) >
rlivi = 1) > (1o

> 0,
so for each k£ > 1 we can find a 6 > 0 with r(i,i — 1|n) > J; for all (n,i) € supp(g) with
#n < kand > 1.

Let ¢ be the measure on supp(g) defined by ¢(A) = 1[(,1) € A] and let P* denote the
k-step transition kernel for the simulated tempering chain. Suppose (7,4) € supp(g) and
#(A) > 0. Further, for ease of presentation, assume that ¢, < 2¢, (this is indeed the case
in our applications where ¢; < ¢41, @ = 1,...,n — 1). Then r(1,2]0) = ¢ /(2¢2) €]0,1].
Choose any integer k > #n and set p;, = min(dx, 1 — r(1,2|0). Then

Pmax(k,n)((n, i), A) > Pmax(#n,ifl)((n, i), {((b, 1)})Pmax(k,n)fmax(#n,ifl)(((b, 1), {(@) 1)})
> (p*pk/(2|G|K))max(#n,i—1)(pl(l . 7”(1, 2|®))max(k),n)—max(#n,i—l)

> (pepr/ (2|GK))"=FMp(4) > 0. (14)
From this we get that the simulated tempering chain is ¢-irreducible and hence g-irreducible
with unique invariant distribution specified by g. Since aperiodicity follows from

P(0,1).{0,1)}) =pi(1 —r(1,20)) >0
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we can also conclude that the simulated tempering chain is ergodic. From (14) we further-
more get that

Cr = {(n,1) € supp(g) : #n < k}

is a so-called small set (see Meyn and Tweedie, 1993) for every k > 1.
We turn next to the geometric drift condition (Meyn and Tweedie, 1993, Theorem
15.0.1):

EV(Xy, )| Xo =0, Io = 1] < 6V (n,4) + 01[(n,7) € C] (15)

for all states (n,7) € supp(g), where 3 < 1 and b < oo are constants, V' > 1 is a measurable
real function, and C'is a small set.

If #n > K|G|, (n,i) € supp(g), and we condition on that (Xy,Iy) = (n,), then for
the MH algorithm used for generating X; we have that: a birth is proposed and accepted
with probability at most p; #ﬂf‘l (since K|G| > 1); a birth is proposed but rejected with
probability at most p;; a death is proposed (and hence accepted since #n > K|G|) with
probability at most p;; and a move is proposed and accepted with probability at most
1 — 2p;. Consequently

K?|G] 1

#77+1 +?+1)+(1—2pz).

If we choose N > K|G| such that K?|G|/(N+1) =€ <1—1/K (recall that K > 1), we

see that (15) holds with 8 = 1+p*(e+1/K —1), V(n,i) = K#1, C = Cy_; and b = KN*1,
Finally consider the case p* = 0. Since on supp(gm), inf gjm > 0 and sup g, < 0o, we

obtain the following lower bounds of the Hastings ratios: For any (n,) € supp(gm), ¢ €

{max(i —1,1),min(i + 1,n)}, and o' = (n\ =) U {y} with x € n and y € N}, S, ;, we have

that

E[K#X#11Xy =, 1) = i] < pil

inf §|m >

= 0.
Sup gim

r(n,n'li) > ¢ and r(i,d|n') > 6/2 with & =

Furthermore, g; > 0 for all i < n. It is then not difficult to see that the state space
supp(Jjm) is a small set; this is equivalent to uniform ergodicity (Meyn and Tweedie, 1993,
Theorem 16.0.2).

Appendix B: The Padé approximation

Combining the following Padé approximation from Hoover and Ree (1969),

8F 1 — 0.28b) + 0.006b2)\?
— =log A — 1+ DA
N 8T AT 670 1 0.00020

(here (3, F, N denote physical parameters) with the following relation from Hansen and

McDonald (1986)

OPFIN | F

1 —
0gz = A o N
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yields

4A,  4A, —6.04A% + 3.1936A4% — 0.59616 A% + 0.03456 A%

logz =1
087 =108 T Tt (1— 1.34A4, + 0.364%)?2
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