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Abstract

We generalize a result by Karatzas and Shreve, [15] to the multi-
dimensional case. A viscosity solution approach is taken to show that
the value function of the multi-dimensional monotone follower problem
coincides with the integral of the value function of associated stopping
problems. The connection holds under a strong factorization property
of the running cost function.
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1 Introduction

We give a multi-dimensional generalization to a result by Karatzas and
Shreve [15] on the equivalence between the monotone follower problem and
optimal stopping. The monotone follower problem consists of optimally con-
trolling a Brownian motion with a control which may be singular with respect
to the Lebesgue measure. Such control problems, and generalizations of it,
are also known as singular stochastic control. Karatzas and Shreve [15] show
that the value function of the monotone follower problem coincides with the
integral of the value function of an associated stopping problem. Such a
connection was first noticed by Bather and Chernoff [1], but later proved
rigourosly by [15]. We would also like to mention the paper by El Karoui
and Karatzas, [7], where a connection to the Skorohod problem is applied
in proving the connection. For a special class of diffusions, we prove that
a similar relation holds for the multi-dimensional singular stochastic control
problem. Our approach is based on the viscosity solution method in [3],
where the connection was established for general one-dimensional diffusions.

In a recent paper by Boetius and Kohlman, [2], a one-dimensional gener-
alization of the results of [15] is proved using comparison results. They also
consider a multi-dimensional problem where the control of the diffusion takes
place in one of the variables. We note that our case is more general since all
the coordinates of the diffusion can be controlled.

There is a lot of interest on singular stochastic control problems, both
from the theoretical and the applied point of view. We would like to mention
a few works on the subject; Benes et al. [4], Karatzas [13, 14], Karatzas and
Shreve [16], Zhu [24], Fleming and Soner [8], Haussmann and Suo [10, 11],
Lungu and Øksendal [18, 19] and Myhre [22].

The multi-dimensional diffusion process we consider must have a special
dependency with respect to its initial condition. This is valid in the case of a
correlated Wiener process with drift, which consitute a direct extension of the
results in [15]. The running and final cost functions must, however, factorize
in their space variables, which means that no cross terms between space
variables are allowed. Under some additional conditions, we prove that the
value function of the multi-dimensional monotone follower problem coincides
with the sum of the integrals of associated stopping problems. A corollary
of this is that the multi-dimensional singular control problem factorizes into
n one-dimensional control problems. The representation is quite natural
in light of the factorization of the cost functions and the structure of the
diffusion. The proof highly relies on results by Haussman and Suo [11],
which proves that the value function of the follower problem is a viscosity
solution of a variational inequality.
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The paper is organized as follows: In Section 2 we formulate the multi-
dimensional singular stochastic control problem and state the associated
stopping problems. The basic assumptions on the parameter functions and
some preliminary results are stated in Section 3. The viscosity property of
the value function is discussed in Section 4, where we prove the main result
of this paper, namely the connection to the sums of the integral of associated
stopping problems. We end the section with a discussion of the connection
between the optimal control and the optimal stopping times.

2 Formulation of the problems

Let (Ω,F , P ) be a complete probability space and Ft for 0 ≤ t ≤ T be
the σ-algebra generated by the m-dimensional (standard) Brownian motion
B(s), 0 ≤ s ≤ t. T < ∞ is a fixed time horizon. We assume Ft to satisfy
the standard conditions with FT = F . Let X t,x(s) be the n-dimensional
diffusion process starting in x = (x1, .., xn) ∈ IRn at time t defined as

X t,x(s) = x +

∫ s

t

µ(u,X t,x(u)) du+

∫ s

t

σ(u,X t,x(u)) dB(u)(2.1)

where µ : [0, T ]× IRn → IRn and σ : [0, T ]× IRn → IRn×m are bounded con-
tinuous functions, continuously differentiable in the space variables and with
a restricted dependency structure on the different arguments. We assume
that X t,x

i (s) is only dependent on the i’th coordinate of the initial point x:

X t,x
i (s) = xi +

∫ s

t

µi(u,X
t,x
i (u)) du+

m∑
j=1

∫ s

t

σij(u,X
t,x
i (u)) dBj(u)

for i = 1, 2, .., n. For this special class of diffusions we thus have Xt,x
i (s) =

X t,xi
i (s). Note that our diffusion process really is a slight generalization of

a correlated multidimensional Wiener process with drift. For example, Let
µ ∈ IRn and σ ∈ IRn×m. Then

X t,x(s) = x + µ(s− t) + σ(B(s)−B(t))

satisfies the structural assumptions above.
The problem consists in optimally controlling the diffusion process under

some cost criterion. Denote by An(t) the class of IRn-valued Fs-adapted
processes ξ = {(ξ1(s), . . . , ξn(s)) : t ≤ s ≤ T} such that a.s. ω and for every
i = 1, . . . , n

(i) ξi(t, ω) = 0,
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(ii) s→ ξi(s, ω) is nondecreasing and left-continuous with right limits.

Denote the controlled process Xt,x,ξ(s) i.e.

X t,x,ξ(s) = x +

∫ s

t

µ(u,X t,x,ξ(u)) du+

∫ s

t

σ(u,X t,x,ξ(u)) dBu − ξ(s)(2.2)

The value function for the follower problem is given by

V (t,x) = inf
ξ∈An(t)

Et,x

[∫ T

t

h(s,X(s)) ds+

∫
[t,T )

f(s) dξ(s) + g(X(T ))

](2.3)

where h : [0, T ] × IRn → IR, f : [0, T ] × IRn and g : IRn → IR are Borel
measurable functions. See next Section section for the precise assumptions
on h, f and g. The integral with respect to ξ is interpreted as∫

[t,T )

f(s) dξ(s) =
n∑
i=1

∫
[t,T )

fi(s) dξi(s)(2.4)

and
∫

[t,T )
fi(s) dξi(s) is understood in the Lebesgue-Stiltjes sense;∫

[t,T )

fi(s) dξi(s) =

∫ T

t

fi(s) dξ
c
i (s) +

∑
t≤s<T

fi(s)4ξi(s)(2.5)

where ξci (s) is the continuous part of ξi(s) and 4ξi(s) = ξi(s+)− ξi(s). Note
that the (possible) last jump of ξi(s) at time T is not accounted for in the
integral. The function h represents the running cost, while using the control
will lead to costs according to the function f . After reaching T we have to
pay g.

The controls ξ are not necessarily absolute continuous with respect to the
Lebesgue measure on IRn. In fact, it will in many cases behave like a local
time on the boundary of some open region in [0, T )× IRn (see e.g. [15, 16]).
Thus, Problem (2.3) is usually refered to as a singular stochastic control
problem.

From [12] we know that Xt,x(s) is differentiable with respect to the intital
condition x. Since Xt,x

i (s) is only dependent on xi we have ∂jX
t,x
i (s) = 0

for j 6= i, where we use the notation ∂jψ(x) = ∂ψ(x)
∂xj

. Denote the partial

derivatives of Xt,x
i (s) with respect to xi by Y t,1

i (s), i.e.

∂iX
t,x
i (s) = Y t,1

i (s)
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Hence,

Y t,1
i (s) = 1 +

∫ s

t

∂iµ(s,X t,x(s))Y t,1
i (s)ds+

∫ s

t

m∑
j=1

∂iσij(s,X
t,x(s))Y t,1

i (s)dBj(s)

(2.6)

With the notation Y t,y
i (s) we mean the process that starts in y at time t.

We now state the corresponding stopping problems. For each i = 1, . . . , n,
define the optimal stopping problems,

Ui(t, x, y) = inf
t≤τ≤T

Et,x,y
[∫ τ

t

∂xhi(s,X
t,x
i (s))Y t,y

i (s) ds(2.7)

+ fi(τ)Y
t,y
i (τ)1τ<T + g′i(X

t,x
i (τ))Y t,y

i (τ)1τ=T

]
where the τ ’s are stopping times with respect to Fs and X t,x

i (s) is the i’th co-
ordinate of the diffusion Xt,x(s) defined in the section above. Each Ui(t, x, y)
is a measurable, positive-valued function defined on [0, T ] × IR2. Observe
that Ui(T, x, y) = g′i(x, y) and Ui(t, x, y) ≤ fi(t)y for t < T .

3 Assumptions and and some preliminary re-

sults

A basic assumption throughout the paper is a factorization property of the
cost functions h and g:

h(t, x1, . . . , xn) = h1(t, x1) + . . .+ hn(t, xn)(3.1)

and

g(x1, . . . , xn) = g1(x1) + . . .+ gn(xn)(3.2)

Under appropriate regularity conditions on the parameters of the monotone
follower problem, we will show that for x = (x1, . . . , xn)

V (t,x) =
n∑
i=1

∫ xi

−∞
Ui(t, z, 1) dz

This relation actually says that the multi-dimensional monotone follower
problem factorizes into n one-dimensional follower problems. Thus, if ξ∗(s)
is an optimal control, it will consist of coordinates which optimally controls
each of the Xi(s) separatly. This factorization of the control problem is
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natural in view of the simple nature of Xt,x(s) and the factorization of h and
g.

We make the following regularity assumptions on the functions hi : [0, T ]×
IR→ [0,∞), fi : [0, T ]→ [0,∞) and gi : IR→ [0,∞), for i = 1, . . . , n:

hi is bounded and Lipschitz continuous in both variables,(3.3)

continuously differentiable in x where ∂xhi is non-negative,

gi is Lipschitz continuous of polynomial growth, continuously(3.4)

differentiable, and g′i is non-negative,

fi(·) > 0 and Lipschitz continuous.(3.5)

The following relation between fi(·) and g′i(·) holds:

sup
IR
g′i(x) ≤ inf

t∈[0,T ]
fi(t)(3.6)

In addition, both hi(·, ·) and gi(·) vanish at −∞, i.e.

lim
x→−∞

hi(t, x) = 0 = lim
x→−∞

gi(x)(3.7)

for every t ∈ [0, T ], i = 1, . . . , n. From now on we assume that all the
conditions stated above holds for the parameters in the problem. From [3]
we have the following continuity and integrability result for Ui(t, x, 1):

Proposition 3.1. For every i = 1, . . . , n, Ui(t, x, 1) is uniformly continuous
on [0, T ] × IR. Moreover, U(t, x, 1) is integrable in x on (−∞, x̂) for every
x̂ ∈ IR.

Proof. The continuity results in [3], Section 3.2, are strictly speaking only
valid for one-dimensional Brownian motion. However, by straightforward
modifications of the argument given there, we see that the results can be
extended to multidimensional Brownian motion.

We state a “dynamic programming principle”. First, introduce the continu-
ation region for Ui:

Di =
{

(t, x, y) ∈ [0, T )× IR2 ; Ui(t, x, y) < fi(t)y
}

(3.8)

From Shiryayev [23] the following holds: Let τi be the first exit time from
Di. Then, for any stopping time τ ≤ τi,

Ui(t, x, y) = Et,x,y
[∫ τ

t

∂xhi(s,Xi(s))Yi(s) ds+ Ui(τ,Xi(τ))Yi(τ)
]

(3.9)
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Otherwise, for a general stopping time τ ,

Ui(t, x, y) ≤ Et,x,y
[∫ τ

t

∂xhi(s,Xi(s))Yi(s) ds+ Ui(τ,Xi(τ))Yi(τ)
]

(3.10)

(3.9) and (3.10) are exactly the kind of “dynamic programming principle”
we need to prove the connection between Ui and V .

Direct calculation gives the following natural factorization result for Ui

Lemma 3.2. The value function Ui(t, x, y) satisfies:

Ui(t, x, y) = yUi(t, x, 1)(3.11)

From now on we will only consider the stopping problem with y = 1, i.e.
the value function Ui(t, x) := Ui(t, x, 1).

Introduce for i = 1, .., n the continuation regions for the stopping problem
when y = 1;

D1
i =

{
(t, x) ∈ [0, T )× IR; Ui(t, x) < f(t)

}
(3.12)

Like in [3] we make the following structural condition on the continuation
regions D1

i : For i = 1, .., n the following holds

(C) The region D1
i defined in (3.12) is connected in the sense that if (t, x̂) ∈

D1
i then (t, x) ∈ D1

i for any x ∈ (−∞, ẑ)

4 The connection

The variational inequality connected to the singular stochastic control prob-
lem is

min

(
LV (t,x) + h(t,x); fi(t)−

∂V

∂xi
(t,x), i = 1, . . . , n

)
= 0(4.1)

V (T,x) = g(x)(4.2)

where L is the generator for the diffusion Xt,x(s) known to be

L =
∂

∂t
+

n∑
i=1

µ(t, xi)
∂

∂xi
+

1

2

∑
i,j

(σσT )ij(t, xi)
∂2

∂xi∂xj

The notion of viscosity solution was introduced by Crandall and Lions
[6] for first-order equations and Lions [17] for second-order equations. For
a general overview of the theory we refer to [5]. We recall the definition
of viscosity solution: Denote by C1,2([0, T ] × IRn) the space of functions
φ : [0, T ]×IRn → IR which are once continuously differentiable in t and twice
continuously differentiable in x.
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Definition 4.1. Assume V (t,x) is continuous on [0, T ]× IRn and V (T,x) =
g(x):

(i) V (t,x) is a viscosity subsolution of (4.1) if for every φ ∈ C1,2([0, T ]×IRn)

min

(
Lφ(t̄, x̄) + h(t̄, x̄), fi(t̄)−

∂φ

∂xi
(t̄, x̄), i = 1, . . . , n

)
≥ 0

where (t̄, x̄) ∈ [0, T )× IRn is the maximizer of V (t,x)− φ(t,x).

(ii) V (t,x) is a viscosity supersolution of (4.1) if for every φ ∈ C1,2([0, T ]×
IRn)

min

(
Lφ(t̄, x̄) + h(t̄, x̄), fi(t̄)−

∂φ

∂xi
(t̄, x̄), i = 1, . . . , n

)
≤ 0

where (t̄, x̄) ∈ [0, T )× IRn is the minimizer of V (t,x)− φ(t,x).

(iii) V (t,x) is a viscosity solution of (4.1) and (4.2) if it is both a viscosity
subsolution and supersolution.

From [11, Th. 5.5] we have the following result for the connection between
the value function V (t,x) defined in (2.3) and the variational inequality (4.1)
and (4.2):

Theorem 4.1. If g(·) ≡ 0 then V (t,x) is the unique viscosity solution of
(4.1) for which V (T,x) = 0.

Note that in the paper of [11] they consider a singular stochastic control
problem involving a continuous control in addition to the control ξ(t). Our
problem is a special case of their formulation.

Let V (t,x) be defined as in (2.3) and Ui(t, x) as in (2.7). We first
investigate the relation between the stopping problem Ui(t, x) and a one-
dimensional singular control problem. Define

Vi(t, x) =

∫ x

−∞
Ui(t, z) dz(4.3)

By extending the results in [3] in an obvious way, we get the following propo-
sition,

Proposition 4.2. Vi(t, x) is a viscosity solution of the variational inequality

min

(
LiVi(t, x) + hi(t, x); fi(t)−

∂Vi
∂xi

(t, x)

)
= 0(4.4)
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Vi(T, x) = gi(x)(4.5)

where

Li =
∂

∂t
+ µi(t, x)

∂

∂x
+

1

2

m∑
j=1

σ2
ij(t, x)

∂2

∂x2

If gi(·) ≡ 0, i = 1, . . . , n, we can conclude by Th. 4.1. that Vi(t, x) is the
value function of a singular control problem:

Vi(t, x) = inf
ξ∈A1(t)

Et,x
[∫ T

t

hi(s,Xi(s)) ds+

∫
[t,T )

fi(s) dξ(s)
]

(4.6)

We proceed with the n-dimensional case: For x = (x1, . . . , xn), define the
function

W (t,x) =
n∑
i=1

∫ xi

−∞
Ui(t, z) dz(4.7)

We show that W (t,x) is a viscosity solution of (4.1):

Theorem 4.3. Assume condition (C) is satisfied. Then the function W (t,x)
is a viscosity solution of (4.1) satisfying the boundary condition W (T,x) =
g(x).

Proof. This argument follows the lines of the proof of Th. 4.1 in [3]:
The boundary condition g(x) is obviously satisfied since,∫ xi

−∞
Ui(T, z) dz =

∫ x

−∞
g′i(z) dz = gi(xi)

where we used the assumption limz→−∞ gi(z) = 0.
We first treat the viscosity supersolution case: Let φ ∈ C1,2([0, T ]× IRn)

and (t̄, x̄) be a minimizer of W (t,x)−φ(t,x). Without any loss of generality
we may assume that

φ(t̄, x̄) = W (t̄, x̄) and φ(t,x) ≤W (t,x)

Suppose (t̄, x̄i) /∈ D1
i for at least one i ∈ {1, . . . , n}. Since (t̄, x̄) is an

optimum and both φ(t,x) and W (t,x) are differentiable at (t̄, x̄), we have

∂φ

∂xi
(t̄, x̄) = Ui(t̄, x̄i) = fi(t̄)

Thus we see that the supersolution property is satisfied in this case indepen-
dent of what Lφ + h is. Suppose now that the minimum is inside all the
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regions D1
i , i = 1, . . . , n. Since D1

i is open and assumed to have property
(C), there exists a stopping time τi which is smaller than or equal to τD1

i
(t̄, z)

for all z and not being equal to t̄. Namely, τi = infz{τD1
i
(t̄, z)}. (We use the

notation τD1
i

for the first exit time out of D1
i (t, z) when the process starts

at (t, z)). Let τ = infi τi. The Fubini-Tonelli theorem and the dynamical
programming principle (3.9) in each D1

i give

φ(t̄, x̄) = W (t̄, x̄)

=
n∑
i=1

∫ x̄i

−∞

(
Et̄,z

[∫ τ

t̄

∂xhi(s,Xi(s))Yi(s) ds+ Ui(τ,Xi(τ))Yi(τ)

])
dz

=
n∑
i=1

E

[∫ τ

t̄

(∫ x̄i

−∞
∂xhi(s,X

t̄,z
i (s))Y t̄,z

i (s))

)
dt

]
+

n∑
i=1

E

[∫ x̄i

−∞
Ui(τ,X

t̄,z
i (τ))Y t̄,z

i (τ)) dz

]
For each i, do the substitution u = X t̄,z

i (s) in the integrals above. This yields,∫ x̄i

−∞
∂xhi(s,X

t̄,z
i (s))Y t̄,z

i (s) ds =

∫ X
t̄,x̄i
i (s)

−∞
∂xhi(s, u) du = hi(s,X

t̄,x̄i
i (s))

In the last equality we have used that limx→−∞X
t,x
i (s) = −∞ a.s. and the

assumption limx→−∞ hi(t, x) = 0. Equivalently, we have∫ x̄i

−∞
Ui(τ,X

t̄,z
i (τ))Y t̄,z

i (τ) dz =

∫ X
t̄,x̄i
i (τ)

−∞
Ui(τ, u) du

Hence, by summing up and using φ(t,x) ≤W (t,x) we get

φ(t̄, x̄) = Et̄,x̄

[∫ τ

t̄

h(s,X(s)) ds

]
+ Et̄,x̄

[
n∑
i=1

∫ Xi(τ)

−∞
Ui(τ, u) du

]

≥ Et̄,x̄

[∫ τ

t̄

h(s,X(s)) ds+ φ(τ,X(τ))

]
Dynkin’s formula yields

0 ≥ Et̄,x̄

[∫ τ

t̄

Lφ(s,X(s)) + h(s,X(s)) ds

]
A limiting argument when τ → t̄ gives that Lφ+ h ≤ 0. Hence, W (t,x) is a
viscosity supersolution.
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Consider now the viscosity subsolution case: Let φ ∈ C1,2([0, T ] × IRn)
and (t̄, x̄) be a maxmizer of W (t,x)−φ(t,x). Without any loss of generality
we may assume that

φ(t̄, x̄) = W (t̄, x̄) and φ(t,x) ≥W (t,x)

Since Ui(t, x) ≤ fi(t)1t<T + g′i(x)1t=T we know that fi(t̄) − ∂φ
∂xi

(t̄, x̄) ≥ 0. It
remains to show that Lφ(t̄, x̄) + h(t̄, x̄) ≥ 0 in order to have the viscosity
supersolution property. Use the dynamic programming principle (3.10) for
each of the Ui’s and argue as above,

φ(t̄, x̄) =
n∑
i=1

Ui(t, xi) dz

≤
n∑
i=1

∫ x̄i

−∞

(
Et̄,z

[∫ τ

t̄

∂xhi(s,Xi(s))Yi(s) ds+ Ui(τ,Xi(τ))Yi(τ)

])
dz

= Et̄,x̄

[∫ τ

t̄

h(s,X(s)) ds+
n∑
i=1

∫ Xi(τ)

−∞
Ui(τ, u) du

]

≤ Et̄,x̄

[∫ τ

t̄

h(s,X(s)) ds+ φ(τ,X(τ))

]
Dynkin’s formula now yields,

0 ≤ Et̄,x̄

[∫ τ

t̄

Lφ(s,X(s)) + h(s,X(s)) ds

]
A limiting argument when τ → t̄ gives that Lφ+ h ≥ 0. Hence, W (t,x) is a
viscosity subsolution. This completes the proof.

It is now obvious that if gi(·) ≡ 0, for i = 1, . . . , n,

V (t,x) =
n∑
i=1

Vi(t, xi)(4.8)

where the Vi’s are the singular control problems defined in (4.6). Hence, we
see that the n-dimensional singular stochastic control problem factorizes into
n one-dimensional singular control problems.

For singular control problems one can - as already mentioned - split the
domain of definition into an in-action and action region (see e.g. [15, 16]).
If we denote the in-action region by D̃, an optimal control ξ∗ can in many
cases be constructed as follows: Push the process immediately out of D̃c if
it starts inside the action region. Thereafter the control will behave like a
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local time on the boundary ∂D̃, pushing the process just enough to keep it
inside the in-action region. As long as the process is in the interior of D̃ the
control does nothing. The region of in-action is defined as

D̃ :=
{

(t,x) ∈ [0, T )× IRn ;
∂V

∂xi
(t,x) < fi(t), i = 1, . . . , n

}
(4.9)

When the singular control problem coincides with the sums of the integrals
of the stopping problems as shown above, we have

D̃ =
n⋂
i=1

D1
i(4.10)

From the theory of optimal stopping the optimal time to stop is - under
certain conditions - when the process reaches the boundary of the continua-
tion region. This relates the optimal stopping time and the optimal control
process,

τ∗i = inf{ s ≥ t ; ξ∗i (s) > 0}
I.e., the optimal stopping time is the first time one intervenes with the opti-
mal control. This connection was proven by [15, 16] in the one-dimensional
case.

Karatzas and Shreve [15] also proved the existence of ξ∗ under regularity
conditions on the parameters. One of these conditions says that ∂xih should
be non-decreasing. From Haussmann and Suo [11], on the other hand, we
need h to be bounded in order to have the viscosity property of the value
function.
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