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Abstract: We discuss how the ideas of producing perfect simulations based on
coupling from the past for finite state space models naturally extend to mul-
tivariate distributions with infinite or uncountable state spaces such as auto-
gamma, auto-Poisson and auto-negative-binomial models, using Gibbs sampling
in combination with sandwiching methods originally introduced for perfect sim-
ulation of point processes.

Keywords: Coupling from the past; exact simulation; Gibbs sampling; lo-
cally specified exponential family distributions; Markov chain Monte Carlo;
Metropolis-Hastings algorithm; spatial statistics.

AMS 1991 MATHEMATICS SUBJECT CLASSIFICATION: 62H11, 62M30,
60K35.

1 Introduction

Since Propp and Wilson’s (1996) seminal work on perfect simulation there has
been an extensive interest in developing and applying their ideas in different
contexts (see the survey in Propp and Wilson (1997)). Briefly, the main idea is
to use coupling from the past (CFTP) and repeatedly use the same sampler for
generating upper and lower Markov chains started further and further back in
time until a pair of upper and lower chains coalesce at time 0, and then return
the result as a perfect (or exact) simulation from a given target distribution
(in Kendall (1996) and Kendall and Mgller (1997) it is argued why the ter-
minology ‘perfect’ is preferable). To do this Propp and Wilson (1996) assume
that the state space is finite and equipped with a partial ordering so that the
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sampler is monotone and there exist a unique minimal element, in which the
lower processes are started, and a unique maximal element, in which the upper
processes are started. Then a chain produced by the sampler, started at any
time n < 0 in an arbitrary initial state, sandwiches between that pair of lower
and upper chains which was started at the same time n. Thereby it can be
established under weak (ergodicity) conditions for the sampler that coalescence
will happens for all sufficiently large n, and by considering a ‘virtual simulation
from time minus infinity’ it follows that the output is a simulation from the
target distribution.

These ideas have now been extended in various ways. Kendall (1996) and
Héaggstrom, van Lieshout and Mgller (1996) outlined how to do perfect sim-
ulation for point processes, where the state space is uncountable. Especially,
as Propp and Wilson (1996) in their examples required the target distribution
to be attractive in a certain sense so that the Gibbs sampler becomes mono-
tone, Kendall’s work showed how to handle the opposite repulsive case. This
has been further generalised in Kendall and Mgller (1997), where the role of
the minimal element (the empty point configuration) is emphasized (there ex-
ists no maximal element in a point process setting); see also Kendall (1997)
and Haggstrom and Nelander (1997). An even more general approach, but for
simulating multivariate continuous distributions has very recently been studied
in Murdoch and Green (1997). This and the other mentioned papers will be
commented further on in this paper.

The purpose of this paper is to show how these ideas can be further extended
to produce perfect simulation of multivariate discrete (Section 2) and continu-
ous (Section 3) target distributions, where the target distribution is naturally
specified through its conditional distributions of one component given the others
so that Gibbs sampling is the obvious way of producing samples. The examples
of such distributions to be discussed will mainly be locally specified exponen-
tial family distributions (Besag (1974); Cressie (1993)) with applications in
spatial statistics such as auto-binomial, auto-Poisson, auto-negative-binomial,
auto-gamma models and certain pairwise-difference interaction models (Sec-
tions 2.3 and 3.3). Indeed many other examples of models could be included,
e.g. combinations of the local characteristics from different types of models may
specify a joint distribution from which we can make perfect simulations. The
auto-gamma model has also been used in other papers on Markov chain Monte
Carlo methods, in particular in connection to a Bayesian analysis of a dataset
on pump reliability (Gelfand and Smith (1990); Murdoch and Green (1997)).
In relation to this some empirical results will be reported at the end of Section
3.

The techniques used in Section 2 are much inspired by Kendall and Mgller
(1997) and some of the terminology and notation will be borrowed from that
work. Compared to Propp and Wilson (1996, 1997) and Hiaggstrom and Nelander
(1997) the extension is mainly that infinite discrete state spaces are covered as
well provided the model is repulsive. For definiteness an auto-gamma model is
considered in Section 3 and it is demonstrated how we can make perfect simula-
tions with an arbitrarily good accuracy by Gibbs sampling. Also the possibility
of using the Metropolis-Hastings algorithm will be investigated in Section 3.



Though the practicality of doing perfect simulation in general is yet not so
clear, the present paper and the contributions mentioned above at least demon-
strate that it is feasible to tackle many complex distributions by exploring the
monotonicity properties of the model and the sampler. One important model,
which I couldn’t handle, is a conditional auto-regression as it seems impossible
to bound the lower and upper processes by dominating chains (the construction
of upper and lower processes will be similar to the coupling construction for the
auto-binomial model in (ii), Section 2.3 - the problem is to realize (if possible)
how to start these processes in the right manner - obviously, one needs both a
‘positive’ dominating chain and a ‘negative’ dominating chain).

2 Discrete multivariate distributions

Suppose we want to make simulations from a target distribution 7 = D(X)
with X = (X1,...,Xk) a k-dimensional discrete random vector, which is spec-
ified by its conditional distributions D(X;|X_;), ¢ = 1,...,k, where X_; =
(X1,...,Xi—1,Xiy1,-..,Xg). Assume also that the support © of X is a subset
of {0,1,...}*¥ and that it contains the minimal element 0 = (0,...,0) € Q.
Let Fj(-|z—;) denote the cumulative distribution function of D(X;|X_; = z_;)
when P(X_; = z_;) > 0. We can then generate a Markov chain X(t) =
(X(t,1),...,X(t, k), t=0,1,..., started in X(0) = 0 and using cyclic Gibbs
sampling by setting

X(t,3) = F; (R(t,1)|X(t,i)) for i=1,...,k, t=1,2,...
where
X(ti)e =(X(E1),..., X(t,i—1),X(t—1,i+1),...,X(t—1,k))

is the k — 1 states of the components just before the ith update at time ¢ and
the R(t,1) are iid uniform numbers between 0 and 1. Here the inverse F~ of a
cumulative distribution function F is defined by F~(r) = min{s : F(s) > r}. In
fact, if the Markov chain X (¢) is irreducible it is also aperiodic and it converges
weakly towards X (see, for example, Roberts and Smith (1994)). In the sequel
irreducibility of X (¢) is assumed.

In this section we show how CFTP can be used for producing a perfect simu-
lation from 7 within finite time. It is assumed that the conditional distribution
functions satisfy a certain monotonicity condition with respect to the natural
partial ordering < on R? (d = 1,2,...) given by (z1,...,z4) < (y1,...,yq) if
z; <y, 2 =1,...,d: We assume that for any i, F;(-|X_;) is increasing in X_;,
that is,

Fi(-|lz—;) > Fi(-|4—) if z_; > %—4, x,& € Q. (1)
In analogy with Kendall (1996) and Kendall and Mgller (1997) we refer to
(1) as the repulsive case since X; tends to be smaller as X_; increases (another
terminology is used in Higgstrom and Nelander (1997)). The opposite attractive
case has earlier been studied (in the binary case where X; € {0,1}) in Propp
and Wilson (1996) and (for point processes) in Kendall (1996), Haggstrom, van
Lieshout and Mgller (1996) and Kendall and Mgller (1997). This case will be
commented on further in (ii), Section 2.3.



2.1 Perfect simulation algorithm (discrete repulsive models)

Let the situation be as described above and suppose that the iid uniform variates
R(t,1) are defined back in time ¢t = —1,—2,..., too. CFTP is then obtained by
reusing these random numbers in the following construction of lower and upper
processes Ly (t) = (Ly(t,1),..., Ly(t, k) and Uy, (t) = (U,(t,1),...,Upn(t, k)),
which are started at times n and generated forwards in time: For each integer
n € Z, set

Lp(n) =0, Ly(t,i) =F (R(t,9)|Un(t,i)e), i=1,...,k, t>n (2)
and
Un(n) = D(n), Un(t,i) =F (R(t,1)|Ln(t,i)), i=1,...,k t>n (3

with the dominating chain D(n) = (D(n,1),...,D(n,k)) given by the mutually
independent components
D(n,i) = F] (R(n,%)[0-;), i=1,...,k, n € Z.

Due to the conditioning in (2)-(3) we need to extend the definition of F;(-|z_;)
when P(X_; =z_;) =0. Fori € {1,...,k} and z_; € {0,1,...}F"1, define

Fi(+|z—i) = max{F;("ly—i) : y—i <7, P(X_j =y-i) >0}

which ensures that F;(z;|z_;) is increasing in z_;.

Now, in the perfect simulation algorithm we use a strictly decreasing se-
quence of non-positive starting times n = n; (0 > ny > ng > ...) and repeat to
generate lower and upper processes (Ly, Uy,) until coalescence happens at time
0: For j =1,2,... set n = n; and generate (Ly(t),Uy(t)), t = n,...,0, until
L,(0) = U,(0); return then Y = L,,(0) as a perfect simulation from the target
distribution 7 (see Section 2.2).

In principle an arbitrary sequence of starting times {n;} as above may be
used, but following the nearly optimal choice of doubling n (see Propp and
Wilson (1996)) we propose to set n; = —27 in applications. Notice that by
the definition (2)-(3), when generating (L, U,) for n = —2/ and j > 2 we are
reusing the random number stream R(t¢,i),¢ = 1,...,k, n/2 < t < 0, used
in the generation of (Ly/2,Up/2),-- -, (Lo, Up) together with the new random
number stream R(¢,i),i =1,...,k, n <t < n/2. Further comments are given
in Section 2.3.

2.2 Theoretical results (discrete repulsive models)

The perfect simulation algorithm actually works (at least in theory) according
to a general result presented in Kendall and Mgller (1997, Theorem 1). In this
section we restate and verify this for the present setup, partly for completeness
and since we refer to the proof later on and partly because the results presented
below extend those in Higgstrom and Nelander (1997). Actually, Higgstrém
and Nelander assume that {2 is bounded by some maximum z™%; they start



each upper process in ™% but compared to the perfect simulation algorithm
in Section 2.1, this can only increase the coalescence time by at most one.

For n € Z let X, (t) denote the target chain defined by cyclic Gibbs sampling
and started in the minimum 0 at time n:

Xn(n) = 05 Xn(t,Z) = F;i(R(taZNXn(t’z)(—)a @ = 15 n 'aka t>mn.

Proposition 1 For all times m < n < u < t we have that the following
sandwiching properties hold:

La(t) < Xu(t) < Ualt) < D), (4)
Ln(t) < Lin(t) < Un(t) < Un(2), (5)
Lim(t) = Un(t) if Lp(u) = Un(u). (6)

Proposition 1 is easily verified by induction. By (6), if coalescence happens
at time u in the mth pair of lower and upper processes (when n < u < 0),
we have also coalescence from time u to time 0 in the mth pair of lower and
upper processes (whenever m < n), and so Y = L,,(0) = U,,(0). Consequently,
in order to verify that coalescence happens within finite time in the perfect
simulation algorithm and the output Y follows the target distribution, it suffices
to consider the case where n; = —j and define

N =sup{n <0: L,(0) = U,(0)},

so —N is the number of pairs of lower and upper processes needed for obtaining
coalescence at time 0 when all the non-positive numbers are used as starting
times (we set sup) = —o0).

Theorem 1 With probability one, N > —oo, and Y = Ly(0) follows .

Proof: Clearly with probability one, D(t) = 0 for some ¢ < 0, and so by
(4), N > —oo almost surely. Hence we can define a ‘virtual simulation’
Y = lim,_,_oo Ly (0) from time minus infinity, and using (4)—(6), we get with
probability one that

Y = Ly(0) = Xn(0) = Un(0) = lim X,(0).

n——0o0

This together with the fact that X, (0) converges weakly to X as n tends to
minus infinity (since, by stationarity of R(t), D(X,(0)) = D(X(—n))) imply
that Y follows 7 = D(X).

Remarks: By stationarity of R(t),
D(Ln(t),Un(t)) = D(Lo(t —n),Up(t —n)) if t > n. (7)

Hence, as observed in Propp and Wilson (1996), D(—N) = D(M), where M =
inf{n > 0: Lo(n) = Uy(n)} is the first time of coalescence when the lower and



upper processes are started at time 0. But notice that Ly(M) is in general a
biased sample from 7 (Propp and Wilson (1996)).

The proof of Theorem 1 is only based on the sandwiching properties and
the fact that 0 is an ergodic atom for the dominating chain. In the terminol-
ogy of Foss and Tweedie (1997), —N is a succesful backward coupling time,
so the proof that ¥ ~ « follows also from Foss and Tweedie’s Theorem 3.1.
Clearly, if P(-,-) is the transition probability matrix for a target chain, then
by (1), P(z,0) > [I¥ F;(0]0_;) > 0 for any = € Q. Hence the state space Q
is a small set or equivalently P(-,-) is uniformly ergodic (see, e.g., Meyn and
Tweedie (1993, Theorem 16.0.2)). Although this gives uniform ergodicity, it is
not for the same reason as in Foss and Tweedie (1997, Theorem 4.2), since —N
is not ‘vertical’ in the sense of Foss and Tweedie: in fact, if the state space Q2
is infinite, we cannot achieve a backward coupling by considering sample paths
generated by the Gibbs sampler and started at any state in ) and any time
(< 0). However, due to the stochastic domination given by D, we need only to
consider target chains started in 0.

The following lemma, can be applied for establishing that the models con-
sidered in Section 2.3 below are attractive or repulsive.

Lemma 1 Let A denote counting measure on {0,1,...} (or Lebesgue measure
on (0,00)). Suppose that F;(-|x_;) (whenever well-defined for x_;) has density

fi(zi|z_s) o< bi(z;) exp(0i(7—s)z;) (8)

with respect to \, where b;y(-) > 0 and 6;(-) are measurable real functions. Then
Fi(-|x—;) is decreasing (increasing) in z_; if 0;(x_;) is increasing (decreasing)
m T_;.

Proof: Letting a(f) = [5° exp(fy)dv(y) with dv(y) = bi(y)d\(y), then © =
{6 : a(f) < oo} is an interval. For 8 € O, let Fy(-) denote the cumula-
tive distribution function with density exp(fy)/a(f) with respect to v. For
any 7 > 0 with v([0,7]) > 0, it is easily seen by differentation that g,(6) =
[ exp(0y)dv(y)/ [y exp(fy)dr(y) is increasing in § € © (if 6 is an endpoint of
©, we consider just left or right derivatives of g,(0)). Hence Fy(r) = 1/(1+g,(6))
is decreasing in 0 if v([0,7]) > 0, and Fy(r) = 0 otherwise, whereby the lemma
is verified.

2.3 Comments and examples (discrete attractive and repulsive
models)

(i) Some empirical findings for simple examples of binary repulsive models (i.e.
when © C {0,1}*) such as the hard-core model, Ising anti-ferromagnet, and
random cluster model (with the parameter for the number of connected com-
ponents chosen so that the random cluster model is repulsive) are reported in
Higgstrom and Nelander (1997).

(ii) Notice that L, and U, are not individually Markov chains in the repulsive



case. In the attractive case where for any ¢, F;(:|X_;) is decreasing in X_;, we
need an upper bound %% on 2 and we redefine the lower and upper chains
by setting L, (n) = D(n), Up(n) = £™%* and interchanging the role of Ly (¢,7)
and Uy(t,i) when conditioning in (2)-(3). Then both L, and U, become
Markovian, and the results in Proposition 1 and Theorem 1 are still valid ex-
cept that (4) has to be modified so that D becomes a lower dominating chain
(correspondingly the role of the minimum 0 and the maximum z™% are now
interchanged). Propp and Wilson (1996,1997) report on simulation studies of
the attractive Ising model (defined on very huge lattices) and its accompanying
random cluster model.

Another model is the auto-binomial model. Here D(X;|X_; = z_;) is a
binomial distribution with parameters n; and p;(z_;), where log(p;(z—;)/(1 —
pi(—i))) = Bi + 2.5 Bijr; and Bi, Bij = Bji are real parameters. The model
is attractive if all ;; > 0 and repulsive if all 8;; < 0. For illustrative purposes,
if the ;; have different signs, then we can start the upper processes in %" =
(n1,...,nx) and the lower ones in 0, and set

Ln(t,i) = F; (R(t, )| L (L, 5)1g;,; 500 + Un(t, )1 [p;;<0), 1 < J <45
Ln(t — 1,5)1 (g, 500 + Un(t — 1,5)1g,,<q): 8 < J < k),
Un(t,i) = F; (R(¢,49)|Ln(t, 5)1ig;<0) + Un(t, 1) Lig,; >0, 1 < J <45
Ln(t—1,5)1p,<00 + Un(t — 1,5) 15,500 < J < k),

when ¢ > n, where 1) denotes indicator function.
Yet another interesting model is the ‘pairwise-difference prior’ model with
(in the present setup) finite state space Q = {0, ..., m}* and

fi(zi]z—;) oc exp(— Z Bij(zi — 7)°)
JigF#
where (3;; = (;; are real parameters (see, for example, Besag (1989) and Green
(1996)). In applications of image analysis one takes all 3;; > 0 so that the model
becomes attractive. When doing conventional MCMC forwards simulations
from this model, unless m is small enough, it is often more convenient to use
another Metropolis-Hastings algorithm than the Gibbs sampler.

Note that if we multiply the pairwise-difference prior density (or any other
density with ‘full conditionals’ of the form (8)) with a ‘likelihood term’ []; gi(z;)
in order to get a posterior density, the monotonicity properties of the prior and
the posterior are the same.

(iii) Examples where 2 = {0,1,...}* is infinite are provided by the auto-
Poisson model, where D(X;|X_; = z_;) is a Poisson distribution with mean
Ai(7—i) = exp(B; + 3 ,.j.2i BijT;) and parameters 3; € R and f;; = Bj; <0, and
an auto-negative-binomial model given by that

il ) = ( o ) Nl )" (1= X))

with the parameter «; > 0 and where now (; < 0. Both models are repulsive;
the joint distribution is not well-defined if we allow some (3;; to be positive
(Besag (1974)), so it is not possible to include the attractive case.



Of course higher order interaction terms may be included in the auto-
binomial, auto-Poisson and auto-negative-binomial models. For example, we
can extend the exponent in the definition of p;(z_;) and \;(z_;) with the term
2 j<kig{jk} BijkT;Tk, where 35 does not depend on the ordering of i, j, k; for
the auto-Poisson and auto-negative-binomial models, 3;; < 0.

(iv) Suppose that X, ..., X; are conditionally independent given X;1,..., Xy
and that Xj;1,..., X are conditionally independent given Xj,...,X;, where
1 <1 < k. Then in the repulsive case (1), an alternative perfect simulation
algorithm is provided by replacing (2)-(3) by

L”(’I’L) = (07 T Oa D(’I’L,l + 1)a T aD(na k))a Ln(t,’l) = F'_(R(t7 z)‘Lﬂ(ta ’L)<_),

3

Un(n) = (D(n,1),...,D(n,l),0,...,0), Un(t,i) = F, (R(t,7)|Un(t,1)),

2

for ¢ > n, whereby L, and U, become individually Markov chains with state
space (2. This perfect simulation algorithm shares the properties in Proposition
1 and Theorem 1 if the partial order < used in (4)-(5) is replaced by another
partial order < defined by

zRy<=uwx; <y fori=1,...,1, z; >y;for j=14+1,...,k.

A comparative study of this perfect simulation algorithm, the algorithm in
Section 2.1, and certain perfect simulation algorithms based on extensions of
Fill (1997) will appear in Mgller and Schladitz (1998).

3 Perfect simulation of auto-gamma models

In the sequel we use notation as in Section 2, but it is now assumed that each
conditional distribution of the target 7 = D(X) is given by D(X;|X_; = z_;) =
(e, vi(z—;)), the gamma distribution with shape parameter «;; > 0 and inverse
scale parameter

vilz_i) =Bi+ D Bijxj,

Jig#

where the parameters 5; > 0 and 3;; = B > 0. Thus X = (Xy,...,Xy) is
stochastically dominated by k independent gamma variates with parameters
(a1,01),---, (g, Bx), respectively, and 7 has density

k
f(z) oc exp(— Zﬁzwz =" Bijmizy) [[ =" 9)

i<j 1

with respect to Lebesgue measure on Q = (0,00) (the density is only well-
defined for nonnegative 3;;). Note that the dependence is expressed through the
scale parameter vy; (compare with Cressie (1993, p. 440) who instead considers
a dependence through the shape parameter).

The auto-gamma model is also repulsive as F;(-|z_;) increases as z_; in-
creases, so like in Section 2 we can use cyclic Gibbs sampling based on ‘inver-
sion’ when simulating from 7. However, it is more obvious to utilize the fact



that the conditional distributions are scale models: So let G(t,7) ~ I'(a;, 1), i =
1,...,k, t € Z, denote mutually independent gamma variates (for the simula-
tion of the gamma distribution, see, e.g., Ripley, 1987). Then for the Markov
chain X(t) = (X(¢,1),...,X(t,k)), t=0,1,..., we now set

X(0) =0, X(t,7) =G(t,1)/v(X(t,i)) for i=1,...,k, t=1,2,...
whereby it is easily verified (see, for example, Roberts and Smith (1994)) that
X (t) converges weakly to X.

Apart from one major point, CFTP and the perfect simulation algorithm in
Section 3.1 below follow the same lines as in Section 2.1: As we are using Gibbs
sampling on continuous distributions we never get coalescence at time 0 of the
lower and upper processes (Proposition 2), but we shall establish in Theorem 2

that with an arbitrarily good accuracy we can deliver a perfect simulation from
7 within finite time. These aspects are further discussed in Section 3.3.

3.1 Perfect simulation algorithm (auto-gamma)

Define the lower and upper processes by
L,(n) =0, Ly(t,i) =G(t,3)/vi(Un(t,i)e), i=1,...,k, t>n (10)
and
U,(n) = D(n), Uy(t,i) = G(t,3)/vi(Lp(t,i)), i=1,...,k, t>n (11)

where the dominating chain D(t) is defined by the mutually independent gamma
variates

D(t,i) = G(t,i)/B;, i =1,...,k, t € Z.
Let ny > ng > ... be a given strictly decreasing sequence of non-positive
integers. Then, in the perfect simulation algorithm, for j = 1,2,... set n = n;
and generate (Ly,(t),Uy,(t)), t = n,...,0, until U,(0,7) — L,(0,i) < €, 7 =
1,...,k; return Z = (L,(0) + U,(0))/2 as a perfect simulation from w with
accuracy provably within € of w, where € > 0 is a ‘user-specified parameter’.

3.2 Theoretical results (auto-gamma)

In this section we verify that for any given € > 0 the stopping time
N(e) = N(e,{n;}) = sup{n; : Upn,(0,4) — Ln;(0,%) <€, i =1,...,k}

is almost surely finite, and that there is a coupling with a random vector W so
that D(W) = 7 and the output Z = (Ly()(0) + Un()(0))/2 satisfies that

1Z(6) ~W(@)| <e i=1,...,k (12)

This justifies that the ‘accuracy is €.
Let X, (t) denote the target chain defined by cyclic Gibbs sampling and
started in the minimum 0 at time n:

Xn(n) =0, Xn(t,9) = G(t,3) /7 (Xnt,i)), i=1,...,k t >n.



Proposition 2 For all times m < n < u < t we have that the sandwiching
properties (4)-(6) remain valid in the present situation. However, with proba-
bility one, N(0) = —oo, and if n < s < t, then

[Un(s, i) — Ln(s,i) < €| # [Un(t,i) — Ln(t,7) < €]. (13)
Proof: The sandwiching properties are straightforwardly verified by induction.

Clearly, P(Up(t,i) > Ly(t,4) for all s and n < t) = 1, so N(0) = —oo almost
surely. Since Uy (t,4) — Ln(t,%) equals

=161 (Un(t,9) = Ln(t,5)) + 35iy1 Big(Un(t = 1,5) — Lu(t = 1,5))
Vi L (t,9) )i (Un(t; 1))

where the gamma variate D(t,%) is independent of the fraction, it follows that
(13) holds.

D(t,4)

Remarks: As N(0) = —oo we have to take € > 0 in order to get a finite stopping
time (as discussed in (iii), Section 3.3, there exist perfect Metropolis-Hastings
algorithms with N(0) > —o0). Further, (6) is really not useful anymore, and
because of (13) we cannot stop the backward sampling the first time we get in-
termediate ‘e-coupling’. This is in contrast to the perfect simulation algorithm
in the discrete case, but for the auto-gamma model it turns out that only the
sandwiching properties (4)-(5) are needed in order to establish (12).

Note that the argument in Propp and Wilson (1996) for preferring the se-
quence {—27} still applies in the present situation. Clearly, if we consider a
subsequence {m;} of {n;}, then for the corresponding stopping times we have
that N (e, {m;}) < N(e,{n;}), so —=N(e, {0,—1,...}) is the smallest number of
pairs of lower and upper processes needed for obtaining coalescence at time 0.
Observe also that as (7) is satisfied, D(—N(¢, {0, —1,...})) = D(M(€)) with

M(e) =inf{n > 0: Lo(n,i) = Up(n,i) <e, i=1,...,k}.

Theorem 2 Let € > 0. With probability one, we have that N(e) > —oo and
the limits
L_(t)= lim Ly(t), U_x(t) = lim Upy(t) (14)

n——0o0 n——0o0

exist and agree. Moreover,
L_(t) follows the auto-Gamma model (15)
and (12) is satisfied with W = L_(0).

Proof: By Proposition 2 and (5), the limits in (14) exist almost surely. Further,
(5) also gives that U, (t) — Ly, (t) decreases to U_oo(t) — L_oo(t) as n(< t) tends
to minus infinity. To show that both L_(t) = U_(t) and N(e) > —oo hold
almost surely, it suffices to show that E(Uy(t) — Lo(t)) tends to 0 as ¢ — oo, cf.
(7). Hence, letting

I(tk + 1) = Lo(t, ), u(tk +1) = Uo(t,i), d(tk +i) = D(t,4), t >0

10



we just have to verify that
lim E(u(tk + 1) — I(tk +14)) = 0. (16)
t—00

Consider now any ¢ > 1 and 7 € {1,...,k}. Set @« = minf; > 0, f =

max [3;; > 0, and
A(s) = max{D(s,1),...,D(s,k)}
B(k — 1) max{A(s — 1), A(5)}
B(s) = .

a+ Bk —1)max{A(s — 1), A(s)}
Further, for 4,5 € {1,...,k} with ¢ # j, let 5(¢,5) = B;; and set 3(i,i — j) =
B(i,i —j + k) if i < j. We prove by induction that

(u(tk + 1) — I(tk + 1)) /u(tk +1i) < B(1)--- B(t) (17)
fort>1andi=1,...,k: If t =4 =1, then by (10)-(11),

wk+1) —i(k+1) _ X551 A1 j)u(k+1- )
u(k +1) B+ X! BT = fulk +1— )

< B(1)

where we have used that I[(k + 1 —j) = 0, u(-) < d(-), and the real function
a — a/(a +b) is increasing for b > 0. So for any ¢t > 1 and 7 = 1,...,k with
tk +1 > k + 1 we get by similar arguments and by combining the induction
hypothesis with the fact that 0 < B(¢) < 1

u(th + i) — I(tk + 1) ’“21 Yu(tk +1i — 7) u(th 4+ — §) — 1(tk +i — j)
w(th + i) tk—H) ) w(th +i—7)
YEZt By — )u(th +i— 5)
<B(1)”'B(t_1)ﬂi+]z§;% ik ri—g) ~ B

where we set B(1)---B(t —1) =1 if t = 1. Thereby (17) is verified.
Since d(tk + i) is independent of B(1),...,B(t — 1) and B(t) < 1 we get
from (17) that

Eu(th +3) — (th +1) < (3/B)E(BQ) -+ Bt — 1).
As the A(s) are iid and B(-) < 1, we have that

7j=1

E(B)B(2)---B(t - 1)) < E(BA)B(3)--- B(t — 1)) = (EB(1))"?

for ¢ even and where EB(1) < 1. So using again that B(-) < 1, we conclude
that E(B(1)---B(t —1)) — 0 as t — oo. This implies that (16) holds, and so
we have shown that with probability one, L_(t) = U_x(t) and N(e) > —oc.

To verify (15) is similar to the last part in the proof of Theorem 1 by using
(4)-(5) and observing that the Markov chain L_q(t) = U_x(t) = X_oo(t) is in
equilibrium for all ¢t € Z as D(X,(t)) = D(Xo(t —n)), t > n, where Xy(t — n)
converges weakly towards X as n — oc.

Finally, as L, (0) < W(0) < U,(0) if n < 0, (12) follows from the triangle
inequality.
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3.3 Comments and examples (auto-gamma)

(i) In computing the state space is of course finite, and in order to avoid techni-
cal subtleties we may simply refer to the results for the discrete case as outlined
in Section 2. If we take ¢ = 0, the perfect simulation algorithm (Section 3.1)
terminates when the lower and upper processes become equal because of round-
ing error on the machine; this may possibly cause substantial numerical errors
so that we are not quite ensured that the accuracy is given by the precision
“€machine. Of the numbers used in the computations. So it may be safer to keep
the size of € several orders of magnitude larger than €,,qchine-

(ii) The main example discussed in Murdoch and Green (1997) is how to do
perfect simulations from a posterior distribution for a dataset on pump reli-
ability (Gelfand and Smith (1990)), which is actually an auto-gamma model
(9) with k£ = 11 and pairwise interactions between just one variate and each of
the remaining variates. For this model I have produced two C-programs Per-
fectGammaBackwards.c (the algorithm in Section 3.1 for generating a perfect
simulation) and PerfectGammaForwards.c (for forward runs and with output as
shown below). These programs are available by anonymous ftp (ftp://ftp.math.
auc.dk/pub/jm/); the accuracy e is specified in the beginning of the programs.
The average of M (e€) based on 10000 simulations for each value of € was 9.3047 (e
=10"3), 11.3170 (e = 10~%), 13.3262 (¢ = 107), 19.3508 (e = 10~%), 31.3775 (e
= 1071%), 34.8263 (¢ = 0); the standard error of the average was 0.0050 (¢ =
1073), 0.0052 (e = 10™%), 0.0054 (e = 107°), 0.0061 (¢ = 10~%), 0.0072 (¢ =
10714), 0.0120 (e = 0).

The CFTP algorithms in Murdoch and Green (1997) use a larger number
of paths than just the two paths for the lower and upper processes in the per-
fect simulation algorithm considered in Section 3.1, so it would not make much
sense to use M(e€) in a comparative analysis. Duncan Murdoch has suggested
to me that a hybrid algorithm could possibly do better than either theirs or
mine, e.g. by first using my algorithm so that the lower and upper processes
become close enough and then using their multigamma coupler.

(iii) It is at least theoretically feasible to make simulations with accuracy 0 by
the following perfect Metropolis-Hastings algorithm by noticing that the den-
sity (9) of the auto-gamma model (as well as the auto-binomial, auto-Poisson,
auto-negative-binomial and many other models) is of a particular form:
k
f(@) o< h(z) [] qi(=s)

1

where (in the case of the auto-gamma model) g; is the density of I'(a;, 3;) and

h(z) = exp(— Y _ Bijziz;).

1<j

If we are using cyclic updates and the usual notation as introduced in Section 2,
then it is now a Metropolis-Hastings algorithm which generates a Markov chain

12



X(t), t > 0: At time ¢, when the ith coordinate is to be updated and the current
state is given by X (¢ — 1,4) and X(¢,7)., first a proposal D(t,) is generated
from ¢; together with a uniform number R(¢,4) (between 0 and 1), and secondly
we set X (t,4) = D(t,4) if R(t,4) < min{1,a;(D(¢,%), X (t — 1,7), X (¢,4))} and
we retain X (¢,7) = X (t — 1,4) otherwise (where all gamma variates D(t, ) and
random numbers R(t,%) are assumed to be mutually independent). Here

f(xla'"7xi—17di’$i+la'"7$k)Qi($i)
ai(d;, T, x—5) = = exp((z;—d; i L5
z( iy Lq z) f(371,---,$171,33i,33i+1,---,CUk)CIi(di) P(( i z)j%iﬂw ])

is the Metropolis-Hastings ratio (Hastings, (1970)). This is larger than 1 if
d; < z; (i.e. moving down is always accepted), whilst it decreases from 1 to 0
as a function of z_; when d; > z;. It is easily seen that X (¢) converges weakly
to X.
CFTP should now be obvious: Set L, (n) =0, U,(n) = D(n), and for t > n
set
L, (t,i) = D(t,i) if R(t,1) < a;(D(t,1), Ly(t — 1,4), Uy(t,9))

and Ly, (t,4) = L,(t — 1,1) else, and
Un(t,i) = D(t,i) if R(t,i) < a;(D(t,4),Up(t —1,%), Ly(t,4))

and U, (t,i) = U,(t—1,1) else. Clearly, the usual sandwiching properties remain
valid with D(¢) as the dominating chain, and for a perfect Metropolis-Hastings
algorithm similar to the algorithm in Section 2.1 it is not hard to verify that
the coalescence time is almost surely finite and the output follows the target
distribution. (Sketch of proof: Let ¢ > 0. Conditioning on the event that
D(t—1,1) <e,...,D(t,k) <, then for t > n the conditional probability of
the event L, (t) = D(t) is greater than d(e)*, where d(e) = inf{a;(d;,zi,z ) :
0<z;<d; <e,0<2; <¢,0# j} > 0. From this we get that the coalescence
time is almost surely finite; that the output follows the target distribution is
verified in the same way as in the proofs of Theorems 1 and 2.)

However, in practise (even for the simple example considered in (ii) above)
this perfect Metropolis-Hastings algorithm may become extremely slow as the
lower processes get stuck in 0 for a very long time unless the parameters
Bi;/(BiB}), i < j, are sufficiently small or equivalently if the interactions are suf-
ficiently weak. One may object that this is clearly due to the way proposals are
generated. But we need a coupling construction, where it is feasible to generate
a dominating chain, which is in equilibrium. Actually we are using the smallest
possible dominating chain as this has both to dominate the proposals and the
Markov chain X_ () started ‘in equilibrium at time minus infinity’ and gener-
ated by the Metropolis-Hastings algorithm (see the proofs of Theorems 1 and 2).

(iv) The coupling construction in Section 3.1 and the proofs of Proposition
2 and Theorem 2 are essentially only based on a few properties: (a) The ‘local
characteristics’ D(X;|X_; = z_;) are scale families, where the inverse scaling
factor 7;(z_;) is an increasing function of z_; and the support is the positive
half-line. Thereby lower and upper processes are naturally constructed (Section
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3.1). (b) There is a (natural) dominating and stationary Markov chain D(¢)
(in the proof of Theorem 2 we referred to that the D(t,%) are 7id, but this may
of course be weakened). (c¢) ED(t) is finite. Apart from (a)-(c) the fact that
D(X;|X_; = z_;) is a gamma distribution was really never used.

Certain models can be transformed into a auto-gamma model such as auto-
generalized-gamma and hierarchical models obtained by conditional indepen-
dent normally distributed variates with the precisions (inverse variances) given
by an auto-gamma model. It would be interesting to see if the ideas in Sections
3.1-3.2 become useful for other multivariate continuous distributions.
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