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Propp and Wilson’s (1996) coupling from the past (CFTP) algorithm for per-
fect simulation from the stationary distribution of a Markov chain has been
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extended in several ways. Propp and Wilson assumed the state space to be
finite, partially ordered so that the sampler is monotone, and to have unique
maximal and minimal elements. In Héiggstrom and Nelander (1997a,b),
Héggstrom et al. (1996), Kendall (1996), Kendall and Mgller (1998), Mgller
(1997) and Murdoch and Green (1997) CFTP algorithms are introduced al-
lowing e.g. for uncountable state spaces (point processes) and repulsive (or
anti-monotone) systems; see also Corcoran and Tweedie (1998a,b), Foss and
Tweedie (1997) and Foss et al. (1997).

An impatient user who stops long runs of the algorithm before termination
can cause biased output of the CFTP algorithm, see Fill (1997) and Thonnes
(1997) for details. Fill (1997) introduced an alternative perfect simulation
algorithm, based on rejection sampling and unbiased for user impatience.
This algorithm can briefly be described as follows. A Markov chain is started
in the minimal state and run for N transitions. Its output is accepted as a
sample from the stationary distribution if and only if a second chain, coupled
to the time reversed trajectory of the first one and started in the maximal
state, arrives at the minimal state after N transitions (backwards in time).
Else the procedure is repeated with doubled number of transitions.

Note that Fill assumes that the state space is finite, that there are unique
maximal and minimal elements, and that the transition matrix of the time
reversed Markov chain is stochastically monotone. So far Thonnes’ (1997)
simulation algorithm for some attractive point process models is the only
extension of Fill’s algorithm.

Mgller (1997) showed how to adapt CFTP for perfect simulation of con-
ditionally specified models. In this paper we examine the possibilities to use
Fill’s rejection sampling in a similar way.

In Section 2 we describe Fill’s algorithm in the setting of stochastic re-
cursive sequences (see Borovkov and Foss (1992) and Kifer (1986)), which is
easier to handle than Fill’s original setting. In Section 3 we show how the
algorithm can be used for discrete Markov random fields with exactly two
coding sets (or defined on a bipartite graph), a repulsive distribution and no
maximal element. A combination of the rejection sampling algorithm with
sandwiching is introduced in Section 4 to deal with repulsive models where
we do not have exactly two coding sets. Some experimental results compar-
ing CFTP and rejection sampling are presented and discussed in Section 5.
Finally, Section 6 contains a discussion on extensions to non-discrete models.



2 Perfect simulation by rejection sampling

This section provides essential background material. In particular, we re-
state Fill’s algorithm in terms of stochastic recursive sequences (SRS), using
that every time-homogeneous Markov chain can be represented that way, see
Borovkov and Foss (1992) and Kifer (1986).

Fill (1997) proved the correctness of the algorithm in a slightly more
general setting. For easy reference later on we include a proof of correctness
in our setup. The use of stochastic recursive sequences gives more insight in
how the algorithm operates. Moreover, considering the proof will help us to
extract the essential conditions under which the algorithm works.

Suppose we want to sample from a target distribution 7 with finite sup-
port 2. We assume that €2 is equipped with some partial order < so that €2
contains a unique minimal element 0 and a unique maximal element 1 with
respect to this partial order.

As in Corcoran and Tweedie (1998b), Foss and Tweedie (1997), Foss
et al. (1997), Haggstrom and Nelander (1997a,b), Haggstrom et al. (1996),
Kendall (1996), Kendall and Mgller (1998), Mgller (1997) and Murdoch and
Green (1997) assume that we can construct a time-homogeneous and ergodic
Markov chain Xg, X1, ... with stationary distribution 7 by

Xt = ¢(Rt: Xt—1)7 (1)

where ¢ is a deterministic function and the R; are i.i.d. random vectors. In
practise the construction (1) is often obvious and given by the way one writes
the computer program for simulating 7 as the limit of the chain.

Let P denote the transition matrix of X. The ergodic time-homogeneous
Markov chain X, defined through its transition matrix P by

Bla,y) = %P@,x) @

is the time reversal of X. We let PN and PV denote the corresponding N-
step transition probabilities. The time reversal is again an SRS and thus
there is an updating rule similar to (1) for X, too,

)A(/t = g(R;t: jzt—l)a (3)

where the R} are i.i.d. on some measurable space R and ¢ is a deterministic
function. We assume ¢ to be monotone in the second component:

o(r,z) < ¢(r,y) forall rzy with z<uy. (4)



Remark 1. Note that ¢ = 5 if X is time reversible. A typical non-reversible
updating scheme is cyclic Gibbs sampling as used later on in this paper. In
this case ¢ is obtained from ¢ by just reversing the order of the updating cycle.
Moreover, ergodicity of the Gibbs sampler is equivalent to irreducibility, see
Roberts and Smith (1994). This still holds if the support € is not finite
anymore but countable.

Finally, for z, 2" € Q with P(¢(R}, z) = z') > 0, let a distribution Q(z, z)
on R be defined by

Q(z,a')(4) = P(R, € A|§(R},z) = 2'), (5)

for events A. Roughly speaking, Q(z,z') describes the conditional distribu-
tion of any of the i.i.d. R} given that it caused the transition from x to 2’ in
the time reversed Markov chain X.

Now Fill’s algorithm for perfect simulation works as follows:

Algorithm 1 (Fill).
0. Choose an initial natural number of transitions N > 0.
1. Generate i.i.d. vectors Ry, ..., Ry.
2. Starting in Xy = 0 and updating according to (1), create Xi,..., Xn.

3. Given the output of the previous step, generate another stream of con-
ditionally independent random vectors R; drawn from the distributions
Q(Xny1-t, Xn_y),t=1,...,N.

4. Starting in Yy = 1 and updating according to Y; = (E(Et, }2_1), create
Y., ... Y.

5. If ?N = 0 then accept Z = Xy as a sample from 7. Else, double N
and start over from step 1 (with random vectors in steps 1 and 3 which
are independent of previously generated random vectors).

This is the special version of the algorithm mentioned in Fill (1997, Sec-
tion 7.1). Denote by T the time to determination of the algorithm, that is
the number of times steps 1-5 have to be performed till acceptance.

Proposition 1. Algorithm 1 terminates with probability 1, i.e. T < oo al-
most surely, and the output Z follows the target distribution m . Further,
Algorithm 1 is interruptible in the sense that the determination time T and
the output Z are independent. Moreover, in step 5 of the algorithm the event
of acceptance {Yy = 0} occurs with probability PN (1,0)/x(0).
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ProOF: We verify below that

P =0.Xy =2 Xo= 0% =1)= "DPYA0), (o)
7(0)
which yields the acceptance probability
- .~ .. P¥i,0
P(YN:O|X0:0,}/0:].): (A’ ) (7)
7(0)

By ergodicity, the right hand side in (7) converges to 1 as N — co. Hence,
T < oo almost surely. Moreover, by (6), Z and T are independent with
distribution of the output D(Z) = D(Xy | Xo =0,Yy =1,Yy = 0) = 7.

To show (6), let 2y = yy = 0,79 = 2,7 = 1. Write

Quan(¥,y) = P(6(R,y) =¢'), where R~ Q(z,2").

Then we have by the definition (5) of Q(z, '),

P(mv ml)Q(w,w’)(ya yl) = P(J(R:ﬁ .Z‘) = .T’, g(R::a y) = yl)' (8)

The design of the algorithm, the definition of the time reversal (2), and (8)
give

T1,..,EN—1 =1 Y1,..YN—1 t=1
7r(z) N N
= ~ Z [Hp(xt—laxt)} Z HQ(zt_l,zt)(yt—la Yt)
W(O) T1,...ky—1 t=1 Y1,.-YN—1 t=1
m(2) oo -
= ~ Z HP(QS(RQ,xt—l) = x4, $(By, Y1—1) = Y1) 9)
7(0) TN 1=
1--9YN—1

By the monotonicity (4) of ¢ the product in (9) is positive for paths with
r <y,t=1,..., N —1 only and thus

P(;g( ?v,xN—1) = Oa¢( INaZ/N—1) = 6) = P(g( INaf‘JN—1) = 0)

does not depend on zy ;. Summing in (9) first over £y ; and then over
TN_2,...,T successively, finally over the y;, we get the assertion (6).



Remark 2. To see the rejection sampling character of Algorithm 1 consider
the probability of acceptance from (7). By (3) and the monotonicity of the
updating rule ¢ we have P¥(1,0) < PV (z,0) for all z. Hence (0)/P" (i, 0) is
an upper bound of 7 (z)/P¥ (0, z) = 7(0)/ P~ (z,0). So the rule of acceptance
in step 5 of Algorithm 1 turns out to be ordinary rejection sampling with
proposal distribution PN (0, .).

Remark 3. We follow Fill (1997) in doubling the number of transitions in
step 5 of Algorithm 1. However, Proposition 1 holds as well if we use any un-
bounded non-decreasing sequence of values for N. Even bounded sequences
with PN(0,1) > 0 for infinitely many Ns may be used. This observation
remains true for Propositions 2 and 3 in Sections 3 and 4 concerning Algo-
rithms 2 and 3. In fact, in Section 5 we present some empirical results, where
N was incremented by 1 instead of doubled.

3 Repulsive models with two coding sets

In this section we extend Fill’s algorithm to certain discrete models. Briefly,
we consider a discrete vector X, which splits into two components X 4 and Xpg
so that the coordinates of X4 (or Xp) are conditionally independent given
Xp (or X4). Further, the conditional distributions are repulsive in a sense
defined below. Moreover, the state space of X is equipped with a partial order
very similar to the one introduced in Haggstrom et al. (1996) but for another
setting. In particular, there exist neither minimal nor maximal element with
respect to the ordering; instead quasi-minimal and quasi-maximal elements
are used.

More specifically, let X = (X;);c; be a random vector indexed by a finite
set I. We suppose that the distribution 7 of X is specified by the conditional
distributions D(X;|X_;), where X_; := (Xj)x»; denotes all but the ith com-
ponent of X. Let the support of X be a (not necessarily finite) set  C N/
containing 0 := 0. This is the minimal element with respect to the natural
partial ordering on €2 induced by the usual ordering on N. (Note however,

A~

that another partial ordering is used later on). We assume that 7(0) > 0 and

D(XalXp) = [[ D(XalXp), D(Xp|Xa)=]]D(Xs|Xa),

acA beB

where I is the disjoint union of A and B. In the terminology of Besag (1974),
A and B are coding sets if they are maximal in the sense that they can not
be replaced by another subdivision of I. Typically, if X is a Markov random
field with neighbourhoods ¥;,7 € I, then we are assuming that ¢, C B and



%, C Aforany a € Aand b € B. One example is a square grid I = (k, ()} ,_,
with 4-neighbourhood (¥, = {(k—1,1), (k+1,1), (k,1 = 1), (k,1+1)} with
modifications at the edges) and A = {(k,l) : k + 1 even}, B = {(k,I) :
k + 1 odd}. Another example is given by a graph with n + 1 vertices and n
edges joining one vertex with the n others. In the sequel we let ¥; denote
the smallest subset of I\ {i} so that D(X;|X_;) = D(X;|X«,).

Furthermore, for i € I and = € Q, let F;(-|z_;) denote the distribution
function of D(- |X_; = z_;). Let Q_; = {z_; : © € Q} be the restriction of {2
to all but the ith component. For the simulation we need the pseudo-inverses
of the distribution functions F; defined by F; (t|x_;) = min{s : F;(s|z_;) >
t}. We assume that X is repulsive. That is, for any ¢ € [0, 1] the function
F; (t|-) is decreasing w.r.t. the natural partial order on 2_; induced by
the order on N. For examples of repulsive models, see Section 5 and Mgller
(1997, Section 2.3).

Now, we generate a Markov chain with stationary distribution 7 by al-
ternately sampling from D(X4|Xp) = [[,c4 D(Xo|Xy,) and D(Xp|X,4) =
[I,c 5 D(Xs| Xy,) using the componentwise pseudo-inverses of the conditional
distribution functions of the A-component given the B-component,

Fi(rlzp) := (F, (ralX«,))aca for r €0, 1]A
and vice versa
Fg(r|za) == (F, (1| Xg,))ses for €0, 1]B.

That X is repulsive now means that F'; (r|zp) is decreasing in zp w.r.t. the
partial order on {2p induced by the order on N and F5(r|z4) is decreasing
in x4 w.r.t. the partial order on 4. If the B-component is large then the
A-component is small and vice versa.

Presented as a stochastic recursive sequence, the two-component Gibbs
sampler is given by

Gibbs sampler 1.
1. Xa=F (Rat|XB1-1),
2. XB,t = FB_ (RB,t|XA,t):

where R; ~ Uniform([0,1]"), ¢ = 1,2,... are mutually independent. The
updating rule for the time reversed chain is given by

Gibbs sampler 2.
1. 553715 = F]E (RIB,tDZA,t—l);



2. Xy = Fy (R, X5,

with R} ~ Uniform([0,1}/), ¢ = 1,2,... mutually independent. We assume
that these systematic two-component Gibbs samplers are irreducible (and
hence ergodic).

In order to use the special version of Fill’s algorithm described in Section 2
above we need monotonicity of the “reversed” Gibbs sampler 2. To this end
we define a new partial order < on €2 by

(a,2B) 2 (Ya,yB) <= T4 >ya and zp < yg. (10)

Remark 4. If Q is symmetric around some k! € N, this partial order is
equivalent to ((2k —x)a,2p) < ((2k —y) 4, ys). This was used in Héggstrom
and Nelander (1997a) to transform anti-monotone systems into monotone
ones, for instance the Ising anti-ferromagnet into the Ising ferromagnet.

It is easy to see that both Gibbs samplers preserve the new partial order
(10). But besides repulsion we also allow discrete distributions, where we do
not have a maximal element anymore. Consequently, in the new partial order
we have neither maximal nor minimal element. To overcome this problem
observe that X; depends on X;_; through X, ; only and X, on X;_; through

X a+—1 only. Hence any state (-,0p) is a quasi-minimal one in the sense that
if XB70 = OB then Xt j th for all ¢ Z 1,

where Y is started in an arbitrary state, updated according to Gibbs Sam-
pler 1, and coupled to X by using the same stream of random vectors (R;)Y ;.
Similarly, any state (04, -) is quasi-mazimal:

if Yj0=04 then X,=<Y, forall ¢>1.

Thus the algorithm gets the following form:
Algorithm 2.

0. Choose an initial natural number of transitions N > 0.

1. Generate independent random vectors Ry, ..., Ry uniformly distributed
on [0,1] .

2. Starting in X = Op and updating using the forwards Gibbs sampler
1, create Xi,..., Xy.



3. Generate random vectors ﬁB,t from
Uniform (Fp((Xp,n—t)— [Xan+1-t), FB(XBN—t| XaNt1-1)),
for t=1,...,N, and fZA,t from
Uniform (Fa((Xa,n—t)— [XB,n-t), Fa(Xan—4|XB,n-1)),
fort=1,...,N —1. Here f(z—) := lgﬁ)lf(x — h) denotes the left sided
limit.
4. Starting in }N’A,O =04 an(}v updating a(ff:ording to the backwards Gibbs
sampler 2 create Y, ..., Yy_; using (Ry)X '

Let }A}B’N = Fg(éB’NDA}A’Nfl).

5. If ?B,N = Op then accept Z = Xy as a sample from 7. Else, double N
and start over from step 1.

The outline of this algorithm is similar to the one for simulation of at-
tractive area interaction and related point processes by Thonnes (1997). The
main difference is the use of the random number streams for both the Gibbs
sampler and the coupling.

This version of the algorithm differs from Algorithm 1 in the last tran-
sitions. Consequently, we get another acceptance probability. The notation
used for expressing the acceptance probability in the following proposition is
intuitively clear, nevertheless it is explained in the proof below.

Proposition 2. Algorithm 2 shares the same properties as stated for Algo-
rithm 1 in Proposition 1, except that the probability of acceptance in step 5
now is PN (04,05)/m(05).

PROOF: The proof follows the same outline as the proof of Proposition 1, only
the last transitions in both the forwards and the backwards runs require some
alterations. Therefore we only point out these differences. By the definitions
of the Gibbs samplers 1 and 2 we get P(z,y) = 7(ya|lzs)7(ys|ya) and

P(y,z) = n(zplya)m(zales) = P(ya, )

depends on y through y4 only. Similarly, P(y,z5) = P(ya,x5) = m(x5|ya)
is defined properly and clearly

PN(04,05) = Y P(04,2)PV"*(z,y) P(y,05).
'7“7y
The conditional transition matrices Qz4(y,y’) decompose into A- and B-
components, too. The last transition in the (coupled) backwards chains can
now be described using only the B-components. For the time reversion of

the forwards chain use 7(z4|yg) = ZEZ;%W(?/BWA) instead of (2).
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4 General repulsive systems

If the assumption of two coding sets is dropped the repulsive (or anti-mono-
tone) case can in general not be reduced to the monotone case. For CFTP,
Kendall (1996) and Mgller (1997) used upper and lower “chains”, which con-
dition on the other’s state instead of their own previous state when updating.
The pair is still a Markov chain (although the components are not) and all
feasible paths are sandwiched between the upper and the lower path of this
couple. In this section we describe how combining Fill’s rejection sampling
with this idea of sandwiching yields an interruptable algorithm for discrete
conditionally specified repulsive models.

We use the notation introduced in the first two paragraphs of the previous
section. The target distribution 7 is the distribution of a discrete random
vector (X;)ie; with support Q C N’ and 7(0) > 0. As before, let Q_; =
{y-i:y € Q}.

In Algorithm 3 below we use Gibbs sampling with cyclic updating. For
the generation of the backwards chain consisting of two components (upper
and lower), we need an updating rule for a pair of current states instead of
a single one. For i € I, write (z_;,2%;) := (%1,.--,%;_1,Tjq, .-, 2,), Where
n is the cardinality of I. Now the cyclic updating rule can be described by a
function ¢ : [0, 1]f x N x NI — N? x N7 defined by

— (o o : z; = Fy (ril (Y2 ¥si)
Py = () i o) ()

for 7 € I. Gibbs sampling with cyclic updating is not time reversable, but
the “reversed” updating is described by ¢ : [0,1]7 x N7 x N7 — N’ x N/
given by

Y — (! o : z; = Fy (ril(y<i, ¥54))
) =) Wi Bl @z o) (12)
for 7 € I.

Due to the conditioning on the neighbourhood in the other component of
the chain, the functions ¢ and ¢ can leave 2 x{). This can happen for instance
for the hard-core model considered in Section 5. To make the definition (11)
valid we have to explain F; (r|y_;) fory ; € NI\ Q. Since the model is
repulsive, F)” (| -) is decreasing on Q_;. We follow Haggstrém and Nelander
(1997a) in defining

Fj(sly—;) = max{Fj(slz—;) : 2_; <y_; and z_; € Q_;}

for all j € I, which ensures that F; (r|-) is decreasing on N\,

10



Aditionally, we define a function ¢ : [0,1]" — N’ x N’ describing how
to start the upper component of the backwards chain. Set

do(r) =u with wu; = F(rs]0_) (13)

fori e I.

Write 51 (r,z,y) := 2’ and ;52(7", x,y) :=y' for the components of 5 Note
that ¢1(r, z,z) = ¢o(r,z,z) for all z € N! and ¢y (r, z,z), k = 1,2 describes
nothing but updating z according to the usual (one component) reversed
cyclic Gibbs sampler. Throughout, this Gibbs sampler is assumed to be
irreducible. We get the following monotonicity property of ¢: If x < u <
v < y then

gl(raxay) < gZNsl(T',’LL,’U) < 52(7" u, U) < gg(T,.T,y) (14)

for all . Moreover, B B
¢1(T’ €, .CL‘) < ¢0(T) (15)
for all » and x. The forwards updating rule ¢ is monotone as well, but for
the proof of Proposition 3 below, only (14) and (15) are needed.
Rejection sampling and sandwiching are combined in the following algo-
rithm, where we similar to (5) define a family of distributions Q(z,z') for
z,x" € Q by

r~Q(z,2") <= ri ~ Uniform (Fy(zi— (2, ), Fi(#il (2%, ©5,))) (16)

for all i € I. Note that we need Q(z,z') to be defined for pairs (z,z') € QxQ
only, because others can not occur as consecutive states of the forwards chain
in step 2 below.

Algorithm 3.
0. Choose an initial natural number of transitions N > 0.

1. Generate independent random vectors Ry, ..., Ry uniformly distributed
on [0,1]%.

2. Starting in X, = 0 and updating according to X; = ¢1(Ry, X;—1, Xy_1),
create Xq,..., Xy.

3. Fort=1,..., N, generate Et ~ Q(XNi1-ts Xn-t)-

4. Start with L; = 0 and U; = ¢o(R;). Update the pair (L, U) according
to
(Lt,Ut) = QS(Rt;Lt—l;Ut—l) for t= 2,...,N.

11



5. If Uy = 0 then accept Z = Xy as a sample from 7. Else, double N
and start over from step 1.

Proposition 3. Algorithm & shares the properties of Algorithm 1 stated in
Proposition 1, except that the probability of acceptance in step 5 now is given
by (22) below.

PROOF: As in the proof of Proposition 1 we consider thq joint probability of
acceptance and Xy = z. Let zy = uy = 0,29 = 2,1; = 0. Write
Quan((bw), () = P(@(R,1u)=(l',u)) and
Qoeany(t) = P(¢o(R) =u), with R~ Q(z,').
For R ~ Uniform([0, 1] x I) define the transition matrices

] %
P(z,a'

~ ) = P(?(R,x,m) = (', ")), (17)
Py((z,y), (@',y)) = P((R z,y) = (@y)), (18)
Py(0,u) = P(¢o(R) =u). (19)
Note that, for all x,y € 2,
Ple.y) = T Pwa) = TOPGR ) = ). (0

The design of Algorithm 3 now gives
P(UN:(A),XN:Z‘X():O,Ll :6)

N
= Z [HP(xtaxtfl)]QO,(z,zl)(ul) X
Tlyenny zny_1 t=1 N
Z H Qwo-r,ze) (-1, ur—1), (It ur))

loynly  t=2
U2,y UN 1
(2 ~ ~
= (A) Z P(¢(Ry,2,2) = (71, 21), po(R1) = u1) X
71'(0) T1ye0IN-1
2,0l
U2,y UN—1

N o~ ~
X HP(¢(Rt;$t—1,$t—1) = (24, 21), P(Re, L1, up—1) = (I, wr)). (21)

=2

By (15) and the monotonicity (14) of ¢, the product on the right hand side
is positive for paths with [, < x; <, t =1,..., N only and thus

ZP RN:xN 1, TN— 1) (0,0),$(RNJN71,UN71) = (lN,O))

= P(¢(Ry,ln 1, un_1) = (0,0)).
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Summing in (21) first over zx_; and then xy_o, ...,z successively, finally
over the [y, u;, we get

P(Ux =0, Xy = 2| Xo = 0, Ly = 0) = & 3™ B0, u) BV (0, u), (0,0)).

P(Uy=0|Xo=0,L, =0)= & > " Py(0,u) Py ((0,w), (0,0).  (22)

As in the proof of Proposition 1, it suffices now to verify that Algorithm 3
terminates with probability 1. We proceed in a way similar to the proof of
Mgller (1997, Theorem 1). Consider a “target chain” X;, a pair of lower and
upper chains (L4, U;), and a “dominating chain” D, coupled via a sequence
R;, t =0,1,... of independent vectors uniformly distributed on [0, 1]f: We
set Lo = Xo =0, Uy = Dy = u, and for t = 1,2, ..., X, = ¢1(Ry, Xs_1, Xs_1),
(L, Uy) = (Z(Rt, Li_1,U;_1), and Dy = (Zo(Rt)- Then, for any ¢ > 0, we have
by (14) and (15) that L; < X, < U, < D, Clearly, with probability 1,
D, = ﬁNfor some ¢ > 0, and for the first such T' = ¢ we get coalescence so that
L, = X, =Us for all s > T. Since P, is the transition matrix for (L;, U;)
and )Z't converges in distribution to 7, we conclude

lim P ((0,u),(0,0)) = lim P(0,0) = x(0).
N—o00 N—o00

Combining this with (22) gives A}l_Igo P(Uy = 0| X, = 0,L, =0) =1, so
Algorithm 3 terminates almost surely.

Remark 5. The monotonicity properties (14) and (15) ensure that, for all
z, the acceptance probability (22) is bounded from above by PY(z,0)/x(0).
(To see this, consider the Markov chains X , defined by 5 and started in
(2,2), and (L,U), defined by (0, @) for the first transition and ¢ for all
further transitions, coupled via the same stream of random vectors.) Hence
m(0)/3, Po(0,w) PY=1((0, u), (0,0)) is an upper bound of 7(z)/P~ (0, z) and
thus Algorithm 3 can be interpreted as rejection sampling in the same way
as Algorithm 1.

Remark 6. Algorithm 3 can be used with random updating, too. The up-
dating rule is now ¢ : ([0,1] x I) x N7 x N7 — N’ x N’ defined by

L E(rlyy) i=
o((r,3),2,y) = (z,y/) with e
y,:{ Yi i 7]
B (rlay) i=)

13



for 7 € I. As Gibbs sampling with random site updating is time reversible,
we can use ¢ for both the forwards and the backwards chains, that is ¢ = ¢.
The equivalent of the monotonicity (14) still holds. However, it is more
difficult than in the cyclic updating case to get a starting state for the upper
component of the backwards chain. Instead of conditioning on 0 just for
the first cycle, one has to wait now (for a random number of transitions)
till each site has been updated at least once (in the backwards chain). This
complication does not occur for models with a maximum 1 € Q. In this case
we can extend Algorithm 3 and Proposition 3 to random updating by a few
replacements: For (16) substitute

P
T, =1, 1#j and

r ~ Uniform (Fj(z/— |z _;), Fj(z}|z_;)).

(r,j) ~ Q(z,2") <

Change step 4 in Algorithm 3 in the following way: Start with Ly, = 0 and
U, = 1. Update the pair (L, U) according to

(L, Uy) = ¢(Ry, Ly—1,Up_y) for t=1,...,N.

The corresponding changes in the proof are obvious.

5 Experimental results

So far, experimental results for Fill’s algorithm are restricted to the Ising
model by Fismen (1997) and the penetrable spheres model by Thénnes
(1997). We conducted a small scale simulation study in order to compare
the running times of Algorithms 2 and 3 and their CFTP equivalents, see
Mgller (1997). Moreover, we consider below two models with two coding
sets in order to compare the two methods — the anti-monotone Gibbs sam-
pler and sandwiching as in Algorithm 3 and the monotone two-step Gibbs
sampler as in Algorithm 2. Here we interpret running time as the number
of loops through the whole algorithm needed till acceptance or coalescence,
respectively.

We considered the auto-Poisson and the hard-core model on a square
lattice I = (k,1)} ,—; with 4-neighbourhood and periodic boundaries. That
means the neighbourhood relation ~ on [ is defined by

ki = ko and |l1—l2| € {l,n—l} or

(k1,11) ~ (ka,l) if and only if i =1y and |ky — ko| € {1,n — 1}

We will refer to n as the size of the lattice in the following. Clearly, even n
allows a decomposition of I into two coding sets as assumed for Algorithm 2.
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First, we introduce shortly the hard-core model. For more details, see for
example Georgii (1988). A configuration z € {0,1}' is called feasible if and
only if z;z; = 0 for all ¢ ~ j. Now the hard-core model with activity 3 is
defined by

mg(z) x 1{z feasible}Hﬁmi,

i€l

where o< denotes proportionality. For lattice size 2 the normalizing constant
and thus the probabilities of all feasible configurations can be easily deter-
mined. This allowed the used C/Splus-programs to be checked by a x2-test.
The code is available via anonymous ftp at
ftp://ftp.math.auc.dk/pub/jm/.
All simulation results in the following are based on 20 samples for each (even)
lattice size and parameter value.

A drawback of Algorithms 2 is the need to store the complete forwards
trajectory. Fill (1997) addresses this problem, suggesting variations of his al-
gorithm, where time is traded off against storage. However, we implemented
Algorithm 2 and 3 as given in Sections 3 and 4, respectively. Hence the sim-
ulations were restricted by storage rather than by time. When the number
of transitions N was doubled after each loop, all four algorithms showed the
same behaviour. See Figure 1 for details. However, due to the much higher
need for storage, the Fill style algorithms both needed up to twice (size 50,
activity 3) as much real computing time as their CFTP equivalents. The
picture changes slightly in the practically rather irrelevant case of increasing
N by 1 instead of doubling, see Figure 2. The real computing times too are
in favour of the Fill style algorithms in this case. This might be a hint that
doubling N is not the ideal strategy for these algorithms and a compromise
like adding a fixed number (> 1) of iterations in each loop could enhance the
performance.

Our second example is the auto-Poisson model, which is specified by the
conditional distributions of each component given the values of its neigh-
bours. We chose the special version

D(X;|X_;) = Poisson(exp(a + b Z X;))-

giirg

This model is well defined for a € R, b < 0, see Besag (1974).

For small b the auto-Poisson model approaches the hard-core model with a
acting as an activity parameter. As for the hard-core model, the simulations
showed no significant differences between the four algorithms. For a = 0.4
and b = —2.5 the algorithms needed as many loops as for the hard-core model
with activity 3.
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Figure 1: Hard-core model, mean number of loops of the algorithms CFTP,
anti-monotone (solid line); Fill, anti-monotone (dotted line); CFTP, mono-
tone (dashed line); Fill, monotone (dashed dotted line) versus activity and
lattice size, N doubled.
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Figure 2: Hard-core model, mean number of loops of the algorithms CFTP,
anti-monotone (solid line); Fill, anti-monotone (dotted line); CFTP, mono-
tone (dashed line); Fill, monotone (dashed dotted line) versus activity and
lattice size, N increased by 1.

However, the main motivation for considering the auto-Poisson model is
to approximate point processes, see Besag et al. (1982). Consider the Strauss
process on the unit square (Strauss (1975), Kelly and Ripley (1976)) defined
by its density

f(@) o gy ®

with respect to the unit rate homogeneous Poisson process. Here z C [0, 1]?
is a finite point configuration, # denotes cardinality, and s(z) = J#{(&,n) €
z xz:0<||§—n|| <R} is the number of point pairs in x at distance less
than the interaction radius R from each other. The parameters § > 0 and
0 <~ <1 control the intensity and the strength of the interaction.

To approximate a Strauss process, typically much bigger neighbourhoods
are needed. If we want to approximate a Strauss process with parameters
B =100,y = 0.5 and interaction radius R = 0.05 by the auto-Poisson model
on a lattice of size 50, we have to chose a = —3.2 and b = —0.7, and a
circular neighbourhood consisting of 20 sites. A small experiment with these
parameters showed, that the size of the neighbourhood is less critical than the
strength of the repulsion. The two anti-monotone algorithms both needed
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around 2 loops.

6 Discussion

We presented a class of examples where Fill type algorithms work without
direct monotonicity of the sampler and without maximal element. Neverthe-
less, CF'TP, in particular if combined with dominating chain and sandwich-
ing, seems to have a wider scope of possible applications.

One restriction of rejection sampling arises from the requirement 7r(ﬁ) >
0, which prevents extension to continuous state space models such as the
auto-gamma model, for which Mgller (1997) introduced a CFTP algorithm.
However, perfect rejection sampling is possible for distributions on € C
[0,00)!, where m now is a density w.r.t. the product measure on  ob-
tained from the product of the Dirac measure in 0 and the Lebesgue mea-
sure on (0,00). Currently, Murdoch and Rosenthal (1998) are investigating
other ways of perfect simulation for continuous state space models combin-
ing CFTP and Fill’s algorithm. Duncan Murdoch pointed out to us, that
we could start the forwards run in Algorithm 3 in an arbitray state x with
m(x) > 0 and then check whether the lower and the upper backwards “chains”
coalesce to z at time N (that is Ly = Uy = x) in step 5 of Algorithm 3.

Kendall (1996) combined CFTP and spatial birth-and-death processes,
yielding in particular a perfect simulation algorithm for repulsive area inter-
action processes. (See Kendall and Mgller (1998) for further extensions.) We
could not find an equivalent using rejection sampling. There exists a 0 — the
empty point configuration — with 7(0) > 0. A trivial possibility is to accept
if and only if the proposal structure at time 0 was empty. This yields of
course the right distribution for the output, but the acceptance probability
is impractically small. An algorithm in the spirit of Algorithm 3 fails due to
the intricate dependence structure. That means the output of the forwards
run and the event of acceptance are not independent. Metropolis-Hastings
alternatives as suggested in Kendall and Mgller (1998) would not overcome
this problem either.
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