Discretely observed diffusions: classes of
estimating functions and small A—optimality

Martin Jacobsen*
Department of Theoretical Statistics
University of Copenhagen
5 Universitetsparken
2100 Copenhagen @
Denmark

November 11, 1998

Abstract

Ergodic diffusions in several dimensions, depending on an unknown mul-
tivariate parameter are considered. For estimation, when the diffusion is
observed only at finitely many equidistant timepoints, unbiased estimating
functions leading to consistent and asymptotically Gaussian estimators are
used. Different types of estimating functions are discussed and the con-
cept of small A—optimality is introduced to help select good estimating
functions. Explicit criteria for small A—optimality are given. Also some
exact optimality conditions are presented as well as, for one-dimensional
diffusions, methods for improving estimators using time reversibility.
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1. Introduction

The main purpose of this paper is to discuss criteria for choosing good estimat-
ing functions when estimating the parameters of an ergodic diffusion that is ob-
served only at discrete points in time. While in principle one should of course use
maximume-likelihood, in practice this is difficult because only in a few cases are
the transition densities of the diffusion available in closed analytic form. Thus the
existing methods for maximum-likelihood, see Pedersen [13] and Ait-Sahalia [1],
rely on approximations of the transition densities and the methods prove quite
computer intensive. (Pedersen uses numerical approximations based on iterations
of the Gaussian transition densities emanating from the Euler scheme, while Ait-
Sahalia, using a specific transformation of the diffusion, is able to obtain accurate
theoretical approximations based on (transformed) Hermite function expansions).

Because of the difficulty in performing accurate maximum-likelihood, much
research has focused on finding alternatives in the form of various types of unbiased
estimating functions, but again here there may be practical problems because
explicit analytic expressions are not always available.

The inspiration for the present paper came from following the work of Michael
Sgrensen and his colleagues, notably Mathieu Kessler, and was initiated by the
desire for finding explicit estimating functions beyond the class of simple ones
discussed by Kessler [9]. This led first to what proved merely a rediscovery of the
class of explicit, transition dependent estimating functions presented by Hansen
and Scheinkman [7], but eventually also to the study of optimality criteria pre-
sented below.

The basic model, involving only ergodic diffusions observed at equidistant
timepoints distance A apart, and the basic assumptions together with the nota-
tion is presented in Section 2. In Section 3 we give an overview of the different
types of estimating functions known from the literature, and in Section 4 sur-
vey the asymptotic theory (consistency, asymptotic normality) for the estimators
obtained from the estimating functions. Section 6 treats the special results that
arise from the time-reversibility of one-dimensional ergodic diffusions, while opti-
mality is discussed in Sections 5 and 7. The main results are the conditions for
small A—optimality presented in Theorems 7.5 and 7.8: while exact optimality
(i.e. minimizing the asymptotic covariance for an estimator within a given class)
leads to results that are difficult to implement, see Section 5, it turns out that
it is possible to give explicit, easily verifiable conditions on flows of estimating
functions that ensure nearly efficient estimation if the discrete observations of
the diffusion are close together. (A flow is simply a sufficiently smooth family of



estimating functions, one for each A > (). The conditions are flexible enough
that there are many choices for small A—optimal flows. A drawback is of course
that a flow that performs well for small A, even though the estimator is always
consistent and asymptotically Gaussian, may behave poorly for large A, and in
the last part of Section 7 we make some preliminary suggestions on how to resolve
this difficulty.

2. The model; setup and notation

Consider a statistical model for a d—dimensional diffusion process X, solving the
stochastic differential equation

dXt = bg (Xt) dt —+ 0g (Xt) dBt (21)

with some initial condition X, = U. Here B is a standard d—dimensional Brownian
motion and b and o are known functions, by(x), o4(z) of an unknown p—dimensional

parameter § and z € R¥! | b taking values in R™! and o matrix-valued, oy(z) €
Rdxd'

Notation. Throughout the paper, column vectors are denoted x,  etc., row vectors
are written as transposed columns, z7, §7 etc. Indexes 7, j are reserved for objects
relating to the state space D C R of the diffusion, indexes k, [ for objects relating
to the parameter space ©® C RP. We write z; for the coordinates of z, 6, for the
coordinates of 6, but for processes or the functions b, o, where time, respectively
6, appears as a subscript, use superscripts to designate the coordinates, X, bj, oéj .
Thus writing (2.1) coordinatewise,

dX; = by (Xy) dt+ > o (X4) dBl, X;=U".

=1

Formally, the diffusion X is defined on a filtered measurable space (92, F, F;)
with U Fy—measurable. We shall assume that for any # € ©, and any probability
v on R%, there is a probability measure P} on (Q,F) with respect to which the
o—algebra Fj and the Brownian motion B are independent, and such that for the
prescribed #—value, (2.1) has a unique strong solution (in particular the law of
the solution is unique) with v the distribution of U. Subject to Py, X is then a
time-homogeneous diffusion with transition probabilities that do not depend on
v and depend on the diffusion coefficient oy through

. T
C@ = 090y
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only (with T denoting matrix transposition). Apart from these assumptions of a
rather general nature, we shall need some more specific assumptions:

Assumption 1. The parameter 6 belongs to an open subset © C RP, and for
each 0 € O, the diffusion X is ergodic, i.e. admits of a uniquely determined
invariant distribution pg: subject to Pj?, X is strictly stationary. It is
also assumed that the range of X does not depend on #: there is an open
connected subset D C R? such that for all 0, v,

£>0
and pe(D NO) > 0 for all open O with the interior of D N O non-empty.

Remark. The assumption about D not depending on # is made of course for
statistical reasons — the mere fact that an observation X;, belongs to some subset
of D must not contain information about #. We have assumed for convenience that
D is open, but in principle one could allow for diffusions with accessible reflecting
boundaries. In that case, typically (but not always), (2.1) is not sufficient to
describe X and a complete description involves local time along the boundary.
The assumption D connected is there simply to ensure that the invariant measure
is uniquely determined. The reader is reminded that for d = 1, Assumption 1
amounts to the following when oy(z) > 0 for all z: D = ]I, r[ for some —oo <1 <
r < oo and if Sy is a scale function with derivative (with respect to z)

S)(z) = exp (—2 " boly) dy) (2.2)

To Ug(y)

for some xy € D, then Sy(l) = —o0, Sy(r) = oo; furthermore, kg := [ kg(x) dz <

oo where
kg =2/ (035&) (2.3)

is the density of the speed measure matching the scale Sy and pg has density
I{g(ﬂi) / ka.

If d > 2 not too much is known about the range D of the solution to (2.1),
although there are of course well known conditions ensuring that D = R?.

Notation. With v a probability on D, we write v(f) for [, f dv. The Lebesgue
density of the invariant distribution of py will also be denoted py. If v = py
we write P)' instead of Pj° and if v = ¢,, simply Py. We shall write Ej for
expectations with respect to Py and 7. ¢ for the transition operators for X when



¢ is the parameter, p;g(x,y) for the transition densities. Thus, for functions f
integrable with respect to p;¢(z,v) dy,

By (F(Xos) X, = 2) = mof () = | dypuo(a, y)f(y)

for all s,z,v. Finally, Q;p will denote the joint distribution of (X, X,1;) under
P} (for any s) and ¢ ¢ its density,

@0, y) = po(x)pro(x,y).

Assumption 2. The following assumptions are made on the drift and diffusion
coefficients b and ¢ from (2.1): for all § € ©, by(x),Cy(x) are continuous
in z, and for each x € D, by(z), Cy(z) are continuously differentiable in 6.
Also Cy(z) > 0 for all 0, z.

Notation. Cy(z) is a symmetric, positive semidefinite d x d—matrix. If A4, A, are
two symmetric matrices, we write A; > A, if A; — A, is positive semidefinite and
A; > 0if Ay is symmetric and positive definite.

Throughout the paper the following notation is used for differentiation: if

a(r) = (ay(r),. ..,aq(r)) € R? is a differentiable function of a ¢’—dimensional
variable r = (71, ...,7y), O,a(r) denotes the ¢ x ¢'—dimensional matrix of partial
derivatives (0,a),; g“l evaluated at r. Thus, if ¢ = 1, d,a(r) is a ¢'—dimensional

row vector, and for general q, the 7'th row of 0,a(r) is 0,a;(r). If differentiation is
with respect to 6, we use a dot, -, instead of the symbol 9. Thus (cf Assumption

2)7

- - ol
by () ERDP, iy (z) = 0@
00,
: ) : oCy
Co (2) ERT*P, Co i () = —2 (Z)-
00,

Introduce the differential operator associated with the infinitesimal generator

for the transition semigroup (), for the diffusion X,

d 82
Aof (@ Z by 8:@ )+ 3 Z (%,8353 f(@)

=1 111

acting on the space C?(D) of functions f : D — R that are twice continuously
differentiable.
If f € C*(D), by Ito’s formula

df (X,) = Agf(X;) dt + 8, f (X,)oe(X,) dB, (2.4)
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(with the three ‘factors’ in the last term of dimensions 1 x d,d x d,d x 1 re-

spectively). The last term defines a local martingale, which is a true martingale
if

By, f (Xo)Co(X:) (0uf)" (Xe) = /Ddﬂf 119(2) 0, f () Co() (0, f)" (x) < 00,  (2.5)
hence it follows that if f € L' (ug) N C?(D), Agf € L' (uy) and (2.5) holds, then

po(Agf) =0, (2.6)

which is the equation used to determine py.

Here we shall be concerned with a L?—generator for X. Recall that T
L? (ug) — L?(ug), so we have a semigroup of operators on L? (i), and then
define the domain Dy for the L?—generator Ay as the subspace comprising all
f € L?(ug) N C*(D) for which Agf € L? (up) and (2.5) holds, and for such f,
define Aygf = Ayf. Tt is well known that Dy is dense in L? (yy) . Clearly for any
6, Dy contains the space DC consisting of the f € C?(D) with compact support.
More generally, Dy D DBy, the space of f € C?(D) such that f and Ayf are
bounded: to verify this, the problem is to show (2.5), i.e. that Epy [f(X)], < oo,
where [f(X)], = [y ds 0.f(X,)Cy(X,)0T f(X,) is the quadratic variation of f(X).
Introducing the stopping times 7x := inf {¢ : [f(X)], = K}, one finds that Mg

and (MIQ( — [f(X)] , are martingales, where

Micy = f(Xen) = £(Xo) = [ ds 407 (X,)

Thus EfMj, = Ej[f(X)],, A and for K 1 oo, by monotone convergence the
expectation on the right increases to Ej [f(X)], while, since f, Agf are bounded,
dominated convergence applied to Ej MIZ(,t yields a finite limit and (2.5) is proved.

Note that for d = 1, DC is dense in L2 (ug) = 15 := {f € L* (ug) : puo(f) = 0},
a fact that is definitely not true for d > 1: thus, to determine py if d = 1 one need
only consider (2.6) for f € DC, but for d > 1 it is necessary to involve, say, all
f € DBy, which makes the determination of s more difficult. (A swift proof of the
formula for py(z) for d = 1 (see (2.3) and the next line) is the following: if f € DC,
using partial integration on [ Ayf dugy = 0 gives [ (bg,ugfl -1 (agug)'f’) dr =0
and since f' satisfies [, f'dz = 0 and the collection of these derivatives is large
enough, the density gy must satisfy the differential equation byuy = % (ag,ua)' from
which the desired expression follows).

Notation. Write Dy g = Dy N 19L.



We shall need a final, more restrictive condition. Define
spec(Ag) = {A € C: Apf = Af for some complex-valued f € Dy} .
Assumption 3. There exists Ay < 0 such that Re A < Ay for all A € spec(4y)\0.

If XA € spec(Ay), then certainly Re A < 0 with 0 € spec(Ay) always. With a
spectral gap Ao < 0, we have for all f € 15 that ||mof| < €| f]|, where ||-|| is
the norm on L? (ug), and hence for any f € L3 (up), mrof converges in L* (up)
at an exponential rate as ¢ — oo to the function which is constant and equal to
we(f). With Assumption 3 in force, it is therefore possible to define the potential
operator Uy for any ¢t > 0 by

Uof = i Tt f = i(ﬂt,a)”f (2.7)
n=0 n=0

for f € 17 with the series converging in L? (ug) to a limit in 15.

Note also that with respect to Py, for any ¢ > 0 fixed, the strictly stationary
sequence (Xy),,>o is mixing: since the sequence is a Markov chain, to show this
it suffices to show that for all bounded and measurable f, all ny € N and all sets
A = ((Xo, Xty .-, Xpot) € B) with B Borel,

T B51af (Xuatm) = PE(A) po(). 28)

But
Eg1af (Xno+nyt) = By (La (Tneo(f)) (Xnot))

and since mp i (f) — pe(f) in L? (pg) it follows that

Ef1a (T (£)) Xngt) = p0(F)]* < o (f) = no(f)Il,,, = 0

with (2.8) now an easy consequence.
The mixing property ensures that the ergodic theorem holds, e.g.

1 n

— i

2 3 @ (Xon-es Xow) 20, Bl (Yo, X) 29)
with convergence Pl'—a.s. and in L'(PY) if ¢ € L'(Q.y), and also in L2 (PY) if

@ € L*(Quyp)-
An important observation to be used later is

Proposition 2.1. If f € Dyy and Agf =0, then f = 0.



Proof. The process f(X) is a L?*—bounded P}'—martingale, hence tliglo f(Xy)

exists Pj'—a.s. By ergodicity f visits any open subset of D infinitely often (cf.
(2.9)) P)—a.s, hence f must be constant, and since pg(f) =0, f = 0 follows. O

Remark. If d = 1 the differential equation Ayf = 0 is solved by the collection of
scale functions Sy given by (2.2). Hence Sy ¢ Dy. More generally, if d is arbitrary
and f € L' (ug) N C?*(D) with Agf = 0 and (2.5) holds, then f is constant: f(X)
is a L'—bounded P}'—martingale and one can copy the argument from the proof
of Proposition 2.1.

3. Classes of estimation functions

With X given by (2.1), suppose that finitely many observations Xg, Xa,, ..., Xa,
are available, where 0 < A} < --- < A,,. We wish to estimate 6, assuming that
the distribution of X is determined by Péf] for some true parameter value 6y. The
estimation is performed using a flow of estimating functions G = (g1,6),50 g With
each g, 9 : D* — RP*! belonging to L? (Q; ), i.e.

Efgl9g10 (X0, Xy) <oo  (t>0,0€0) (3.1)
and satisfying the vital unbiasedness condition
Eggt,H(XOa Xt) =0 (t > 0, 0 S @) (32)

Using ¢, an estimator 9 of 6 is obtained by solving the equation

i /7N N (XAm_I,XAm) =0 (3.3)

m=1

in 0. (Notation: Ay = 0).

(3.3) is of course the type of estimating equation used in the literature on
inference for discretely observed diffusions, with the idea of using g depending
on neighbouring observations motivated by the Markovian nature of X, which in
particular renders the estimating equation for the maximum likelihood estimator
of the form (3.3), see (3.6). Below we discuss some of the different types of ¢’s
that have been suggested.

We shall from now on assume that the observations are equidistant, A,, = mA
for some A > 0. Then (3.3) becomes

i an.e (X(m_l)A,Xm ) =0, (3.4)
m=1

9



an equation that, as is well known, under mild regularity conditions leads to esti-
mators that are consistent and asymptotically Gaussian as n — oo, (see Section
4). An important condition on g is of course that g can distinguish different
parameter values, e.g.

EggA,gl (X(), XA) =0 (35)

iff # = #'. Although this condition is not formally required below, we subsume it
and will comment further on its importance in Section 4, see the paragraph below
(4.7).

We write ga g € €if (3.1), (3.2) hold for ¢ = A and ga g(x, y) is one time contin-
uously differentiable in #. In Section 7 we shall also need other partial derivatives.
In accordance with the notation from the previous section, the derivatives are
written

0
Oygro(z,y) = (a—ygig(x,y)) € RPxe,
t ki

0?2 2
02, gre(T,y) = (*g’“ x,y> € R4,
yyIt, ( ) 3yi5yj t,a( ) ki)

; 0
Gro (z,y) = <6_ng£9($’3})> € RP*P
kl

0
Ogro(z,y) = (a%ﬁa(%@) € R,
k

We write G C £ if g19 € £ forallt > 0,0 € O©.

From (3.4) we have p equations to solve for p unknowns 6, ..., 6,. The equa-
tions may involve estimating functions g of different types and we now list some
of the types studied in the literature. When we refer to these types later, it is
always assumed that G C £ or, if a given A is considered, that gay € £.

MLE. The flow (1), gcoused for obtaining the mazimum likelihood estimator
(conditionally on Xj),
Pg:o (xa y)

(1) (3.6)

St,0 (xa y) =

M. The class of martingale estimating functions: for a given £ and A > 0,
gZ,g e M if (anzl gg,e (X(mq)A,XmA) ,an)n>1 is a Pj'—martingale.

S. The class of simple estimating functions: for a given £ and A > 0, gg,g eSif
it is of the form g} 4(z,y) = fo(x) or = hy(y).

10



T. The class of explicit, transition dependent estimating functions: for a given k
and A > 0, gg,e € T if it is of the form

9as(@,y) = Aof (z) h(y) — f(2)Aeh(y). (3.7)
In Section 6 we shall introduce
R. The class of reversible estimating functions.

Notation. If K is one of the classes of estimating functions, we write gay € K if
all g € K. Also we write T(f, h)(z,y) for the right hand side of (3.7).

As we shall see, the martingale estimating functions are particularly important,
not only for applications but also for the theory to be developed presently. The
classes S and T are important because they provide explicit estimating functions
—but 7 (and also R) are mostly relevant only if d = 1, see Section 6.

Of course (subject to mild regularity conditions) each coordinate of the MLE-
estimating function (3.6) belongs to M. Bibby and Sgrensen [3] studied functions
in M of the form

gas(@:y) = has(@) (f(y) — 7aef(2)), (3.8)

in particular with f(y) = y or = y? in the case d = 1. Other special cases of (3.8)
are obtained if f = fp is an eigenfunction for Ay corresponding to an eigenvalue
Ap < 0, in which case (3.8) becomes

gk o(@.9) = hao(z) (foly) — ™ f(2))

see Kessler and Sgrensen [11].
The bilinearity inherent in (3.8) immediately gives rise to the following large
class in M,

gk o(o,y) = ilhzﬁ(x) (F7(y) = 780 () (3.9)

. . q q
for different pairs (h A6 f9)1§q§
The defining property of M requires that

Ey (92,9 (X(m—l)A:XmA) ‘X(m—l)A) =0 P} —as.

, see e.g. Sgrensen [15], Section 3.
T

for all m € N. Thus gX , € M if (and essentially only if)

gNp =0 (3.10)

Il
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where in general gZ’,*a € 15 is given by

gxy(x) = /D dypas(®,y) gk (2, ),

see Kessler [8] and also [15]. Another useful characterization is that 92,9 e M iff
gho L {p € L?(Qap) : ¢ (x,y) = h(z) for some h}.

Both the characterization (3.10) of M and the definition of gZ’,*a will be used
frequently in the remainder of the paper.

The class & was studied in particular by Kessler [9]. Among his examples are

gA,G(xay) = /Zi—((;r)): (3'11)

the collection of estimating functions one would use if the X,,o were indepen-
dent and identically distributed with the correct marginal distribution pg,; also
9h o(z,y) = fo(x) with fy an eigenfunction for Ay with an eigenvalue < 0 (in
which case (3.2) is automatic), and finally and most importantly, the class of
stmple, explicit estimating functions of the form

IR e(@,y) = Ao f () (3.12)

(see also Baddeley [2] and Hansen and Scheinkman [7], C1, p. 774) which satisfy
(3.2) because of (2.6).

Hansen and Scheinkman [7], C2, p. 775 also introduced the class T of esti-
mating functions, which we shall discuss in Section 6 and which in the version
presented here, apply only to reversible models, i.e. essentially only for d = 1: for
d > 1 (3.2) will hold only in special models or for particular choices of the f,h
appearing in (3.7).

In some of the cases discussed above, we stressed that the estimating func-
tions were explicit, meaning essentially that they could be written in closed an-
alytic form. Of course only in very few cases is MLE explicit and for (3.8) to
be explicit one may have to use particular choices for f. Also, for the examples
involving eigenfunctions, explicit expressions are only rarely available. Thus the
main classes of explicit estimating functions are (3.12) and 7. Here, while the
collection of functions obtained from (3.12) when f varies, forms a linear space,
the bilinearity in (3.7) permits the definition of a large class of explicit functions,
viz. finite sums

T

Ias(@,y) = (Apf(2) K(y) — f1(2)Agh?(y)) - (3.13)

q=1
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A different possibility, not yet fully explored, for obtaining explicit estimat-

ing functions, is to look for real-valued ftg(x) such that ( fro (X3) ’ft)t>0 is a

continuous-time Pj'—martingale, and then use

95 (@, y) = hao(@) (Fao(y) — fos(@)) ,

which is in M. Here, subject to differentiability and integrability requirements, f
must satisfy . .
Ocfro + Agfro =0,
as is seen from It6’s formula.
A last comment for now on estimating functions is that it is perfectly possible,

but perhaps not very useful, to allow f in (3.8) and f and A in (3.7) to depend
on both # and A: the critical unbiasedness (3.2) still holds.

4. Asymptotics

We shall briefly review the asymptotic theory for the estimators obtained from
the estimating equations (3.4) with g satisfying the unbiasedness condition (3.2)
and the integrability condition (3.1). The asymptotics are done for equidistant
observations (Xma)geme, for A > 0 fixed, n — co with the diffusion X satisfying
Assumptions 1,2,3 from Section 2.

Recall the definition (2.7) of the potential operator Ua g acting on functions
in Dy with values in 1. Of course

(I —map)Unof =f (f €Dyy). (4.1)

Suppose now that G = (g;9) is a flow of estimating functions in €. Since each
gg’,*g € 15 (because of (3.2) and since g% 5 € L*(Qa ), see (3.1)), we find that

9ne0(x,y) = gap(2,y) + Unogh o(¥) — Unega 4(7) (4.2)

(with U acting separately on each component g**) defines a p—dimensional esti-
mating function with all components in M: (3.10) holds for § because using (4.1)
it is seen that

Jrelz) = /DdypA,e(xal/)f?A,a(%y)

= gas(@) + a0 (Uspghy) (@) — Ussgh 4(2)
— 0.

We shall call ga g the martingale estimating function associated with ga . It will
play a very important role in the remainder of this paper. The fact that any

13



estimating function is associated with an element of M means that for theoretical
purposes, it suffices to consider martingale estimating functions. (For practical
purposes ¢ is of course useless — with the transition operators known explicitly
only in exceptional cases, there are of course even fewer (if any) examples where
the potential operators can be expressed explicitly).

The potential operators appear naturally in the statement of the central limit
theorem for ergodic Markov chains. In our setup we obtain as a direct consequence
of the martingale central limit theorem and the ergodicity property (2.8) that

Z 980 (Xm-1)a, Xma) % N, (0,va,0(3)) (4.3)

as n — 0o, where the limiting covariance matrix is

vae(g) = Efga, HgAH (X0, Xa), (4.4)

cf. Lemma 7 in Dacunha-Castelle and Florens-Zmirou [4].

Notation. % means convergence in distribution under Py'. N,(&,T') denotes the
p—dimensional Gaussian distribution with mean vector &, covariance matrix I'.

A comment on the derivation of (4.3): a direct application of the martingale
central limit theorem gives that (4.3) holds with g replaced by g. But

1
\/— Z da0 = 950) (Xom 12, Xma) = NG (Ua095,6(Xna) = Unog4 4(Xo0))

which converges to 0 in Pj'—probability and (4.3) itself follows.

For ga ¢ a simple estimating function, ga ¢ was used by Florens-Zmirou [5] and
also by Kessler [9]. Sgrensen (the review [16] for instance), used (4.3) together with
a Taylor expansion to obtain asymptotic normality for the estimator O, solving
the estimating equation (3.4), viz.

~ d _ y _ T
Vi (B~ 8) % N (0,A35(9) va0(d) (A34(9))" ) (1)
where _
Aap(9) == Ef 9ap (Xo, Xa), (4.6)
i.e. the (k,1)’th element of the p x p—matrix Aag(g) is Efdg g4 4 (Xo, Xa) -
The asymptotic variance matrix in (4.5) we denote by vara g (g, @) ,

vara g (9.0) = Azy(9) vas(®) (AZh(9)) (4.7)

14



We shall not here discuss the precise conditions under which (4.5) holds, but
refer the reader to the literature, e.g. [16]. Typically the assertion of the result
yielding (4.5) is that with a P —probability tending to 1, (6 denoting the true
parameter value), (3.4) has a consistent solution which is asymptotically Gaus-
sian as stated in (4.5). For this it is important that gag distinguishes between
parameter values, e.g. that (3.5) holds. Note that obviously Aa¢(g) = Aae(9)-

Most of what follows relies on (4.5) being true. We shall make some formal
assumptions so that the statement at least makes sense and otherwise refer to
gng € € as well behaved if it satisfies Assumption 4 below and if, for all 6,
there is with Pj, —probability tending to 1, a consistent solution to (3.4), which
is asymptotically Gaussian according to (4.5) with 6 = 6,.

Assumption 4. Assume that ga g € £ that va(g) > 0, that Jgg% € L' (Qa )
for all k£, and that Aa ¢(g) is non-singular.

The assumption that va g(g) > 0 means essentially that the estimating equa-
tion enables us to estimate all the parameters 6. The assumption that A be
non-singular, which is obviously necessary for (4.5) to make sense, is more critical
and may fail in innocuous looking situations, as we shall now see. Here and below,
by a reparametrization we mean a differentiable homeomorphism ¢ : © — 6,6
an open subset of RP, with = +() the parameter vector corresponding to 6 after
the reparametrization.

Example 4.1. Suppose that py does not depend on all the parameters, i.e. that,
possibly after a reparametrization, py depends on (61, ...,0,) only where p’ < p.
Then 6 cannot be estimated according to (4.5)-asymptotics using only simple

estimating functions, more precisely A ¢(g) is singular for all well behaved ga g €
S for which the differentiation under the integral sign below is valid: suppose

9ap(z,y) = fae(x) so that

Aaolg) = [ dopol@)faola)
Then for | > p', using (3.2),

0 = o ([, depola)faola))

= /Ddasug(:c)ﬁalfA,o(fc);

hence the last p — p' columns of Aa ¢(g) vanish.
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Example 4.2. Suppose that, possibly after a reparametrization, the differential
operator Ay is linear in ¢’ = (01, ...,0,) for some p' > 1, in the sense that

bg(I) = 597 (x)&', C@(.’E) = 5’97 (:E)H’

for some by_(z) € R>?' | Cy_(z) € RE*Y' writing 0_ = (1, -,6,). (Forp' = p,
b, C must not depend on 6). Then, subject to mild analytic conditions, A ¢(g) is
singular for all well behaved g, which are either in S of the form (3.12),

ao(@,y) = Aohix o(x) (4.8)

for all k, or, for the reversible models where the members of T can be used, of
the form

92,0(33, y) =T (fg,aa hg,a) (z,y), (4.9)

see (3.7) and the notation introduced just below (3.7).
To see that A g(g) is singular, consider (4.9) for a fixed k. Then by calculation,
omitting subscripts from f% o, hk ,,

/ !

P

P
Z 0189192,0(% y) = gg,e(xa y) + Z 0l (T(aﬂlfk’ hk) + T(fka aﬁlhk)) (.T, y),

=1 =1

and taking expectations with respect to QQa g it follows that the linear combination
with coefficients 0, of the first p' columns of A ¢(g) is equal to 0. (Note that for
any 0 = (0,...0,0p41,...6,), Ag = 0 which is not a diffusion generator, and
hence 0 # 0 for all § € ©).

Simple examples of models that have the linearity property described here
include the one-dimensional Ornstein-Uhlenbeck models

dX, = —0X,dt +20dB, (0 > 0)
dXt = —HXt dt + O'dBt ((9, o> 0)

dX; = (a—0X;)dt+0dB; (0,0 >0,a € R).

Note that for the first case, g = N(0,1) does not depend on 6, so that no simple
estimating functions can be used. Note also that in the two last cases, if one
parameter is assumed known it is perfectly possible to find a combination of g*
of the form (4.8) or (4.9) for each k, such that A is non-singular.

5. Optimality

Let A > 0 be fixed, and consider a given class (ga ), Of Well behaved estimation
functions. To find the best element from the class one would try to minimize
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vara g (g, é) from (4.7), (which for p > 2 means minimizing in the partial ordering
of symmetric positive semidefinite matrices, cf. the notation introduced after
Assumption 2 above). Of course there may not be a variance minimizing g (in
particular not if p > 2), and even if there is, it may be difficult to find. However,
with a suitable linear structure imposed on the class of estimating functions, it is
possible theoretically to describe the optimal g, but actually finding it may still
be difficult, and even then the expression may be too complicated for practical
purposes. In Section 7 we shall return to the optimality problem, proposing a
solution that yields explicit results and which we believe can be useful in practice.

The proofs of the optimality inequalities rely on the following result, where,
it M = (M;;) is a matrix-valued random variable, EM is the matrix (EM;;) of
expectations.

Lemma 5.1. Suppose that Y, Z, S are matrix-valued random variables of dimen-
sions a X b, a X b, b x b respectively with S symmetric and strictly positive definite
with probability 1. Assuming that all entries in the matrices Y Z*, Y SYT ZS=1 7T
are integrable, it then holds that:

(i) if E (Y'SYT) is non-singular, then
E(zv") (E(vsy")) E(vZ") <E(2572"); (5.1)
(i) if £ (YSYT) and E(Y Z") are non-singular, then
(B(2v™)) " (B(2527)) (BE(v27)) = (E(vsYT)) ' (5.2)

(iii) in (5.1), (5.2) there is equality if for some non-random, non-singular K €
Re*e Y = KZS™!, equivalently if Z = K~'Y S.

Proof. (ii) follows directly from (i) and (iii) is verified immediately. To show (5.1),
define

Su=FE (ZS*lzT) , Yp=F (ZYT) , Yp=2F (YSYT) ,
and consider the symmetric 2a X 2a matrix
Ell 212
Y= .
< S T )
If ¥ > 0 also $1; — X19859' X%, > 0, which is precisely (5.1). So we complete the
proof by showing that

s(u,v) = (u” uT)z<z>zo
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for all u,v € R*!. But
s(u,v) = E (uTZS_lZTu +2uTZY Ty + UTYSYTU) ,

and defining & = ZTu, ¥ = SY'v, the random variable under the expectation
becomes
(" +3") S~ (@ + ) > 0.
O

In the scalar case a = b = 1, (5.1), (5.2) follow from the Cauchy-Scwartz
inequality and equality holds iff Y = ¢Z/S for some constant ¢ # 0. If b = 1,
S =1, (5.2) gives for Y, Z a—dimensional random vectors

1 1

(E(2v")) " E@z2") (E(vZ")" = (E(¥Y")) (5.3)
with equality if Z = K 'Y for some non-random matrix K. Inequalities of this
type were used by Godambe and Heyde [6].
For the first optimality result, that maximum-likelihood is best, we consider
the estimation function
. T
_ DAy
SA =
J N

see (3.6).

Notation. To lighten the notation, if A > 0 is given and ¥ (z,y) is a scalar,
vector- or matrix-valued function on D x D, we also write ¢ for the random
variable ¢(Xo, Xa).

Assuming sa g to be well behaved, the asymptotic variance for the MLE is of

course 1

vara g (s,é) = (Eg‘sA,gsg’g) (5.4)

as is seen from (4.7) with g = s, provided differentiation and integration can be
interchanged as is done in

0=0pEgsag = /D dy (5a,6(2,Y)Pae(T,y) + pas(@,y)sa0(2,y))
for all z, since then (see (4.6))

Anp(s) = —Ejsa05a -
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Proposition 5.2. If sa g is well behaved with the asymptotic variance for the
MLE given by (5.4), then

vara g (g, é) > vara g (5, é)

for all A, 0 and any well behaved g, provided Ej §A798£,0 is non-singular and, for
all x,

59/Ddy (Paedag) (z,y) = /Ddy 0y (Papdng) (z,y). (5.5)

Proof. Because Efja g = 0 (which is just (3.10) applied to §), the left hand side
of (5.5) is 0. Thus Ej ja g= —Ejjaesa g, and then also

by wy T
Ey gap= —E49nesag-

Now apply (5.3) with Z = gag, Y = sap. a

The next result is a simple multivariate generalization of Kessler’s [9] projec-
tion result Lemma 3.3.

Let A > 0 be given and let for each 6, L4 be a closed linear subspace of the
Hilbert space L*(Qa,) such that [: dzdyqgae(z,y)k(z,y) = 0 for all k € L,.

Let Lo denote the closure in L*(Qa,) of the space of functions % of the form
K(z,y) = k(x,y) + Ungr*(y) — Ungr*(y) for some k € Ly, cf. (4.2). Also define
Ly, as the linear space of all p—variate functions ga g = (gZ 0)1<k< with each
Y 1<k<p
gg,a € Ly and finally define

. Pag

Ta = Proj;

I

where the projection is performed componentwise, within L?(Qa)-

Proposition 5.3. Suppose that ya g is well behaved. Then for any well behaved
gn0 € Ly,

~ ~

—1
vara o(g,0) > vara o(v,0) = (E§va07h0) - (5.6)
Proof. ~ is characterized by the properties fyg,g 629 for each k£ and

Eé‘f@ (TkA,a - 72,0) =0 (5.7)
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for all k and all kK € Ly, where 77 5 = pz,a /pa. But if differentiation and integra-
tion can be interchanged so that

0= 0 [ dody(asins)(e,y) = [ dodyds(aaeias)(a,y),

using (5.7) with x an arbitrary component of g g, we obtain
Aao(9) = —Efgaorag = —E§9a07a - (5.8)

Now use (5.3) with Z = gag, Y = a9 to obtain the lower bound on the right of

A

(5.6) for vara g(g,6). Since ya g € M, it follows finally from (5.8) with g = g =~

~

that vara g(, @) has the form stated in (5.6). O

Remark. With p > 2 it is only possible to formulate this result if all components
gg,g are allowed to vary in the same space Ly. But for estimation purposes it
is also quite natural that it should be so: introducing a subspace L% for each
k would imply that the p equations used for estimating # had been numbered
in some fashion, something which would be quite artificial since for instance an
arbitrary permutation of the p equations does not change the estimator 9.

Example 5.4. Let d = 1. Kessler [9] studied the case where Ly = Sy, the space of
simple unbiased estimating functions ga g(x,y) = fae(x), and found the projec-
tion using eigenfunction expansions. We give here an expression valid in general,

that does not involve eigenvalues or eigenfunctions.
We have

Lo=8o={(z) + U ph(y) — Usoh(z) : h € 15}

and write
V(@) + Unso¥* (y) — Unpt* ()

for the projection onto Eg of rk := 09, Pa8/Pn6- Thus
EyZ (M(Xo) + Uagh(Xa) — Unaph(Xo)) =0 (5.9)
for all h € 15, where
Z = 1% (Xo, Xa) — *(Xo) — Urgtb*(Xa) 4+ Ua 9" (X0).

The idea is now to rewrite the expectation in (5.9) as an inner product in L* ()
between h and some function v € 1. It then follows that ¢ = 0, and from this
equation v* is identified. But using stationarity, the Markov property and time
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reversal (e.g. that ga ¢(x,y) is symmetric in z,y and that Ua g is selfadjoint, see
Section 6), writing m = a9, U = Ua g, one finds

EYZWXo) = ESr™(Xo)h(Xo),

EYZUWNXA) = EY <rk* 4 Gutio _ <’/TM> — I+ 7r)1/)k> (Xo)Uh(Xo)
He He

Ho
EyZ(Uh)(Xo) = EjUr™(Xo)h(Xo).

= gy (ot + B oyt )

Since r** = 0,

—M:r— _ Dok
0 = 2L ) (20 - 1) (0

so the equation 1Z = 0 translates into

(I - W)M = (I +m)y*
Ho

or, equivalently,

0
W* = Usng (I — map)” Pu6.
He
We have shown that
-T
. P
proj= ==L (z,y) = 9(x) + Un gt (y) — Uae¥(2),
So pag

where 1) is the unique solution with all * € 15 to the equation
i
(I —ma) e (I +ma0) ¢

Example 5.5. Forp = 1, Bibby and Sgrensen [3] studied optimality of estimating
functions of the form (3.8). In our formulation this would correspond to taking,
for a given f € L*(uy) not depending on 0,

Lo={h@) (fy) —mapf (@) :he L (u)}.

In this case Zg: Ly and the projection takes the form

va0(,y) = W) (f(y) — Tapf(z))
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and using (5.7) it is not difficult to find that the optimal h is given by

hopt - 89 (ﬂ-A,ﬂf)
maof?— (mapf)?”’

cf. [3], provided

Op / dy 6(y)pas(z,y) = / dy £(y)pas(z,y)

fork =f, k= 1.
For p > 2 the natural approach is to fix p functions f* € L? (uy) not depending
on 6, and then use

Ly :Zez {Z R*(z) (fk(y) — WA,gfk(x)) chl,. .. RP e L? (/,l,g)} , (5.10)
k=1
cf. (3.9). The result is

hfz = [WA,a (ffT) — (mapf) (WA,of)TTl Oy (mapf)

with the k’th column of hi¥y € RP*? giving the choices for the h', ..., hP in (5.10)
when projecting Og,pa.g/Pa,g onto Ly. For discussions of optlmahty for this class,
see Kessler [8] (quoted in Sgrensen [15], Theorem 3.1), and Pedersen [12].

6. Time reversal

Since the diffusion X has an invariant measure, it is possible to define X as

a strictly stationary process X = (Xj)_ ;oo iD doubly infinite time, each X;

having density pg. But then also the reversed process X ( t) oy , where
—0oQ

Y = X_4, is a diffusion with invariant density py and transition densmes

7 = e . .
D t0(T,y) = po(y)Pro(y, )M @ (6.1)

If d = 1, for the diffusions we are considering, Tt,g = Py, i.e. the one-
dimensional diffusions are reversible. Put differently, for d = 1, the transition
operators 79 (acting on L? (ug)) are selfadjoint, and the generator Ay (acting on
Dy) is selfadjoint. (A quick proof of the reversibility property is the following: as
noted p. 7 above, for d = 1, the space DC of functions with compact support is
dense in 15, and it therefore suffices to show that for any f, h € DC,

/dx,ug VAo f(z /dx,u@ x)Agh(x).
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But Agf = kg (f'/S})" (see (2.2) for the definition of Sj), for some consatnt k,y and
by partial integration the expression on the left then becomes —ky [ dz (f'h’) /Sp,
which is symmetric in f, h).

For d > 1, it is known (see e.g. the overview in [7]) that X satisfies the
stochastic dlfferentlal equation

<_
A%, =0 o(X ) dt+ 59(X,) dB,
where B is a d—dimensional Brownian motion, and

Ti@) = —bi(z) + — >0, (uCP) @), (<isd,  (62)

Co2) == (7957 (2) = Cola),

so that typically (?0 # by, while always Eg = Cy. Thus, only in special cases, is
a multidimensional diffusion model reversible.

In the remainder of this section, unless explicitly stated otherwise, we assume
that X is reversible for all # (with d = 1 by far the most important case). Let
G = (96);500co Pe a flow of well behaved estimating functions, and define for
each t,0,

?t,o(fﬂ, 2/) = gt,a(y, x)-

Because of the reversibility, ‘g~ satisfies (3.1), (3.2). If g a4 is also well behaved
for a given A, the estimating function (?A,g may be used as an alternative to
ga e, and as we shall now see, by combining the two by simply averaging, one may
obtain an estimating function which is better than either.

In general models (reversible or not), we shall call an estimating function ga g
such that EY<g A ¢(Xo, Xa) = 0 for all 8, reversible if (cf. (4.2))

92,6(2,y) + Unpga o(y) — Unoga 6(2) = 9a sy, 7) +Unp 9ae(y) — Uap “9a6(z)
(6.3)

for Qa p—almost all (z,y). Here

“gae(z /dypAa z,Y)gn0(y, T),

so (6.3) merely states that the martingale estimating functions associated with
gae and ?A,g are the same.
We denote the class of reversible estimating functions by R (cf. p. 11).
Again, from now on X is assumed to be reversible.
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Proposition 6.1. If g, ? are both well behaved, then

~ ~

VarA,G(?a 9) = V&I‘A,a(g, 9) (64)

Furthermore, if also G := 3 (‘g + g) is well behaved, then

vara (7, é) < vara g (g, é) (6.5)
with equality if and only if g € R.

Proof. (6.4) is intuitively obvious and corresponds to comparing the estimates
of # obtained using ¢ as estimating function on the observations (X,,a)

and <§mA)0<m<n

as n — oo with the most recent observations, X, and X_,a respectively, being
added after, respectively before, the earlier observations. We shall therefore give
a formal proof of (6.4) which, as it turns out, is not an entirely trivial matter.

Clearly Aa (‘7)) = Aayg(g) (see (4.6)) by reversibility, so we need only show
that

0<m<n
= (X_ma)g<men Tespectively. Note however the asymmetry

Ey ‘g = Ejg4", (6.6)

where

~—

G (z,y) = 9(y,z) + Ug(y) — U~g(=).
<_

(To ease the notation, the subscripts a g have been omitted from g, g,U). But
writing out

39" = (9 + (Ug") (Xa) — (Ug") (X0)) (6" + (Ug")" (Xa) = (Ug")" (X)),

into 9 terms, taking expectations, conditioning on X, or X as appropriate and
using reversibility and stationarity, one arrives at

Eyg9" = Ejgg"
+E) (g (Ug") " —g* Ug")" + (Ug") *g" + (Ug™) (Ug")"
— (rUg") (Ug")" = (Ug*) g*T — (Ug") (rUg*)" + (Ug") (Ug")"),

writing m = 7a 9, and where all terms in the last expectation are evaluated at X,.
Using mU = U — I this collapses to

Efgg" = Ejgg" + Ef ("9 (Ug")" + Ug") *g").
‘7

The same calculation applied to gives

- T
* \T %\ ¥
By =B 9T+ By (g ') + (U g
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and (6.6) follows since EfggT = E}g g™ (reversibility), *g = ¢*, ‘g* = *g,
and the fact that U is selfadjoint.
\-/\-/T
Since Aa 5(9) = Aae(g), to show (6.5) it suffices to show that Eff gg < Ejgg"
with equality iff g € R. Let u € RP\0. Of course

By (u"g) = B ()", (6.7)

hence

T Eu::T _Eu T:2_1Eu Tv2 lE“ Ty T(:
o' (Ef g7 Ju=Ef (v" g) =3Ef (v"9) +3E5 (v"g) (v" 7)),

and here by Cauchy-Schwarz and (6.7),
7 (ut3) (7)) < % (")’ ©9)

proving (6.5). Furthermore, equality holds in (6.8) iff u”§ = K (u)u” ‘g Qap—a.s.
for some constant K (u). But (6.7) forces K(u) = 41 and by inspection it is

—\ 2 2
then seen that Ef (uT g) = EV (qu}) iff K(u) = 1. Letting v run through
a countable dense subset of RP, it finally follows that equality in (6.5) holds iff

_é 2? QA,Q—a.s. O
Proposition 6.1 shows that in reversible models, if ¢ ¢ R, one can always
improve an estimating function g by symmetrizing: using g instead of g. Of course
geR.
We give two examples of estimating functions of the types dicussed earlier,
where g € R and symmetrizing therefore does not help.

Example 6.2. By Propositions 5.2, 6.1, for a reversible model MLE € R. A
direct proof is the following: since s = sa 9 € M, s* = 0. Further, from s(z,y) =
GAo/anp(2,y) — 15 /1e(x) and the symmetry of qa g follows that

“( o () Fa () (6.9)

z,y) =s(x,y)+
) ( ) Mo 27

and hence, since s* = 0, that
- T
Ll

. 7
= §= ]—7TA79 .
( )Ma

(g*

Thus, Uap*s = [ /u}, and using (6.9), & (z,y) = s(z,y), i.e. s € R, follows.
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Example 6.3. If all g, 9 are simple, also in non-reversible models (3.2) is auto-
matic for °q 5, and as we shall see, S C R. If e.g. gag(z,y) = faps(z), (each
component of g has this form) we find (omitting subscripts Ag) that g* = f,

*g = mf which quickly gives §(z,y) = Uf(y) — nUf(z) =g (z,y). The intuitive
content behind this fact that simple estimating functions are reversible is this:
the estimating equations based on g and g respectively are Y07 fa g (X;a) = 0
and Y7 fae(Xma) = 0, and clearly they are asymptotically equivalent.

We saw that sa g € M, but other martingale estimating functions are typically
not reversible: for g* given by (3.8) to be reversible it is necessary and sufficient
that either h is constant or that f and h are proportional. (The only term in §*,
which is not just a function of x or a function of y, is the product h(zx)f(y). For
g"* to be reversible this term must cancel against h(y)f(z), which is possible only
if f or h is constant or if f and h are proportional. Since f constant results in
g* = 0 this possibility can be ruled out, and it is then easily checked directly that
with h constant or f oc h, g¥ is indeed reversible).

For reversible models one can use the explicit, transition dependent estimating
functions from the class 7, introduced by Hansen and Scheinkman [7], see (3.7),

9K o(@,y) = (Ao f*) ()" (y) — F*(x) (Ash*) (v), (6.10)

(with (3.12) the special case h* = 1) where f*, h¥ are allowed to depend on A, 6.
That (3.2) holds is an easy consequence of reversibility and the fact that 7 g and
Ay are selfadjoint. Instead of (6.10) one could also use

gk o(w,y) = (Aof*) (20" (v) — (y) (Ash*) (). (6.11)

Because of Proposition 6.1, if ¢* is of the form (6.10) or (6.11) one should
symmetrize. The two g*—functions obtained are identical, viz.

L((A0f*) (@)hE(y) = f5(2) (Aoh®) (1) + (Aaf*) ()B*(2) — fH(y) (46D*) (2)),

which is therefore the preferred choice. Even better estimating functions are
obtained by symmetrizing in (3.13).

In models that are not reversible, Hansen and Scheinkman [7] propose that
(6.10) be replaced by

gho(2.9) = (Aof*) (@)h5(y) - f(x) (Ash*) (v).

(_
with Ay the differential operator that defines the generator for ? This gives
an explicit, transiton dependent estimating function if ug is known explicitly, cf.
(6.2), but of course, for d > 2 it may be difficult to determine .
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We conclude this section with a brief comment on the class U of useless esti-
mating functions: For a reversible model of course

gA,@(xa y) = CA,H(xa y) - CA,Q(ya .T)

satisfies the unbiasedness condition (3.2) for any cag € L? (Qay). But (3.5) is
not satisfied and for any ga s € U, Aa(g) = 0 so there is no hope of asymptotics
as in (4.5). It may however be noted that it is sometimes possible to obtain a
variance reduction by considering the sum of a well behaved estimating function
and a useless one. Also, by using functions from ¥/, it may be shown that an
arbitrarily large amount in efficiency may be gained by symmetrizing as proposed
in Proposition 6.1: suppose that p = 1 and let g3 , be well-behaved for a given
A. Now destroy the good properties of ga 4 by adding a member from U thus,

9a0(z,y) = gae(z,y) +a(s(z,y) —s(y, )

with |a| large. Then Aa (g) does not depend on € and it is an easy matter to
arrange things so that Ej g3 o (Xo, Xa) = O(a®) as |a| = co. But gay = g3 4, and
SO

VarA’g(g)

vara,(9)

can be made arbitrarily small!

7. Small A—optimality

Proposition 5.3 showed how the best estimating function from a linear space may
be found using projections in L*(Qa ). But as already noted, this rarely leads to
explicit formulas, and the method is therefore difficult to apply in practice. Here
we shall propose the concept of small A—optimality and discuss how it may be
applied to give estimating functions with good properties.

For A large, the observations (XmA)0 <m<n are almost i.i.d. pg, hence optimal
inference as A — oo should be performed using the simple estimating function

- T
92o(x,y) = (@),

He
see (3.11), corresponding to finding the MLE if the X, were truly i.i.d. (Recall
from Example 4.1 that only parameters appearing in uy can be estimated using
(3.11)). Therefore, if optimal estimating functions gg** can be found for A — 0,
by a suitable interpolation between ggf;t and gggfg,

perform well for all A. (And such a flow will give useful estimators even if A is

one may find flows (gf f,;t) that
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large and pg does not depend on all the parameters, only in that case estimators
for some parameters will have large variances: the model does not allow for precise
estimation of all the parameters).

With the optimality as A — oo in place, we shall focus on the problem of
minimizing for a given flow, vara ¢(g,60) as A — 0. The conditions we arrive at
(for multivariate, multiparameter diffusion models) are similar to the ones found
by Kessler [10], (who studied models with p = 2 of the form dX; = by, (X;) dt +
o9, (X3) dBy, 0 = (01,0,) € © C R?, with n discrete observations A,, apart, and
used moment estimating functions to obtain efficiency for A,, — 0 at a suitable
rate), and Woerner [17] (who for d = 1 gave conditions for LAN in one-parameter
models (p = 1) in the two cases where (i) the parameter enters in the drift by only,
(ii) op depends on 6 and by possibly also).

Our idea is to derive a power expansion in A of vara (g, é), which, as we shall
see, takes the form

~

1
varA,g(g, 0) = Z’U_l + vy + O(A), (71)

and then call g € G small A—optimal if the leading term(s) in this expansion,
v_1 Or vy or a suitable combination of the two, is minimized. Depending on the
structure of the model, we shall distinguish between three cases:

(i) Minimizing v_;: 0y = o does not depend on 6;
(ii) Minimizing vy with v_; = 0: 0y depends on all parameters 64, ..., 6,;

(iii) Minimizing a combination of v_1,vy: 0y depends on some, but not all the
parameters.

As A — 0, we are approaching a limiting continuous time observation scheme,
(Xt)g<i<nn - For that it is essentially true that if Py is the distribution of (X;)o<s<t
under P}, then Py ; < Py, for all ¢,6,6" in case (i), while in case (ii), Py, L
Py, if ' # 6, and in case (iii) absolute continuity holds iff the parameters on
which oy depend are fixed. For n fixed, A — 0, we would in case (i) expect
the information about € to be approximately proportional to A, explaining the
leading term A™'v_; in (7.1). In case (ii), due to the continuous time singularity
between measures, we gain an order of magnitude in estimation precision: it is
possible to obtain vy = 0.

In case (i) under local absolute continuity, the log-likelihood for observation
on [0, 1] given X, has the form

/O T)C Y (X,) dX, — ! /0 LB (X)) O (X )be(X) ds,

28



corresponding to the score function

/ WL (X ) dX, — / BT (X,) O~ (X ) be(X) ds
~ bl(X,)C™ (XO)(Xt—XO)—thT(XO)C 1(X)ba(Xo).

The latter approximation suggests the approximate estimating function (which
does not in general satisfy (3.2)),

geo(®,y) = f:)aT(x)C_l(ﬂc) (y — z) — thy (x)C " (@)bo (2),
Joo(z,y) = by (z)C™(z) (y — 7).

It should be noted that d,gog(x,z) = b} (x)C~'(x), which is precisely the opti-
mality criterion for martingale estimating functions presented in Theorem 7.5 (i)
below!

To obtain (7.1) we shall simply use It6-Taylor expansions of the random ma-
trices ga,0da g, Ja,0 that appear in the expression for vara 4(g, 0), see (4.7), (4.6).

Suppose first that (s,z,y) — ¢és(x,y) is a continuous real-valued function
of s > 0 and (z,y) € D?, continuously differentiable in s, twice continuously
differentiable in y. Let Hy denote the differential operator given by

Heﬁbs(l"a y) = asgbs(xa y) + Aﬂ,yqbs(xa y)7

where Ay ,¢5(z,y) denotes the function Agd,(z, -) for s,z fixed evaluated at y. By
Ito’s formula, under Py for any v,

Bu(Xo, X)) = 60(Xo, Xo) + /tdSHacbs(Xo, )

[ 32 8,0.(X0, X)o7 (X,) dB]

1,j=1

(7.2)

with 0y, ¢s(x, z) denoting the function 0y, ¢s(z, ) for s, v fixed evaluated at z.
We shall denote by ®4 the class of functions ¢ satisfying the continuity and
differentiability requirements above, together with

Ef¢3(Xo, X;) < 00,
B (Hps(Xo, X,))? < o0, (7.3)
Eg‘aquS(Xo,Xs)Cg(Xs)aquﬁs(Xo,Xs) < 00,

for all s, (so if ¢4(z,y) = f(y) is a function of y only, this is simply the conditions

for f € Dy, see p. 7). The operator Hy acting on functions ¢,(z, z) in @y that do

not depend on z, is the generator for the space-time process (t, X¢),,-
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If ¢ € @y, the local martingale in (7.4) is a true P;'—martingale and
t
Eléy(Xo, X) = Elido(Xo, Xo) + /0 ElHo, (Xo, X,) ds. (7.4)

Also, since P} = [}, po(dz) P§, the three conditions in (7.3) are satisfied with EjY
replaced by Ej, at least for pp—almost all z, and then (7.4) also holds with E§
instead of E}.

In some cases we shall need to expand the integrand on the right of (7.4). This
will be done for ¢ € &y, with the function (s, z,y) — Heds (z,y) also in $y, which
ensures that all local martingales are true martingales.

Consider now a given flow G = (g:9) 150,0€0 of well behaved estimating func-
tions. In the remainder of this section we shall assume that for all 8, all compo-
nents gf,(z, y) are one time continuously differentiable in ¢, two times continuously
differentiable in y. We just write Hogg (z,y) € RP*! for (Hggf (z, y))k . One more
crucial assumption will now be made: with G given, a renormalization, replacing
gr0 by Kip9:9, where Ky € RP*P is non-singular and does not depend on z,y,
does not change the solutions of the estimating equation (3.4) for any ¢t = A,
and in particular, does not change vara (g, é) We shall now assume that, possi-
bly after renormalization with some K, the flow (g19) extends continuously to
include t = 0 with g;9(z,y) for t > 0 continuously differentiable in ¢ and twice
differentiable in y. In particular we then have a power expansion,

G1,0(x,y) = gop(z,y) +10s90,0(,y) + 09,54 (t) (7.5)

and assume that g ¢ is non-vanishing in the sense that P’ (g(’ie(XO, X)) # 0) >0
for all ¢ > 0, all €, all components k.

Example 7.1. Suppose X is a one-dimensional Ornstein-Uhlenbeck process (so
d=1),
dXt = —HXt dt +0 dBt, (76)

cf. Example 4.2. Then pg,(x,:) ~ N (6_9t$,0'2 (1 — e‘zet) /20) and we shall
see how the MLE estimating function s; = p;/p; may be renormalized to give a
non-trivial sy in three different one-parameter models (p = 1), as well as in the
full model (7.6) (p =2,6 > 0,0 >0).
(i) 0 > 0, 0 = 1. By computation,

. _ 1,2 2

15% St,H(xvy) ) (y - X ) )

s0 s00(z,y) = —1 (y* — 2?), not depending on 0.
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(ii) @ =1, 0 > 0. With o? the parameter

lim ts,02 (2, 9) = 5 (v — 2)°,
50 8002 (@) = (y — 2)° /20",
(iii) 6 > 0, 0 = /2. Then
lim tsy9(x,y) = L (y — )
=0 462

s0 s0,0(,y) = (y — ) /46°.

(iv) @ >0, 0 > 0. Then with (61, 6,) = (62,0) the labeling of the parameters,

[t o0 ot (y — 2)°
2 — 204
P_I)I(} ( 0 1 ) St,o ,G(xay) ( _# (y2 — .T2)

with sg .2 ¢(x,y) given by the expression on the right.

Returning to the flow G satisfying (7.5), we also from now on assume that
G C 9, i.e. for every 6, each component gf,g(x,y) of g, viewed as a function of
(t,z,y), belongs to ®y.

The results about small A—optimality will be established first if all g, 9 €
M, and then in the general case by using the associated martingale estimating
functions (4.2). Naturally, studying the behaviour of gy for ¢ — 0 implies that
everything is expressed in terms of gog(x,y) and its partial derivatives evaluated
along the diagonal y = x.

If grp € M, for all  (with H, acting on g componentwise),

0 = Egjgae(Xo, Xa)

A
= goolz,) + E¥ /0 ds Hygs.o(z, X))

= 90,0(% .’E) + AHegO,H(xa .’L') + O(A)’ (77)
and thus
90,9(3:: IL') = Oa
Hogsp(z,2) =

(In (7.7) the appearance of a remainder term o(A) is justified provided s —
E§Hggs o (z, Xs) is continuous. Conditions of this nature are deliberately ignored
here and below!)
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We begin by finding the expansions of Aa ¢(g) and Ej (gA,ggg,a) (X0, XA)-

Notation. In the remainder of this section, if ¢ is a function of z,y (or x only)
and possibly ¢, 0,the symbol 1, when appropriate, will also denote the random
variable ¥(Xo, Xo) (¥(Xo) respectively), conforming with the notation from p.
18 when taking A = 0.

Proposition 7.2. Suppose G C ® with expansion (7.5) and all gay € M. Sup-
pose also that ga g € Py, gA,ggz,g € ®y. Then

Effga0(Xo, Xa) = —=AE} [(0,900) by + £ (82,900) Co| + 0(A), (7.10)
Ef (9a09A0) (X0, Xa) = AE} (8y904) Cs (9y900)" + 0(A). (7.11)

Proof. We have
E§gae(Xo, Xa) = Ep [0pg0,0 + A (050590, + Ag,y (e90,0))] + 0(A).
By (7.8) 0490, = 0 while (7.9) implies
0 = 09 (0s900 + Agyg0,) (2, )

= (0:00900 + Aoy (9n900)) (&, ) + ((By900) bo + & (02,900) C) (x, ),
and (7.10) follows. Similarly, again using (7.8),

Ey (QA,agg,a) (Xo, Xa) = AEj (65 (go,agoT,a) + Agy (90,99(1;,0)) +0(A).
But (7.8) also gives 0 (go,ggoT,a) (z,z) = 0 and that

ai-yj (gg,agé,e) (z,2) = (8%9(])6,98%96,0 + angg,aa igé,e) (z,2),

whence
Apy (go,agoT,a) (z,2) = (0yg0,6) Co (3ygo,a)T (z, )
and (7.11) follows. O

As a direct consequence we obtain
Corollary 7.3. If G is as in Proposition 7.2 and
Aoy(g) == Ef [(aygo,e) by + (3§ygo,a) Ce] (7.12)

is non-singular, then

vara o(,0) = xA55(9) (B (9,900) Co @y00)") (A5h(0) +o(5). (7.13)
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The corollary will be used to obtain small A—optimality in case (i), p. 28
above. For case (i), if 9,g0(z,z) vanishes, the main term in (7.13) is 0, and a
further expansion in (7.11) is required.

Proposition 7.4. Suppose that gA,gggﬁ € &y, Hy (gA,ggg,g) € &y and that
0ygo,6(z,z) = 0. Then

Ey (9A,09£,0> (Xo, Xa) = 3A%Ey [(ajygo,a) Cy? (ajygo,a)T] +0o(A?).  (7.14)

If it is only known that Oygf 4(x,x) = 0,gb ¢(x, ) = 0 for some k, [, the identity
(7.14) still applies to the kl’th elements of the matrices involved.

Note. Recall that 02,909 € RP*? and that C§? € R¥*® with (if), (¢/j')’th

]
element C§* Cy’ .

Proof. 1If py(z,y) € @y is a real-valued function of (¢, z,y) with Hep € &y, by Itd’s
formula,

Effpa(Xo, Xa) = Eff [po + AHopo + 30" Hjpo| (Xo, Xo) +0(A%) . (7.15)

We are going to apply this expansion to py(z,y) = (9fe9i,)(2,y) and first note
that (omitting the subscript # in the remainder of the proof) H acts on products
as follows,

H (o) (2,9) = (M) ¥+ o0 (Hn) (2,9) + Y. CY(y) (By010y,0) (2, ).

ij=1

(7.16)

Now, with ¢ = g*,19 = ¢, because of (7.8) and the assumption 9,90 (z,z) = 0,
applying (7.15) to p, = gfsgt 4 gives

Ef (ghgh) (Xo, Xa) = SA’ESH? (g6gh) (Xo, Xo) + o(A?). (7.17)

But again using (7.16), (7.8), (7.9) and the assumption on d,gq g,

d
M (gkgh) (z,2) = Y H(C/dy,980,,95) (x,2) (7.18)

1,j=1

where the notation C;j signifies that the function of (¢, z,y) on which # is acting,
involves the factor C%(y). By (7.16),

H (C199,,9%0,,9!) = H(C¥) D,,9F0,, g}
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+CJ |1 (04:9F) B9+ Byugf H (,,0:) + Y Ci?' 05,902, 0l
i
+ Z C;Ij, (ayﬂ C;j) 8yj’ (ayz 9t ay] gt)
zl’jl

and evaluating this for ¢ = 0,y = z, using the assumption 9,g¢(z,z) = 0 all terms
except those involving second derivatives 8§yg vanish, and we are left with

H (Ci0,,050,,0)) (w,x) = 3 (82,,06CHCIT 2, ab) (%),

Rl yzy’ yjy’
15]5217]
which inserted into (7.18) and (7.17) gives (7.14). O

We can now state and prove the main result on small A—optimality for mar-
tingale estimating functions. The three cases corresponds to the listing on page
28.

Theorem 7.5. Suppose that G = (g19) C ® N M is a well behaved flow of mar-
tingale estimating functions satisfying the expansion (7.5) with a non-vanishing
90,9, such that for every A > 0,60 € ©, gay € By, gaggh o € Py, and for (ii), (iii)
also such that HggA,ggZ,g € Oy.

(i) If C = ooT does not depend on 6 and if the p x p—matrices

B} (0y90,6) (Xo, Xo)bo(X0),
E}by (Xo)C ™ (Xo)bs(Xo)

are non-singular, then

PN

A 1 1
VaI”A,a(g, 0) = KU—I,H(ga 9) + O(K)a

where R . . .
v_14(9,0) > (E§b5 (Xo)C " (Xo)bo(Xo))
Here equality holds, and g is small A—optimal, provided

0ygop(z,z) = KgbaT(x)C_l(x)

for some constant, non-singular p X p—matrix Kj.
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(ii) If Cyp = oo} depends on all parameters 64, ..., 0, and if the p X p—matrices

Eif (8:3:(/90,9) (X07X0)09(X0)a
. —1 .
E§Cq (Xo) (C** (Xo))  Co(Xo)
are non-singular, then

A A ~

vara ¢(g,0) = Zv_l,a(g, 0) + vo,0(g,0) + o(A),

A

with v_14(g,0) = 0 if Oygo(z, z) = 0 for all z, and

v (9,0) > 2 (Egc'*g(xo) (0 (X)) éa(xo))_1 .

Here equality holds, and g is small A—optimal, if 0,g0,¢(x,2) =0 and

. -1
02,900(x,7) = K,CF () (C®* (x))
for some constant, non-singular p X p—matrix Kjy.

(iii) If for some p', 1 < p' < p, Cy = 0yo, depends on 0y,...,0, but not on
Op 11, -..,0y, and if the matrices

E} [(9y90) (X0, Xo) bo(Xo) + & (92,90 (Xo, Xo)Co(X0)] ,
E4b] 4(X0)Cy M (Xo)ba,0(Xo),
By (CTy(X0) (G5 (X0) ™ Cua(X0))

are non-singular, then

PN ~ ~

varag(g,0) = Zv—w(g, 0) + vo,6(g,0) + o(A),

where

(0 0
v-14(99) 2 (0 (4L, (X0) Gy (Xo)ba(X0)) ) (7.19)

with equality if for some constant cy # 0

0
Oygoo(z, ) = ¢y ( 659(m)09_1(m) ) . (7.20)

35



In that case the upper left p’ x p'-block vy of vy g satisfies

-1

vieo (9,0) > 2 (Eg (CEG(XO) (c8? (xo)) CL,,(XO))) (7.21)

and here equality holds, and g is small A-optimal, if 0,904 satisfies (7.20)

and
-1

a;ygl,o,a = f(aofa(m) (ng (ac))

for some constant, non-singular p' x p'-matrix Kj.

Notation. In (iii) block-matrix notation is used. Thus in (7.19) the interesting part
on the right refers to the last p—p’ rows and columns of v_; g with by € Raéx(p—p')
comprlslng the last p — p’ columns of b. Slmllarly, o) 0 € Rd P consists of the
first p’ columns of Cy and 91,06 contains the first p’ components of gg .

Proof.
(i) Since C does not depend on 8,

AO,e(g) = Eg (aygo,a) 59,

cf. (7.12). Now just apply Corollary 7.3 and Lemma 5.1 with Z = 9,40,
Y =b) and S =C71.

(ii) We have that if 0,g0¢(x,2) = 0, then (see (7.12))
Aoolg) = 3 Ef (aiygo,a) Co.

Now use Proposition 7.4 and Lemma 5.1 with Z = 9;,909, ¥ = C7 and
-1
S = (c§?)

(iii) (7 19) follows from Corollary 7.3 using Lemma 7.6 below with Z = 0,90,
=0, U=CFV = 182yg0 9, and S = Cy'. Next, taking 9,904 as in
(7.20), in block matrix notation Agg(g) has the form

0 0 B 0
(o m) (5 0)

011 0
Ef (98095 4) (Xo, Xa) = Ay + A < e ) +0(A?)

and with an expansion

521 522
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A

available, it is an easy matter to see that the upper left corner of v (g, 0)

1 .
equals 3, 161, (ﬂlT ) , which must then be minimized. But 8, = 30;,91,06Cs,
while by Proposition 7.4, since 0,1, = 0,

o = %Eé‘ [(ajygl,o,a) 0592 (8§y91,o,a)T] )

and the proof is completed using Lemma 5.1 with Z = 8§yg170,9, Y = Cy and
-1
s=(c5?) . O

Remarks. Part (iii) of Theorem 7.5 is formulated as a mixture of (i) and (ii). Note
that we have not minimized vg(g), which appears hopeless, only the upper left
block. Suppose now that g is small A—optimal and that

1% 1 o o
W = ( W; ) ~ N, (0, va)f,g(g) + vof;t(g)) ,

with /nglt,g (g) the lower bound in (7.19) and the upper left block of vgf;t(g) the lower
bound in (7.21), is a Gaussian random vector, which according to the theorem,
for A small has a distribution close to the asymptotic distribution of y/n (9 — 9)

when the esimating function g is used on observations A apart. Thus the variance
of W has the form

. -1 .
1 ( 0 0 ) n ( 2E§CT, (ng’?) Cip 012 ) ,

A 0 Egbgc;li)Q (521 622

where the d-matrices are unknown and depend on unspecified characteristics of g.
However, regardless of the values of the d’s,

Wi Dg 1/?1
VAW, W,
as A — 0, where Wi, W, are independent mean zero Gaussian with covariances

. 1 . . R
2E4CY, (058’2) Cio and EjbECy'by. Thus the result is sharp enough to yield

the joint distribution of (él, cen, ép:) and (épurl, cen, ép) when the two vectors are
properly scaled.

Theorem 7.5 (iii) should be compared to Kessler’s [10] Theorem 1 and may per-
haps be viewed as a generalization to a multidimensional, multiparameter setting
of his result.

It was assumed in part (iii) that Cy depend on (6, ..., 60,) only. For applica-
tions it may be necessary to reparametrize before this is fulfilled. Of course also
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any small A—optimal g as described in (iii) may be relaced by Kyg with Ky a
constant, non-singular p X p—matrix.

If d =1, p =1 the lower bounds in parts (i), (ii) are exactly the variances for
the limiting Gaussian experiment found by Woerner [17] in her discussion of local
asymptotic normality (LAN).

In the proof of part (iii), Theorem 7.5, the following result was used:

Lemma 7.6. Suppose that Y, Z,U,V,S are matrix-valued random variables of
dimensions a X b,a X b,a x b',a x b',b x b respectively with S symmetric and
strictly positive definite with probability 1. Suppose further that U = (({)1), where

U, € RY*Y comprises the first a/ rows of U, and where 1 < d' < a. Assuming
that all entries in the matrices Y Z7 UVT ZS71ZT Y,SY,! are integrable, writing

Yy for the last a — o' rows of Y, if E(YZT +UVT), EU\UT and EY,SY; are
non-singular, it holds that

T 7\) ! —1,T T 7\) ! 0 0
(E(zv"+vuT)) Ezs™Z" (E(vZ"+UVT)) > ( 0 (Evasvr)” )
(7.22)
with equality if EU, V' is non-singular and Z = /-@(YSS) for some constant k # 0.
Proof. The left hand side Mj of (7.22) equals ’ILII% My, where M}, is given by the
—

expression for M, when replacing EZS 'Z" by E (ZS’lZT + hVVT), h > 0.

But by Lemma 5.1,
S 0 yT )]‘1
E(y U , (7.23)
(v (6 i) (o

(the assumptions EU,U{ > 0 and EY,SY;" > 0 ensuring that the inverse exists
for h small enough), and by inspection the determinant of the matrix

My, >

Ny = (E (vsyT + touT)) ™

on the right of (7.23) is of order O(h~%'), while the subdeterminant obtained by
deleting the k’th row and [’th column, because the last a — a’ rows of U vanish,
is of the same order only if £,[ > a’. Thus we may write

Ny = (8 £0>—|—hR+0(h),

-1
and it is then an easy matter to verify that ¢y = (EYQS YZT) . (7.22) now follows
taking limits in (7.23).
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Suppose now that Z = ”(Ygs)' Then E (ZYT + VUT) is non-singular because
EU,VT is, and that equality holds in (7.22) amounts to showing

1,7 _ (0 0 T
EzS'Z" = (EzyT) ( 0 Qo (BYZ"), (7.24)
for Z = (Ygs)’ where we have used that
0 O
U=0.
(0 a)
(7.24) is checked directly. O

Note. The assumption EU,UY > 0 may be replaced by EU,SUI > 0 for any
random b’ x b'—matrix S > 0 almost surely. This is actually used in Theorem 7.5
(iii).

Let now G C ® be a well behaved flow of estimating functions, not necessarily
in M. Small A—optimality is then discussed applying Theorem 7.5 to the flow of
associated martingale estimating functions g, g, cf. (4.2).

We assume that after a suitable renormalization G allows the expansion (7.5).
To find the corresponding expansion of (g ) we use the following result

Lemma 7.7. Consider a component g,{fa of gi9. Then ast — 0,

Usoghs(a) = 1k, (2) + ab(a) +o(1), (7.25)
where
(i) if g5 4(x, ) is not identically 0, a_y € Doy is the unique solution to
Ayt (z) = —g5 (. 2); (7.26)
(ii) if g§g(x,z) = 0, then a* | = 0 and ag € Doy is the unique solution to
Aga§ () = = (:965 + Aoy95s) (@, 7). (7.27)

Proof. Applying I — w9 to both sides of (7.25) gives

. 1
gf’@ =7 (I — mep) a’il + (I —mep) ag +o(1).
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But, see (7.5),

gh(@) = g (@, 2) +1 (Dsgfy + Aoysls) (x,2) + 0(t)
and comparing this with the expansion

Wt,gh =h+tAgh + O(t)

applied to h = a*,, ak, the result follows, recalling that the uniqueness of the

solutions to the equations determining a” |, af follows from Proposition 2.1. O

With this result in mind, we define the renormalized martingale flow (. )
associated with G as follows (with g§,(z,z) # 0 meaning that gf,(z,z) is not
identically 0),

t_lgk (33 y) if gk (.7) 33) 75 0
k kx kx t,0\"> 0,0\
z,y)+ U —-U T) = s o F

gt,@( y) t,Hgt,G(y) t,Hgt,O( ) { gf,@ (.T, y) if g(l)c’e(m’ $) 0

so that
k e if g¥ (7, 2) #0
i (z, :{ a®,(y) —a® () ™ 90,6\ 7.98
0olP9) = gh(a,y) + dbly) — ah(z) i ol m) = 0, e

with a” |, a¥ determined by (7.26), (7.27) respectively. Applying Theorem 7.5 with
g instead of g now gives the following general result, where e.g. in part (ii) the
condition gg(z,z) = 0 is argued as follows: suppose that for some £, g(’ig(x, x) is
not identically 0; by Theorem 7.5 (ii), we then need 9,dg o(x, z) = 0 for all k, and
by (7.28) this forces a¥; = 0 and therefore also g§, = 0.

Theorem 7.8. Suppose that G = (g:9) C ® is a well behaved flow of estimatimg
functions satisfying the expansion (7.5) with a non-vanishing go ¢ and let for every
k, a* |, af denote the solutions to (7.26), (7.27) respectively. Further assume that

for every A > 0, 0 € O, g€ Dy, QA,(;gZ,g € &y, and for (ii), (iii) also that
HoGnedag € P
(i) If C = oot does not depend on 6 and if the p x p—matrices

Eg (8yg0,9) (X(),Xo)i)g(Xo),

By (Xo) O™ (Xo)by(Xo)

are non-singular, then vara (g, é) has the same expansion with the same
lower bound as in Theorem 7.5 (i), and g is small A—optimal, provided

dydos(x, ) = Kebft (z)C~ ()
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for some constant, non-singular p x p—matrix Ky. Here, for every k

0yak | () if gk y(z,2) #0
i _ zal 1 90,0, 7.29
Bydo 0@, 7) { 0yg5(x,x) + Ozag(x) if g§o(x,2) = 0. (7.29)
(ii) If Cy = oyo, depends on all parameters 04, . .., 0, and if the p X p—matrices

E} (93,900) (X0, X0)Co(Xo),

BACT (Xo) (% (X0)) ™ Co(Xo)

A

are non-singular, then vara ¢(g,6) has the same expansion with the same
lower bound as in Theorem 7.5 (ii), and g is small A—optimal, provided
Gop(z,z) =0, Oygoe(z,z) + Opao(z) =0 and

82, d0.a(w, 7) = KoCJ () (C (2))

Y

for some constant, non-singular p X p—matrix Ky. Here, for every k

(iii) If for some p', 1 < p' < p, Cy = 040 depends on b0y,...,0, but not on
Ops1,-..,0p, and if the matrices
Ef [(8yd0,) (Xo, Xo)bo(Xo) + & (02,90, (Xo, X0)Co(Xo)] ,
Egb] 4(X0)Cy ' (Xo)b,0(Xo),
1

By (CT,(%0) (G5 (X0) ™ Cra(Xo))

A~

are non-singular, then vara ¢(g,0) has the same expansion with the same
lower bounds as in Theorem 7.5 (iii), and g is small A—optimal, provided
G106(z,2) =0 and

) B 0
8y90,0($a$) = Cy < b%“’a(x)oa—l(x) ):
~ N -1
05, 0100(z,2) = KoCiy(x) (0(582 (33))

for some constant cy # 0 and some constant, non-singular f(g e R x”', J1,0,0
comprising the first p’ components of §o ¢ and by g comprising the last p — p'
columns of by. Here, for k > p'

Oza” | () if g§ (2, 2) # 0
-k . T 1 0,0 ?
OyJo,e (2, ) = { Oy 98 (z, ) + Ozaf(x) ifgé“,a(x, z) = 0.
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and for k < p'

Oy d60(w, w) = 03,90 (2, ¥) + Orpa(x).

As an illustration of Theorem 7.8 we shall discuss when simple estimating
functions (p. 10) are small A-optimal.

Suppose that for some k, gf’a(x,y) = fio(z) has been properly normalized
(see (7.5)) with gfy(x,y) = foe(x) # 0. Then gfy(z,z) # 0 and g§,(z,y) =
a® (y) —a*,(z), where Aga* , = — fo 4. Thus Theorem 7.8 (ii) does not apply and
we see that simple estimating functions cannot be small A—optimal if Cy depends
on all parameters. If however C' = Cy does not depend on 6, by Theorem 7.8 (i),

f1,0 satisfies the optimality criterion if

dya¥ | = k’th row of Kb} C; . (7.30)
For d = 1, this is easy: just integrate the k’th element of Kyb} (x)C, '(z). But if
d > 1, a miracle is required since (7.30) implies that

By, (Kobj Cy') = 5,0t

j yiy; o —1

must be symmetric in 7, 5. Thus the message is that simple estimating functions
can be small A-optimal only if d = 1 and Cy does not depend on all the param-
eters — but perhaps the truly surprising fact is that they can be optimal at all,
since for A small one might consider transition dependence essential for effective
estimation.

If d = 1 and the simple estimating function is of the form (3.12), i.e. ff,(z) =
Agh*(x) (1 <k <p), not depending on ¢, we find from (7.26) that gg,(z,z) =
Agh*(x) = —Aga* [ (x) so a*, = —h*, and thus small A—optimality is achieved
using the flow

(@ y) = Aoh(z), Buh(z) = ——iT (), (7.31)

where h = (hk)k and C(z) = o?(x) is scalar-valued.
The simple estimating function (7.31) was derived by Helle Sgrensen [14] via
a quite different approach.

Example 7.9. As illustration of how small A—optimality may be achieved, us-
ing different types of estimating functions, we consider the Ornstein-Uhlenbeck
models from Example 7.1. Thus d = 1.

(i) We have p =1 and can use (7.31). The result is that g;¢(x,y) = Agh(z) =
—0zh'(x) + $h"(z) is small A—optimal if ' (z) = —z, i.e. Oz* — 1 is small
A—optimal. This is the simple estimating function found by Kessler [9],
Section 5.1, which he shows is optimal in S for any A (cf. Proposition 5.7)
with a very high efficiency.
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(ii) Here we cannot use simple estimating functions to obtain small A—optimality,

(iii)

(iv)

and instead consider martingale estimating functions of the form (3.9), viz.
_ _ o’ _
ao(z,y) = b () (y — e7'x) + hP (@) (y —eMa? = (1-e %)) :

Assuming that h,@ — hgq) forq=1,2 ast — 0, we find
goo(w,y) = b (@)(y — 2) + b (@) (o = 2°) .
According to Theorem 7.5 (ii) we need 0ygo¢(z,z) =0, i.e.
B (z) + 2283 () = 0

for all z, and also that 0,,g0,6(x, ) is constant, e.g. 2h$) = 1. Thus

= — et 1 2 _ 2 2_0_2 _ 2t
gt,a(:r,y) x(y e :E)—|—2 Y e ‘'z 2(1 e )

is small A—optimal. Also small A—optimal is

1 o2
— _t ot A2 a2 O (o ot
gt,e(ﬂﬁ,y)— € :U(y e x)+2<y e 5 (1 e ))
_ ! )2 o —ot
——<y—e x) —Z<1—e )
which, as is easily checked, for all t = A yields the maximum-likelihood

estimator!

Of course the two estimating functions behave quite differently for large t =
A. The example shows that there may be many g that are small A—optimal,
but how to decide which one to use is for now an open problem.

Here also p = 1, and for studying small A—optimality, this model is equva-
lent to (ii) with 20 = o?. For A large, inference in the two models differs
radically, with no problems estimating o2 in (ii), while since g in (iii) does
not depend on 0, estimation of 6 for large A is virtually impossible.

Now p=2,p =1 and g;,2 ¢ is small A—optimal if e.g.

5 0 5
8y90,02,0(xa .I) = Kg29 (—x/02>’ agygl,o,tﬂﬁ(m) CC) =1

One finds therefore that

gt,g(l‘,y) = ( % (2/ - e—Htx)Q B %2 (1 _ 6—291:) )

2 _ o2
Ox 5

is small A—optimal.
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Our final result is obvious from Theorem 7.8 and Proposition 6.1. It is however
quite interesting to verify directly that (?t,g satisfies the optimality criteria if g; ¢
does!

Proposition 7.10. In a reversible model, if (g:4) is small A—optimal, so is the
reversed flow (‘g .4) (provided it satisfies the relevant conditions listed in the
opening paragraph of Theorem 7.8). O

Even if a flow G is small A—optimal, there is no guarantee that it will per-
form decently for A large. As mentioned earlier in this section, one may try to
overcome this difficulty by combining small A—optimal flows with the optimal
simple estimating function as A — oo, e.g. through convex combinations of the
form

)T
e”\AgA,g + (1 _ ef,\A) Hy
Ho
for some A > 0 (perhaps with a separate A for each component). Here of course
g must be chosen so that the convex combination is small A—optimal.
More generally, if for a given A > 0, gy, are well-behaved estimating func-
tions, 1 < ¢ < r, one may look for constant p x p—matrices A4 such that the
asymptotic covariance for the estimator determined by the estimating function

> AWIae

g=1

is minimized. The result (as is seen using e.g. Lemma 5.1) is that, in block matrix
notation, the p X pr—matrix (A(l) .- -A(r)) should equal

.. . -1
9(1),09(T1),0 T 9(1),095),9

Ky ( AR o(90) -+ AXp(9(m0) ) Ey : :

v v

f](r),ag(l),g e é(r),@g(r)ﬂ

for some constant, non-singular Ky € RP*P. This may appear useless for practical
purposes, but through expansions for small A might perhaps be used to pinpoint
better the best among several small A—optimal flows.
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