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Abstract
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1 Introduction.

One of the most celebrated results in mathematical physics is the Theorem on
Stability of Matter. This result, which was originally proved by Dyson and
Lenard [5], states that the binding energy per particle, for a a system of charged
quantum particles, where either the positive or negatively charged particles are
fermions, is bounded independently of the number of particles.

Another and maybe more intuitively understandable formulation of this result
is that the volume occupied by the particles increases at least linearly in the
number of particles.

Since the original work of Dyson and Lenard there has been numerous im-
provements and generalizations. In particular the work of Lieb and Thirring [21]
(see also the review [14]) established the connection between stability of matter
and the semi-classical Thomas-Fermi theory and greatly improved the numerical
constants found by Dyson and Lenard. Among other proofs of stability of matter
we can mention the work of Federbush [6] and the recent proof of Graf [10], which
we shall use in the present work.

The result on stability of matter has been generalized to include relativistic
effects [3, 9, 22, 20], classical magnetic fields [8, 17], and quantized fields [7].

In the present work we are concerned with another type of generalization of
stability of matter. We are interested in the correct dependence on the physical
parameters. One of the remarkable features of macroscopic matter is that the
mean atomic spacing is nearly independent of the type of atoms that the matter



consists of. Or put differently the mean atomic spacing is nearly independent of
the nuclear charges.

In Thomas-Fermi theory distances scale as the —1/3 power of the nuclear
charge, i.e., Z /3. One would therefore naively expect that in macroscopic mat-
ter the volume per particle would behave as Z 1. This is however in stark contrast
to the near independence of Z which is found experimentally.

The Lieb-Thirring proof of stability of matter implies (see [21]) a lower bound
on the volume per atom of the form Z~! for large Z. Our main goal here is to
show that this is indeed not optimal. We prove that there exists ¢’ > 0 such that
the volume per atom is bounded below by Z~'*9. Based on the experimental
evidence one would hope to prove ¢’ = 1, we are, however, very far from such a
result (see Theorem 3).

Our proof is based on first showing that Thomas-Fermi theory not only gives
a bound on the energy, but that this bound is indeed asymptotically correct in
the limit of large nuclear charges. The bound of volume of matter is arrived at
by a careful study of Thomas-Fermi theory.

The fact that Thomas-Fermi theory is asymptotically correct in the limit of
large nuclear charge is a classical result due to Lieb and Simon [19].

The new feature is that we establish this asymptotics uniformly in the number
of nuclei allowing us to use the Thomas-Fermi approximation independently of
the number of nuclei.

We consider matter formed by M nuclei of charges Z; > 1, j = , M lo-
cated at positions R; € R®*. We denote R = (Ry,..., Ruy) and Z (Zl, s I
We consider these nuclei as static and consider the non-relativistic Hamiltonian
of N electrons moving in the electric potential of the nuclei. The Hamiltonian is

N N el S Ve D S

i=1 1<i<j<N L 1<z<]<M
(1)

Our improvement on stability of matter is as follows.

Theorem 1 (Stability of Matter). Let Z = ﬁZiﬁ Z;. Assume there are
0 < a < A < oo such that the charges satisfy aZ < Z; < AZ for all § and that
Z > 1. Then there is 6 > 0 and C > 0 a finite constant only depending on a, A
such that

of f v H W, > _C Z7/3 oM7 5
R:;;&%:M\I/eyl,lﬁ\pn 1< RZNT)y Tszl (2)

N
Here the Hilbert space where the Hamiltonian acts is H = )\ L*(R3; C?) (Fermion
space).



In Theorem 1, the constant Cp is the corresponding Thomas-Fermi constant
(see Sect. 4 below for the definition) in the case Z =1, M = 1. It is worth noting
that the kind of estimate given in this theorem is essentially optimal. In fact, by
taking the nuclei very far apart and using the Theorem of Lieb and Simon on the
exactness of Thomas-Fermi theory for one nucleus we obtain

M
inf inf (U, Hp z y0)., < — 7B oMz P
R;#%:M\pe;{l,ﬂ\p||:1< ,Hrz W), < —Crp Y Z/*+C

(3)

=1

As an application of Theorem 1 we shall derive our results on the total volume
and density of matter. This is the content of the next two theorems. The first is
really a strengthening of Theorem 1, which requires an estimate on the “pressure”
(the extra energy we have for confining particles in a bounded set). The estimate
is a generalization to the case of many nuclei of a result by Brezis and Lieb [2]
on the long-range potentials in Thomas-Fermi theory. The last theorem follows
straightforwardly from that, and shows that for nuclear configurations giving
us an energy close to the minimal possible one, almost all nuclei are very far
from each other (on the natural scale of Thomas-Fermi theory, i.e., 7_1/ 3) and
therefore that matter under such conditions should fill a volume in space much
larger than const M 7_1, which is the estimate that the simpler model of matter
given by Thomas-Fermi theory predicts.

Theorem 2 (Pressure in macroscopic matter). Let R, Z be a configuration
of nucler and charges fulfilling the conditions of Theorem 1 and such that

M
infspec Hg z v < —Crr Z Z;/?’ + C’OM77/3_6

=1

for a (fized) constant Cy. Then there exists C,c > 0 depending only on a, A, and
Cy such that

M M
inf spec H’R,Z,N 2 _CTF Z Z;/g — 0M77/376 + 077/3 Z r (71/36(1{])) (4)
j=1 Jj=1

where T'(t) = min {t™1,¢7"}, ¢t > 0 and 0(R;) = min;z; |R; — Ri| is the distance
from R; to the nearest other nucle:.

Theorem 3 (The volume of matter). With the conditions in Theorem 2, we
have that R should satisfy, for 0 < 6, < 6/7 and k finite

#{i:o(ry) <7 <Mz



Another interpretation of this result is as follows: Let us call

M

volume = Z

j=1

B (Rj %5(1@-)) ‘ ; Bx,r)={yeR: [x—y| <r}

(Above, and hereafter, |G| stands for Lebesque measure of G). Then we have the
estimate

—1+4+361

volume > k'MZ (6)

where k' > 0 is a universal constant.

We shall prove these theorems using a tiling of space into simplices and an
electrostatic inequality developed by Graf [10] and Graf-Schenker [11] which en-
ables us to localize the electrostatic interactions into the tiles and to ignore the
electrostatic interactions between these tiles up to some error which can be con-
trolled. This reduces our problem to bounded regions, and for these we shall use
Thomas-Fermi theory in order to estimate the maximal number of nuclei which
is allowed in order to have non-positive energy. We ignore the tiles with positive
energy; in the tiles which may have non-positive energy, we show how to reduce
the asymptotic estimates to that of the whole space.

2 Graf & Schenker (GS) electrostatic inequal-
ity.

The setting we shall use for the GS inequality is as follows: Let @ = [0, 1]? be the
unit cube in R®. The cube ) can be written as a union of 24 congruent tetrahedra.
(To see this first note that there are 6 pyramids with top at the center of the
cube and base equal to one of the faces of the cube. Each pyramid consists of 4
congruent tetrahedra.) Denote by Dy the open interior of one of these tetrahedra.
We then have a “tiling” T = {D, }qen, i.€, a collection of disjoint tetrahedra all

congruent to Dy such that UaeN D, = R®. We shall also need to consider the

tiling 7; = {I{Dy}aen of scale [ > 0, (which will be chosen later to be 7_1/3+6).

Given a rotation R € SO(3) and a y € @ we denote by R(T; + ly) the tiling
{R(IDs + ly)}.

We are now ready to state the result of Graf and Schenker. Given points
Z1,...,2k € R®. We then consider the function

1 if z,2' belong to the same tetrahedron of R(T} + ly)
0 otherwise

Opy(z, ') = {

for R € SO(3) and y € Q.



Theorem 4 (GS inequality). There is a C > 0 such that for all K € N, all

(T1,...,2x) ERE all (21,...,2r) € CE, and any | > 0 we have
ZiZj ZiZj 2
— > —)
2 |xz-—:cj\—< 2 \xi—m|W“%> ZZ‘ZZ‘
1<i,j<K 1<4,j<K
i F ] i F ]

For any function f on SO(3)xXQ we have here defined its average over translations
and rotations

(f) = / J(R.y)du(R)dy (8)
S0(3)xQ

where du(R) stands for Haar measure on SO(3).

We refer to [10] and [11] for a proof of this inequality.

3 Localizing the Hamiltonian into the tiles.

The inequality of Graf and Schenker allows us to localize the potential energy into
tiles. We shall also localize the kinetic energy. Since we are asking for estimates
from below it is natural to do this by Neumann-bracketing.

Lemma 1 (Localization estimate). Corresponding to a tiling R(T, + ly) with
R € SO(3), y € Q we define the Neumann Laplacians —A,, for the tile ID, (R, y) :=
R(ID, +ly), a € N. and in terms of this the Hamiltonians

N/
1
H,n = Al — ZiXa( R — 9
n Z{ Z| } 2 mm O
= 1<i<j<N’
3 ZiZjXa(Ri)Xa(R;)
1<i<j<M |Ri — Ry

NI
acting on \ L*(ID,(R,y); C?). Here X, is the characteristic function of IDo (R, y).
Then we have the following decoupling inequality:

. ) . 2
inf specHg, z n > inf N {Z<1nf specHa,Na>} ——(N+ Z Z (10)

Na:) o, Na= -

Proof. Given & = (ay,...,ay) € NV. We consider the subset A5(R,y) of RV
given by

As(Ry) ={(z1,...,an) € RN : 2, €D, (R,y), j=1,... ,N}



We let N,, o € N denote the number of j such that a; = o. The sets Az(R,y)
corresponding to different & are disjoint and we can write R*" as the union

= U Ad(Rv y)

We denote by W5 = Wy, . We first investigate the kinetic energy
N oo .
v, -0 ZZ/( |vj\IJ|2=ZZ< > (w&,—Am)>
j=1 & As(Ry) & a=1 \jiaj=a

The left side is independent of R and y and we may therefore average over rotated
and translated tiles. From the Graf-Schenker inequality we have

(\I’[_ZZN: ~—R|+ Z Z ,-—RJ )

Z

j=1 i=1 1<z<]<N 1<z<]<M
Z; 5R,y l’z, 5R,y($iaxj)
> Ay vg)
> (o[- ZZ 7 ~ ] +15§§v P
Z:7;6p.y(Ri, R;) C il
2 RoR, J]\I’)>_7(N+Z_:Z?)
<i<j<M j=1
— Zi<( [ ZZ an CU, Xae Z Xoe Z; X;Tj)
a a=l1 j=1 i=1 1<Z<]<N Li J
Xa(R) )> C 2
+ Vsl )——(N+ > Z7)
1<§<M \R R;| ] l JZ:; J

Note that, although ¥4 is not antisymmetric in all variables, it is antisymmetric
in the variables belonging to the same tile. Hence

(U, Hr znV) > ZZ<1nfspecHa Na>||\Il 1> — g (N + ZZQ

a a=1

Noting that Y || %4> = 1 we conclude (10). O

4 Some results about Thomas-Fermi Theory

In this section we shall prove a result purely about Thomas-Fermi theory. It
is closely related to the results (and ideas) of Brezis and Lieb in [2] about the
asymptotic behavior of many-body potentials in Thomas-Fermi theory. In this
section we shall assume that we deal with neutral systems. The effect of screening

7



in neutral systems is that long-range interactions are much smaller than for non-
neutral systems.

Suppose we have some configuration of M nuclei of charges Z = (Z1,..., Zy)
and positions R = (Ry,...,Ry). The Thomas-Fermi model for this problem is
defined by the following functional on positive densities p € L'(R®) N L33(R3).

Ennz(0) = 6 [ oo [ Vi@pla)da
R3 R3

1 // p(z)p(y) —~ %7,
+= S dady + Y 11
S A v D B ey B

where the potential is V (z) = Zf\il —|$§§{i‘

the physical value of this parameter is Byhys = %(6%2) . We shall however also

use Thomas-Fermi theory for other values of this parameter and we therefore
allow it to be arbitrary for the moment. The Thomas-Fermi energy is defined by
B

E? = inf & 12
TF,R,2 ogpeLl(ﬂgl)an’/B(Ri") TF,’R,Z(IO) (12)

and 3 > 0 is a parameter. In our units
2/3

When 3 = [,y we shall write Erf,F,R,Z simply as Erprz. If M =1 and
Z =1 we shall write Cy, instead of |Efg 7| and if 8 = By, simply Crp (see
also Theorems 1-3).

The energy satisfies the scaling properties

A 7
E@F,’R,Z = /\ETg,)\R,Z = A E"?F,AR,/\%Z (13)

for any A > 0.
It is known that there is a unique function p which minimizes the functional
(12). This function fulfills the Thomas-Fermi equations

30p°(@) = (o)
b(e) = V(@) *p()

and is moreover the unique non-negative solution p of (14). This function has
the property that [ p = Z;Ai1 Zj, i.e., the density minimizing the functional (11)
corresponds to a neutral system. For future use we shall denote by ¢(R, Z, x)
the unique solution ¢ of (14), and ¢**(R, Z, x) the one corresponding to a single
“atom” of charge Z located at R € R3. We refer to the original paper [19]
or the review [15] for the proofs of these statements and for further results on
Thomas-Fermi theory.
We consider the following function:

(14)

M
fﬁ(Ra Z) = Erf‘F,R,z + CgF Z Z;/?) (15)
J=1



Using the scaling properties of Thomas-Fermi theory we have

1/3

PR, 2)=2"¢" (7 R, 7‘12) (16)

In [2] the asymptotics of A7 f#(AR, Z) for large ) was studied in the case of a
finite number of nuclei. Our goal here is to show an estimate on f#(R, Z) similar
to the asymptotics of [2] which holds uniformly in the number of nuclei.

Lemma 2 (Pressure in Thomas-Fermi Theory). Assume there is a constant
a > 0 such that aZ < Z; for all j. Then there is a universal ¢ > 0 (in particular
independent of M ) such that for each R € R*™ we have

M
P (R, 2) > 67 (aZ)' Y T ((aZ)'/°56(R))) (17)
7j=1
where T'(t) = min{t™*,t7"} and 6(R;) = min,; |R; — R;| is as before the near-
est neighbor distance. Moreover, f? is a non-decreasing function of all the Z;
variables.

Proof. By the scaling property (13) it is enough to prove the lemma for Z; > 1
and 8 = fpnys and in this case we omit the superscript. Then we have the
following (a Feynman-Hellman type result)

0
0Z;

f(R,2)= zli)r%i[qﬁ(R, Z.z) — ¢*(Ry, Zi, x)) (18)

The right side of (18) is non-negative because of Teller’s Lemma (see [15] The-
orem 3.4) , which implies that f (R, Z) is non-decreasing in any of the Z; argu-
ments. Therefore we have that

FR,Z)> F(R,(1... 1)) (19)
Let H()) be defined by
HQA) =f(R, (..., ) (20)
Applying Feynman-Hellman’s formula again we obtain
d M
—H\) =) lim[§(R,(N\,...,N),z) — 6" (R, A 7))] (21)
dA Py z—R;

For any of the points R; we choose a nearest neighbor, which shall be denoted R},
ie., |R; — R}| = 0(R;). Then, by Teller’s Lemma once again, we have that

SHO) =Y lim (6(R, R), (), 0) = 6" (R A 2)] (22

1=



Since H(0) = 0, the estimate (22) implies that
1 M
n = | N3 i (s B). ) 2) = 6% (R )

= /d/\Z[hm (R;, R)), (M N),2) — ¢ (Ri, A\, 2))]

+ lim [((Rs RY), (A, X)) — 6 (i, ). 2))] (23)
= DR R, (1,1)
= 53 H(O R - B), (1)

In order to finish the proof, it is hence enough to show that there is a ¢ > 0 such
that

cl'(R) < f((0, R), (1,1)) (24)

If |[R| > 1, (24) follows from the analysis in [2]. On the other hand, if |R| < 1 we
will use the Thomas-Fermi equation directly to analyze the behavior. We have
by the Thomas-Fermi scaling

B((0, R), (A X),2) = ¢ (0,0 7) = X2 (6((0,XV2R), (1,1), /%)
_¢at(0’ 1, )\1/3m)))

By the Thomas-Fermi (14) equation and the fact (see [15] Corollary 3.6) that
#((0,7), (1,1), ) < ¢*(0,1, ) + ¢**(r,1,z) we have

lim [¢((0,7),(1,1),z) — ¢*(0,1, )]

|z|—0
1 (3¢7(0, 1, y))3/* (39((0,7), (1,1),y))*/*
T dy = / (5B0mys)*2|y| W

‘ | (55phy8)3/2‘y‘

1 (3¢((0,7), (1,1),9))%* (3¢(y —1))*?
- LN (- \/5)/ (58pnys)*/ 2|y o f/ (5B0mys) 2] dy
> L_¢

7]

for r < 1. The estimate (24) then follows from the Feynman-Hellmann identity
(18). 0

10



5 Estimating the Kinetic Energy

Now, in order to compare the localized Hamiltonians with their localized Thomas-
Fermi counterparts, we need to establish some inequalities like those of Lieb-
Thirring. More specifically, we ask for estimates on Tr(—Ay — V) where A is
the Neumann-Laplacian on the tile [Dy and V is a real-valued function. We are
interested mainly in the cases a = 0,1. We point out that if we were dealing
with Dirichlet Laplacians, the problem can be automatically reduced to that of
the whole space just by extension. In the case at hand, this is not allowed, and
because of that we shall formulate and prove first a version of these inequalities
in the case of a cube. Finally we are dealing with tiles rather than cubes, but
the problem for the tiles can be reduced to that of the cubes as explained in the
appendix below.

Theorem 5 (Lieb-Thirring type estimate). Let Q be the unit cube in R®
and 0 < a. If V is a real-valued function in L .(Q) for which [V]_ € L¥?**(Q),
then the following trace estimate holds:

Tr(-2g - V) <€, [V 4, | / v (25)

Here —Ag is the Neumann-Laplacian in Q. The constant C, depends only on
a. The same result (possibly with a different constant C,) holds if the cube @ is
replaced by the tile Dy.

We did not find a reference for this theorem and we therefore include a proof
in the appendix. Using the theorem above we can provide an estimate for the
kinetic energy of N antisymmetric particles on a tile (of any scale [ > 0) in terms
of the 1-particle density p,(x) which is defined as

p,/,(x) =N ||'l/}(x,l'2,... ,:I/‘N)”égN dea"' ade (26)
(lD0)N_1

N
for ¢ € N\(L?(IDy; C?)) normalized.
This function is an analogue of a charge distribution, and has the property

‘fl'Do pd’ = N'

Theorem 6 (Kinetic energy estimate for fermions on a tile).
N

Let 1) € \ L*(IDy; C*) normalized and define py as before. Then, if

N

Hy = (-Ap)

i=1

11



we have

(¢, Hyyp) > KLT/

Do

po()odo ~ K Io| [ pp(de (2)

Do

where Kir and K, are positive and finite absolute constants.

Proof. By a simple rescaling it is enough to consider the case | = 1. Let us
define the potential V(z) = —py(2)?/® and the N-particle Hamiltonian Hy :=
SV (—A§ 4+ AV (z;)) where A > 0 is a parameter to be fixed later. This Hamil-

N
tonian acts on A\(L?(IDy; C?)), and it can be diagonalized by the eigenfunctions
of Hy = —A¢+V on L?>(IDy; C?). In fact, the lowest eigenvalue of Hy is just the
sum of the first N negative eigenvalues of Hy so we have from Theorem 5 that

CiA
infspecHy = ~Tr(Hy)- > ~Curd? [ py(@)Pds = 2 [ py(a)oas

Do Dol Jp,

From the variational principle

W, Hop) — 2 [ py(@)?Pde = (4, Hyt) > infspecHy

Dol Jo,
and thus we get
5/3 5/3 CiA 2/3
(W, Hot) > (O~ Curh*®) | pp(a)Pde — 22 [ py(@)Pde (28)
Do |D0| Do
The theorem follows by choosing A\ appropriately. O

Theorem 6 will be one of the main tools to provide a link between Quantum
Theory and Thomas-Fermi theory. This is the subject of the next section.

6 Estimating the energy of the tiles with too
many nuclei.

The principal task we will pursue in this section is to prove that the energy of
the localized pieces of the Hamiltonian on tiles is positive if the tile contains a
large enough number of nuclei, depending only on the average charge Z of these
nuclei and the scale [ of the tiles. We shall use the estimate for the kinetic energy
given by Theorem 6, but we also need an estimate which allow us to compare
the electron-electron repulsion term of the localized quantum Hamiltonians with
the corresponding term in the Thomas-Fermi functional (11). Such an estimate
is provided by the Lieb-Oxford inequality (see [18]).

12



Lemma 3 (Lieb-Oxford inequality). Let ¢y € L2(R3V;C?") normalized and
py(x) the corresponding 1-particle density function. Then

py(x . /3
<%2;ufwm >‘2// sty =158 [ s e

We are now in a position to prove a lower bound on the localized Hamiltonians
in terms of the neutral Thomas-Fermi theory.

Lemma 4 (Lower bound in terms of TF theory). Let H, n be the opera-

tor defined in (9) acting acting on /\L2(ZD (R,y); C?). We assume as before
that aZ < Z; < AZ for all j =1,...,M. Then there exists a ¢ > 0 depending
only on a, A such that

inf specHon' > Efg o, 5. —cN'(I72 +1) (30)

where By = Kir/2 and R, and Z, are the coordinates and charges of the nuclei
in the tile IDL (R, y).

Proof. From the klnetlc energy estimate (27) and the Lieb-Oxford inequality (29)
we get, for ¢ € /\ (L*(IDo(R, y); C?)) normalized that

(Y, Hon1¥0) > KLT/p5/3—/Va(x)p¢(x)dx
//W _y| Y dudy + U, (31)
c(fean g

where
M
Z.
V() ;:ZM_JRJ_‘XQ(RJ-) and U, Z‘R R| R)xa(R;)  (32)
j=1 1<

Using Hélder’s inequality and the fact that py, is supported in D, (R, y) we have

1/2
/ﬁ“«/ﬁﬁ (V)2 and [ <P (3)

K -
%/pff’—c(/ b 3/ 1/3) > —eN'(I72 + 1)

13
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We shall see now that if a tile contains too many nuclei then the Thomas-
Fermi energy E%)?,Ra,za is positive. If on the other hand the tile contains so
few nuclei that the Thomas-Fermi energy is negative we shall in the next section
prove an estimate similar to (30) but with the correct physical constant [pnys
rather than ;.

Lemma 5. Consider a tile ID,(R,y) and let Z, and R, denote the charges and
positions of nuclei in this tile. Assume as before that all the nuclear charges are
bounded below by aZ and above by AZ. Let M, denote the number of nuclei in
the tile. There is then a constant ¢ > 0 depending only on a, and A such that for
all >0 Efpr. 5. >0 if My > max{2,cf31*Z}.

Proof. By the scaling property (13) of Thomas-Fermi theory we need only con-
sider the case 8 = Bynys and [ = 1. From Lemma 2 we have

ETF,RQ,ZQ 2 —CTFMQ(A7)7/3 + C(CL7)7/3/\_1MI (34)

where M’ is the number of nuclei in the tile for which the distance to the nearest
other nuclei in the tile is less than or equal to A(aZ)~'/3 for some 0 < A < 1.
We can place M, — M’ disjoint balls of radius (aZ)~/3)\/2 centered at all the
remaining nuclei. Since M, > 2 it is clear that either M, — M' = 0 or this radius
is universally bounded. Thus we see that these balls cover a region of universally
bounded volume. We conclude that (M, — M) < caZ\73.

Hence

Brpgaz. > MaZ'" (—=CrpA™3 + ca™®X7Y) — c(aZ) /3N

and the lemma follows if we choose A small enough. O

7 Proving the main result.

We shall now use a semiclassical approximation to show that if the number of
nuclei in a tile is small enough then one may use the correct physical constant
Bpnys instead of Gy in the lower bound in (30) . The semiclassical approximation
will be done using the method of coherent states in a manner very similar to the
argument given in [15].

Lemma 6 (Lower bound in terms of phys1cal TF theory). Let H, n+ be the

operator defined in (9) acting acting on /\LQ(ZD (R,y); C*). We assume as
before that aZ < Z; < AZ for all j = 1,...,M. Assume moreover that

E{ZOFRQ z, < 0, where By = Ki1/2 and "R,a and Z, are the coordinates and
charges of the nuclei in the tile IDy(R,y). Then there exist constants ¢,C > 0
__1
depending only on a, A such that if we choose 6 = 2/87 andl =7 % then
4 1
inf specHa,N, 2 ETF,T\’,Q,ZQ — CNIZ3 ’ — CMQZB 6, (35)

14



where M, is the number of nuclei in the tile.

Proof. Lemma 5 shows that the condition Eg‘%,Ra,Za < 0 implies that M, <

max{2, CI*Z}. We shall choose [ such that [*Z > 1 (see the end of the proof) we
may therefore assume that M, < CI*Z.

N

For ¢ € A (L?(Do(R,y); C?)) normalized we consider again the 1-particle
density function py,(z) defined in (26). Using the Lieb-Oxford inequality (29)
and the positivity of the Coulomb kernel,

04 ],

we find that for any 0 < g € L}*(R?) N L3(R?) and 0 < € < 1 we have

N
(¢, Ha,ntp) 2 <1/), Zhi¢> — D(p, p) — (1.68) \/p¢($)4/3dl‘ + €(¥, Hyp) + U
- (36)
where we have introduced the one-particle operator
hi=—(1—€)Aq = Val@) + || % p(2)

and used V,, and U, defined in (32). In equation (36) we have kept part of the
kinetic energy (v, Hyyp) = ZZN:’l(l/J, —A!4) in order to later use it to control
errors.

We choose p to be the density that minimizes the Thomas-Fermi problem

with parameter § equal to (1 — €)Bpnys, i-€., 5§F,Rmza (p) = E”?F,Ra,za'

It is not convenient to work with Neumann Laplacians, so our next goal is to
replace them by Dirichlet Laplacians. In order to do this we take a partition of
unity, with the following properties, on ID, (R, y)

0<0,8 < 1 (37)
Q2+22 = 1 (38)
O4(z) = 1 if dist(z,0lD,) > t (39)
Oy(z) = 0 if dist(z, AID,) < % (40)
_ C
[VOiloo +[VEifw < — (41)
_ C
Ao + A e < 5 (42)
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For any ¢ € L?(ID,(R,y); C*) we then have (omitting the parameters R, y)

/ Vo = [ envel+ / =2 Vg2
Dy D, Dy
= 2 2 =.)|2 20 A
- / V(e + / 67080+ / v(E) / otmas,
2 e C 2
> / V(60 + / VR - G /ma|¢| (43)

Let «y be the one-particle density matrix on L?(ID,; C?) defined as the operator
with integral kernel

V(IL"y) = NI/( ( ))N’ 1<¢(yax2a"' axN')’w(xa'zQa"' axN')>dl‘2"'d$N'
Do (R,y -
(44)

where (, ) here denotes the inner product (antilinear in the first variable) in C2" .
Because of the antisymmetry of 1, the one-particle density matrix v satisfies the
fundamental operator inequalities

0<y<1;, 0<Try <N (45)

To any positive definite trace class operator 7/ on L?(R?;C?) we have a non-
negative density p, € L'(R®), defined by Tr(v'f) = [ py(z)f(z)dz for any
f € L*(R3) identified as a multiplication operator on L?(R3;C?) (it is a sim-
ple exercise in measure theory to see that this defines an L' function). In the
special case (44) we have p,(z) = y(z,z) = py(x). Moreover (assuming that 9 is

in the operator domain of Hy) we have that <1ﬁ, Zf\; hi¢> = Tr(h7) so in terms

of v we can rewrite (36) as

(6. Ho) 2 Tr (1) = D(5.) = (168) [ pu(@)"V*da + elw, Hu) + U (46)
By (45) v can be written as

¥ = Z/\i(ui, Jug 0 < A <1; {u;} orthonormal set (47)

where the functions u; belong to the Sobolev space H?(ID,(R,y); C?). using this
spectral representation together with (43) yields

C
Tr(hy) > Tr (hO©yOy) + Tr (A= E) — t_QNI (48)

where in (48) both ©; and =, are regarded as multiplication operators.
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Let ’yél) = 0,70, and ,Yt(Z) = Z4y=¢. Then fyt(l) and %(2) fulfill the bounds (45)
if v does. We now notice that

Tr (mgl)) = Tr (h9,40;) = Tr (ﬁeﬁet) (49)

where h is defined as h but with Dirichlet boundary conditions instead of Neu-
mann boundary conditions.
Now (46), (48) and (49) imply that

(b o) 2 T (o) = D(3.) + Ua = (168) [ pofa)*Vds
R3
+e(th, Hyty) + Tt (mf)) - %N’ (50)

Now we shall use coherent states given as follows: pick some function g €
H'(R*) which is spherically symmetric and with [g, [g|*> = 1. Introduce a param-
eter 7 > 0 and the family of functions g, := r—3/2g(r~!-). The coherent states we
shall use are then given by

fpsr(T) = go(7 — 5)eP™; p,s €R? (51)
and let us introduce the projections

10
Tpsir = (Fpsirs N fpsr © I3 I = ( 01 ) (52)
Then, for any m € L?(R3; C?) a computation gives
Il = (@m) [ mmymdp s
R3xR3
Vm(2)2dz = (2m) / pl2(m, 7, oy m)dp ds
R3 R3xR3 o
“lm [ 9 (a) e (53)

m@)Pda)de = @0 [ o) m,mpem)dp ds

R3
where ¢,(z) = |g,|* * @(x) and ¢ is any function on R®. We shall now use this
for the specific choice ¢(z) = Vo(x) — |- |~! * p(x), i.e., the potential appearing in

the operators h and h. Introducing the operator h, = —(1 — €)A; — ¢, we split
the first term in (50) as follows

Tr (71%5”) =Tr (ﬁm(l)) +a, (%(1)) (54)
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Here

ar (") = - /R [Va(@) = lgel* * Va() = (¥(2) = |g:* * ¥(2))] p,0 () d

where U = |-|"1x p and P (x) is the density corresponding to the operator fyt(l).
t

We may then write
T () = em® [ (=l - 3()] Mo, 9)dps
R3 xR3

~1e9f") [ [90) P (59
R
where M (p,s) = Tr <%(1)7Tp,s;r>- We have here considered 7" as an operator on
all of L?(R%; C?). The function M(p, s) satisfies
0< M(p,s) <2 (56)

If we minimize (55) over the functions with the property (56) we find that
the minimum is given by the “bath-tub” principle, which tell us that the mini-
mizer actually is the function M (p, s) = 2X{(p,5):d(5)—(1—)[p|2>0} - A straightforward
calculation then shows that

Tt (h”) = D(5,5) + Ua > Bz, z, — CN'r ™2 (57)
Returning to the estimate of the error term a, we note that ¥ — |g,|? * ¥ >

0 since (being the convolution of | - |7! against some integrable function) 1 is
superharmonic and |g,|? is spherically symmetric and of integral one. Therefore

aT(%gn) > - /R3 (Va - ‘gr|2 * Va) p”n(l)

B ”Va B ‘97‘2 * VOLH5/2

v

P (58)

s

by Hélder’s inequality. We will use the term €(1), Hy) in (50) to control the errors

ar (%(1)) and —C [ pf/ % through the use of the Lieb-Thirring estimate Theorem 6.
If we write

by = (3, Hoyy) — (1.68) / pu(2)Pdz — ax(7{") (59)

we find from Theorem 6 and Hélder’s inequality (see also (33) )that

5/2

by 2 —Ce *12 ||[Vo — g * * Va ), —

Clet+1 )N (60)
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where we have used the obvious fact that p.m < py- From Minkowski’s inequality
t
we have that

IN

Ma
HVa —|gr|* Va”s/z ZZJ' H| ' _RJ'|_1 — lge* |- _Rj‘_lH5/2
j=1

IN

My
AZY |- =R =g, |- =Rs 7
j=1

but a computation gives

Il =Rs 1™ =gl = |- =Ry 7| = CP1° (61)
so we get
Ve = 1622 # Val |23 < CTY2(ZMa)*/2 < CMar' 20127 (62)

It remains to estimate the term Tr (h%@) in (50). First we note that

Tr (h%(2)> =Tr (ht%fZ)) with Ay = —(1 — €)As — Vo (Z) X{a:dist(2,0(0Da )<t}

(63)
Now we will apply the Lieb-Thirring inequality from Theorem 5
Tr (ht%@) > —Tr (ht%@)) > —Tr (hy)_
> —Cur / Va(2)% X {a-dist(, 010 ) <1} AT (64)
IDqo

—Cll_?’ / Va (-7;)X{a::dist(m,@(l’l)a))gt}dx
Do

where in (64) we have used that 0 < %(2) < 1. Again using Minkowski’s inequality
we conclude that

5/2

— —4
/ Va(l')5/2X{w:dist(w,6(l’Da))§t}dx < C (MaZ) t1/2 < CMatl/Zlg/QZ (65)

Do

l_?’/l Vo () Xfardist(z,00D0)) <ty 8 < C Mol *tZ (66)

Finally we must deal with the fact that it is § = (1 — €)fpnys and not Spnys
that appears in (57). We first note that it follows from the assumption that

E@%’Ra,za < 0 that Erpr, 2z, < C’Ma77/ ®. To see this note first that if we use
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the minimizer pg, for the functional 5@%’% .z, as a trial density in the functional

5ﬁ°/R .z, we conclude that

0> B - > %/p"’” + BN > %/ oMz

where the last estimate follows from the no-binding Theorem of Thomas-Fermi
theory, i.e., the positivity of the function f%/2 (see Lemma 2). Now using pg, as
a trial density in the physical Thomas-Fermi functional Etp z, 2z, gives

ErpRaze < ETFRa,Za(P80) = (Bphys — Bo) / A - N

< (Bonys — Bo) / P2 < 2(Bonys — B0) By CMLZ"?

We are now in a position to estimate E{ZF,R%Z& in terms of the physical
Thomas-Fermi energy Enp gz, z,. Indeed using the scaling (13) we see that

6
EéiF,Ra,za = (1-€)” ErpRa,(1—0-32,

= (1-¢° {f(Ra, (1—€)32,) — Crr (1 - e)—7sz/3Xa(Rj)}

=1

> (1-¢)° {f('Ra,Za) — Crp(1- 6)7ZZ}/3xa(Rj)}

j=1
= (1 — 6)6 {ETF,'R(,,ZQ — CTF [ 1 — 6 227/3Xa }

> Bregaz. —CM,Z 12— (1—€f — (1 - e)*7] (67)
where in the third line of (67) we have used that f is a nondecreasing function

of the nuclear charges. together with the observation that (1 — 6)73 > 1 and in
the bottom line the fact that Erpr, z, < CMaZ > and (1—€)® < 1.

The lemma now follows if we combine all the estimates (50), (54), (57), (59),
(60), (62), (64), (65), (66), and (67) and choose € = 7 r=7 0 =7
t=2""" where § = 2/87. O

We are now ready to prove the main result Theorem 1.

Proof of Theorem 1. We use a tiling as before with [ = 7 ** For this tiling we

apply (10) together with the estimates (30) and (35). If for a tile E@%Ra,za >0
we use (30) and simply use the trivial estimate

M
E*f‘OF,Ra,Za 202 ~Crp ZZ;BXQ(RJ)

=1
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If Eéi%,m, z, < 0 we apply (35) together with the no-binding Theorem (the pos-

itivity of f in Lemma 2), i.e., Erpz, z, > —Crr Z;VI Z;/?’Xa(Rj). We then find
from (10) that

M M
. 7/3 —4/3—8 15 C 9
1nfspecHR,ZyN 2 _CTF E Zj —CZ N-CMZ? - T(N + jEZl Z])

i=1

It is a result of Lieb %6] that if N > N, where Nj is the greatest integer smaller
than or equal to 2 Zj:l Z;+ M then infspecHg z n > infspecHg z n,- We may
therefore without loss of generality assume that N < ¢(Z + 1)M. We hence
conclude that

M
infspecHg z n > —Crr Z Zj7/3 _oM7 P

=1

8 Estimating the density.

So far, we were concerned with estimating from below the quantum-mechanical
energy uniformly with respect to the nuclear configurations. Now, it turns out
that this can be applied to give a new bound on the density of macroscopic
objects. The observation is that in Theorem 1 we disregard an important effect
in Thomas-Fermi theory, namely, the positivity of the pressure. This gives us a
positive correction to the previous estimate.

Using our estimate on the energy and the already mentioned result about
the positivity of the pressure, we shall now prove that if we look at nuclear
configurations which are close to those which give the minimal possible energy,

then the number of nuclei per unit volume is bounded above by constZ . This
is the content, of Theorem 2.

We shall prove Theorem 2 by applying Lemma 2. Lemma 2 is, however, purely
a result about Thomas-Fermi theory. We can therefore not use it directly since
we need to know beforehand that given a particular nuclear configuration the
quantum energy can be well approximated from below by the physical Thomas-
Fermi model. We have proved this only for the tiles where the number of nuclei
and their configuration is such that the unphysical Thomas-Fermi energy is non-
positive (see Lemma 6). This is where the assumption that we look only at
configuration with nearly minimizing energy plays its role. Since it allows us to
show that the number of “bad” tiles (with positive energy) should be very small.
This is the content of the next lemma.
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Lemma 7 (Controlling the number of nuclei in bad tiles). Consider again

the tiling of scale | = 73 of R® and assume R € R*™ s a nuclear config-

uration of M nuclei of charges Z;, j = 1,..., M for which the assumptions of
Theorem 2 hold. Let A = {a : E@%yﬁa,za > 0}, where R, and Z, are the
positions and charges of the nuclei in tile ID,(R,y). Denote by M, the number
of nuclei in the tile. Then there exists k > 0 depending only on a, A, and the
constant Cy from Theorem 2 such that

<Z Ma> <kMZ’ (68)
acA

Proof. As in the proof of Theorem 1 we use (10) together with the estimates (30)
and (35) and the result of [16] to conclude that

M
inf specHR,Z,N Z _CTF <Z Z Z;/3XQ(R])> — CM77/3_6 (69)
ag A j=1

Thus if the nuclei fulfill the assumption of Theorem 2 we immediately conclude
(68). O

The following Lemma is of purely geometrical content, and. It claims that if
two nuclei are nearest neighbors and are close enough, then the set of (R,y) €
SO(3) x @ for which the two nuclei belong to the same tile of the tiling {ID, (R, y)}
has positive measure.

Lemma 8. Let B(zo,79) C Dy be the mazimal ball contained in Dy and assume
that z,x' € R® satisfy |x — a'| < lrg/2. Then, if we call

Ay ={(R,y) € SO(3) x Q : x,z' belong to the same tile of {I{D,(R,y)}}
we have the estimate
WAz ) > %7‘3, p = measure on SO(3) X @ (70)

Proof. 1t is fairly easy to see that the claim is translationally invariant. We may
therefore assume that x = zo = 0. Then z,2' € B(0,lry/2). For |y| < ry/2 and
all R € SO(3) we have

R~ (B(0,70/2)) —y = B(0,70/2) —y C Dy
Hence z,2' € B(0,1ry/2) C IR(Dy + y) = [Do(R,y) and the result follows. [

We are now prepared to give the proof of Theorem 2.

22



Proof of Theorem 2. We make the tiling localization as before with a tiling of

scale | = Z *™. Let A be defined as in Lemma 7. We then find from (10)
together with(30) and (35) and the result of [16] that

inf specHg, z N > <Z E€%7Ra7za> + <Z ETF,'RQ,ZQ> oMz 0 (71)

acA ag¢ A
Denote the ratio By/fpnys =t € (0, 1] we then have by (13) and Lemma 2

Bo -1
Erpr,z., = U Erri-1R,,2,

M
> At 'CueMZ" +ZP ST (t*lil/f‘aa(}zj)) Xa(R;)
Jj=1
7/3 7/3 1
> —at O M Z + 23T (2 00(Ry)) xalBy) (72)
j=1
where ¢ > 0 and §,(R;) denotes the nearest neighbor distance among nuclei in
the tile [D,(R,y). We have used the scaling properties of Thomas-Fermi theory
together with the fact I'(tx) > C(¢)['(z) for 0 < ¢ < 1 and C(¢t) > 0 (which is

easily verified).
If we insert (72) into (71) and apply Lemma 7 and Lemma 2 we arrive at

infspecHp zn > CTFZZ7/3 oMz

j=1
7 Z <ZF (21/35 ) o(R; )> (73)
If §(R;) < lry/2 we use Lemma 8 to conclude that
/3 (F1/3 7/3 1 3
<zz r (Z 5a(Rj)) Xa(Rj)> > "7 ( P5(R; ))

For a nucleus R; such that 6(R;) > lro/2 we cannot argue as above, but in this

case we have that Z7/3 'z 1/3<5(R ) < 7" « Z"* and this contribution
can therefore be included at the expense of increasing the constant in front of the
error term. This concludes the proof of Theorem 2. O

Proof of Theorem 3. Follows immediately from Theorem 2 noticing that

Zr(z”“‘a ) ”1#{Rje7z:5( )<Z”3+‘”}
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A Appendix: The Lieb-Thirring inequality (Th. 5):

Proof of Theorem 5. We shall look first at the case &« = 0. In the case of the
Laplacian on the whole space the corresponding inequality, which holds with-
out the last term, is the celebrated CLR estimate, proved independently by
Cwickel [4], Lieb [13], and Rozenblum [23]. We are however not aware of a
reference in the Neumann case. For completeness we therefore include a proof.
The method of Lieb uses the Feynman-Kac formula and gives by far the best
constant. In order not to introduce the Feynman-Kac formula on the cube we
here appeal to Rozenblum’s method.

The appearance of the constant term is due to the fact that even if V=10, 0
is an eigenvalue corresponding to a constant eigenfunction.

On the orthogonal complement of the constants the Neumann Laplacian sat-
isfies a Sobolev inequality similar to the Dirichlet Laplacian (see e.g. [1]). More
precisely, there exists C's > 0 such that for all rectangular boxes Q C R® with
eccentricity (the ratio between the longest and the shortest side) bounded by 2

we have for all ¢ € L*(Q) with [5 ¢ = 0 that
1/3
[iver=co{ [ 1or}
Q Q

[ < o= 4 (74)

Q
we have for all ¢ with f@ ¢ = 0 that

/(;2|V¢|2+/QV|¢|2 > /Q‘WP_/Q[V]—W
e [} { [} [} 20

Hence —Ag+V > 0in {xg}* if [5[VI* < (C5)** = A.

Now the idea, which goes back to Rozenblum [23], is to try to cover the whole
original unit cube by cubes of eccentricity bounded by 2 (which from now on will
be called bricks) such that in each of them the condition (74) is satisfied. In order
to do this we shall employ the following special case of a general covering lemma
given by M. de Guzmén [12].

Thus if

v

Lemma 9 (Covering Lemma). Let J(G) be a real-valued function defined over

the class of Borel subsets of a d-dimensional cube () which is lower-semiadditive
(i.e J(G1UGs) > J(G1) + J(G2) if GiN Gy = 0) and continuous in measure (i.e
if Gy is a nested family of sets continuous in measure, t — J(Gy) is continuous).
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Then, for every integer n > 1, there is a covering = of Q by bricks Q C Q such
that the number of bricks #Z < n, each point of the cube belongs to at most d
bricks and for any Q) € =

~ 2d+1

J(Q) < —J(@Q) (75)

n

We will use this Lemma 9 for the function
16) = [ vy (70
G

together with the following, which is a consequence of the min-max principle for
the eigenvalues of self-adjoint operators:

n (—Ag +V) =min{codimV; V C L*(Q) : —Ag+V > 0on V} (77)

where n_(—Ag + V) is the number of non-positive eigenvalues of —Ag + V.
Now there are two cases: if f Q[V]?L/ 2 < A, then we have exactly one non-positive

eigenvalue. If, on the other hand, this is not satisfied, we choose n such that
% i) Q [3V]i/ > < A and also being the smallest integer with this property. More-

over, let Q1,...,Qn be the covering given by the Guzman Lemma and let V be
sp{Xg,, - »Xg,} - Since 1 < d i Xg; < 3 we have, for ¢ € V

1 n n
Jywers [vior = 196853 xa, -~ [VH107 g,

;2{/62 Vo2 - /@[W]_W}

0

v

v

which follows since

/~[3V]3_/2 _ 33/2J(Q) < 171_633/2!](@) <A
Q

by our choice of n and this proves the & = 0 case. Hence

. 3%/216 3/2
n_(—Ag+V) <codimV =n< 1 Q[V]_ +1 (78)

In order to deal with other « values, we need a bound on the bottom of the
spectrum. This is provided by the following: write ¢ € H'(Q) as ¢ = ¢ + ¢
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where ¢1 = ([, ¢)xo- We have [¢]* < 2[¢1|* + 2|¢o|* and then, assuming also ¢
normalized we get since |¢1|*> < [|¢]|%xq (recall that @ is a unit cube)

/Q Vol + /Q VigP > cs{ /Q @6}”3“ |
_Q{Lmﬁ}?{ Qw}? —2/Qm
%gg{cst—2{/Q[V]i—%S}2gstl—S} —2/Q[V]_

2(1—s)

> —C(s) {/Q[V]i—g%} : —Z/Q[V]_ (79)

where we have picked some 0 < s < 1in (79). Now we can end the proof noticing
that

v

Tr(=Ag+V)* = a / noa(—Ag + V)A*d (80)
0

(here n_)(—Agq + V) is the number of eigenvalues less than or equal to A ) and
moreover

noax(=Ag+V) <n_(=Ag —[V+A-) (81)

which is an easy consequence of the minimax principle. Now (80), (81) together
imply

|inf spec(—Ag+V)|
Tr(—Ag +V)® < a / n(—Ag—[V+N)NTdN  (82)
0

Now we choose s = 33& and from (79), (80), (81) we get

| inf spec(—Ag+V)| 3/9
Tr(-Ag+ V)¢ < a/ AL\ {C’o/[V—i-)\]_/ dm—i—l}
0 Q
vl- 3/2

< Coa/ da:/ [V + AP2A%"1dA + | inf spec(—Ag + V)|

Q 0

1

= 0004/ dm[V]2+a/ (1 —A)*2X2"1d) + | inf spec(—Ag + V)[®

Q 0

< O, /Q V]34 0o { /Q [V]_}a (83)

where in the last inequality we have used the elementary inequalities

(x4+y)*<z*+y* 2,y>0, 0<a<l
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or
(z+y)* <22 (z*+y%); 7,y >0, 1 <«

and this completes the proof for the unit cube.

In order to prove the Theorem in the case of the tetrahedra described in
the beginning of Sect. 2 we shall show that the Neumann eigenfunctions in a
tetrahedra can be extended to Neumann eigenfunctions in the unit cube. Note
that we can get all 24 tetrahedra making up the unit cube by repeated reflections
(through faces) of one of the tetrahedra, say, Dy. Moreover, it can be easily seen
that it always takes an even number of reflections to return to a given tetrahedron.
Since an even number of reflections leaving D, invariant is the identity we see
that any function on Dqy can be extended consistently to the whole unit cube by
reflections.

If ¢ is an eigenfunction of —Ap, —V, then ¢ € H?(Dy) (the Sobolev space of
order 2) with On@|yp, = 0. If we therefore define ¢ as the extension by reflection

of ¢ to the whole unit cube @ then ¢ € H?(Q) with ON¢|ag = 0. Moreover, if 1%

is the reflected extension of V, then ¢ is a Neumann eigenfunction of —Ag —V
with the same eigenvalue. Thus

TI‘ (—AQ - V)‘i

< Oa/Q[V]3_/2+“+Ca (/Q[V]>a

= 2c, | VI +C, (24 / [V]_>
Do Do

Tr (—ADO - V)a

IN
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