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Abstract

In this paper we find asymptotic upper and lower bounds for the spectrum of random
operators of the form

S*S = (Zr:ai@@yi(n))*(zr:ai ®Yi(n)),

i=1 i=1

where a1, ... ,a, are elements of an exact C*-algebra and Yl(n), . ,Yr(n) are complex Gaus-
sian random n X n matrices, with independent entries. Our result can be considered as a
generalization of results of Geman (1981) and Silverstein (1985) on the asymptotic behaviour
of the largest and smallest eigenvalue of a random matrix of Wishart type. The result is
used to give new proofs of:

(1) Every stably finite exact unital C*-algebra 4 has a tracial state.

(2) Tf A is an exact unital C*-algebra, then every state on Ky(A) is given by a tracial
state on A.

The new proofs do not rely on quasitraces or on AW*-algebra techniques.

Introduction

Following the terminology in [HT], we let GRM(m, n, %) denote the class of m xn random
matrices B = (bij)i<i<m, 1<j<n, for which (Re(sz), Im(bij))lsiSm, 1<i<n form a set of 2mn
independent Gaussian random variables, all with mean 0 and variance %0‘2. In other
words, the entries of B are mn independent complex random variables with distribution
measure on C given by

1 exp(—lj—f) dRe(z) dlm(z).

The theory of exact C*-algebras has been developed by Kirchberg (see [Kil], [Ki2], [Ki3],
[Was] and references given there). A C*-algebra A is exact, if for all pairs (B,7), of a
C*-algebra B and a closed two-sided ideal 7 in B, the sequence

0— AT — ARB — A® (B/J) — 0

min min min
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is exact. Here, for any C*-algebras C and D, C @min D means the completion of the
algebraic tensor product C ® D in the minimal (=spatial) tensor norm. Sub-algebras and
quotients of exact C*-algebras are again exact (cf. e.g. [Was, 2.5.2 and Corollary 9.3]),
and the class of exact (*-algebras contains most of the (*-algebras of current interest,
such as all nuclear C*-algebras, and the non-nuclear reduced group C*-algebras C(F,),
associated with the free group F,, on n generators (2 <n < oo).

For any element 7' of a unital C*-algebra, we let sp(7') denote the spectrum of T'. The

main result of this paper is

0.1 Main Theorem. Let ‘H and K be Hilbert spaces, and let ay,... ,a, be elements of
B(H,K), such that {afa; | 1 < 4,5 < r} is contained in an exact C*-subalgebra A of
B(H). Let (2, F, P) be a fixed probability space, and let, for each n in N, Y(n) . ,Yr(n)

be independent Gaussian random matrices on €2 in the class GRM(n,n, ) Put

r

Su=YaaV",  (neN),

=1

and let ¢, d be positive real numbers. We then have

(1) I )| Y0 afai]| < cand || D] , aial]] < d, then for almost all w in §,

lim sup max [sp (S;(w)Sn(w))] < <\/E + \/3)2

n— oo
(i) I Y77 afa; = ey, || 2z aiaf]] < d, and d < ¢, then for almost all w in €,

lim inf min [sp(S;(w)Sn(w))] > <\/E — \/3)2 m

n—oo

The Main Theorem can be considered as a generalization of the results of Geman (cf.
[Gem]) and Silverstein (cf. [Si]), on the asymptotic behaviour of the largest and smallest
eigenvalues of a random matrix of Wishart type (see also [BY], [YBK] and [HT]).

The Main Theorem has the following two immediate consquences:

0.2 Corollary. Let aq,...,a, be elements of an exact C* a]gebra A, and for each n in
N, let Yl(l), . Y( ") be 1ndependen1; elements of GRM(n,n,1). Then
lim su H a2®Yn) H < H a;a; —I—H a;ar|l
e[S S|+ X
for almost all w in (). m
0.3 Corollary. Let ay,...,a, and S,, n € N, be as in the Main Theorem, and assume

that Y, afa; = clpmy and | >°i_, afa;]| < d, for some positive real numbers c,d, such
that d < c¢. Then for almost all w in Q,

0¢ sp(SZ(w)Sn(w)), eventually as n — oo. O



In a subsequent paper [Th] by the second named author, it is proved, that if ay,... ,a,
and S,, n € N, are as in the Main Theorem, and if furthermore ) ._, afa; = clp) and
Y iz aaf = dlp(x), for some positive real numbers ¢, d, then

lim max [sp(SZSn)] = <\/E + \/3)2, almost surely,

n—oo

and if ¢ > d, then

lim min [sp(SZSn)] = <\/E — \/E>2, almost surely.

n—o0

Hence the assymptotic upper and lower bounds in the Main Theorem cannot, in general,
be improved.

Exactness is essential both for the Main Theorem and for the corollaries. An example of
violation of the upper bound in the Main Theorem is given in Section 4. The example
is based on the non-exact full C*-algebra C*(F,) associated with the free group on r
generators, for r > 6.

In [Haal, the first named author proved that bounded quasitraces on exact C*-algebras
are traces. Together with results of Handelman (cf. [Han]) and Blackadar and Rgrdam
(cf. [BR]), this result implies

(1) Every stably-finite exact unital C*-algebra has a tracial state.

(2) If A is an exact unital C*-algebra, then every state on Ky(A) is given by a tracial
state on A.

The proof in [Haa] of the above mentioned quasitrace result, relies heavily on ultra product
techniques for AW*-algebras, but the starting point of the proof in [Haa] is the following
fairly simple observation: Let a1,...,a, be r elements in a (not necessarily exact) C*-
algebra A, such that > i_ afa; = 14 and || Y., a;af|| < 1. Let further zy,...,z, be a
semi-circular system (in the sence of Voiculescu; cf. [Vo2]) in some C*-probability space
(B, ). Then the operator s = >_._ a;@x; in A® C*(x1,... ,x,,15), satisfies 0 ¢ sp(s*s)
but 0 € sp(ss*), and this implies that v = s(s*s)_% is a non-unitary isometry in the

C*-algebra A ® C*(z4,...,2,,15).

Corollary 0.3 can be viewed as a random matrix version of the result that 0 ¢ sp(s*s).
The corresponding random matrix version of the result that 0 € sp(ss*), holds too, i.e., if
ai,...,a, and Sy, n € N, are as in Corollary 0.3, then with probability 1, 0 € sp(.5,S5}),
eventually as n — oo (cf. [Th]). In view of Voiculescu’s random matrix model for a semi-
circular system (cf. [Vol, Theorem 2.2]), it would have been more natural to substitute
Yl(n), e ,Yr(n) from GRM(n, n, %), with a set of independent, selfadjoint Gaussian random
matrices. However, we found it more tractable to work with the non-selfadjoint random
matrices Yl(n), e ,Yr(n).

In the last section (Section 9), we use Corollary 0.3 to give a new proof of the statements
(1) and (2) above. The new proof does not rely on quasitraces or AW*-algebra techniques.
The main step in the new proof of (1) and (2) is to prove, that Corollary 0.3 implies the
following



0.4 Proposition. Let p,q be projections in an exact C*-algebra A, and assume that
there exists an € in |0, 1], such that

7(q) < (1 = ¢)7(p),

for all lower semi-continuous (possibly unbounded) traces 7: Ay — [0, 00]. Then for some
n in N, there exists a partial isometry u in M,(A) = A® M,(C), such that

wu=9q@ e and  wut Sp@lu,g. O

In the rest of this introduction, we shall briefly discuss the main steps of the proof of the
Main Theorem. Observe first, that by a simple scaling argument, it is enough to treat
the case d = 1. This normalization will be used throughout the paper. The proof of the
Main Theorem relies on the following

0.5 Key Estimates. Let ay,... ,a, be elements of B(H, K), let ¢ be a positive constant,
and put S, =Y ., a; ® Y,L-(n), n € N, as in the Main Theorem. We then have

(a) If || DI, afa;|| < cand || Y], a;a’]| <1, then for 0 < ¢ < min{

30 90
]E[ eXp(tS;Sn)] < exp ((\/E + 1)2t + (e + 1)22)13(7@). (0.1)

(b) If Y0, afa; = clpy, Y i_y aiaf = 1y and ¢ > 1, then for 0 <t < 2
]E[ exp(—tS;Sn)] < exp ( — (\/E — 1)2t + (c+ 1)2%)13(7.01). ] (0.2)

We emphasize that the key estimates (0.1) and (0.2) hold without the exactness assump-
tion of the Main Theorem. Once these estimates are proved, a fairly simple application
of the Borel-Cantelli Lemma yields, that if H is finite dimensional, and Ap.x and Apin
denote largest and smallest eigenvalues, then one has

lim sup Amax (5 5,) < <\/E + 1)2, almost surely,

n—oo

in the situation of (a) above, and

lim inf Apmin(S):5,) > <\/E — 1)2, almost surely,

n—oo

in the situation of (b) above. (This is completely parallel to the proof of the complex
version of the Geman-Silverstein result, given in [HT, Section 7]). To pass from the case
dim(H) < oo to the case dim(H) = 400, we need the assumption that the C*-algebra
C*({afa; | 1 < 1,5 < r})is exact, as well as the following characterization of exact

C*-algebras, due to Kirchberg (cf. [Ki2] and [Was, Section 7]):
A unital C*-subalgebra A of B(H) is exact if and only if the inclusion map ¢: A — B(H)

has an approximate factorization
W
A 25 M, (C) =2 B(H),

4



through a net of full matrix algebras M, (C), A € A. Here, @), 1) are unital completely
positive maps, and

1i§ﬂ|\¢x opy(z)—z|| =0, forallzin A.

Finally, we use a dilation argument to pass from the condition ) '_, a;al = 1x of (b)
above, to the less restrictive one: || Y°'_, a;a7|| < 1, which is assumed in (ii) of the Main
Theorem (when d = 1). The proof of the fact that the key estimates (0.1) and (0.2) imply
the Main Theorem, is given in Section 4 for the upper bound, and in Section 8 for the
lower bound. Sections 1-3 and 5-7 are used to prove the key estimates (0.1) respectively

(0.2).
In Section 1, we associate to any permutation 7 in the symmetric group 5,, a permutation

7 in Sap, for which #% = # o # = id and #(j) # j for all j, namely the permutation given

by

2 -1) = 27'(G),  GE{L2....p})
#2) = 2m() 1, (G E{L2....p}).

Moreover, following [Vol], we let ~; denote the equivalence relation on {1,2,...,2p},
generated by the expression:

J~a () + 1, (addition formed mod. 2p),

and we let d(7) denote the number of equivalence classes for ~z. We can write d(7) =
k() + I(7), where k(7) (resp. I(7)) denotes the number of equivalence classes for ~z,
consisting entirely of even numbers (resp. odd numbers) in {1,2,...,2p}. With this
notation we prove, that for any random matrix B from GRM(m,n,1),

EoTr,[(B*B)] = Y m*Pn!®, (0.3)

€Sy

Consider next the quantity o(#) = $(p+1—d(#)). It turns out, that o(#) is always a non-

negative integer, and that o(7) = 0 if and only if 7 is non-crossing (cf. Definition 1.14).
In Section 2 we show, that if ay,... ,a, are elements of B(H,K) and S =>"\_ a; ® K-(n),
where Yl(n), e ,Yr(n) are independent elements of GRM(n,n, 1), then

n

E[(S*S)p] — ( Z n—QU(';r) . Z a;,‘laiw(l) .. 'a;kpaiw(p)> & 1Mn((C)- (04)

TESp 1<e1 e ip<r

In [HT, Section 6], we found explicit formulas for the quantities E o Tr,[exp(¢B*B)| and
E o Tr,[B*Bexp(tB*B)], where B is an element of GRM(m,n,1). In Section 3, a careful
comparison of the terms in (0.3) and (0.4), combined with these explicit formulas, allows

us to prove, that if | Y77, afa;]| < cand || Y7, a;af]| <1, then for 0 <t < min{Z, 2},

[Biexp(t5°5)]] < expl(c+ 1)°%) [ " explta) d(a), (0.5)

0



where p. is the free (analog of the) Poisson distribution with parameter ¢ (cf. [VDN] and
[HT, Section 6]). The measure p. is also called the Marchenko-Pastur distribution (cf.
[OP]), and it is given by

Va—ab=1)

. d
27T$ [avb](x) $7

where a = (y/e—1)%,b = (y/c+1)? and &y is the Dirac measure at 0. Since supp(u.) C [0, 8],
the first key estimate, (0.1), follows immediately from (0.5).

pe = max{l — ¢, 0} +

To prove the second key estimate, (0.2), we show in Sections 5-6, that under the condition

r r

Z aia; = clpgy), and Z a;a; = 1p(xy,

=1 =1
one has, for any ¢ in N, the formula:
]E[ch(S*S)] — |: Z n—?o’(ﬁ) ( Z O}Zaip(l) s a:qaip(q)>:| X an((C) . (06)
pESIT 1<y e ig<r
2

Here P§(x), P{(x), P§(x),...,is the sequence of monic polynomials obtained from 1, z, 2?, . ..
by the Gram-Schmidt orthogonalization process, w.r.t. the inner product

(Fo)= [ fadues  (fge LR
0
Moreover, S;” denotes the set of permutations p in 5, for which

L#p(l) #2#p(2) # - # q # plq).

For fixed ¢ in R, we expand in Section 7 the exponential function x — exp(tz), in terms
of the polynomials P;(z), ¢ € Np:

exp(iz) = Z Pt Pe (), (z € [0, 00]). (0.7)

We show that the coefficients 15(¢) are non-negative for all ¢ in [0, oo, and that for any
g in Ny,

wito) < (BBl i, e o (0.5)

By combining (0.6), (0.7) and (0.8) with the proof of (0.5), we obtain that for ¢ > 1 and
0<t< 4,

|Elexp(=tS"S)]l| < exp((c + 1)°£) / " exp(—tx) dp.(x),

and since supp(p.) C [a,00] = [(v/c — 1)*,00[, when ¢ > 1, we obtain the second key
estimate (0.2).

The rest of the paper is organized in the following way:

6
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1 A Combinatorial Expression for Eo Tr,[(B*B)’], for
a Gaussian Random Matrix B in GRM(m,n, 1)

For £ in R and o2 in 0, co[, we let N(&, %) denote the Gaussian (or normal) distribution
with mean ¢ and variance ¢?. In [HT], we introduced the following class of Gaussian

random matrices

1.1 Definition. (cf. [HT]) Let (2, F, P) be a classical probability space, let m,n be
positive integers, and let

B = (b(i,j))igicm: & = My, n(C),
127<n
be a complex, random m x n matrix defined on 2. We say then that B is a (standard)
Gaussian random m x n matrix with entries of variance o2, if the real valued random
variables Re(b(z, 7)), Im(b(z,7)), 1 <i<m, 1 <j <n, form a family of 2mn indepen-
dent, identically distributed random variables, with distribution N(0, %) We denote by
GRM(m,n,c?) the set of such random matrices defined on . Note that o? equals the
second absolute moment of the entries of an element from GRM(m, n, o?). m

In the following we shall omit mentioning the underlying probability space (2, F, P), and
it will be understood that all considered random matrices/variables are defined on this
probability space. As a matter of notation, by 1,, we denote the unit of M, (C), and by tr,,
we denote the trace on M, (C) satisfying that tr,(1,) = 1. Moreover, we put Tr,, = n-tr,.

Let B be an element of GRM(m,n,c?). Then for any p in N, (B*B)" is a positive definite
n x n random matrix, and Tr,((B*B)?) is a positive valued, integrable, random variable.
The main aim of this section is to derive a combinatorial expression for the moments
Eo Tr,((B*B)?) of B*B w.r.t. Eo Tr,, where E denotes expectation w.r.t. P.

7



1.2 Lemma. Let m,n,r,p be positive integers, let By, By, ..., B, be independent ele-
ments of GRM(m,n,o?), and for each s in {1,2,...,r}, let b(u,v,s), | <u<m, 1<
v < n, denote the entries of B;. Then for any i1, j1,09,J2, .- yip, Jp in {1,2,... 7}, we
have that

Eo Tr. (B} B;, B, B;, - - - B;‘ijp)
= >, E<b(u2aulai1)b(u2vu?’7jl) s b(u2pvu2p—1,ip)b(u2p,u1,jp)>a (1.1)

1<us ,uq,... ,u2p <M
lgul ZUZ gees 7ugp_1 Sn

and moreover E o Tr, (B}, B, BY, B, - -+ BY B;,) = 0, unless there exists a permutation w

in the symmetric group S,, such that j, = i,y for all h in {1,2,...  p}.

Proof. Let f(u,v), 1 <u < m, 1 <v < n,denote the usual m x n matrix units, and let
g(u,v), 1 <u<n, 1 <v<m,denote the usual n x m matrix units. We have then that

Eo Tr, (B} B;, B, B, - - - Bz'*ijp)

1

= Z E<b*(u17 U1, il)b(u% 'U27jl> T b*(u2p—17 V2p—1, ip)b(um U2p7jp))

15’[)1 ZU2,V3 U4 4.0 77J2p_1 ,ugpgm
1<uy ,v2,u3,vq,.00 yU2p—1 ,V2p <N

- Tr, (9(U17 Ul)f(u27 Uz) o '9(U2p—17 U?p—l)f(u2p7 U2p))

= Z E<b(u27u17i1)b(u27u37j1) o 'b(u2p7u2p_1,ip)b(UQp,U1,jp)>-

1<us ,uq,... ,uzp <M
1<uy,uz,... yu2p—1<n

Note here, that for any wug, ua, ... yuz, in{1,2,... ,m}and uy,us,... ,ugp—1in{1,2,... ,n},
we have because of the independence assumptions,

E<b(u27 U1, il)b(U% u37j1) T b(“?pa U2p—1, ip)b(Uva UlJp))

= H]E( H m H b(u2h7u2h+17l)>7

=1 hup=I higp=I

where 2h + 1 is calculated mod. 2p.

Note here, that for any /in {1,2,... ,r}, any win {1,2,... ;m}and any vin {1,2,... ,n},
the distribution of b(u, v,[) is invariant under multiplication by complex numbers of norm
1. Hence, for any s,t in Ny, ]E[b(u, v,0)% - b(u,v, l)t] = 0, unless s = t. Using this, and the

independence assumptions, it follows that for any [ in {1,2,... ,r}, any ug, w4, ... , Uz,
in {1,2,...,m} and any wuy,us,... ,ugp—1 in {1,2,... ,n}, a necessary condition for the
mean
E( H b(u2h7u2h_17l) . H b(u2h,u2h+1,l)>
hiip=l hijn=l



to be distinct from zero is that

card({h e{1,2,...,p} | i = l}) = card({h e{1,2,...,p} ‘ Jn = l}) (1.2)

It follows that EoTr,, (B} B;, B, B, - - - B;;ij) = 0, unless (1.2) holds for all [in {1,2,... ,r},
and in this case, it is not hard to construct a permutation 7 from 5,, with the property
described in the lemma. [

1.3 Definition. Let p be a positive integer, and let 7 be an element of 5,. We associate
to m a family A(m,m,n), m,n € N, of complex numbers, as follows:

Let By, By, ..., B, be independent elements of GRM(m,n, 1), and then define
A(m,m,n) = E o Trn(By Br() By Br(a) - By Br())- O

1.4 Remark. Let m,n,r, p be positive integers, and let By, By, ..., B, be arbitrary ele-
ments of GRM(m, n,a?). Moreover, let iy, ji,. .. ,i,,j, be arbitrary elementsof {1,2,... ,r}.
We shall need the fact that the quantity EoTr, (B} B;, - - - B;ijp) is bounded numerically
by some constant K (m,n,p,c?) depending only on m,n,p,a* and not on r or the distri-
butional relations between By, B, ..., B,. For this, adapt the notation from Lemma 1.2,
and note then that by (1.1) from that lemma,

|E o Tr, (B By, - - B,L-*pB]-p)|

< Z ‘ E(b(u2, i, i1)b(uz, us, 1) - b(ugp, uap—1,1,)b(uszy, UlJp)) | :

1<us,uq,... ;u2p<m
1<uy,uz,... yu2p—1<n

Then let M(2p,o?) denote the 2p’th absolute moment of the entries of an element from
GRM(m,n,c?). A standard computation yields that M(2p,o?) = ¢ - p!, but we shall
not need this explicit formula. It follows now by the generalized Holder inequality, that
for any wug, U, ... yug, in {1,2,... ,m} and uy,us, ... ,uzp-1 in {1,2,... ,n},

‘ E<5(U27 U1, il)b(u27 U37j1) e b(u2p7 U2p—1, ip)b(UZpa Uhjp)) |
< Hb(u27 Uz, il)}‘ngb(u27 U3,j1)H2p e Hb(u2p7 u2:0—17ip)”ngb(u%aulajp)ng

= (M(Qp,JZ)ﬁ)Qp = M(2p,c?).

Thus it follows that we may use K(m,n,p,o%) = mPn’ M(2p, o?). O

1.5 Proposition. Let B be an element of GRM(m,n, 1), and let p be a positive integer.
We then have
Eo Tr,[(B*BY’] = Y A(m,m,n).

TESp

Proof. Let (B;)ien be a sequence of independent elements of GRM(m,n,1). Note then

that for any s in N, the matrix \/Lg(Bl + -+ + By) is again an element of GRM(m,n, 1),

9



and therefore

P

Eo Tr,[(B*B)’] = E o Tr, [((s‘%(Bl +o 4 B)) (s (Bt + Bs))) }

1.
—s7 Y EoTr, [le B, ---B;ijp} . (1.3)

1§i17j17~~~7ip7jp§5
For 7 in S, we define

M(m,s) = {(i1,J1y- -+ sipsjp) € {1,2,..., 8} | TU= ln(t)s e 2 Jp = bn(p) }-

It follows then from Lemma 1.2, that in (1.3), we only have to sum over those 2p-tuples
(41,715 »ip, Jp) that belong to M(m,s) for some 7 in S, and consequently

EoTr, [(B*B)Y] = s~ 3 EoTr, {B; B, - B;ijp} .
(1,1 1o sipip) EUres, M (1,5
Note though, that the sets M(m,s), m € S,, are not disjoint. However, if we put
D(s) = {(11, 41, »1pdp) € {1,2,... s} | 41,42, ... ,ip are distinct},
then the sets M(m,s) N D(s), m € S,, are disjoint. Thus we have
Eo Tr, [(B*B)?

—s Y 3 EoTr, [B; B - B;ijp}
TESp (41,415--- yip,ip) EM (m,8)ND(s) (14>
g 3 EoTr, | BB BB,

(1,71 5+ sipsip) € (Unes, M (m,5) )\ D(s)

Note here, that if (i1,71,... ,4p,7p) € M(7,s) N D(s), then B;,, B

dent elements of GRM(m,n, 1), and hence

i1s Biyy ..., B;, are indepen-

EoTr, {B;le . BLB,,| = A(m,m,n).
Thus, the first term on the right hand side of (1.4) equals

7P Z card(M(m,s) N D(s)) - A(m,m,n).

TESp
Here card(M(m,s) N D(s)) =s(s—1)---(s—p+1), s0
s7P-card(M(m,s) N D(s)) = 1 as s — oo.

Hence, the first term on the right hand side of (1.4) tends to 3_ .o
and since the left hand side of (1.4) does not depend on s, it remains thus to show that the
second term on the right hand side of (1.4) tends to 0 as s — oo. This follows by noting
that according to Remark 1.4, for any (i1, j1,... ,ip,7,) in {1,2,...,5}*"  the quantity

A(m,m,n)as s — oo,

10



|E o Tr, [BZ»*l B, ---ijijM is bounded by some constant K(m,n,p) depending only on
m,n, p; not on s. And moreover,

s_pcard<< Ures, M(m, 3)) \D(S)) < Z s Pcard(M(m,s) \ D(s))

€Sy
= Z [s_pcard(M(ﬂ, s)) — s Peard(M(m,s) N D(s))]
TESy
= Z [1 — s Peard(M(m,s) N D(S))] — 0,
€Sy
as s — 0o. This concludes the proof of the proposition. [

It follows from Proposition 1.5, that in order to obtain a combinatorial expression for
the moments E o Tr,((B*B)?) for a matrix B from GRM(m,n, 1), we need to derive a
combinatorial expression for the quantities

A(m,m,n) = E o Tr,( By Br1)yB; Br(ay* ++ By Br(py),

where m € S, and By,... , B, are independent elements of GRM(m,n, 1).

As it turns out, it shall be useful to have the relations between the factors in the product
BI Br(1)B; Br(2) - - * B} Br(p) determined in terms of a permutation 7 in Sy, rather than in
terms of the permutation 7 from 5,,.

1.6 Definition. Let p be a positive integer, and let m be a permutation in S,. Then the
permutation 7 in Sy, is determined by the equations:

i) =2, (e L2 ),
7(2i) = 2m(j) — 1, (re{1,2,...,p}). O
1.7 Remark. (a) Let p, # and 7 be as in Definition 1.6. Note then that 72 = 7 o7 = id,

the identity mapping on {1,2,...,p}, and that # maps odd numbers to even numbers,
ie., that 7(5) —j = 1 (mod. 2), for all 5 in {1,2,...,2p}. In particular, # has no fixed

points. It is easy to check that {# | 7 € S,} is exactly the set of permutations v in Sy,
for which 42 = id and ¥(j) — 1 = 1 (mod. 2), for all j in {1,2,...,2p}. Moreover, the
mapping 7 — 7 is injective.

(b) If By, By, ..., B, are independent elements of GRM(m,n, 1) , then we may write the
product By Br1)B; Brg) - - B} Br(py in the form C7C,C5C, - - - C;p_lczp, where Cy;,_; = B;
and Cy; = By for all i in {1,2,... ,p}. Then 7 is constructed exactly so that for any
7,7 in {1,2,....2p}, we have

Cj:Cj/@j:jlorfr(j):j’. |

1.8 Definition. We associate to © an equivalence relation ~; on Zy,. This is the equiv-
alence relation (introduced by Voiculescu in [Vol, Proof of Theorem 2.2]), generated by
the expression:

.ijr ﬁ-(]) + 17 (.] € {1727 72]7}),

where addition is formed mod. 2p. a
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1.9 Remark. For a permutation 7 in 5,, the ~;-equivalence classes are precisely the
orbits in {1,2,...,2p} for the cyclic subgroup of Sz, generated by the permutation j —
7(j) + 1 (addition formed mod. 2p). Since this subgroup is finite, the equivalence class
[7]# of an element ;7 in {1,2,... ,2p} has the following form:

Let ¢ be the number of elements in [7];. Then
[]]fr = {j07j17 s 7jq—1}7

where jo = j,j1 = #(jo) + Lj2 = #(j1) + 1,... , jg-1 = #(Jg-2) + 1,J0 = #(jy-1) + 1,
(addition formed mod. 2p). O

It follows immediately from the definition of 7 and Remark 1.9 that each ~;-equivalence
class consists entirely of even numbers or entirely of odd numbers. This is used in the
following definition:

1.10 Definition. Let p be a positive integer, let 7 be a permutation in S,, and consider
the corresponding permutation 7 in Sy,. By k(7) and [(7), we denote then the number
of ~ji-equivalence classes consisting of even numbers, respectively the number of ~;-
equivalence classes consisting of odd numbers:

k(m) card {[] ‘j €{2,4 ,Qp}}),
[(#) = card ({[j]# \36{1,3,...,2;;—1}}).

Moreover, we define the quantities d(7) and o(7) by the equations:

d(7) = k(7)) + (1) = card {[] ‘ je{1,2,... ,Zp}}),
o(1) = %(p +1— d(fr)) O

Regarding the definition of o(7), it will be shown later (cf. Theorem 1.13), that o(7) is
always a non-negative integer. The quantity d(7) was introduced by Voiculescu in [Vol,

Proof of Theorem 2.2].
1.11 Theorem. For any positive integers m,n and any 7 in S,, we have that

A(m,m,n) = m* )Rl

Proof. Consider independent elements By, B, ... , B, of GRM(m,n,1), and for each j in
{1,2,...,p}, let b(u,v,j5), 1 <u<m, 1 <v <n, denote the entries of B;. It follows
then by (1.1) in Lemma 1.2, that

A(m,m,n)
= E o Tro(B; Br(1)B; Brz) -+ B} Br(y))

= Z ]E(b(UQ,ul,1)b(u2,u3,7r(1))---b(ugp,u2p_1,p)b(u2p,u1,ﬂ(p))).

lgul ,ug,,...ugp_l Sn
1<us ,uq,...u2p <M

(1.5)

12



Due to the independence assumptions and [VDN, Lemma 4.1.3], it follows here that the

term in the above sum corresponding to uy, ug, ... ,usg, is zero, unless the corresponding
matrix entries are pairwise conjugate to each other, i.e., unless we have that
b(wgi, uziyr,m(1)) = b(u27r(i)7 Ur(i)=1, (1)), (e {1,2,...,p}). (1.6)

Note also, that if (1.6) is satisfied, then the corresponding term in (1.5) equals 1, and
consequently

A(m,m,n)
= card({(ul,UQ, cee sy Ugp) ‘ I <wugimr <ny 1 <uy <m, and (1.6) holds}). (1.7)
To calculate this cardinality, we note first that (1.6) is equivalent to the condition
Ugi = Uge(s) and  Ugipr = Ugn(i)—1, (1 e{L,2,...,p}), (1.8)

where addition and subtraction are formed mod. 2p. Replacing now ¢ by 7~'(7) in the
first equation in (1.8), we get the equivalent condition:

U9 = u%—l(i) and Ugi+1 = U27r(i)—17 (l S {17 27 s 7p})'

Recall then that by definition of #, #(2: — 1) = 277 !(4), and using this formula with ¢
replaced by m(7), we get that also 27(i) — 1 = ﬁ'(’ﬁ'(?ﬂ'(l) — 1)) = 7(2¢). Thus (1.6) is
equivalent to the condition
U2 = Uz(2i-1), and U2i4+1 = UA(24)5 (l € {17 27 s 7p})7

i.e., the condition

Uj = Us(j-1), (7 e{L,2,....2p}).
Replacing finally 5 by #(j) 4 1, we conclude that (1.6) is equivalent to the condition

Uy = Ur(5)+1, (.] € {1727 ,QP}),

where 7(j) + 1 is calculated mod. 2p. Having realized this, it follows immediately from
Remark 1.9 and the definitions of k(7) and [(7), that the right hand side of (1.7) equals

m*Fp %) and hence we have the desired formula. [

1.12 Corollary. Let m,n be positive integers and let B be an element of GRM(m,n, 1).
Then for any positive integer p, we have that

EoTr, [(B*B)p] = Z m ) i),

€Sy
Proof. This follows immediately by combining Proposition 1.5 and Theorem 1.11. [

1.13 Theorem. Let p be a positive integer, and let m be a permutation in S,. Then
(i) k(7)>1andl(7) > 1.

(i) K(#)+1(7) <p+ 1.

(iii) o(#) = 3(p+ 1 — k(%) — I(#)) is a non-negative integer.
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Proof. (i) This is clear from Definition 1.10.

(ii) Since d(7) = k(@) +1(7) is the number of equivalence classes for ~, (ii) follows from

[Vol, Proof of Theorem 2.2].

(iii) The proof of (iii) requires more work. For elements p of N and k,! of Ny, we define
d(p,k,l)=card({m € S, | k(7)) = k and I(7) = [}).

By (i) and (ii), 6(p,k,1) =0 unless k > 1,1 > 1 and k+1 < p+ 1. By Corollary 1.12, we
have for an element B of GRM(m n 1) that

Eo Trn Z d(p, k,[)m
k,leN
k+l§p+1
On the other hand, by the recursion formula for the moments E o Trn[ p] p € N),

found in [HT, Theorem 8.2], it follows that for p in N, the moment E o Trn[ B*B p] can
be expressed as a polynomial in m and n of the form:

lEoTrn[(B*B)p] = Z §'(p, k, ymFn!

k€N
k+i<p+1
for suitable coeffecients ¢'(p,k,1). By the remarks following the proof of [HT, Theo-
rem 8.2], only terms of homogeneous degree p+1—275, 7 € {0,1,2,..., [2)2;1]}, appear in

this polynomial, i.e.,
§'(p,k,1) =0, when k+1[1=p (mod.?2).

If polynomials of two variables coincide on N2, then they are equal. Therefore, §(p, k,1) =
8'(p, k1) for all k,I, which proves that

card{m € S, | k(7) =k and I(7)=1}) =0, if k+4+1=p (mod. 2).
Hence, o(7) is an integer for all @ in S,, and by (ii), o(7) > 0. This proves (iii). [

In the rest of this section, we shall introduce a method of “reductions of permutations”,
which will be needed to determine the asymptotic lower bound of the spectrum of S35,

(cf. Sections 5-8).

Let p be a positive integer, let 7 be a permutation in S,, and consider the corresponding

2 = id and # has no fixed

permutation 7 in Sy,, introduced in Definition 1.6. Since 7
points, the orbits under the action of 7 form a partition of {1,2,...,2p} into p sets, each

with two elements.

1.14 Definition. Let p be a positive integer, and let m be a permutation in S,. Following
the standard definition of crossings in partitions of {1,2,... ,2p} into sets of cardinality
2 (see e.g. [Sp]), we say that (a,b, ¢, d) is a crossing for 7, if a,b,¢,d € {1,2,... ,2p} such
that

a<b<e<d, and w(a) = ¢, 7(b) =d. (1.9)

If 7 has no such crossings, we say that 7 is a non-crossing permutation, and we let S7°
denote the set of permutations 7 in S, for which 7 is non-crossing. m
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1.15 Definition. Let p be a positive integer, let m be a permutation in S, and let e be
an element of {1,2,...,2p —1}. We say then that (e,e+ 1) is a pair of neighbours for 7,
if 7(e) = e+ 1. Note, that a pair of neighbours for 7 is either of the form

(2k —1,2k), where k€ {l,...,p},

or of the form

(2k,2k +1), where ke {l,...,p—1}.
In the first case k = 7(k), and in the second case 7(k) =k + 1. O

1.16 Definition. Let p be a positive integer, let 7 be a permutation in S, and consider
the permutation 7 in Sy, introduced in Definition 1.6. We say then that 7 is ¢rreducible
if # has no pair of neighbours (in the sence of Definition 1.15), i.e., if 7(j) # 7+ 1 for all
Jgin{1,2,...,2p —1}. We denote by S]ifr the set of permutations 7 in S, for which 7 is
irreducible. Note that

mES = 1#n(1)£2#7(2) # - #p#7(p).

If meS,\ S;“", we say that 7 is reducible. Note, that we do not require that 7(2p) # 1
in order for 7 to be irreducible. Thus, irreducibility of 7 is not invariant under cyclic
permutations of {1,2,...,2p}. O

1.17 Lemma. Let p be a positive integer, and let m be a permutation in S}°. Then 7 has
a pair of neighbours, i.e., 7 is reducible in the sence of Definition 1.16. In other words,
we have the inclusion S3° C S, \ Si™ or equivalently Si™ C S, \ S°.

Proof. We prove the inclusion: S]ifr C S, \ Sp¢. So let 7 from Szifr be given, and consider
the set M = {j € {1,2,...,2p} | #(j) > j}. Note that M # (), since clearly 1 € M.

Define now

o = minf#(j) - j | j € M}.
Since 7 has no fixed points and no pairs of neighbours (since 7 € S;”), we must have
a > 2. Choose j in {1,2,...,2p} such that 7(j) —j = a. Since a > 2, 7(j) # 5+ 1, or
equivalently (since #? = id), #(j + 1) # j. Combining this with the definition of o, and
the fact that 7 has no fixed points, it follows that

T+ ¢+ g+at={5i+1,..., 7))},

i.e., either 7(j + 1) < jor @(j+ 1) > 7(y). In the first case (7(5 +1),7,5+ 1,7(j)) is a
crossing for 7, and in the second case (j,7 + 1,7(j),7(j + 1)) is a crossing for 7. In all
cases, T € S, \ Sp°, as desired. [

1.18 Definition. Let p be a positive integer, greater that or equal to 2, let 7 be a
permutation in S, and assume that the permutation 7 in S5, has a pair (e,e+1). Let ¢
be the order preserving bijection of {1,2,... ,2p — 2} onto {1,2,... ,2p} \ {e,e+ 1}, i.e.,

oli) = (1.10)

7, ifl1<i<e—1,
1+ 2, ife<i<2p-—2.
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By my we denote then the unique permutation in S,_;, satisfying that

o=@ lodop.

We say that g is obtained from @ by cancellation of the pair (e,e+ 1). m

A few words are appropriate about the introduction of 7y in the definition above. Note
first of all that p~' o7 o is a well-defined permutation of {1,2,... ,2p—2}, since 7% = id
and 7(e) = e+ 1, so that 7({1,2,...,2p} \{e,e+1}) ={1,2,... ,2p} \{e,e+1}. To see
that this permutation is actually of the form 7o for some (necessarily uniquely determined)
permutation mo in S,_1, it suffices, by Remark 1.7(a), to check that (¢! o7 0 ) = id,
and that ¢~ oftop(j)—j =1 (mod. 2), for all jin {1,2,...,2p—2}. But these properties
follow from the corresponding properties of 7, and the fact that ¢(j) = j (mod. 2), for
all j.

1.19 Remark. Let p be a positive integer, greater that or equal to 2, let m be a permu-
tation in S,, and assume that the permutation 7 in Sy, has a pair (e,e + 1). Let my be
the permuation in S,_; obtained from 7 as in Definition 1.18.

(a) If (e,e+ 1) = (2k — 1,2k) for some k in {1,...,p}, then my = »~! o 7 0 ¢, where
v {l,...,p—1} = {1,... ,p}\ {k} is the bijection given by

(i) =19" . . (1.11)
g+, ifk<j<p-1

(b) If (e,e+ 1) = (2k,2k + 1) for some k in {1,... ,p— 1}, then g = ™' o 7 0 ¢, where
x:{l,...,p—1} = {1,... ,p} \ {k + 1} is the bijection given by

: Js if1<j<k,

x()=4" . . (1.12)
g+, ifk+1<5<p—1,

and where ¢ is given by (1.11) O

1.20 Lemma. Let p be a positive integer, greater than or equal to 2, and let m be a
permutation in S, \ S;”. Let (e,e 4+ 1) be a pair for 7 and let my be the permutation in
Sp—1, for which 7g is the permutation obtained from © by cancellation of (e,e +1). Then
7 is non-crossing if and only if Tg is non-crossing.

Proof. Let w: {1,2,...,2p — 2} = {1,2,...,2p} \ {e,e+ 1} be the bijection introduced
in (1.10). We show that 7y has a crossing if and only if & does.

Assume first that 7y has a crossing (a, b, ¢, d). Then since ¢ is (strictly) monotone and since

(by definition of mg) #(p(a)) = ¢(c), T(@(b)) = ¢(d), it follows that (¢(a),(b), ¢(c), ¢(d))

is a crossing for 7.
Assume conversely that 7 has a crossing (a’,', ¢, d"). Then clearly
{d' b, d}N{e, e+ 1} =10,
so that the numbers p~'(a’), o' ('), (c'), o~ (d') are well-defined. It follows then, as
above, that (o™'(a’), ™ (b'), 7' (c), ™ (d')) is a crossing for 7. [
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1.21 Lemma. Let m,n be postive integers, and let B be an element of GRM(m,n, 1).
Then

E(B*B) = ml,, and E(BB*) = nl,,. (1.13)

Proof. Let (b;j)1<i<m be the entries of B. Then

152

B ) = {1’ 1) = (0, (1.14)

0, otherwise.

Since (B*B);; =Y o, byibs; and (BB*);; = o bisb;s, for all 7,7, (1.13) follows readily
from (1.14). n

1.22 Proposition. Let p be a positive integer, greater than or equal to 2, and let © be
a permutation in S, \ S;”. Let (e,e+ 1) be a pair for 7 and let my be the permutation in
Sp—1, for which 7g is the permutation obtained from 7 by cancellation of (e,e +1). Then
with k(-),{(-),d(-) and o(-) as introduced in Definition 1.10, we have that

(i) Ifeis odd, then k(7o) = k(7)) — 1 and I(7g) = (7).
(ii) Ife is even, then k(7o) = k(7) and [(7o) = I(7) — 1.
In both cases, d(7g) = d(7) — 1 and o(7g) = o (7).
Proof. Let m,n be positive integers, and let By, ..., B, be independent random matrices
from GRM(m,n,1). By Theorem 1.11, we have then that
E o Tr, [B; Briy -+ B} Br(p)] = m* Fnl®), (1.15)

(i) Assume that e is odd, i.e., that (e,e + 1) = (2¢ — 1,2¢q) for some ¢ in {1,2,...,p}.
Then 7(q) = ¢, and hence the set of random matrices

(Bf, Batrys - By, Brtg—rys Bivrs Brgnys- -+ B Bagy)
is independent from the set (B}, By(,). Therefore,

Eo Tr, [BTBW(l) T B;Bﬂ(p)}

=E o Tr,[BiBr1) - Bi_1 Br(qo—1)E(B; Br(o)) Big1 -+ B By (1.16)
=m-EoTr,[BI Bty Bi_i Bro-1) By By Br)]

where the last equality follows from Lemma 1.21. Note that only the random matrices
Bi,...,Bi_1, Bit1,..., B, occur in the last expression in (1.16). Define now for ¢ in

{1727"' y P — 1}7
(B, if1<i<k-1,
Bl =
' Biyi, ifk<i<p-1
Then by Remark 1.19(a), it follows that the last expression in (1.16) is equal to

m - EoTr, [(Bi)*B;ro(l) e (B]/o—l)*B/ (p—l)]a

o
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which, by Theorem 1.11, is equal to m - m*()p!(Fo)  Altogether, we have shown that

k(#o0),, 1(70)

m* O pl® = om n"e,

and since this holds for all positive integers m,n, it follows that k(7)) = k(7o) + 1 and
[(7) = l(7g). This proves (i).

(ii) Assume that e is even, i.e., that (e,e+1) = (2¢,2¢+1), for some gin {1,2,... ,p—1}.
Then 7(q) = ¢+ 1, and arguing now as in the proof of (i), we find that
mFERIE) — | o Tr, [BTBw(l) .. B;Bw(p)]
=E o Tr,[B; Brt) - BiE(Br(q) Bit1) Br(a+1)  * * B Br(n)) (1.17)
= n-EoTr,[BiBar) -+ B:Brgsr) - B Bagn)],

where the last equality follows from Lemma 1.21. Defining, this time, for each ¢ in

{1727"' 7p_1}7

g B H1<i<h
"\ By, ifk4+1<i<p-—1,

we get by application of Remark 1.19(b), that the last expression in (1.17) is equal to
n-EoTr, [(B{)*B;O(l) e (B]/)—l)*B’:ro(p—l)]7

which, by Theorem 1.11, equals n-m*®p"™  Arguing then as in the proof of (i), it follows

that k(7) = k(7o) and (7)) = (7o) 4+ 1. This proves (ii).

The last statements of Proposition 1.22 follow immediately from (i), (ii) and Defini-

tion 1.10. [

1.23 Proposition. Let p be a positive integer, and let m be a permutation in S,. By
finitely many (or possibly none) successive cancellations of pairs, © can be reduced to
either

(i) €1, where e is the trivial permutation in Sy,
or
(ii) p, where p is a permutation in S;“" for some q in {2,...,p}.

Case (i) appears if and only if m € S)°.

Proof. 1t is clear, that by finitely many (or possibly none) successive cancellations of
pairs, 7 can be reduced to a permutation p, where either p € Sy or p € S;” for some ¢ in
{2,3,...,p}. By Lemma 1.20, 7 is non-crossing if and only if p is. Since 57 = S} = {e1},
and Sj}” N Sy¢ =0 for all ¢ in {2,3,...,p}, by Lemma 1.17, it follows thus, that either
case (i) or case (ii) occurs, and that case (i) occurs if and only if 7 is non-crossing. [

The following corollary is a special case of [Sh, Lemma 2.3]. For convenience of the reader,
we include a proof based on Propositions 1.22 and 1.23.

1.24 Corollary. Let p be a positive integer and let m be a permutation in S,. Then 7 is
non-crossing if and only if k(%) + (7)) = p+ 1, or, equivalently, if and only if o(7) = 0.

18



Proof. Assume first that 7 is non-crossing. It follows then from Lemma 1.23, that by suc-
cessive cancellations of pairs, 7 may be reduced to é;, where e; is the unique permutation
in Sy. Since o(-) is invariant under cancellations of pairs, (cf. Lemma 1.22), it follows that
o(m) = o(é1), and it is straightforward to check that o(é;) = 0.

Assume next that 7 has a crossing. Then, by Lemma 1.23, there exist ¢ in {2,... ,p}
and a permutation p in Sé”, such that @ may be reduced to p by finitely many (or
possibly none) successive cancellations of pairs. By Lemma 1.22, o(7) = o(p), and hence
it suffices to show that o(p) > 0, i.e., that d( ) < g+ 1. Note for this, that since p is
irreducible, p(j) # 7 + 1, for all j in {1,2, ...,2qg — 1}. Since p? = id, this is equivalent
to the condltlon that p(y) # j — 1, for all j in {2,3,...,2¢}, and by Remark 1.9, this
implies that card([j];) > 2, for all 5 in {2,3,... ,2q}. Letting r denote the number of
~s-equivalence classes, that are distinct from [1];, we have thus the inequality

2r + card([1];) < 2g.

Since r = d(p) — 1, and since card([1];) > 1, this implies that 2(d(p) — 1) + 1 < 2¢, and
hence that d(p) < g, as desired. [

2 A Combinatorial Expression for the Moments of

S*S

Let ‘H and K be Hilbert spaces, let r be a positive integer, and let aq, ... ,a, be elements
of B(H,K). Moreover, let n be a fixed positive integer, and let Vi, ..., Y, be independent
elements of GRM(n,n, -). We then define

r

S:ZGZ(X)YZ

=1
Note that S is a random variable taking values in B(H,K) ® M,(C). The aim of this

section is to derive combinatorical expressions for the moments
(idgay @ (E o tr,))[(S*S9)?] and (idgmy @ E)[(S*S)], (p € N),

where idg(y) denotes the identity mapping on B(H). Moreover, we shall obtain another
combinatorical expression, which is an upper estimate for the norm of (idz(z) @ E)[(.5*5)7].
For the sake of short notation, in the following we shall just write E o tr, and E instead

of idp(z) ® (E o tr,) and idgy) @ E.

We start with the following generalization of Proposition 1.5.

2.1 Proposition. Let H,K be Hilbert spaces, let r be a positive integer, and let ay, . .. ,a,
be elements of B(H,K). Moreover, let m,n be fixed positive integers, and let By,... B,

be independent elements of GRM(m,n,1). Then withT' =3%"_, a; ® B;, we have for any
positive integer p, that

* * *
E o Tr,[(T*T Z m* Z Uiy iy~ G i -

€Sy 1<iy,...,ip<r
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Proof. Let (B(1,h))nen, ... ,(B(r,h))ren be sequences of elements from GRM(m,n, 1),
such that (the entries of) the random matrices B(i,h), 1 < ¢ < r, h € N, are jointly
independent. Then for & in N, we define

r

Th=> ai®B(ih).

=1

Note then, that for each s in N,

S 2ZTh_S 222%@3 :Zai@)(S_% B(i,h)),

h=1 i=1 =1 h=1

<
w

where the random matrices s~ Yoo B(1,h),... 573 Y i_, B(r,h) are independent el-
ements of GRM(m,n,1). It follows thus, that the moments of s™' (> _ Tx)* >, _ T
w.r.t. E o Tr, are equal to those of T*T'. Thus for any p, s in N, we have

EoTr,[(T"T)"] =EoTr, [s‘p (( Z Th>* Z Th)p

—s7. Y EoT, {T;ITQIT;QTQQ...Tnggp}.

lshl ,hg,... ,hpgs
1<91,92,---,9p<s

(2.1)

Consider here an arbitrary 2p-tuple (h1,g1,...,hy,g,) in {1,2,... ,s}*”. Recalling then
the definition of T}, we find that

EoTr, [T}; T T T, Tnggp}
= Y (aja5-a}a5,) B[ Tea(B(in, )" B(jt, 1) -+ Blips hy)*B(jp 9))]
lsil,...,iPST

lsjl goee ,jPST

Since B(i,h) is independent of B(j,g) unless ¢ = j and h = g, it follows here from Lemma
1.2 in chapter 2, that

E o Tr, [B(i1,h1)"B(j1,91) -~ Blip, hy)"B(Jp, gp)] # 0 (2.2)
= 31 € S, (J1,91) = (ix1)s hr(1)s - -+ > Ups Gp) = (in(p)s omi))-
In particular it follows that in (2.1), we only have to sum over (h1,¢1,...,h,, g,) in

Ures, M (7, s), where, as in the proof of Proposition 1.5 in chapter 2,

M(m,s) = {(hlvglv"' iy gp) € 41,2, 75}2p | 91 = hagy, - 590 = hﬂ-(p)}7

for any 7 in S,. Following still the proof of Proposition 1.5 in chapter 2, we define,

D(s) = {(hl,gl,... hpygy) €41,2,... s} ‘ hi,..., h, are distinct },
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and then the sets M(m,s) ND(s), © € S,, are disjoint and

Eo Trn[(T*T)p]
oYY memm
7€Sp (h1,91,. hp,gp) EM (7,5)ND(s) (23)
g Z E o Tr,[T5 Ty, - - T}jpTgp]-

(h1,91 - s9p) € (Ure s, M (7,5) ) \D(s)

As was noted in the proof of Proposition 1.5, we have here that

s7Pcard(M(m,s) N D(s)) = 1, as s > 00, (7w € S,), (2.4)
and that
s7P. card(( Ures, M(?T,S)) \D(s)) — 0, as s — oc. (2.5)
Moreover, for any hy,¢1,... ,hy, g, in N, we have that

| o Trn[T5 Ty, - Ti T, ||
< Y lafagahag |- [B[Tra(Bi, ha)*B(jig1) -+ Blip hp)"Blips 9,))]|

lgil,...,iPST
1<t 50p ST
e * *
< A(manvpal) ’ E : Hailajl ”'aipajPH’
lsil,...,ipsr
lsjl,...,jpgr

where K(m,n,p,1) is the constant introduced in Remark 1.4 in chapter 2. Since this
constant does not depend on s, it follows thus, by (2.5), that the second term on the right
hand side of (2.3) tends to 0 as s — oo.

Regarding the first term on the right hand side of (2.3), for any 7 in S, and any 2p—tuple
(h1,g1,- - yhy,g,) in M(m,s) ND(s), we have that

E o Tea [Ty, Ty, -+ T5 Tyl = B o Tea[Tr Th - T Th )
= Y (ahaj-abag,) E[Tea(Blin, ha) B(jr, b)) - Blip, hp)"Bljp, ha(i))].

lgil,...,ipgr

ISjl,...,jPST
Recalling here the statement (2.2) and that A4, ... , h, are distinct, it follows that the term
in the above sum corresponding to (i1, ji,... ,ip,Jp) is 0, unless j1 = izq1),... ,Jp = tn(p)-

Thus we have that
Eo Trn[T}f1 Ty - T}prgp]

f— * . P * .
- Z (ailalﬁ(l) aipalr(p))

lgil,... ,iPST

B[ Tra(B(iv, h1)* Bling), he(r) -+ Blip, hp)* Blinp), ha(p))]-



Note here, that since hy, ..., h, are distinct, B(iy,h1),..., B(iy, h,) are independent for
any choise of i1,... .4, in {1,2,...,r}, and consequently

E[Tr,.(B(i1, 1) Blin(1), hrry) -+ - Blip, bp)* Blinp), i) = Alm,m, n),
for any 11,...,1, in {1,2,... ,r}. Thus, we may conclude that

EoTea[Ty Ty - Tr Tyl = Almymyn) - Y dla

lgil,... ,iPST

e a* a:
w(1) iptn(p)?

and this holds for any (hy,¢1,...,hy,g,) in M(m,s) N D(s). Therefore the first term on
the right hand side of (2.3) equals

Z s7P . card(M(m,s) N D(s)) - A(m,m,n) - Z g Qi gy A s

€Sy 1<e1 e ip<r

and by (2.4), this tends to

* *
Z A(m,m,n) - Z Uiy Qingay " iy Qingyy 5

€Sy 1<éy,...ip<r

as s — oo. Since the left hand side of (2.3) does not depend on s, we get thus by letting
s — o0 in (2.3), that

E o Tr,[(T*T)" Z A(m,m,n) Z gy Qi) =~ G Qi

€Sy 1<81 e 2p<r
Combining finally with Theorem 1.11, we obtain the desired formula. [
2.2 Corollary. Let ‘H,K be Hilbert spaces, let r be a positive integer, and let ay,... ,a,

be elements of B(H,K). Moreover, let n be a fixed positive integer, and let Yi,... Y,
be independent elements of GRM(n,n,L). Then with S =3_"_ a; @ Yi, we have for any
positive integer p, that

E o tr,[(S*S Z n=20(7) . Z ax Wiy -afpaiﬂ(p), (2.6)

€Sy 1<e1 . 2p<r

where o(7) is the quantity introduced in Definition 2.3 in chapter 2.

Proof. With B; = /n -Y;, 1 € {1,2,...,r}, we have that By,..., B, are independent
elements of GRM(n,n,1). It follows thus from Proposition 2.1, that for any p in N,

P * * ceea®oa
n? - Eo Tr,[(5*S Z n Z a; i) a; @i

TESp 1<e1 e 2p<r

and consequently

Eo trn[(S*S)p] — Z n—p—1+k(ﬁ)+l(ﬁ) Z a;,‘l ai’]\'(l) . a?paiﬂ_(p) .

€Sy 1<éy,...,ip<r
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Formula (2.6) now follows by noting that,
P 1= k() — U() = p+ 1 — d(3) = 20(#),

for any 7 in 5,. [

Our next objective is to derive a matrix version of formula (2.6). In other words, we shall
obtain a combinatorial expression for E[(S5*5)?].

2.3 Lemma. Let n,r be positive integers and let Y;,... .Y, be independent elements
of GRM(n,n,o?). Then for any (non-random) unitary n X n matrices uy,... ,u,, the
random matrices u1Yiuj, ... ,u,Y,u’ are again independent elements of GRM(n,n, o?).

Proof. Note first that for each ¢ in {1,2,... ,r}, the entries of w;Y;u are all measurable
w.r.t. the o—algebra generated by the entries of Y;. It follows therefore immediately that
wYiul, ..., u,.Y,u: are independent random matrices.

We note next, that it follows easily from Definition 1.1, that the joint distribution of
the entries of an element from GRM(n,n,c?) has the following density w.r.t. Lebesgue
measure on M, (C) ~ R2"°:

2

yr (25)" exp (= % - Tra(yy)), (v € Mo(C)). (2.7)

(Here the identification of M, (C) with R2" is given by y — (Re(yjx), Im(yjx))1<jk<n)-
Now let u be a unitary n x n matrix, and consider then the linear mapping

Adu: y — uyu™: M,(C) — M,(C).

Under the identification of M, (C) with R?" the euclidian structure on R*" is given by
the inner product:

(y,2) = Re(Tr.(2"y)), (y,2 € M,(C)).

Thus Adu: R? — R?" is a linear isometry, and hence the Jacobi determinant of this
mapping equals 1. Combining this fact with (2.7) and the usual transformation theorem
for Lebesgue measure, it follows that for any Y in GRM(n,n,o?), the joint distribution
of the entries of uY u* equals that of the entries of Y. [

2.4 Lemma. Let B be a (*-algebra with unit 1, let n be a positive integer, and consider
the tensor product B®@ M, (C). If x € B® M,(C), such that (1 @ u)z(l1 ® u)* = z for any

unitary n X n matrix u, then rt € B®1,,.

Proof. Assume that © € B® M, (C), and that (1 ® u)z(1 ® u)* = x for any unitary n x n
matrix u. Since M, (C) is the linear span of its unitaries, it follows that

xE{yEB@Mn(C)‘yT:Ty forallTinl@Mn(C)}:B@)ln,

where the last equality follows by standard matrix considerations; thinking of B @ M, (C)
as the set of n x n matrices with entries from B. [
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2.5 Proposition. Let S be as in Corollary 2.2. Then for any positive integer p, we have

that:
E[(S*S)?] = ( Z n=20(7) . Z a;aiw(l) ---afpaiﬂ(p)> @ L.

€Sy 1<éy,... ip<r

Proof. Let u be an arbitrary unitary n x n matrix, and define: S, = >7i_, a; ® (uYiu®).
Note then that 5,57 = (1 ® u)S*S(1y ® u)*, where 13 denotes the unit of B(H). It
follows now by Lemma 2.3, that

E[(55)"] = E[(55)"] = E[(1y @ u)(5"5) (1 @ w)] = (1y @ w)E[(5*5)"](1e @ w)".
Since this holds for any unitary u, it follows from Lemma 2.4, that E[(S*S5)?] € B(H)®1,,
and consequently

EN¢SW::Qm@m¢sm»@mﬂz(mmﬁu95m)®1w
The proposition now follows by application of Corollary 2.2. [

In the next section, we shall obtain combinatorial expressions that are upper estimates
for the moments E[(S*S)?]. It follows from Proposition 2.5, that in order to obtain such
combinatorial estimates, we should consentrate on deriving combinatorial estimates for

I Z “zlaiw(l)"'“?p“iw(mHv

lgil gose ,ipsT

the quantities

where m € S, and ay,... ,a, are arbitrary bounded operators from a Hilbert space H to
a Hilbert space K.

2.6 Definition. Let p be a positive integer, let 7 be a permutation in S, and consider
the permutation 7 in S3,. We then put

R(T) = card({j e{1,3,...,2p—1}
A7) = card({j e{1,3,...,2p—1}

w(j) > j}),
w(j) <jp)+1. o

We note, that since 7 has no fixed points, it follows that
k(@) + AM7)=p+1, (peN, m€S5)). (2.8)
Recalling that by definition of #, #(2h — 1) = 27~ (k) for all A in {1,2,...,p}, it follows

furthermore that
k() = Card({h e{1,2,...,p} ‘ 201 (h) > 2h — 1})
= card({h e{1,2,...,p} ‘ 7~ '(h) > h}) (2.9)
= card({h e{1,2,...,p} ‘ h > ﬂ(h)}),

where the last equality follows by replacing & by #~!(k). Similarly we have that

AR) = p 1 w(3)
= card({h e{1,2,...,p} ‘ ' (h) < h}) +1 (2.10)
= card({h e{1,2,...,p} ‘ h < W(h)}) + 1.
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We note also, that since 7(j) = 7 + 1 mod. 2 and 7(7(y)) = j for all j, we have that

k() = card(fr[{j €e{1,3,....2p—1} | T(J) >JH)

= card({j €{2,4,...,2p} | () < ]})7 (2.11)

and similarly

A7) =card({j € {2,4,... .2p} | #(j) > j}) + L. (2.12)

In connection with products of the form a7 a;_,, (»» Dote that k(7) denotes the
number of A’s in {1,2,...,p} for which the factor a} appears before the factor a;, in
this product. Similarly A(7) — 1 denotes the number of A’s in {1,2,...,p} for which the

factor a;, appears before the factor aj .

* .
“ e aipalﬂ-

2.7 Proposition. Let H,K be Hilbert spaces, let r be a positive integer, and let aq,. .. ,a,
be elements of B(H,K). Let further ¢ and d be positive real numbers, such that

H Z ala;l| <ec and H Z a;a;
Then for any positive integer p and any permutation 7 in S,, we have that

Uiy Qi) "7 Qi Qi)

lgil,... ,iPST

< d. (2.13)

S cﬁ(fr)d/\(fr)—l )

Proof. Let V be an infinite dimensional Hilbert space, and choose r isometries sq,... ,s,
in B(V), with orthogonal ranges, i.e.,

S;fSJ' = 5i,le(V)7 (Z7.7 € {1727 s ,T}). (214)

Consider then the Hilbert space V =V ®--- @V (p factors), and for each 7 in {1,2,... ,r}

and A in {1,2,...,p}, define the operator s(i, k) in B(V) by the equation

s(i,h) =1y @ - @ 1) @ S @ 1wy @ -+ - @ 1. (2.15)

h’th position

Next, put

o )s(ih), i A <aH(R), . ’
t(i,h) = {s(i,h)*, T h > (), (tedl,2,...,r}, he{l,2,...,p}), (2.16)

Ap=)ai@t(i,h), (he{l,2,...,p}). (2.17)
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We consider Aj as an element of B(H ® lN), K® ]N/) in the usual way. We claim then that

ATAW(I)A;ATF(Q) e A;Aﬂ’(p) = ( Z a;’l aiﬂ(l) e arpaiﬂ(p)> ® 13(1}) (218)

lgil,... ,’ipS?”

To prove (2.18), observe first that

AlAﬂ'(l) e ApAﬂ’(p) = E (ailafl CLZ»2CL]2 aipa]p) & H(ll,jl, 29,72, ,Zp,]p),
1$i17i27"'7i13$r
1<71,0250+2dp <P

(2.19)

where

(x5 sip gp) = Ui 1) (G0, m(1)) 802, 2)7 (G2, T(2)) - - 4ip, p) (G m(P)), - (2.20)

for all 41,71,... ,1p, 5, in {1,2,...,7r}. By (2.15) and (2.16), t(i,h) and t(¢,h)* both
commute with ¢(j, k) and ¢(j,k)*, as long as h # k. Hence, we can reorder the factors in
the product on the right hand side of (2.20), according to the second index in t(-,-) and
t(-,-)*, in the following way

H(ilajh e 7ipvjp) = T(l)T(Q) e 'T(p)a

where
() = 4 0 B W, B), i b < a7 (h),
t(‘]ﬂ_l(h)ah)t(lh,h)*7 ifh > W_l(h)’

for each h in {1,2,... ,p}. By (2.16), it follows that

T(hy = | S0 R sy, b), iR <7 (R),
s(jw—l(h),h)*s(ih,h), if b >77Y(h),

and thus by (2.14)-(2.15), we get that for all 4y, j1,... ,4,,j, in {1,2,... ,r} and all 2 in
{1727"' 7p}7

T(hy = { tsoy i =deign,
0,  ifin jriqn

Therefore, (71, j1,. .. ,1p, jp) = 0, unless i = j.—1(), for all hin {1,2,...,p}, or equiva-
lently, unless iy = ji, for all hin {1,2,..., p}, in which case II(z1, j1,... ,2p, Jp) = Lyw)-
Combining this with (2.19), we obtain (2.18).

Using again that s(i,h)*s(j,h) = 52'7]-13(‘7), for all 7,7 in {1,2,...,r}, we get that if
h <7 Y(h)

bl
r r

A A=) aia; @ s(ih)'s(j,h) =) aia; @ 1y,

7,7=1 =1

and if h > 7~1(h),

r

ApAy =) aial @ 1y,

=1

26



By (2.13), it follows thus, that

JAW2 = |45 A < e, ifh < 7'(R),
IARI* = AR < d, iF R > a7 (h),

so by (2.9) and (2.10),

2 < R0 PEL

V4
14T Arqry - A An |l < TT 114
h=1

Together with (2.18), this proves the proposition. [

2.8 Corollary. Let ‘H,K be Hilbert spaces, let r be a positive integer, and let ay,... ,a,
be elements of B(H,K). Moreover, let n be a fixed positive integer, and let Y1,...,Y, be
independent elements of GRM(n,n,~). Then with S = 3/ a; @Y;, ¢ = || X1_, alai
and d = || Y '_, a;al||, we have for any positiv integer p, that

El(5 5P < 32 n Do,
€Sy
Proof. This follows immediately by combining Propositions 2.5 and 2.7. [

In Section 3 we shall estimate further the quantity ||E[(S*S5)?]||. As preparation for this,
we will in Proposition 2.10 below, compare the numbers k() and A(7) with the numbers

k(7) and [(7), defined in Section 1.

2.9 Lemma. Let p be a positive integer, let m be a permutation in S,, and consider
the permutation 7 in Sy, and the corresponding equivalence relation ~;. Then any

equivalence class for ~;, except possibly [1]z, contains an element j with the property
that 7(j) < j.

Proof. Let j' be an element of {1,2,...,2p}, such that 1 ¢ [3'];. We show that [j'];
contains an element j such that 7(j) < j. For this, note first, that we may assume that
j" is the smallest element of [j'];. Then, by assumption, j* > 2. Now write in the usual
manner

[j/]ﬁ’ = {joajh cee 7jq}'

In particular, 7(j,) + 1 = jo = j' (addition formed mod. 2p). Now, since j' > 2, we have
that j* — 1 < j', even when the subtraction is formed mod. 2p. Therefore, since j' is the
smallest element of [j]7, 7(j,) = j' — 1 < 3’ < j;- Thus we may choose j = j,. [

2.10 Proposition. Let p be a positive integer, let m be a permutation in S, and consider
the permutation 7 in S3,. We then have

(i) w(7) = k(x) and A(7) = I(7).
(i) (k(7) = k(7)) + (A(@) = (7)) = 20(7).
(iii) k(7)) = k(7) and A(7) = [(7) if and only if & is non—crossing.
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Proof. (i) By Lemma 2.9 and the definition of [(#), it follows that
I(#) =1 <card({j € {1,3,...,2p — 1} | #(j) <5 }) = A(F) — 1.
Similarly we find by application of (2.11), that
k(#) < card({j € {2,4,... ,2p} | #(j) < 5}) = &(#).
(ii) We find by application of (2.8), that
(£(%) = k(7)) + (M#) = (%)) = (5(F) + A7) —d(#) = p+1 — d(%) = 20(%).

(iii) This follows immediately by combining (i), (ii) and Corollary 1.24. [

3 An upper bound for E[ exp(t5*S)], t > 0

In the previous section, we computed E[(S*S)?], for pin Nand S = >_._, a; @ Y;, where
ai,...,a, € B(H,K), for Hilbert spaces H and K, and where Y7,...,Y, are independent
random matrices in GRM(n,n, ). For fixed p in N, the function w — (S*(w)S(w))p only
takes values in a finite dimensional subspace of B(H,K) ® M,(C). This is not the case
for the function w — exp (tS*(w)S(w)), so in order to give precise meaning to the mean

IE[ eXp(tS’*S)], we will need the following definition (cf. [Ru, Definition 3.26]).

3.1 Definition. Let X’ be a Banach space, let (Q, F, P) be a probability space, and let
f:Q — X be a mapping, that satisfies the following two conditions

(a) Vo€ X*:pofe Ll (QF,P)
(b) Jzoe X Vo e X*: [ o f(w) dP(w) = p(z0).
We say then that f is integrable in X', and we call zy the integral of f, and write

E(f):/gfdP:xo. .

Note, that in the above definition, zq is uniquely determined by (b). Note also, that we
do not require that [, ||f|| dP < oo, in order for f to be integrable. However, if X is
finite dimensional, then this follows automatically from (a).

3.2 Proposition. Let H and K be Hilbert spaces, let ay, ... ,a, be elements of B(H,K),
and let v be a strictly positive number, such that

max { || 31 afaill, || iy @il } < .

Furthermore, let n be a positive integer, let Y7,... Y, be independent random matrices

in GRM(n,n, L), and put S =37, a; @ Y,.

Then for any complex number t, such that |t| < %, the function
W > exp (tS*(w)S(w)), (we ),
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is integrable in B(H"), in the sence of Definition 3.1, and

]E[exp (tS™S ;—]TIE (3.1)

p=0
where the series on the right hand side is absolutely convergent in B(H").

Proof. By Proposition 2.5, we have for any p in N,

B[(5SP] = (3o n™® 3 aag o aia,) @1

TESp 1<e1 . ip<r

and by Proposition 2.7 and formula (2.8), we have here for all 7 in S,, that

H Z a5, iy ---a?pair(p)H <" (3.2)

lgil,... ,iPST

Hence the abbsolute convergence of the right hand side of (3.1) will follow, if we can prove
that

14+ Z wlfl)p (Zn_% # ) (3.3)

whenever |t| < 2. For this, consider an element B of GRM(n,n, 1), and recall then from
Corollary 1.12, that

Eo Tr, [(B*B)p] = Z pEE)H(F) _ pt1 Z =20

€S, €S,
Hence for positive numbers s, we have
Eo Tr, [exp(sB™B)] =n(1+ Z 2N @), (3.4)
€Sy
From [HT, Theorem 6.4], we know that
Eo Tr,[exp(sB*B)] < oo, when 0<s<1.

Hence the sum in (3.4) is finite, whenever 0 < s < 1, and this implies that (3.3) holds
whenever [{] < 2.

Consider now the state space S(B(H)) of B(H) and an element ¢ of S(B(H)). For any w
in ), we have then that

o[ exp (157(w) = Ze[(S*(w)S(w))],

p=0
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which is clearly a positive measurable function of w (since ¢ is a state). Moreover, by
Lebesgues Monotone Convergence Theorem,

o0

E[go(exp(tS*S))] = Z ;—TE[@((S*S)Z)H

p=0

+P

oo (B[(575)])

]2

p=0

o0

. t_ —20(% X o oo qr

=1+ g = ( n ( g A iy~ GG i, ) ® 1, )
p=0 TESp 1<éy,...ip<r
o0
E ? —20(7?)H oo ooat a H

S 1 —I_ p! n ail alw(l) aipalw(p) 9
p=0 7weS, 1<iy,...ip<r

(3.5)

and by (3.2) and (3.3), the latter sum is finite, when [¢| < ~. Since B(H)* = span(S(B(?-[)),
it follows that the function w — exp(tS*(w)S(w)), is integrable, and (by the first two
equalities in (3.5)) that ]E[exp(tS*S)] is given by (3.1). [

The main result of this section is the following

3.3 Theorem. Let H,K be Hilbert spaces, and let aq,... ,a, be elements of B(H,K),
satisfying that

r

Z aja; < clpiyy and Z aza; < gk,

for some constant ¢ in |0, 00[. Consider furthermore independent elements Yy, ... Y, of

GRM(n,n, <), and put S =>7_, a; @ Y;. Then for any t in [0, 2] N [0, 2], we have that

g
E[ exp(tS*S)] <exp ((vVe+1)*t 4 (c+1)*- ;) ).
For the proof of Theorem 3.3, we need three lemmas. Before stating these lemmas, we
introduce some notation:
For any p, k.l in N, we put
d(p,k,l)=card({m € S, | k(%) = k and I(7) = [}). (3.6)
Note that for any p,k,l in N, d(p, k,l) =0, unless k 4+ < p+ 1 (cf. Theorem 1.13).
For any complex number w and any n in Ny, we put
{1, ifn =0,
ww+1)(w+2)---(w+n-1), ifneN
We recall then, that the hyper-geometric function F'. is defined by the formula

= a)r(b)k k
F(a,b,c;:z:):;((z)%x ,

for a,b, ¢,z in C, such that ¢ ¢ Z\ Ny, and |z| < 1.

(w)n =
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3.4 Lemma. For all positive real numbers a, (3, we have that

= ! F(l—a,1—3,2,1?
E : 5[),]6[ kl@ll_ ( a, a-/i; ) )7 (tE(C, |t|<1)
p=1 p— ! k,leN (1 _t)
k+i<p+1
(3.7)

Proof. Assume first that = n and 3 = m, where m,n € N, and consider an element B

of GRM(m,n,1). Then by [HT, Theorem 6.4],

o0

F(1—n,1—m,2,? 1 1 =1
’ ' 2 = —RoTr,[B*Bexp(tB*B)] = — Y ———EoTr,[(B*B)"].
S —EoTr,[B"Bexp(t5"B)] mn;(p_l)! o Tr, [(BBY]

But from Section 1 of this paper, we know that for any p in N

EoTr, [(B*B)p] = Z mFP ) — Z §(p, k, [)ym*n'

TESp k,leN
k+I1<p+1

and thus (3.7) holds for all , 8 in N. In particular, the left hand side (3.7) is finite for
all a, 8 in N. Since the left hand side of (3.7) is an increasing function of both « and 3,
it is therefore finite for all a, 3 in ]0, ool.

To prove (3.7) for general positive real numbers, a, 3, we get first, as in [HT, Proof of
Proposition 8.1], by multiplying the power series

1 fa—=1\[/B-1\,.
F(l—a,1—0,2;t%) = f——< ,)( ,)ﬂa t < 1),
( =250 )0 (1< 1)
and
= +08+k—1
1 — )~(e+h) — @ ¥ <1
(1-1) > A o (<),

k=0

that the power series expansion for % is given by

F(l—a,1—8,21%) &
e =3 e (<) (3.

where for all p in N,

(23] .
- _ 1 fa—=1\/B—-—1\[a+[8+p—25—2
Hip ) ;Hl( T e

Since we know that (3.7) holds for all a, 3 in N, we have, on the other hand, that

¥(p,a, ) = =Y b(p,k af T, (3.10)

k,leN
k+l<p+1
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for all a,3 in N. Thus, for fixed p, the right hand sides of (3.9) and (3.10) coincide
whenever «, 3 € N, and since these two right hand sides are both polynomials in a and
3, they must therefore coincide for all a, 5 in ]0, co[. In other words, (3.10) holds for all
a, 3 in ]0, 00[, and inserting this in (3.8), we get the desired formula. [

3.5 Lemma. Let a, 3 be positive numbers, and assume that either « or 3 is an integer.

Then

s ]tQJ
F(1—a,1—8,2;%) < Z aﬁH,, whenever 0 < 1 < 1, (3.11)
(J

Proof. We recall first, that

F(l—a,1- =33 <O‘_1> <ﬁ;1)t2j, (t € [0,1]).

If both @ and 3 are integers, then

-1 J -1 J
0§<a.>§a.— and 0§<ﬁ.) /67
J J! J J!

for all j in Ng, and (3.11) follows immediately. By symmetry of (3.11) in « and 3, it is
therefore sufficient to treat the case where « is an integer and (3 is not. In this case, we

L1 fa—1 1
F(1—a,1—ﬁ,2;t2):2j+—1< j ><5j )t”.

If 3 > a, we have for any j in {0,1,... ,a— 1}, that 0 < (agl) <% and() < ( ) <Z
and again (3.11) follows immediately.

g

have

].

Assume then that 3 < «, and let n be the integer for which n — 1 < 3 < n. Since « is an
integer, and « > 3, we have that a > n. Forming now Taylor expansion on the function

f(s)=F(1 —a,1 —3,2;s), (s> 0), it follows that

F(l—a,1—8,2;s) = ni L<a N 1) (ﬁ N 1>sf tra(s), (s>0),  (3.12)

pr A AN J

where r,(s) = f(")(ﬁ(s))8n7 for some £(s) in ]0, s[. It suffices thus to show that f() (&) <0,

n!

for all £ in [0, 1], since this will imply that for all s in [0, 1],

s ST

Jj=

where, as above, 0 < (a]_,l) < ‘j—f and 0 < (ﬁ]_.l) < ?—f, for all j in {0,1,... ,n—1}.



To show that f{"(¢£) <0 for all € in [0, 1], we note that by [HTF, Vol. 1, p. 58, formula
(7)];

_dn

1) = = F(1 a1 - 6,256 = L= 2L

(n+1)!

F(n—l—l—oz,n—l—l—ﬁ,n—l—Z,f),

for all £ in [0,1[. Note here that

(1= a)u(l =B)a =(a=N)(a=2)--(a=n)(B-1)(F=2)--(8-n) <0,

because & > n and n — 1 < § < n. Moreover, by [HTF, Vol. 1, p. 105, formula (2)], we
have for all £ in [0,1]

F(n—l—l—a,n—l—l—ﬁ,n—l—?;f):(1—E)a+ﬁ_”F(a—|—1,ﬁ+1,n—|—2;§)
1 petpen N (@ F D (B4 1)

i=0

and therefore Fi(n +1 —a,n+1—0,n+2;§) > 0 for all £ in [0,1]. Taken together, it
follows that f() (&) <0 for all € in [0, 1], as desired. [

For any ¢ in ]0, oo[, we let . denote the free Poisson distribution with parameter ¢, i.e.,
the probability measure on R, given by

Ve—at-1) |

pe = max{l — ¢, 0} + g Apap(z) - de, (3.13)

where a = (y/c —1)?, b = (y/c+ 1)* and & is the Dirac measure at 0 (cf. [HT, Defini-
tion 6.5]).

3.6 Lemma. Let o, 3 be strictly positive real numbers, and assume that either o or (3 is
an integer. Then for any t in [0, 3],

1+Z§ > bpk,Daks T < eXp((aJrﬁ)tQ)/o exp(fte) dug (),

p=1 k€N
k+i<p+1
Proof. Using that —log(1 —1) = >0 & < {412, whenever 0 < ¢ < I, we note first that

(1 =)~ exp((a+ )t exp((a + B)%), (L [0,3]).

Hence by Lemma 3.4 and Lemma 3.5,

> tp_l -1 1 2 - (aﬁ)]t%

S(p. k. Da* 145! exp((a exp((a B

S o ek De T S espl(ok B esallon+ A1) Y 5
k+I<p+1

p=1

(3.14)
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Put c= 3 and s = f#t. From [HT, Formula (6.27)], it follows then that

o O g © (@312
[ reton) dute) = cemiie s 1) Y2 gy = eempllat 10 Y- S

Hence (3.14) can be rewritten as

o
Z(p—l)!

p=1

Z S(p, k, a1 < gexp((a —|—ﬁ)t2)/ zexp(ftz) d,u%(:z:). (3.15)
0
eEa

Using then that ’;—p! =/ (“p 11), du, for all p in N, and that exp((a+ 8)u?) < exp((a+ B)t?),

whenever 0 < u < ¢, we get by termwise integration of (3.15) (after replacing ¢ by u),
that

S5 S a0 < el 00 [ ([ wesplur) duso)) do

p= 1 k,leN
k+l<p+1

0 ex z)—1
~ Zepa+ )0 [ o SPEIED s

—Lexpl(a+ A)) [ (explte) — 1) dug o)

Hence, using that fia is a probability measure, it follows that

1+ Z Z §(p, k, af 87 < 1+ exp((a + ﬂ)t2)</ooo exp(ftz) d,u%(:zj) - 1)

p=1 ' k,leN
k+l<p+1
< explla+9)7) [ exp(te) dus (o)
0
This concludes the proof. [

Proof of Theorem 3.3. Let ay,...,a,, Y1,...,Y, and S be as set out in Theorem 3.3. By
Proposition 2.5 and Proposition 2.7, we have then that

E[(SS)"] = (Z n2?) Z @ Gingy "'ajpair@)) Ln

€Sy 1<iy,..,ip<r

(Zn 20(®) ¢ >®IB(H“)

€Sy

(3.16)

where k(7) was introduced in Definition 2.6.

We assume first that ¢ > 1. By Proposition 2.10(i) and (ii), we have that
k() < k(7) 4 20(7), (m e Sp).
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Hence,

E[(55)7] < (3 (2)7D¢D) - Lugen),

€Sy

Using now that 20(7) =p+1—d(7) =p+1— k(7)) — (%), we find that

E[(59)] < ()" 3 0 (2) ) s

€Sy
I—
= ((%)p Z 5(p7k7l)nk<n€) 1) : 18(7—[")7
kleN
k+i<p+1
and therefore, for 0 <t < ﬁ = 2, it follows by application of Proposition 3.2, that
E[exp(tS’*S)] =1+ Z ;—iE[(S*S)p]
p=1
kf/geﬁl

Using now Lemma 3.6, we get for 0 < £ < 1. that

Blexp(t5°S)] < (exp ((n+ 2 [ exp (2() (o)) - L
= (exp (c(c + 1)%)/00 exp(tx) d,uc(;z;)> A

0

< (exp ((c+1)*- %)/oo exp(tz) d,uc(:li)) “1any.

0

Since supp(p.) C [ (Ve+1)? ] it follows that

]E[ eXp(tS*S)] < exp ((c +1)%- %) exp ((\/E + 1)2t) “1pny,

and this proves the theorem in the case where ¢ > 1.

Assume then that ¢ < 1. In this case we use (3.16) together with the fact that x(7) > k(7)
for all 7 in S, (Proposition 2.10(ii)) to obtain

( Z n—?cr 7r ) IB(H")
€Sy
(e 3 PO 1
WESp
= (nip Z §(p, k, )(ne)n'~ 1) 1.
k,leN
k+i<p+1
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Hence for 0 <t < = n, we get by application of Proposition 3.2,

max{c 1}
[exp(tS’ S‘) < 1+ Z S)p]
1 p!
p_
— 1
§(1 Z— Z §(p, k, )(ne)*n ll)'lg(yn).
p=1 p k,JleN
k+i<p+1
Hence by Lemma 3.6, we have for 0 < % < %,

]E[exp(tS*S)] < (exp ((nc—l— n)(%)Q)/OOO exp (n(%):ﬂ) dluc(;r;)> 1)

= (exp ((c—l— 1)%)/ exp(tz) dﬂbc(iﬂ)) A
0
< exp ((e+ 1) £) exp (Ve + 1)%1) - Laun)
and this completes the proof. [

3.7 Remark. Assume that a,...,a, € B(H,K), satisfying that > ', afa; < clp
and )7 a;af < dlggyy, for some positive constants ¢ and d. Consider furthermore
independent elements Y7,... .Y, of GRM(n n,L), and put S =Y "_ a; ®Y;. Applying

then Theorem 3.3 to a} = \}EQZ and ¢’ = %, we get the following extension of Theorem 3.3:

For any ¢ in [0, 2] N [0, 35],
]E[exp(tS*S)] < exp ((\/_—I— \/_) t+(c+d)?- ) 15(mm). m
4 Asymptotic Upper Bound on the Spectrum of S''S,
in the Exact Case

Throughout this section, we consider elements ay,... ,a, of B(H,K) (for Hilbert spaces
H and K), satisfying that

r r
* *
H g a’a;| <e¢, and H g ;

for some constant ¢ in |0, 00[. Let A denote the unital C*-subalgebra of B(H) generated
by the family {ajaj ‘ i,7 € 1{1,... ,r}} U {1p@}. Furthermore, for each n in N, we

<1, (4.1)

consider independent elements Yl(n), . ,Yr(n) of GRM(n, n, %), and we define

r

Sn=3 ai@ V" (4.2)

=1
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In this section, we shall determine (almost surely) the asymptotic behaviour (as n — o0)
of the largest element of the spectrum of S}S, (i.e., the norm of S}S,,), under the assump-
tion that A is an exact C*-algebra. We start by studying the corresponding asymptotic
behaviour for the image of S5, under certain matrix valued completely positive map-
pings. More precisely, let d be a fixed positive integer, and let ®: A — M,(C) be a
unital completely positive mapping. For each n in N, let id,: M,(C) — M, (C) denote
the identity mapping on M, (C). We then define

Vo= (@©id,)(5:5,) = Y @(ajay) @ (Vi)Y (neN). (4.3)
7,7=1
Note that V, is a random variable taking values in M,;(C) ® M,(C) ~ M,,(C). As

indicated above, our first objective is to determine the asymptotic behaviour of the largest
eigenvalue of V,,. We emphasize, that this step does not require that A be exact.

The following lemma is a version of Jensen’s Inequality, which we shall need significantly
in this section and in Section 8. The lemma has been proved in much more general settings
by Brown and Kosaki (cf. [BK]) and by Petz (cf. [Pe]). For the readers convenience, we
include a short proof, handling the special case needed here.

4.1 Lemma. (i) Let L be a Hilbert space, and let P be a finite dimensional projection
in B(L). Let tr denote the normalized trace on B(P(L)). Then for any selfadjoint element
a of B(L), and any convex function g: R — R, we have that

tr[g(PaP)] < tr[Pg(a)P]. (4.4)

(ii) Let B be a C*-algebra, let m be a positive integer and let ¥: B — M,,(C) be a unital
completely positive mapping. Then for any selfadjoint element a of B and any convex
function g: R — R, we have that

1 [g(W(a))] < tr [W(g(a))].

Proof. (i) Note first that g is continuous (being convex on the whole real line). Let m

denote the dimension of P(L), and choose an orthonormal basis (e1,...,€,) for P(L)
consisting of eigenvectors for PaP. Let Ay,..., A, be the corresponding eigenvalues for
PaP, i.e.,

Ai = (PaPe;, e;) = (ae;, €;), (i €{1,2,...,m}).
Then g(A1),...,g9(An) are the eigenvalues of g( PaP), and hence

m m

trg(PaP)] = g(h) =) gl{aei,e)). (4.5)

=1 =1
Since the trace on B(P(L)) is independent of choise of orthonormal basis for P(L), we
have at the same time, that

m m

tr[Pg(a)P] = (Pg(a)Pei,e;) =Y (g(a)es,e). (4.6)
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Comparing (4.5) and (4.6), we see that it suffices to show that (g(a)e;, e;) > g((ae;, e;)),
for all 7 in {1,2,... ,m}. But for each 7, this follows from the classical Jensen Inequality,
applied to the distribution of a w.r.t. the state ( - e;,€;), i.e., the probability measure y;
supported on sp(a), and satisfying that (f(a)e;, e;) = fsp(a) f( ) dpi(t), for all functions f
in C(sp(a)). This concludes the proof of (i).

(ii) By Stinespring’s Theorem, we may choose a Hilbert space £, a #-representation

m: B — B(L) of B on L, and an embedding ¢: C* — L of C™ into L, such that
V(b) = Pgm(b) Pk, (b e B), (4.7)

where K = +(C™), and Pk is the orthogonal projection of £ onto K. Moreover, the
equality (4.7) is modulo the natural identifications associated with ¢. Let trx denote the
normalized trace on B(K'). By application of (i), it follows then that

try, [g(\I}(a))] = trx [Q(PKW(G)PK)] < trg [PKQ(W(G))PK]
= trx [PKW(g(a))PK] = tr, [\Il(g(a))],

and this proves (ii). [

4.2 Lemma. Let V,, n € N, be as in (4.3), and let Apnax(V,) denote the largest eigenvalue
of V,, (considered as an element of My, (C)). Then for any ¢ in |0, 00|, we have that

ZP max(Va) > (Ve +1)" +¢€) < oo. (4.8)

Proof. The proof proceeds along the same lines as the proof of [HT, Lemma 7.3]; the main
difference being that in the present situation, we have to rely on the estimate obtained in
Theorem 3.3. Consider first a fixed n in N. We find then for any ¢ in ]0, co], that

POwas(Va) > (Ve + 17 4 €) = P(exp <txmax< n> e+ 1) — 1) > 1)
<E[exp( —t(Ve+1)? —te)]

= exp(—t(v/ec + 1) 1€) - B[ Amax (exp(tV,))]

Ve + 17— 1) B Tea (exp(tV2)].

where the last inequality follows by noting, that since exp(tV,) is a positive dn x dn

matrix, Amax(exp(tV},)) < Trg,(exp(tV,)). Note now, that since the mapping ® ® id,, is

unital, completely positive, and since the function z — €: R — R is convex, it follows
from Lemma 4.1(ii), that

tTdn [exp(tVn)] = try, [exp (t(CI) ® idn)(S;Sn))] < trgy, [(CI) ® idn> (exp(tS;Sn))]
= try @ tr, [(CI) ® idn) (exp(tS;Sn))] = ¢ ®tr, [exp(tSZSn)] ,
where ¢ is the state try o ® on A. Note here, that by Definition 3.1 and Theorem 3.3,
E[¢ ® tr, (exp(tS;Sa))] = ¢ @ tr, (E[ exp(t555,)])
<exp (t(Ve+ 1)+ Le+1)7),

max

(4.9)

< exp(—

(4.10)

(4.11)
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for all ¢ in ]0, Z].

2c
Combining now (4.9)-(4.11), we get that for all ¢ in ]0, 3],

P(Amax(Va) 2(Ve+ 1) +¢)
< dn-exp(—t(ve+ 1) —te) -exp (H(V/e+1)° + %(C +1)?)
=dn-exp ({(L(c+1)* —¢)),

Now choose t = 1,, = St +1)2, and note that ¢, € ]0, 3], as long as ¢ < 1. Clearly it suffices

to prove the lemma for such ¢, so we assume that ¢ < 1. It follows then that

PAmax(Va) 2 (Ve +1)° +¢) < dn-exp (ta(22(c+ 1) = €)) = dn - exp (57555)-
Since this estimate holds for all n in N, it follows immediately that (4.8) holds. [

4.3 Proposition. Let V,, n € N, be as in (4.3). We then have

lim sup Amax (V) < <\/E + 1)2, almost surely.

n—oo

Proof. 1t suffices to show, that for any ¢ from |0, oo,
P(lim SUP Amax(V) < (Ve +1)% + e) =1,
n— oo

and this will follow, if we show that
P()\max(Vn) < (Ve+1)* +¢, for all but finitely many n) =1,
for all € in ]0, co[. But this follows from the Borel-Cantelli Lemma (cf. [Bre, Lemma 3.14])

together with Lemma 4.2. [

The next step is to replace V,, in Proposition 4.3 by 5.5, itself. This is where we need to
assume that A is an exact C*-algebra. The key point in this step is the important result
of E. Kirchberg that exactness implies nuclear embeddability (cf. [Ki2, Theorem 4.1] and
[Was, Theorem 7.3]).

Let B be a unital C*-algebra. Recall then that an operator system in B is a subspace ¥
of B, such that 15 € F and z* € E for all z in K.

4.4 Proposition. Let B be a unital exact C*-algebra, and let E be a finite dimensional
operator system in B. Then for any ¢ in |0, oo[, there exist d in N and a unital completely
positive mapping ®: B — My(C), such that

I(® @ id) (@) = (1 = ]l

for all n in N and all x in M,,(F).
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Proof. Clearly we may assume that B is a unital C*-subalgebra of B(L) for some Hilbert
space L. Let N denote the dimension of K. Then by Auerbach’s Lemma (cf. [LT,
Proposition 1.c.3]), we may choose linear bases e;,... ,ey of F and e}, ..., e}y of the dual
space E*, such that

lleill = |l€fll =1, and e€(e;) = d;, (1,7 €4{1,2,...,N}). (4.12)

Now since B is exact, and hence nuclear embeddable, there exist d in N, and unital
completely positive mappings ®: B — M;(C) and ¥: M;(C) — B(L), such that

[U(B(e) — el < &, (i €{1,2,...,N}), (4.13)

(cf. [Was, p. 60]). We show that this ® has the property set out in the proposition. For
this, it suffices to show that

[(Fo® —is)m|, < (4.14)

where t5: B — B(L) is the embedding of B into B(L). Indeed, knowing the validity of
(4.14), we have for n in N and z in M, (F), that

lall < [} (W 0 ®) @ ida) () — | + ]| (¥ 0 @) @ id,) )] < elle]l + [ (¥ 0 &) @id) ()]

and hence that
(1= o)zl < |[((¥od)@id.)(z)| < (@ @idy) ()],

where the last inequality is due to the fact that ¥, being unital completely positive, is a
complete contraction.

To verify (4.14) note first, that for z in £, we have by (4.12),

N
T = Z e (x)e;,
and hence v v
Vod(z)—z= Z ef(:z;)(q/ o ®(e;) — 62') = Z ei(z) fi,

where f; = W o ®(e;) — e;. Note that by (4.13), || fi|| < %, for all 7in {1,2,... , N}.
Consider now n in N and z = (2,4)1<rs<n in M, (F). We then have

(Vo ®)®@id,)(z) — 2= [(Vo®)(z,5) — ] | <rs<n
= [N en) f

1<r5<n (4.15)

= 3 (s - dive 1),

=1
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where diag, (fi,...,fi;) is the n x n diagonal matrix with f; in all the diagonal posi-
tions. Note here that by (4.12), ||ef||e = |l€f|| = 1, for all ¢ (cf. [Pa, Proposition 3.7]).
Consequently,

[le7 (@) higragal| < M€l Mzl = llzll, (i€ {1,2,...,N}),

and using this in (4.15), we get that

[((¥o @) ®id,)( —$H<§:HHIUH<§:HHN—d\H

which proves (4.14). [

4.5 Theorem. Let ay,... ,a, be elements of B(H,K), such that || > '_, a’a;|| < ¢, and
| Yoi_, aaf]| < 1, for some constant ¢ in ]0,00[. Assume, in addition, that the C*-
subalgebra A of B(H), generated by {aja; | i,7 € {1,2,...,r}} U{lpm)}, is exact. Con-
sider furthermore, for each n in N, independent elements Yl(n), R ") of GRM(n,n, %),

and put S, =>1_,a; ® Yi(n). We then have

lim sup max [sp(S:LSn)] < (\/E + 1)2, almost surely.

n—oo

Proof. 1t suffices to show, that for any ¢ from ]0, ool, the set

< Ve

T. = {w € Q | limsupmax [Sp(Sn(w)*Sn(W))]

n—oo

has probability 1. So let € from |0, oc[ be given, and put

E= span({lA} U {afaj ‘ i,7 €41,2,... ,r}}).

Note that z* € E for all = in F, and that 14 € K. Hence FE is a finite dimensional
operator system in A. Since A is exact, it follows thus from Proposition 4.4, that we may
choose d in N and a completely positive mapping ®: 4 — My(C), such that

[(® @id,) ()| > (1 = ¢)z]], (n €N, z € M,(E)). (4.16)

Now put
V, = (CI) ® idn)(S;Sn), (n € N),

and define furthermore

V:{wEQ

lim sup | Vo ()| < (ve+1)}.

n—oo

By Proposition 4.3, P(V) = 1, and hence it suffices to show that 7; 2 V. But if w € V,
it follows from (4.16) that

lim sup 5, ()"S, ()] < (1 — 9~ limsup [V (w)]] < (1 — )~ (Ve + 17,

n—oo n—00

which shows that w € 7.. This concludes the proof. [
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4.6 Corollary. Let ay,... ,a, be elements of an exact C*-algebra A, and let, for each n
in N, Yl(n), . ,Yr(n) be independent elements of GRM(n,n, %) Then

lim sup H Z a; ® Yi(n)H < H Z a;a; 2 + H Zaiaj
n=reo =1 =1

=1

1
2
)

almost surely.

r

Proof. We may assume that not all a; are zero. Put v = ||[>]_,afa;]| > 0 and § =
| > 0i=; @iai|| > 0. We may assume that A C B(H) for some Hilbert space H. Then the
unital C*-algebra A = C*(A,15(3)) is also exact, and hence so is every C*-subalgebra of

A (cf. [Kil] and [Was, 2.5.2]). Therefore Corollary 4.6 follows by applying Theorem 4.5

toa;»:%ai,izl,...,r,andc:%. [
Regarding the corollary above, consider arbitrary elements aq,...,a, of an arbitrary
C*-algebra A, and let {y1,...,y.} be a circular (or semi-circular) system in some C*-

probability space (B, ) (cf. [Vo2]), and normalized so that ¢ (yfy;) = 1,71 =1,2,...,r.
In [HP, Proof of Proposition 4.8], G. Pisier and the first named author showed, that in
this setting, the following inequality holds:

r r 1 r
H g a; @ y; §2maX{H E asa; 2,” E a;a;
=1 =1 =1

In [HP, Proof of Proposition 4.8], the factor 2 on the right hand side of (4.17) is missing,
but this is due to a different choise of normalization of semi-circular and circular families.
By application of [Haa, Section 1], it is not hard to strengthen (4.17) to the inequality

r r 1 r

* B} *

| E a; @yl < || E afa;l|* + || E a;a;
i=1 =1 i=1

both for semi-circular and circular systems. Since independent elements Yl(n), .

} (4.17)

: (4.18)

YT(”)
of GRM(n,n, %) can be considered as a random matrix model for the circular system
{y1,... .y}, in the sense of [Vol, Theorem 2.2|, we should thus consider Corollary 4.6 as
a random matrix version of (4.18). However, the random matrix version holds only under
the assumption that the C*-algebra A be exact. In fact, we shall spend the remaining
part of this section, showing that the assumption in Theorem 4.5 that the C*-algebra A
be exact, can not be omitted. We start with two lemmas, the first of which is a slightly
strengthened version of [HT, Theorem 7.4] (which, in turn, is a special case of a theorem

of Wachter (cf. [Wac])).

)

4.7 Lemma. Let ¢ be a positive number, and let (m,,) be a sequence of positive integers,
such that == — c as n — oo. Let furthermore (Y,) be a sequence of random matrices,
such that for each n in N, Y, € GRM(m,,n, %) Then for any continuous function
f:1]0,00] = C, we have that

b
lim tr, [f(Yn*Yn)] = / flz) duc(z), almost surely, (4.19)
where b = (/¢ + 1)* and p is the measure introduced in (3.13).
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Proof. By splitting f in its real and imaginary parts, it is clear, that we may assume
that f is a real valued continuous function on [0, 00[. We note next, that it follows from
[HT, Theorem 7.4] and the definition of weak convergence (cf. [HT, Definition 2.2]), that
(4.19) holds for all continuous bounded functions f: [0,00[ — R. Thus, our objective is
to pass from bounded to unbounded continuous functions, and the key to this, is the fact

(cf. [HT, Theorem 7.1]), that
lim ||YY,| = <\/E—|— 1)2, almost surely. (4.20)
n— oo

Indeed, it follows from (4.20), that (for example)
P(IV:Y,] < (Ve+1)? 41, for all but finitely many n) =1,
and hence, given any ¢ in |0, oo, we may choose N in N, such that
P(Fy) > 1—c¢,

where

Fy = {w e ‘ |V, (w)* Y, (w)]| < (Ve+1)* + 1, whenever n > N}.

Now, given a continuous function f: [0,00] — R, let fi: [0,00] = R be an arbitrary
continuous function, satisfying that fi = f on [0,(y/c + 1)* + 1], and that supp(f) is
compact. Then for any w in Fy, we have that

fi(Ya(w)Ya(w)) = f(Ya(w)Ya(w)), whenever n > N,

and hence, since f; is bounded,

n—oo

it [/, @) Valw)] = lim tra [AYa() Vo)) = [ o) diclo)

b
— [ 1) duo)
It follows thus, that

P( lim e, [f(;V)] = [2f(2) due(2)) > P(Fy) > 11— ¢,

n—oo

and since this holds for any ¢ in ]0, o[, we obtain the desired conclusion. [

Next, we shall study the polar decomposition of Gaussian random matrices. Let n be a
positive integer and let Y be an element of GRM(n,n, +), defined on (9, F, P). Further-
more, let U, denote the unitary group of M, (C).

By a measurable unitary sign for Y, we mean a random matrix U: Q@ — U,,, such that for
almost all w in Q, the polar-decomposition of Y (w) is given by:

Y(w) = U(w)|Y(w)];
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where, as usual, |V (w)| = [Y(w)*Y(w)]z. To see that such measurable unitary signs do
exist, we note first that by [HT, Theorem 5.2], Y (w) is invertible for almost all w. Thus,
for example the random matrix U: Q — U,, given by

1,, otherwise,

Ulw) = {Y(w) [Y(W)*Y(w)]_g, if Y(w) is invertible,

is a measurable unitary sign for Y.

4.8 Lemma. For each n in N, let Y(n) ,Y(n) be (not necessarily independent) ran-
dom matrices in GRM(n,n, ), and let U( ) U,gn) be measurable unitary signs for
Yl(n), e ,Yr(n), respectively. Furthermore, let U(1 ), . ,Ufnn), denote the complex conju-

gated matrices of Ul(n), . ,Uﬁn). We then have

lig(i)glf H Z;Ufn) ® Yi(n) H >, almost surely.

Proof. Let (e1,... ,e,) be the usual orthonormal basis for C*, and consider then the unit
vector £ = ﬁ Yoo, e ®e in C* @ C". Note then that for any A = (aj;) and B = (b;i)
in M, (C), we have that

n n

(A® B)¢,€) = %Z ((A® B)(e; @ €;),ex @ ex) = %Z (Aej, ex) - (Bej, ex)

n

= %Zakjbkj = trn(ABt) = trn(AtB)_

k=1

It follows thus, that

27 0y > (X7 6 v ee)| = | e @) v2)
=1 i=1 i=1

. (4.21)
= (|Y,7))
=1
where the last equation holds almost surely. By Lemma 4.7, we have for all 7 in {1,... ,r},

that
hm tr, |Y / Ve duy(z almost surely,

and combining this with (4.21), it follows that
r ‘ 4
lim inf H ZUZ(TL) ® YZ»(MH > T’/ Ve duy (), almost surely.
n—00 — 0
We note finally that

[ Ve = [ i ey VR,
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and this concludes the proof. [

We are now ready to give an example where the conclusion of Theorem 4.5 fails, due
to lack of exactness of the C*-algebra A. Consider a fixed positive integer r, greater
than or equal to 2, and let F. denote the free group on r generators. Let ¢1,...,¢,
denote the generators of F,, and let C*(F,) denote the full C*-algebra associated to F,.
Recall that there is a canonical unitary representation ug, : F, — C*(F,), and that the pair
(C*(F,), ur,) is characterized (up to #-isomorphism) by the universial property, that given
any unital C*-algebra B and any unitary representation u: F, — B, there exists a unique
unital *-homomorphism @, : C*(F,) — B, such that the following diagram commutes:

F, —= C*(F,)

| A

B
It is well-known (cf. [Was, Corollary 3.7]) that C*([F,) is not exact. We let uy,... ,u, be
the canonical unitaries in C*(F, ) associated to gi,... ,g, respectively, i.e., u; = ur, (gi),
1 =1,...,r. We then define
a; = %ui, (tedl,...,r}). (4.22)

Then clearly,

<
<

aia; =Y aa; =lce, (4.23)
=1 =1
Consider now, in addition, for each n in N, independent elements Yl(n),... ,Yr(n) of
GRM(n,n, <), and define
Sp=Y aaY™, = (neN) (4.24)

=1
We then have the following

4.9 Proposition. With ay,... ,a, and S,, n € N, as introduced in (4.22) and (4.24), we
have that

(1) 1i7£r_1>glf|\S;SnH > (%)2 -1, almost surely.
(ii) The conclusion of Theorem 4.5 does not hold for these ay, ... ,a,, whenever r > 6.

In particular, the assumption in Theorem 4.5, that A be exact, can not, in general, be

omitted.

Proof. (i) For each positive integer n, choose measurable unitary signs Ul(n), cee U™ for
Yl(n), ceey y,™) respectively, and let Ugn), . ,Ufnn) denote the complex conjugated matrices
of Ul(n), . ,Uﬁn). Since F, is the group free product of r copies of Z, it follows that for
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(n)

each w in © and each n in N, there exists a unitary representation u,’: F, — M,(C),
such that

u(g) =T (W),  Ge{l,...,r}).
By the universial property of C*(F,) it follows then, that for each w in Q and each n in
N, we may choose a *-homomorphism . C*(F,) — M,(C), such that

oW () =T (W),  (iefl,....,r}).

For each w in € and each n in N, note now that

r

|3 we Y@ 2 (08 @id) (3w vOw)| = | Y77 w) & vw)|

=1

Applying then Lemma 4.8, it follows that

1i71F_1>(i>£1f H z_; u; @ Yi(n) H > 2. almost surely,

and hence that

ligglf H Z a; @ Yi(n) H > % /T, almost surely.

=1
Since ||S2S,|| = ||.S.||?, we get the desired formula.
(ii) By (4.23), ay,... ,a, introduced in (4.22) satisfy condition (4.1) in the case ¢ = 1.
Thus, if the conclusion of Theorem 4.5 were to hold for these ay,... ,a,, it would mean

that .
li oYW <2 ] ly.
ISLSUPHZG @ Y, H < 2, almost surely

=1

However, Proposition 4.9 shows that
ligg(i)gf H Z a; @ Yi(n) H > (%) Vi almost surely,
=1

and thus the conclusion of Theorem 4.5 breaks down, for ¢ = 1, whenever r > (%)2 ~ 5.h5,
ie., for r > 6. [

5 A New Combinatorial Expression for E[(S*S)p]

Throughout this section, we consider elements ay,. .. ,a, of B(H,K), where H and K are
Hilbert spaces. In Section 2 we proved that if Y, ..., Y, are independent random matrices

in GRM(n,n, 1), and we put S =37, a; @Y, then

]E[(S*S)p] — ( Z n—QU(ﬁ’) . Z a;flair(l) . a;‘pair(p)> ®1,. (51)

TESp 1<, ,2p<r
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In this section, we shall assume that aq,... ,a, satisfy the condition

r

Z aia; = clpyy, and Z a;a; = 1p(xy, (5.2)
i=1

=1

for some number ¢ in |0, 00[. Under this assumption, and by application of the method
of “reductions of permutations”, introduced in Section 1, we show that E[(S*S)p] can be
expressed as a constant plus a linear combination of the sums:

Z n_%(ﬁ)< Z a3, iy "'“?q‘“p(q))’ (¢=2,---.p);

pESZ}r lgil,...,iPST

where Sé”, as in Section 1, denotes the set of permutations p in S, for which p is irreducible
in the sence of Definition 1.16.

5.1 Lemma. Let ay,...,a, be elements of B(H,K), and assume that (5.2) holds. Let p
be a positive integer, greater than or equal to 2, let m be a permutation in S, \ S;”, and

let mg be the permutation in S,_; obtained by cancellation of a pair (e,e + 1) for 7 (cf.

Definition 1.18). We then have
(i) Ifeis odd, then k(@) = k(7)) — 1, and

* * _ * . . * .
Z Aj Agpgy w Ay i,y = C ( Z 5 i aip_lazﬁo(p_1)>' (5'3)

lsil,...,iPST lsil,...,ip_lgr

(ii) Ife is even, then k(7o) = k(#), and

x* * _ * . .. x* .
D GGGy = Y A (5.4)

lsil,...,iPST‘ lgil,...,ip_lgr

Proof. (i) Assume that e is odd. Then k(7o) = k(7) — 1 by Proposition 1.22. Moreover,
(e,e+ 1) is of the form (25 — 1,2j) for some j in {1,2,...,p}, and therefore n(j) = j
(cf. Definition 1.15). Hence, the index ¢; occur only at the 25 — 1’th and the 2;’th factor
., and therefore the sum on the left hand side of (5.3) is

1 * . D * .
in the product ar a; a; a;

(1)

P
equal to

r

* * * *
E : @iy Qinry """ Qinyon ( E : a4, “w)“m @i Qin(p) >

lsil,...,i]_l,i]+1,...,ipST ijzl

which by (5.2) is equal to

* * *
. ( Z Uiy Qimgy """ Wiy Dy "'“ip“iﬂp))' (5:5)

lsil goee ,’i]_l,’i]+1 gooe ,iPST

Note here, that if we relabel the indices 2;41,... ,1, by %;,... ,1,_1, then it follows from
Remark 1.19(a), that (5.5) is equal to

* *
< ( Z Giy Qimg 1) 7 “ip—lalwo@—l))’

lgil geee 7ip—1 ST
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and this proves (5.3).

(ii) Assume that e is even. Then k(7o) = k(#) by Proposition 1.22, and (e,e + 1) =
(27,25 + 1), for some j in {1,2,...,p — 1}, so that n(j) = 7 + 1 (c.f. Definition 1.15).
Hence, the left hand side of (5.4) is equal to

r

* . PR * . * . PR * .
Z Ay Qi) %( Z “%+1“ij+1>a2m+1) Uiy Cinp) - (5.6)

lsil,...,ij,ij+2,...,iPST i]+1:1

Here, ZZH:I @i @5, = 1B(c), by (5.2), and proceeding then as in the proof of (i), we
obtain by Remark 1.19(b) (after relabeling ¢;42,... ,%, by ¢j41,... ,4,-1), that (5.6) is

equal to
* *
Z Uiy Fimgay =" Uiy Vg (p1

lg’il,...,ip_1§7“
This proves (5.4) [
Recall that for p in N, S7¢ denotes the set of permutations 7 in S, for which the permu-

tation 7 is non-crossing in the sense of Definition 1.14.

5.2 Lemma. Let ay,...,a, be elements of B(H,K), such that (5.2) holds, let p be a
positive integer, and let m be a permutation in S)¢. Then

* * _ k(7
Z Aj gy w Ay iy = € ( )lB(H)a (57)
lsil,...,iPST
and
* * _ l(m)—-1
2 @in iy = O g, (5.8)
lgil,...,ipgr

Proof. We start by proving (5.7); proceeding by induction on p. The case p = 1 is
clear from (5.2). Assume now that p > 2, and that (5.7) holds for p — 1 instead of p,
and all permutations in S7¢,. Consider then a permutation 7 from S7¢, and recall from
Lemma 1.17 that 7 has a pair of neighbours (e,e+ 1). Let my be the permutation in S,_;
obtained by cancellation of this pair. Then by Lemma 1.20, 7o € S5)¢;, and hence by the
induction hypothesis,

x _ k(%o
Z gy Qi gy " G G () = C ( O)IB(H)- (5.9)

lgil goee 7ip—1 ST

But by Lemma 5.1, (5.9) implies (5.7), both when e is odd, and when e is even. This
completes the proof of (5.7).

To prove (5.8), we put b; = % a*,1=1,2,--- ,r. Then

79

Zb*b_cllg and be*_lg
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Applying then (5.7), with ¢ replaced by ¢!, it follows that
Z b biy bl bi, = c—k(*)lg(,c),
lsil,...,ipsr

i.e., that

E af eeeqoat = PRR)
allaiﬂ.(l) alpaiﬂ.(p) =c IB(}C)'
lsil,...,iPST

Recall finally, that since 7 is non-crossing, k(7) + {(7) = p+ 1 (cf. Corollary 1.24), and
hence it follows that (5.8) holds. [

As in Section 3, for any ¢ in |0, oo[, . denotes the probability measure on [0, oo[, given
by
Vi —a)(b—x)
-1 -d
27.(..,1: [avb] (x) $7

where a = (/e —1)*, b = (/e + 1)? and §; is the Dirac measure at 0. Recall from [OP]
or [HT, Remark 6.8], that the moments of y. are given by

pe = max{l — ¢, 0} +

/0‘” o dpe(e) = 33 () (L) (PEN), (5.10)

i=1

5.3 Lemma. For any positive integer p, we have

P
2. =0 (), (5.11)
mESHC j=1
and
P
DO =0 () (5.12)
WES;‘C 7=1

Proof. To prove (5.11), recall from Corollary 1.12, that for B in GRM(m,n, 1), we have
that
EoTr,[(B*B)] = Y m*Pn!®,

€Sy

Hence, for Y in GRM(m,n, 1),

E o trn[(Y*Y)p] =n P! Z m* PRl — Z n_%(’?)(%)k(ﬁ), (5.13)

TESp TESp

where we have used that o(#) = L(p+1—k(7) — [(7)). Consider now a sequence (m,,) of
positive integers, such that ®= — ¢ as n — oo, and for each n in N, let ¥, be an element

of GRM(my,,n,+). It follows then from (5.13), that

lim E otrn[(Y*Y)p] = Z FF) = Z M) (5.14)

n—00
TESy WES;‘C
o(m)=0

49



where the last equality follows from Corollary 1.24. On the other hand, it follows from
[HT, Theorem 6.7(ii)] and (5.10), that

P

T Botm, (V)] = [0 dua) = 130 ()6 (5.15)

Combining (5.14) and (5.15), we obtain (5.11).

To prove (5.12), we use, again, that k(7) + {(7) = p + 1 for all 7 in Sp°. It follows thus,
that

Z HEO-1 _ p Z k) (5.16)

WESEC WES;‘C

But by (5.11) (with ¢ replaced by ¢™'), the right hand side of (5.16) is equal to

P
;—)Z p) ] e (5.17)
7=1
Substituting finally 57 with p4+ 1 — j in (5.17), we obtain (5.12). [

5.4 Corollary. Let ay,...,a, be elements of B(H,K), such that (5.2) holds. Then for
any p in N, we have that

P
(i) Z ( Z a;'klaiw(l) "'arpaiﬂ(p)> = L%Z(?) (jfl)cj} '16(7{)7
mESPE  1<d1,. ip <y 7=1
and
P
(ii) 3 ( N anal, aial ): Ll} (7)) 1} 1s(c).
m€SPe  1<un,. ip<r 7=1
Proof. Combine Lemma 5.2 and Lemma 5.3. [

5.5 Definition. (a) A subset [ of Z is called an interval of integers, if it is the form
I ={a,a+1,...,5},

for some «a, 3 in Z, such that a < 3.

(b) Let p be a positive integer, let m be a permutation in S,, and let / be an interval
of integers, such that I C {1,2,...,2p}. We say then that the restriction 7|y of @ to [
is non-crossing, if #(/) = I, and 7 has no crossing (a,b, ¢, d) where a,b,¢,d € . In this
case, we refer to [ as a non-crossing interval of integers for . m
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5.6 Remark. Let p be a positive integer, let 7 be a permutation in 5, and let I be an
interval of integers, such that I C {1,2,...,2p} and #([) = I. Since #? = id and 7 has
no fixed points, it follows then, that card([) is an even number. Put ¢ = fcard([), and
consider the unique order preserving bijection ¢: {1,2,...,2t} — [ of {1,2,...,2(} onto
I (ie.,o(j) =min(l)—1+7,forall jin {1,2,...,2¢}). It is clear then, that the mapping
¢~ o (#r) o ¢ is a permutation of {1,2,...,2t}, and that we may choose a (unique)
permutation my in S, such that

-1

’ﬁ'l =@ o] (’f(’u) 0o @, (518)
(cf. Remark 1.7(a)). It is clear too, that the restriction @ of 7 to I is non-crossing in the
sense of Definition 5.5, if and only if 7; is a non-crossing permutation in the usual sense

(cf. Definition 1.14). O

5.7 Lemma. Let p be a positive integer, and let m be a permutation in S,,.

(i) If I is an interval of integers such that I C {1,2,...,2p} and 7| is non-crossing, then
there exists e in I, such that e+ 1 € I and 7(e) = e + 1.

(if) Ifr e S;”, then 7 has no non-crossing interval of integers.

Proof. (i) Assume that I C {1,2,...,2p} and that 77 is non-crossing. Put ¢ = fcard([),
let ¢ be the order preserving bijection of {1,2,...,2t} onto I, and let m; be the permuta-
tion in S; given by (5.18). Then m € S}°, and hence 7; has a pair of neighbours (¢’, €’ +1)
by Lemma 1.17. Putting e = ¢(¢’), it follows that e + 1 = #(e) € I, and this proves (i).

(ii) This follows immediately from (i). [

5.8 Lemma. Let p be a positive integer, and let m be a permutation in S,, such that
7 is reducible. Consider furthermore a family (I))\ea of intervals of integers, such that
Iy C{1,2,...,2p} for all A\, and such that the union I = Uyecal, is again an interval of
integers. If each I is a non-crossing interval of integers for m, then so is I.

Proof. Assume that each [y is a non-crossing interval of integers for 7. Then 7 ([y) = I,
for all A, and hence also 7(1) = I. Assume then that I contains a crossing for 7, i.e., that
there exist a,b,¢,d in I, such that « < b < ¢ < d and 7(a) = ¢, 7(b) = d. Choose A in A
such that a € I\. Then ¢ = #(a) € I, and since [, is an interval of integers, also b € I,.
But then d = #(b) € I, too, and hence (a,b,c,d) is a crossing for 7 contained in [,; a
contradiction. Therefore [ too is a non-crossing interval of integers for 7. [

5.9 Definition. Let p be a positive integer and let 7 be a permutation in S,. By J(7)
we denote then the family of all non-crossing intervals of integers for 7. Moreover, we put

N = | 1 (5.19)

IeT (%)

IRR(7) = {1,2,...,2p} \ NC(#). (5.20)

We refer to NC(7) (respectively IRR(7)) as the non-crossing set (respectively irreducible
set) for 7. O
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5.10 Lemma. Let p be a positive integer and let m be a permutation in S,. We then
have

(i) NC(7)={1,2,...,2p} if and only if & is non-crossing.

(i1) NC(7) =0 if and only if 7 is irreducible.

Proof. (i) If NC(7) = {1,2,...,2p}, then is follows from Lemma 5.8, that 7 is non-
crossing. If, conversely, 7 is non-crossing, then {1,2,... ,2p} € J(7), and hence NC(7) =
(1,2,...,2p}.

(i1) If NC(#) = 0, then for any j in {1,2,...,2p—1}, {j,j+ 1} can not be a non-crossing
interval of integers for 7. Hence #(j) # j + 1 for all j in {1,2,...,2p — 1}, which means

that 7 is irreducible. If, conversely, 7 is irreducible, then J(7) = @ by Lemma 5.7(ii),
and hence also NC(7) = 0. [

5.11 Proposition. Let p be a postitive integer, let m be a permutation in S,, and assume
that @ has a crossing. Then the set IRR(7) is of the form

IRR(ﬁ') = {51, S92y ,qu},
where g € {1,... ,p}, and 1 < 81 < 83 < -++ < 894 < 2p. Moreover, s1,$2,... ,$2, have
the following properties:
(i) The set {s1,82,...,82,} is T-invariant and 7(s;) # Si1, for all v in {1,2,...,2¢ —1}.
(i1) If we put so = 0 and sy,41 = 2p + 1, then for each i in {0,1,... ,2q}, the set

[i = ]SZ', 5i+1[ N Z
is either the empty set or a non-crossing interval of integers for 7.

Proof. By Definition 5.5(b), each [ in J () is 7-invariant. Therefore NC(7) is 7-invariant
too, and hence so is IRR(#). Since #? = id and & has no fixed points, it follows that
card(IRR(7)) = 2q for some ¢ in {0,1,...,p}, and since & has a crossing, Lemma 5.10(i)
shows that ¢ > 1. Thus, we may write IRR(7) in the form {sy,ss,...,s2,}, where
81 < 83 < -+ < Sg4, and it remains to show that these sq,s9,... sy, satisfy (i) and (ii).

We start by proving (ii). For all I from J(7), I N {s1,s2,...,82,} = @, and hence each

such [ is contained in one of the sets I; = |s;,8,41[NZ,1=0,1,... ,2q. Therefore
2q
J(#) = Ji#), (5.21)
=0

where J;(7) ={l € J(7) | [ C L}, for all i in {0,1,...,2¢}. Note here that

U 1<, (ie{0,1,...,2q}), (5.22)

IeJi(%)
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and that

|J T=NC(#)={1,2,...,2p} \ IRR(%) = Lj[ (5.23)

IeJ (%)
Combining (5.21)-(5.23), it follows that we actually have equality in (5.22), i.e.,
U =6 (ie{0,1,...,2q}). (5.24)
IeJi(#)

Since each [; is either empty or an interval of integers, (ii) follows now by combining

(5.24) with Lemma 5.8.
It remains to prove (i). We already noted (and used) that IRR(#) is #-invariant. Assume
then that 7(s;) = s;41 for some ¢ in {1,...,2¢ — 1}. Then, by (ii), the set

[NZ' = {SZ} U [z U {3i+1}7

is a non-crossing interval of integers for 7. But this contradicts that s; ¢ NC(7), and
hence we have proved (i). [

We prove next the following converse of Proposition 5.11.

5.12 Proposition. Let p be a positive integer, let 7 be a permutation in S, and assume
that there exist g in {1,... ,p} and s1 < s9 < -+ < 89, in {1,2,...,2p}, such that

(i) The set {s1,82,...,82,} is T-invariant and 7(s;) # Si1, for all v in {1,2,...,2¢ —1}.

(ii) If we put s = 0 and syy41 = 2p + 1, then for each v in {0,1,...,2q}, the set
I; = ]si, 8i41| N Z is either the empty set or a non-crossing interval of integers for 7.

Then {s1,sq,...,89,} = IRR(7).
Proof. 1t follows from (i), that there exists a (unique) permutation 5 in Sy, such that

w(si) =85, (e{l,2,...,2q}),

and moreover

v #£i+1, (i€ {1,2,...,2g—1}). (5.25)

Our first objective is to prove that v is of the form p for some (unique) permutation p in
S;”. For this, note first that by (ii), card(/l;) is an even number for all 7 in {0,1,... ,2q}.
Hence s;41 — s; is odd for all 7 in {0,1,...,2¢}, and this implies that

51,83, ... ,824—1 are odd numbers

S2,84,...,82, are even numbers

Since 72 = id and #(j) — 7 is odd for all j in {1,2,...,2p}, it follows now that v* = id
and that v(z) — ¢ is odd for all ¢ in {1,2,... ,2¢}. Therefore, by Remark 1.7(a), v = p for
some (unique) p in S,, and (5.25) shows that in fact p € Si™.
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Returning now to the proof of the equation {si,s2,...,32,} = IRR(@), note first that
U, I; € NC(#), and therefore

{317527 s ,52q} = {1727 s ,2]7} \ U?ioli 2 IRR(ﬁ-)

Suppose then that IRR(7) is a proper subset of {si,ss,...,s2,}. Then there exists jg
in {1,2,...,2q}, such that s;, € NC(7), i.e., s;, € [, for some non-crossing interval of
integers for 7. For this I, define

J={je{1,2,...,2¢} | s; € I}.

Then J # (), and since s; < s < -+ < 8g4, J is an interval of integers. Consider now the
permutation p in S;”, introduced above. Then, since 7(I) = I, we have also that p(.J) = .J.
Moreover, .J is a non-crossing interval of integers for p. Indeed, if (a, b, ¢, d) were a crossing
for p contained in J, then clearly (8,4, s, ¢, s4) would be a crossing for 7 contained in 7,
which is impossible. Altogether, p is both irreducible and has a non-crossing interval of
integers, and by Lemma 5.10(ii), this is impossible. Thus, we have reached a contradiction,
which means that we must also have the inclusion {s1,s2,... ,82,} C IRR(7). [

5.13 Lemma. Let p be a positive integer, and let m be a permutation in S, \ S}°¢. Write
then, as in Proposition 5.11, IRR(7) in the form

IRR(#) = {s1,2,... , 524},

where g € {1,...,p} and 1 < 51 < 89 < -++ < 894 < 2p. Then sy, 89,... 89, satisfy, in
addition, that

(i) s1,83,...,824—1 are odd numbers.

(ii) s2,84,...,82, are even numbers.

(iii) There is one and only one permutation p in Sé”, such that 7(s;) = s;;) for all j in

{1,2,...,2q}.

Proof. This follows immediately from Proposition 5.11 and the first part of the proof of
Proposition 5.12. [

5.14 Definition. Let p be a positive integer, let 7 be a permutation in S, \ S3¢, and let
q, $1,582,... ,824 and Io, I1,... , I3, be as in Proposition 5.11. Then put

t;, = %card([i), (Z e {0,1,... 7QQ})7

and note that since [; is either empty or a non-crossing interval of integers for 7, {; € Ny
for all 2. If ¢; > 0, then as in Remark 5.6, we consider the order-preserving bijection ;
of {1,2,...,2t;} onto [;, and we let m; denote the (unique) permutation in Sy,, satisfying
that #; = ¢ " o (7)) 0 ¢. Clearly m; € SHC.

It is convenient to consider the permutation group Sy of the empty set, as a group with

one element mg. Then, in the setting considered above, we put m; = my, for all ¢ in
{0,1,...,2q}, for which ¢; = 0. By convention, we put
k(mg) =0, and I(7g) = 1. mi (5.26)
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5.15 Lemma. Let p be a positive integer, let m be a permutation in S, \ S"°, and let p

p 7
be the irreducible permutation introduced in Lemma 5.13(iii). Then o(p) = o(#).

Proof. Let q, s1,52,...,894 and Iy, I1,... , I3, be as in Proposition 5.11, and for each ¢
in {0,1,...,2q}, let ¢; and m; be as in Definition 5.14. If ¢; > 0, then 7; is non-crossing,
and hence, by Proposition 1.23, 7; may be reduced to é; (where e; is the permutation
in S1), by a series of successive cancellations of pairs. Here é; consists exactly of one
pair of neighbours, so, formally speaking, é; can be reduced 7y, by cancellation of this
pair. Thus, 7; can be reduced to 7y, by a series of successive cancellations of pairs, and
forming the corresponding series of cancellations of pairs to 7|y, it follows that 7 can be
reduced to a permutation, which is, loosely speaking, obtained by “cutting out” ;. from
7. Forming these reductions for each 7 in {0, 1,... ,2q}, for which ¢; > 0, it follows that #
can be reduced to p by a series of successive cancellations of pairs. By Proposition 1.22,

this implies that o(7) = o(p). [
5.16 Proposition. Let p be a positive integer, let ™ be a permutation in S, \ S;°, and
let q, s1,59,...,82, be as in Proposition 5.11. Let further p be the permutation in S;”
introduced in Lemma 5.13(iii), and let mg, my, ... ,my, be as in Definition 5.14. Then for
any elements ay, ... ,a, of B(H,K) for which (5.2) holds, we have
* * _ k(7 * *
D iy i =Y afan, e aan, (5.27)
lgil,...,ipgr lgil,...,iqgr

where

h(#) = k(7o) + (L(71) = 1) + k(7r2) + - 4 ([(Frzg-1) — 1) + k(7). (5.28)

Proof. We start by introducing some notation. Let ¢ be a positive integer, and let n be a
permutation in S;. We then put

I'(n) = Z aj @iy QA (5.29)
lsil,... ,itST
and moreover, we put
['(7tg) = 1z (5.30)
Note that I'(7}) can be expressed in terms of 7 only, namely as
F(f/) = Z a;ai2a:3ai4 e a;;t_lalét? (531)

(i17i27i37i4,...,igt)EN(ﬁ)
where
N() = {112, .. yiz) € {1,2,... v} | dj = iqg), forall jin {1,2,...,2t}}, (5.32)

(cf. Remark 1.7(b)). Consider next an interval of integers I, such that [ C {1,2,...,2t}
and (/) = 1. Write [ in the form {o, @ +1,..., 3}, and note that § — a + 1 = card(!)

is an even number. We then put

N ) = { (s -+ yig) € 41,2, o7 }P oM i = isyy, G = asa+1,..., 8} (5.33)
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and
Z a; a;,.,, ---a?ﬁ_laiﬁ, if a is odd,
A Gcserig) EN(A,T
D(i, 1) = ¢ G gD T (5.34)
Z Wigliy g " Qig_y G, 1L vl even.
(Gareeig)EN (A1)

Now, to prove (5.27), consider p in N and 7 in S, \ S7°, and let g, s1,52,... 52, and
Io, Ih, ..., I3, to,t1,... 13, be as in Proposition 5.11. Note then, that we may write
N(7) as

N(#) = U N7, do) X {isy b X} N(, [1) X {isy} X - X {isy, } X N(7, Iay),

(isg e risgg) ENI(7)

(5.35)

with the convention that N (7, I;) is omitted in the product sets when 2¢; = card(/;) = 0,
and where

Ni(7) = {(isys o yis,) € {1,200 1} | iy, = dags)s 7= 1,2,...,2q]. (5.36)
It follows thus, by (5.31), that
I'(#) = > [(#, lo)a;, T(7, h)a;,, - ai,, T(#, ), (5.37)
ey e sieng ENT(7)
with the convention that if card(/;) = 0,
1 if s; 1 ,
D(, 1) =4 500 20 o0 (5.38)
Is(k), if s; is odd.

To calculate I'(#, Iy), ... ,['(#, I3,), consider the non-crossing permutations m, 1, ... , mq,
introduced in Definition 5.14. Note then, that for each vin {0,1,... ,2¢}, such that ¢, > 0,
we have by a suitable relabeling of indices,

N(#, L) = {(i1, 90, - .« yi21,) € {1,2,..., 7}

It follows thus, that if ¢, > 0,

i =1sG) J=1,2,...,2t,} = N(7,).

* * . .
Z iy "7 Gy Qi ()0 if v is even,

A _ lsilwuvitv ST’
I'(#,1,) = § : a.a*  -va-. a if v is odd
3! Zwv(l) "ty Zﬂ'ﬂ(tv)’ ’

lsilwuvitv ST’

and hence by Lemma 5.2 (since 7, is non-crossing),

I(#, 1) ck(ﬁ”)lg(y), if v is even, (5.39)
T, ly) = . . . .
cl(“)_llg(,c), if v 1s odd.
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If t, = 0, then by definition,

[(#,1,) = L), %f v %s even, cf(fru)lg(m, %f v %s even, (5.40)
15(k), ifvis odd, c (””)_113(,@, if v is odd,

with k(7y),[(7p) as defined in (5.26). Combining (5.37),(5.39) and (5.40), it follows that
with () given in (5.28), we have

I'(7) = M) Z afﬁaiw e azq_lai%- (5.41)
(isy e visgg JEN: (7)
Note finally, that with p the permutation introduced in Lemma 5.13(iii), we have that
Ni(#) = {(i1, 02, . yizg) € {1,2, .., r ¥ | iy =150y, 5=1,2,...,2q} = N(p),

and therefore

g a’ a;. ---ar  a;. = g aa; . ---a a;
Tsq tsg 12g—1 tsag 11 tp(1) tq p(q) "

(isg e visgg ) ENI(F) 1<t e ig<r
Inserting this in (5.41), we obtain (5.27). ]

5.17 Definition. Let ¢ be a positive number. Then for any p in Ny, we define

L5~ (?)( )c] ifpeN
(p) = 4 2=t GG ) 5.42
9e(p) {L N (5.42)
and
L~ (P LT
he(p) = {f = B ipr’ (5.43)
, it p=0.

Moreover, for p, g in Ny, such that p > ¢, we put

V'(e,p,q) = > 9ge(ro)he(r1)ge(ra)he(ra) - - ge(rag). O (5.44)

Q71 e ,TQqZO
ro+ri+--+r2g=p—q

We are now ready to prove the main result of this section.

5.18 Theorem. Let ay,...,a, be elements of B(?—[,IC), let ¢ be a positive number, and
assume that Y ._ aja; = clpy, and Yo 1a a; = lpy. Consider furthermore inde-
pendent elements Yy, ... Y, of GRM(n,n, 1), and put S =>""_ a;® Y. Then for any

positive integer p,
E[(5*S)"]
P
= |V'(¢,p, 0)1pen) + Z (¢,p,q ( Z n—20(7) Z a; @i, "'a;qaip(q)ﬂ ®1,.
g=1

pesir 1<y o ig<r

(5.45)
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Proof. Let p from N be given. Then for each ¢ in {1,2,... ,p}, we define
Spy = {7r €S, ‘ card(IRR(7)) = 2(]}7

and

_ —20(7) Z * Lk
= Z n ( Uiy Qi) “ip“wp))

TESp q 1<iy,...,ip<r

It follows then by (5.1), that

P
]E[(S*S)p] — |:Zn—20'(7?)< Z CLZGJG(I) ..-a?paiﬂ_(p)>:| ®1, :ZMq®1n
g=0

€Sy 1<iy,...ip<r

By Lemma 5.10, S, o = Sp¢ and S, , = S;”. Hence

_ —20(7) x Lk
M, = Z n ( Z Uiy Qi) aip“%(p)>’

reSiT 1<6y e yip<r
and by Corollary 5.4(i) and Corollary 1.24,

My = gc(p>13(7-l) = I//(C,p, O)IB(’H)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

To calculate My, My ..., M,_, we let, for each 7 in S,, p(7) denote the irreducible per-
mutation p associated to m in Lemma 5.13(iii). Then for any ¢ in {1,2,... ,p— 1} and

any p in S,i;"r, we define
R(p,p) ={m € Sy, | p(7) = p}-

Then we have the following disjoint union
Spe=|J Rlp.p)
Pesgr

and therefore

—20'7'r * L
My= 30 3 (N e da, ).

pEblrr WER p P lsil,...,iPST

Note here, that for any p in S;”, we have by Proposition 5.16 and Lemma 5.15,

—20(7) x Lk
Z n ( Z @iy Finga) “’ip“wp))

m€R(p,p) 1<41 4o ip<r
_ w(#)\ ,~20(0)
] Z C )TL a“alp(l) azqal @ )
TER(p,p) 1<61 e yig<r

where for each m in R(p, p),
h(7) = k(#o) + (I(71) — 1) + k(#2) + -+ + (I(Fager) — 1) + k(ay),

38
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and where mg, T, ... ,my, are the permutations introduced in Definition 5.14.

For any p in S;” and any 7 in R(p, p), it follows from Proposition 5.11 and Lemma 5.13,
that 7 can be obtained from p in a unique way, by “stuffing in” the intervals (or empty sets)

Io, Ih,... , I3, and the corresponding non-crossing permutations g, 7y,... ,T,. Con-
versely, if m € S, such that 7 can be obtained from p by “stuffing in” intervals (or empty
sets) Jo,J1,... ,Jay and corresponding non-crossing permutations 7o, 1, . . . , 724, then, by

Proposition 5.12, # € R(p,p) and J; = I;, n; = m;, for all 7 in {0,1,...,2¢}. It follows
thus, that the mapping
T (Mo, M1y ..., Tag)

is a bijection of R(p,p) onto the set of (2¢ + 1)-tuples (mq, 71,...,m2,) of permutations
for which there exist #o,¢1,... , 3, in Ny, such that m; € S7° for all 4, and E?io li=p—gq
(here we have used the conventlon that S§¢ = So = {my}).

Using this description of R(p, p), it follows that

Y =y > F(F0) (UF)=1) k(F2) | (k(F2q) (5.53)

TER(p,p) tsee 220 moESYS,. M2 €S
o+ t2g=p— “

Recall here from Definition 5.17 and Lemma 5.3, that for any ¢ in N,
Y A Z (), and Y O = A,
’f]ES?C ’I]ES?C
and by (5.26) this formula holds for ¢ = 0 too. Using this in (5.53), it follows that
Y= N gto)he(t)ge(t2)he(ts) - gel(lag)
RO S, (5.54)
=V'(¢,p, ).

Note, in particular, that the right hand side depends only on p and ¢, and not on p itself.
Combining (5.51),(5.52) and (5.54), it follows that for any ¢ in {1,2,... ,p— 1},

Mq C Ps 4 Z = v ( Z arlaip(l) ”'arqaip(q»' (555)

Eslrr 1<iy,...,ig<r

Since V'(e,p,p) = 1, (5.55) holds for ¢ = p too, by (5.49), and combining this with (5.48)
and (5.50), we obtaln, finally, (5.45). [

5.19 Proposition. Let ay,... ,a, in B(H,K), cin]0,00] and S = > ._ a; ®Y;, be as in
Theorem 5.18. Then for any p in N, we have that

—20(f) *a; ee-a*a
Zn ) Z Giy Fig(ay " * " Vip Vi)

€Sy 1<ey,...ip<r

p
!
-V (C,p, 0) + Z C Psd Z n=270 Z a;flaip(l) o 'a?qaip(q) )
9=1

peSir 1<y e ig<r
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Proof. This follows by exactly the same proof as for Theorem 5.18. [

5.20 Example. Let aq,...,a, in B(H,K) and ¢ from |0, oo[ be as in Theorem 5.18.

(a) For p=1orp =2, we have S, = Sp°. Hence by (5.1), Corollary 1.24 and Corol-
lary 5.4(i), we get that

]E[S*S] = CIB(H)®]\/fn(C)7 and E[(S*S)Z] = (62 —|— C)IB(H)®]\/fn(C)'

This can also easily be obtained directly from (5.1) and (5.2).
(b) For p = 3, card(S3) = 6 and card(S5°) = 5. The only element of S5\ S§° is the

irreducible permutation 7 given by
(1) =3, n(2) =1, n(3) = 2.
For this m, o(7) = 1, and it follows then by (5.1) and Corollary 5.4(i), that
]E[(S*S)B] = (¢ + 3¢ + c)1aem. (0 + (n_2 Z afaka;aiaZaj) ®1,.
irj k=1

This follows also from Theorem 5.18, because Si™ = Si* = () and Si* = {7}, m

6 The Sequence of Orthogonal Polynomials for the
Measure [,

Throughout this section we consider a fixed positive constant ¢, and elements aq, ... ,a,

of B(H,K), satisfying that

r r

Z aia; = clpe and Z aza; = 1.

Moreover, we put

where Y7, ..., Y, are independent elements of GRM(n,n, = ).

As in Section 3, we let u. denote the probability measure on R, given by

pe = max{l — ¢, 0} + V(e - a)(b-2) g (z) - de,

2w

where a = (/e —1)%, b = (/e + 1)%
The asymptotic upper bound for the spectrum of S*S obtained in Section 4 (in the

exact case), was obtained by making careful estimates of the moments ]E[(S*S)p] ,peN.
However, these estimates cannot be used to give good asymptotic lower bounds for the
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spectrum of S*S in the case ¢ > 1. To obtain such lower bounds, we shall instead
consider the operators IE[P;(S*S)] , where (P;),en, is the sequence of monic polynomials,
obtained by Gram-Schmidt orthogonalization of the polynomials 1,z, 2% ..., w.r.t. the
inner product

3

(f.9) = / @I duee), (g € (R p0).

The main result of this section is the equation

E[P;(S*S)] = |: Z n_%(ﬁ)< Z a;aip(l) o a;qaip(q)>:| ® 1”7 (q S N)?

peSirT 1<01 e yig <
where Sé” is the set of permutations p in 5, satisfying that

L#p(1) #2#p(2) # -+ # plq)
(cf. Definition 1.16).

6.1 Proposition. Let (P;),en, be the sequence of polynomials on R, defined by the
recursion formulas:

Fi(z) =1, (6.1)
Pi(z) = z—e, .
Pli(z) = (z—c—1)P/(x)—cP; (), (g >1). (6.3)

We then have

(i) For each q in Ny, P;(x) is a monic polynomial of degree q, and P;(x) € R for all real

numbers x.

c3 sin((g+1)0) + 5 sin(g#)

(ii) Pe(e+1+2y/ccosb) = gy , (0€]0,7]).
D el e ot if q=¢,
(i) [ P B o) = {0’ P e

In particular, (Py),en, is the sequence of monic orthogonal polynomials obtained by Gram-
Schmidt orthogonalization of 1,z,2?, ..., in the Hilbert space L*(R, p.).

Proof. (i) This is clear from (6.1)-(6.3).

(ii) Consider the sequences (Rf),en, and (77 )4en, of polynomials, given by the recursion
formulas

Ri(z) = 1, (6.4)
Ri(z) = z—c—1, (6.5)
R (z) = (v —c—1)Ry(z) —cR;_ (x), (g >1), 6.6)



respectively

Iy(z) = 0, (6.7)
Ti(z) = 1, (6.8)
T (z) = (z—c—= )T (x)—cT,_ (), (g >1). (6.9)

Note here, that the conditions (6.6) and (6.9) are the same, and therefore, the sequence
(R, + T,)4en, satisfies this condition too. Moreover, the sequence (R, + T,),en, also
satisfies (6.1) and (6.2), and it follows thus, that

Pi(e) = Ri() 4+ T5(2), (g€ No).

q

Note also, that T5(z) = x — ¢ — 1, so that the sequence (777

wi1)qen, satisfies (6.4)-(6.6),

and hence

Ti(e) = B_\(a).  (q€ ).

q

Altogether, it follows that
Pi(z) = R;(;z:) + R;_l(:r;), (¢ >1), (6.10)

g

PS(z) = Rg(x). (6.11)
To prove (ii), it suffices therefore to show, that with z = ¢+ 14 2\/ccos8, 6 € |0, 7[, one
has

¢ sin((g + 1)0)

sin 8

Ri(x) = . (geNy). (6.12)

For ¢ = 0, this is clear from (6.4), and for ¢ = 1, it follows easily from (6.5), using that
sin 260 = 2sin @ cos . Proceeding by induction, assume now that p > 1 and that (6.12)
has been proved for all ¢ in {0,1,... ,p}. Then by (6.6),

R, (2) = 2\/ccos B - ¢ sin((p + 1)0) B e sin(ph)

when = = ¢+ 14 2y/ccos b, 6 € |0, 7[. But 2cosfsin((p+ 1)8) = sin((p + 2)8) + sin(pb),

and therefore

sin 8 sin 8

pt1
. ¢ sin((p + 2)0)

Bon(@) = sin @
which means that (6.12) holds for ¢ = p + 1. Thus, by induction, (6.12) holds for all ¢ in
No, and this concludes the proof of (ii).

3

(iii) We show first, that for any m,n in Ny,
0, if n # m,

m+1
9

(6.13)

c if n =m,

/0 R (2R () dpe(a) = {

where RS, RS, RS, ..., are the polynomials determined by (6.4)-(6.6). Note for this, that
if ¢ < 1, then the atom for p. at 0, does not contribute to the integral on the left hand
side of (6.13). Hence, for all values of ¢ in |0, co[, we have

/0 "R (@) B (2) diie(e) = & [ BB/ = )b =) da, (6.14)

a
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By the substitution © = ¢4+ 1 4+ 2y/ccos, § € |0, 7[, and by (6.12), the integral on the
right hand side of (6.14) can be reduced to

z/owc%*—" sin((m + 1)) sin((n + 1)) db),

kis

which is equal to ¢™*'4,, ,. This proves (6.13).
We show next that

vRS(2) = Po () + cPo(a),  (m € No). (6.15)

For m = 0, this is clear from (6.1),(6.2) and (6.4), and for m > 1, we get from (6.6) and
(6.10), that

eR (z) =R, () + (c+ )R (2)+ cR;,_(z) = P, (x) + Py ().
This proves (6.15). Define now

o = / P (o) Pe(e) duele), (man € No).

It follows then from (6.15), that

Sttt €l = [ B (@) PELa) dpla), (mon € N,
and applying then (6.10),(6.11) and (6.13), we get that
Yttn + mn = T Smn + Snt), (m € No,n € N), (6.16)
and
Y410 + Ymo = "0, (m € Np). (6.17)

Since p. is a probability measure, 700 = 1, and using this and induction on (6.17), it
follows that +,, o = 0 for all m in N. Thus

1, fn=0
n — Yn0 = ’ ’ 6.18
Ton = n0 {0, ifn>1. (6.18)

Consider now a fixed n in N. By (6.16), we have then that

0, ifme{0,1,...,n—2},
Ym+1,n —I'C’Ym,n - n

", ifm=n-—1.

By induction in m (0 < m < n), we get then, by application of (6.18), that

0, ifm<mn,
Ympn = n

c*, ifm=mn,

and this completes the proof of (iii). [
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6.2 Lemma. For any non-negative integers p, q, put

b
epa) = <" [ 2 P@) dile). (6.19)
We then have
(i) For any p in Ny, 2? = §=0 v(e,p,q) Py ().

(ii) For any p,q in Ny,

vie,p,q) > 0, ifq<np, (6.20)
vie,p,p) = 1, (6.21)
vie,p,q) = 0, ifqg>p. (6.22)

Proof. (i) Consider a fixed p from Ny. By Proposition 6.1, span{Fg, Pf,..., P} is
equal to the set of all polynomials of degree less than or equal to p. In particular we
have that z? = 520 ¥, Py (x), for suitable complex numbers 7o, ... ,7, (depending on ¢
and p). Applying then the orthogonality relation in Proposition 6.1(iii), it follows that
v, = v(c,p,q) for all ¢ in {0,1,... ,p}, and this proves (i).

(ii) By (6.1)-(6.3), it follows that
ePi(z) = Pi(z)+ cP5(x), (6.23)
ePj(z) = P(z)+(c+ )P (z) +cP_i(z), (g=>1), (6.24)
so by induction in p, we get that zP(= zP§(z)), can be expressed as a linear com-

bination of P§(x), Pf(x),..., PS(z), in which all coefficients are non-negative. By (i)

’Tp

and the linear independence of P§(z), P{(z),..., PS(x), these coefficients are exactly

'

v(e,p,0),v(e,p,1),...,v(c,p,p), and hence (6.20) follows.
Note next that (6.21) follows from (i) and the facts that P;(x) is a monic polynomial of

degree p, whereas Fg(z),..., P;_;(x) are all of degree at most p— 1.
Finally, (6.22) follows from (i) and the orthogonality relation in Proposition 6.1(iii). [

6.3 Lemma. Let v(c,p,q), p,q € Ny, be as in Lemma 6.2. Then for any fixed q in Ny,
the power series

Zl/ (¢, p,q)t?, (6.25)
p=0

converges for all t in the open complex ball B(0, ;), where b = (y/c + 1)®. Moreover, the

function
o0

Je(t) = Zu(c,p, Qt’, (L€ B(0.3)),

is for all t in B(0, ) \ {0}, given by
() = 1= (c— 1)t — /(1 —at)(1—bt) (1—(c+1)t—V(l—at)(l—bt))q’ (6.26)

2t 2ct

where /- is the principal branch of the complex square-root.
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Proof. Consider the Hilbert space L*(R,u.), and let A be the bounded operator on
L*(R, u.), given by

[AN)(z) = 2f(z),  (f €L (R, ), x €R).

Note that A* = A and that sp(A) = supp(u.) C [0,b]. Thus, letting 1 denote the identity

operator on L*(R,p.), 1 — tA is invertible for all complex numbers ¢ such that [¢| < 7,

and moreover, for such {,

(1—tA)” Z 1P AP, (norm convergence).

For any ¢ in B(0, 1), we have thus that

o0

S vlep gl = Y (P P = 0 3 (APBE, PO = (L — LA) S, ).
p=0 p=0

p=0

This shows that the series in (6.25) converges for all ¢ in B(0, 1), and morever, that

Jo(t) = (1 —tA)V PSP, (te B0, L)) (6.27)

q

To prove (6.26), we shall calculate the right hand side of (6.27). For this, consider for each
z in B(0, \/—) the series Y 2 2?P;, and note that by Lemma 6.1(iii), this series converges

in || - |[2-norm in L*(R,pu.). We may thus define

[e.e]

w. =Y 2Py € (R,u), (2 € B0, %)) (6.28)

9=0

With A as above, it follows now by (6.23) and (6.24), that for any z in B(0, %) \ {0},

Aw, =Y 2"AP; = cPs+ Pf+ Y 2M(cPiy 4 (c+ 1)PS+ Pyy)
n=0 n=1

=(c+cz)P5+ Z(zn_l +(c+1)z" + can)P;
n=1

=(c+cz)P5+ 2_1(1 +(c+ 1)z + CZQ) Z 2" P¢

n=1
= (c + cz — 2_1(1 +(c+ 1)z + czQ))POC + 2_1(1 +(c+ 1)z + czQ)wZ
= —2_1(1 +2)P5 + 2_1(1 + 2)(1 + ¢z)w,,

where the infinite sums converge in || - ||;-norm. From this it follows that

(7M1 +2)(1+e2)l — Aw, = 27" (1 + 2) Py, (z € B(0, %) \ {0}),
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and hence that

(- g de = 5=l (e BO,2\{-1,-2}). (6.29)

Define now p

Since sp(A) C [0,8], it follows that (1 — ¢(z)A) is invertible whenever ¢(z) ¢ [}, oo[, and
in particular, as long as |¢(z)| < ;. Note then, that ¢ is analytic on C\ {—1,—1}, and
that ¢(0) = 0, ¢'(0) = 1. It follows thus, that we may choose neighbourhoods ¢ and V
of 0 in C, such that ¢ is a bijection of « onto V. We may assume, in addition, that

p(z) =

UQB(O7ﬁ)\{_17_%}7 and V 23(07%)
For z in U, it follows now from (6.29), that

w, = = (1 - p(2)A) 7 B,

and hence, by (6.27) and Lemma 6.1(iii),

J;<¢(z)) =(1+4ecz) Y w,, P ) = (1 + c2)2? (z el). (6.30)

It remains to invert p. By solving the equation

z

a0+

w.r.t. z, we find that

1—(c+ 1)t £+/(1—at)(1—0bt)
2ct ’

(L e V\{0}),

where, as usual, a = (y/c — 1)? and b = (y/c + 1)?. Since ¢~ '(¢) = 0 as ¢t — 0, it follows
that for some neighbourhood Vy of 0, such that Vo C V., we must have

L—(c+ 1)t — /(1 —at)(1—bt)
2ct ’

P (t) =

P (1) = (L €Vo\{0}), (6.31)

where /- is the principal part of the square root. Hence, we have also that

| 4ept(t) = Lo lez = \Q/t(l —a)=0) ey fob). (6.32)

Inserting (6.31) and (6.32) in (6.30), we obtain that (6.26) holds for all ¢ in Vg \ {0}.

To show that (6.26) actually holds for all ¢ in B(0,1) \ {0}, note that for all such ¢,
Re(1 — at) > 0 and Re(1 — bt) > 0, so that (1 — at)(l —bt) € C\]— o0,0]. Hence, Wlth
/" the principal branch of the square root, ¢ = /(1 — at)(1 — bt) is an analytic function
of t € B(0, ) By uniqueness of analytic continuation, it follows thus, that (6.26) holds
for all ¢ in B( )\ {0}. (]

66



6.4 Lemma. Let g.(p) and h.(p), p € No, be as in Definition 5.17. Then the power series

=> g, (6.33)
p=0
and
= ho(p)t”, (6.34)
p=0
are convergent for all t in B(0,1), and
Jo(t) = t7G (1) HL(t)7, (t € B(0,71)). (6.35)

Proof. By (5.10), we have

a0 = [ T2 dpn), (pEN),

and since ¢.(0) = 1, the same formula holds for p = 0. Hence g.(p) = I/(C p,0), for all p
in Ny, so by Lemma 6.3, the series in (6.33) converges for all ¢ in B(0, ) and

sy = A VUZ a0 e o g oy, (636)

Since h.(0) = 1 and since h.(p) = 2g.(p), for all p in N, the series in (6.34) is also
convergent for all ¢ in B(0, §), and

He(t) =1+ 2(Ge(t) = 1), (e B(0,7)).

Ge(t) =

Hence by (6.34)

1+ (c—1)t— 5251 —at)(1 —bt)’ (t € B(0,1)\ {0}). (6.37)

By (6.36) and (6.37), we get now for all ¢ in B(0, ;) \ {0},

(1= /(T =at)(T=bt))" = (¢ = 1)22

Ho(1) =

Gt HL(1) =

4ct?
1+ (1 —at)(1 = bt) = 2/(1 — at)(1 — bt) — (c — 1)*?
N 4ct?
1+ (=20t it (e— 1)) — 24/(1 — at)(1 —bt) — (c — 1)%?
4ct?
1= (c+ 1)t — /(1 —at)(1 —bt)
N 2ct? '

Combining this with (6.36) and (6.26), it follows that
JAt) = Ge(t) (tG() (L))", (L€ B(0,7)),
and the same formula holds trivially for ¢ = 0, by (6.22). This proves (6.35). [
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6.5 Lemma. For all p,q in Ny such that p > q, let v(c,p,q) be as introduced in Defini-
tion 5.17. Then

V(e,p.q) = vic,p,q), (p.q € No, ¢ <p).

Proof. Recall from Definition 5.17, that for p, ¢ in Ny, such that p > ¢, we have

V(e,p.q) = Y ge(ro)he(r1)ge(ra)he(rs) - ge(ray).
Q71 e ,quzo

ro+ri+--+rag=p—q

Hence v/(¢, p, q) is the coefficient to *~7 in the power series for
G(t) H ()G (t)He(t) - - Ge(2), (2g + 1 factors),

and therefore v/(c,p,q) is the coefficient to ¢¥ in the power series for t1G.(¢)1T H.(1)%.
Thus, by Lemma 6.3 and Lemma 6.4, it follows that

V'(e,p,q) =v(e,p,q), forall p,qin Ny, such that p > g. [

6.6 Theorem. Let H, K be Hilbert spaces, and let ay,... ,a, be elements of B(H,K),
satisfying that 2;1 afa; = clpyy and 2:21 a;al = 1p(x), for some positive real number
¢. Furthermore, let Y1,...,Y, be independent elements of GRM(n,n, %), and put S =
Yoy a; @Y. Then for any q in N,

E[P;(S*S)] - |: Z n_%(ﬁ)< Z a;kl Qipy ™ 'a;kqaip(q))] ® 1.

pES}I" lsil,...,iqsr

Proof. For each ¢ in N, put

— —20(p) Z o oa*
Tq - Z n ( Gy iy Cliqalp(Q))’

pesgr lgil,...,iqgr

and put To = 1. By Theorem 5.18 and Lemma 6.5, it follows then that

P

E[(S*S)7] =) viepq) T, @1, (p€Np). (6.38)

q=0

On the other hand, it follows from Lemma 6.2(i), that

]E[(S*S)p] = Zy(c,p, q)E[PqC(S*S)], (p € Np). (6.39)
We prove that
E[P;(S*S)] =T, ®1,, (g € Ny), (6.40)
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by induction in ¢q. Note that (6.40) is trivial for ¢ = 0. Consider then p from N, and
assume that (6.40) has been proved for ¢ = 0,1,... ,p — 1. Since v(e,p,p) = 1, by
Lemma 6.2(ii), it follows then from (6.39) and (6.38), that

p—1

E[F5(S*9)] = E[(5*S)"] =) vle,p, q)E[P(5*S)]

q=0
p—1
:E[(S*S)p] — vie,p,q)-T,®1,
q=0
— T, 91,
Thus, (6.40) holds for ¢ = p, and this completes the proof. [
6.7 Example. By (6.1)-(6.3), it follows that
Pi(z) = z—e¢, (6.41)
Py(z) = z? — (2¢+ Dz + 2, (6.42)
Pi(z) = x> — (3c+ 2):102 + (3«:2 +2c+ 1)z — . (6.43)

By Example 5.20, Si" 0if pe {1,2}, and Si" = {x}, where 7 is the permutation given

by m(1) = 3,7(2) = 1 ,m(3) = 2, so that o(7) = 1. It follows thus by Theorem 6.6, that
E[P{(5*S)] = o,
E[P5(S*S)] = o,
IE[ P;(S*S ] = n72 XT: afaka;aia};aj.

t,5,k=1

These three formulas can also easily be derived directly from Example 5.20, using the

formulas (6.41)-(6.43). ]

7 An Upper Bound for E| exp(—tS*S)], t >0

Throughout this section, we consider elements ay,... ,a, of B(H,K) (for given Hilbert
spaces H and K), satisfying that

r

Zaaz—clg and Zaa = 1k

i=1
for some constant ¢ in [1,00[. Moreover, we consider independent elements Y;,... Y, of

GRM(n,n, L), and put
S = Zai ® )/Z
i=1
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As in Section 3, we let u. denote the probability measure on R, given by
Je—at-7)
2nx

where a = (y/c — 1)* and b = (\/c+1)*. Furthermore, we let (P¢),en, be the sequence of

monic orthogonal polynomials w.r.t. u. as defined in Section 6. In particular P§ = 1.

He = [,Lb]([l?) . d.f,

7.1 Lemma. Let, as above, a = (y/c — 1)? and b = (y/c+ 1)?. Then for any q in Ny,
(i) Ps(z) > Pg(b) >0, forall x in ]b,ool.

(i) |P;(z)| < Pg(b), for all z in [a,b].

(iii) |P(z)| < Py(2¢+2 —x), for all x in] — oo, al.

Proof. We start by proving (ii). If = € [a,b], then = ¢+ 1 + 2y/ccosf, for some 6 in
[0, 7]. For @ in 0, 7|, we have from Proposition 6.1(ii), that

ci sin((g+ 1)0) + P sin(gh)

ch(c + 14 2y/ccos 0) = gy ) (7.1)
Note here that for any k& in Ny,
in((k+1)6 . . _
sm((' +1)0) _ e—k&(l 4B Hi L 2hif) (7.2)
sin ’
so that W‘ < k + 1. It follows thus that
|Pi(x)| <c2(g+1)+c7q  (z€lab]), (7.3)

and by continuity, (7.3) holds also for x = a and z = b. By (7.2), limg_ sin((k+1)9) _ 4 1,

sin 6

for any k in Ny, and hence the right hand side of (7.3) is equal to P;(b). This proves (ii).

To prove (i), we note first, that by uniqueness of analytic continuation, (7.1) actually
holds for all  in C\ 7Z. If we put § = ip, p > 0, we get the equation:

e sinh((qg + 1)p) + s sinh(gp)
sinh p

Pe(c+ 1+ 2y/ccoshp) = : (p €10, 0[), (7.4)

which covers the values of P,(z) for all z in ]b, oo[. Note here that for any &k in Ny,

sinh((k + 1)p)
sinh p

= e_kp(l _|_e2p_|_e4p_|_..._|_62kp)7

and hence, if £ is even,

sinh((k + 1)p)

- =1+ 2cosh(2p) + 2 cosh(4p) + - - - + 2 cosh(kp),
sinh p

whereas, if k£ 1s odd,

sinh((k + 1)p)
sinh p

= 2cosh(p) + 2 cosh(3p) + - - - + 2 cosh(kp),
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so in both cases W is an increasing function of p > 0. It follows thus from (7.4),

that P;(x) > P;(b) for all z in ]b, 0c[. Moreover, as we saw in the proof of (ii), P;(b) > 0.
This concludes the proof of (i).

Finally, to prove (iii), we put § = 7 4 ip in (7.1), and get for p in |0, oco[, that
(—1)2cF sinh((q + 1)p) 4 (—1)7"'¢"T sinh(gp)
sinh p

< c3 sinh((¢+ 1)p) + e sinh(gp)

‘ch(c—l— 1— Qﬁcoshp)‘ = ‘

sinh p
= ch(c + 1 4 2y/ccosh p)-

This proves (iii). [

7.2 Definition. For each ¢ in Ny, we define the function ¢;: R — R, by the equation

G0 =1 [ ennFi@) duta), (). o

7.3 Lemma. Consider the sequence (v;),en, of functions, introduced in Definition 7.2,
and for each p in Ny, let, as in Section 6,

b
v(e,p,q) = c_q/ a? Py(x) dpc(z),  (p,q € No).

We then have

(1) L/)g(t) = E;O:q ;—!I/(C,p, q), for allt in R.
(i) Yo.2o [0s ()] |Pi ()| < exp(|t|z) +exp(|t[(2¢+2)), forallt in R and all z in [0, ool.
(iii) exp(tz) = 2210 ¥i(t) - Pi(x), for allt in R and =z in [0, 00, and for fixed t in R,

the series converges uniformly in x on compact subsets of [0, ool.

Proof. (i) By Lemma 6.2(ii), v(c,p,q) = 0 whenever g > p. Hence (i) follows from the
power series expansion of exp(tz).

(ii) Let 8: R — [b,o0[ be the continuous function defined by:

x, if x > b,
Blx)=qb, ifa<az<b,
2¢4+2—x, ifz<a,

It follows then from Lemma 7.1, that

|Pi(a)| < PE(B(x)), (2 €R, g€Ny). (7.5)
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Recall that =¥ = 37" v(e,p,q)P;(z), for all pin N (c.f. Lemma 6.2(i)). Hence, for z,1

q=0
in R, we have that

o0 o0

P
exp(tz) % Z%(Zl/(c,p, q)ch(:r)) (7.6)
p=0 g=0

p=0

Substituting @ with #(z) and ¢ with |¢| in this formula, and recalling from Lemma 6.2(ii),
that v(e,p,q) > 0, for 0 < g < p, we get by application of (7.5),

i %(Zy ¢, p,q)| Py (x ) Z 1t (Zy ¢, p.q ))) = exp(|t|3(z)) < <.

p:O qO po

Hence, we can apply Fubini’s theorem to the double sum in (7.6), and obtain that

exp(tzr) = Z <Z ;—Z;I/(C,p, q)) Pi(x), (z,t € R). (7.7)

g=0 p=g¢

Similarly we have that

exp(|t[A(z Z(Ziycp, ))Pi(B(x)),  (a,t€R). (7.8)

Note here that by (i) proved above, we have that,

I_Z" v(e,p.q (7.9)

Since #(z) < max{2¢ + 2,z} for all z in [0, 00[, (7.5) and (7.7)-(7.9) imply that for all ¢

in R and z in [0, 0o,
Z gt z)| < exp(|t|B(z)) < exp(|t](2¢ + 2)) + exp(i[z),

and this proves (ii).

(iii) The summation formula in (iii) follows from (i) and (7.7). To prove that the conver-
gence is uniform in x on compact subsets, we observe that for any ¢ in N,

i) Z¢ < Y ol BE < Y (30 Eate pa)Pi6))
9=Q+1 4=Q+1  p=g
< Y (S renapipa)) = 3 L
Pt 7=0 p=Q+1

(7.10)

Since 3 is continuous, and hence bounded on compact sets, it follows readily from (7.10)
that for fixed ¢ in R, the series in (iii) converges uniformly in z on compact subsets of
[0, ool. ]
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7.4 Proposition. Consider the sequence (1f),en, of functions, introduced in Defini-
tion 7.2. Then for any i in R such that [t| < 2, the function w  exp(15*(w)S(w))
is integrable in the sense of Definition 3.1, and

]E[exp tS*S Zz/) )], (7.11)

where the sum on the right hand side is absolutely convergent in B(H").

Proof. We start by proving that the right hand side of (7.11) is absolutely convergent in
B(H"). Since |5(t)] < ¢o([t]) by Lemma 7.3(i) and (7.9), it suffices to consider the case
where £ > 0.

By Lemma 7.3(i), we have for any ¢ in [0, oo,

Z¢ WELF s = 3 5 (S e alEES ). (712
Note here, that by Theorem 6.6,

B[RS I < Do w7 @) 3 ey ahaiy,

peszzrr lgil,...,iqgr

for any g in N, whereas
[E[25(S"9)] ]| = IEQsaem)]| = 1.

Hence, by Proposition 5.19, Lemma 6.5 and Proposition 2.7, we have for any p in N,

P

Z v(e,p, q)HIE[PqC(S*S)] H < Z n~20(%) Z a; @iy Ay di

g=0 €Sy 1<iq,... ip<r (713)
g n—QG(ﬁ)cH(ﬁ')‘

Using now that ¢ > 1, and that (%) < k(7) + 20(7) (c.f. Proposition 2.10), it follows

that for any p in N,
Z =20 (%) or(7) < Z (%)_QU(ﬁ)Ck(ﬁ)- (7.14)

TE€Sp €Sy

For p = 0, we note that

v(c,p, q)H]E[PqC(S*S)] H = 1. (7.15)

g=0

Combining now (7.12)-(7.15), we get that

DR AOIALA \<1+Z"‘—,(Z (2) "D ek®). (7.16)

TESp

73



Using then that —20(7) = k(7) + (%) — p — 1, it follows that

PRG0N \<1+va (%)) n*®

€Sy

(7.17)

-1 Z nk(;r)_l (,%)l(fr)—l’

€Sy

where the last equality follows by noting that % < (p—ll)! for all p in N. By Lemma 3.4,

the last quantity in (7.17) is finite whenever 0 < ;L—t < 1, and this shows that the right
hand side of (7.11) is absolutely convergent for all £ in | — 2, 2[, as desired.

It remains now (cf. Definition 3.1) to show, that for any state ¢ on B(H"),

o0

E[g(exp(t5*5))] = > vl PSS, (te]l-2z)). (7.18)

q=0

So consider a fixed ¢ from | — 2, 2[ and a fixed state ¢ on B(H"). Since the spectrum of
S*(w)S(w) is compact for each w in Q, it follows then by Lemma 7.3, that

o [exp(tS™(w Z#} Sn(w)"Sn(w))], (7.19)

so we need to show that we can integrate termwise in the sum on the right hand side.
Note for this, that by Lemma 7.3(ii), and the function calculus for selfadjoint operators
on Hilbert spaces,

D[] 1B (S(w)S(w))] < exp(2(e + Dt Lsgun) + exp(|t]S(w)"S (@), (7.20)

where |T| = (TQ)%, for any selfadjoint 7" in B(H"). For such T, we have also that
lo(T)] < ¢(|T']), and hence it follows from (7.20), that

Dl [ [Pr(S@)S@))]] < exp(2(e + Dt]) + ¢ [exp(lt[S(w)"S(w))].  (7.21)

Since E[¢(exp(|t|5*5))] < o0, by Proposition 3.2, it follows from (7.21) and Lebesgue’s
Theorem on Dominated Convergence, that we may integrate termwise in (7.19), and hence
obtain (7.18). This concludes the proof. [

In order to obtain the upper bound for ]E[ eXp(—tS*S)] in Theorem 7.8 below, we need
more precise information about the behaviour of the function 5(¢) for ¢ < 0.

7.5 Proposition. Consider the sequence (¢;),en, of functions, defined in Definition 7.2.
Then for any q in Ny, and any t in ]0, oo[, we have that

(i) oc(t) > 0.
(i) (=1)75(—t) > 0.
(i) Jo5(—t)] < G ve(0).
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Proof. (i) This follows from Lemma 7.3(i), but for completeness we include a different
proof, which will also be needed in the proof of (ii) and (iii). For each ¢ in Ny, we put

pi(x) = EP(z), (2 €R).

Then by Proposition 6.1, (pj)sen, is an orthonormal basis for Ly([a,b], i.). Let A be the
(bounded) operator for multiplication by = in Ly([a,b], ;). Then by (6.23) and (6.24),
the matrix M(A) of A w.r.t. (p;)qen,, is given by

[

Ve

\/E c+1

Ve

Vi et e

(7.22)

0
From this, it follows, that for any p in N,

M(Ap)jk >0,
M(A?);x =0,

when |j — k| < p.
when |7 — k| > p.

Hence, for any ¢ in [0, 0o,

M (exp(tA))n = 65 + > GM(AP)j > 0,

p=1

(7,k € Np).

Since exp(tA) is the operator for mutiplication by exp(tz) in Ly([a,b], i), and since
P§(x) =1, we get that

ity = [ explin) PRI dilo) = HewlAhl) o
= ¢ I M(exp(tA))o, > 0,
and this proves (i).
(i) To prove (ii), we consider the operator

B:A—|—2P0,

where Fy is the projection onto Cpf in B(Lg([a, b],,uc)). Then

c+2
Ve

Ve
c+1

NCES N

75

Ve

: (7.24)



so as above, we get that
M(exp(tB))x > 0, for all 5,k in Ny. (7.25)
Let U be the unitary operator on Ly([a,b], u.), defined by the equation:

Uph = (=19, (g€ M)

Then
c+2 —\/E 0
—v/c ec+1 —\/E
—v/c c¢c+1 —\/c
M(UBU*): . \/_ :M(Q(c—l—l)l—A).
0

Hence A = 2(¢ 4+ 1)1 — UBU*, and for ¢ in [0, 00|, we have thus that
exp(—tA) = exp(—2(c 4+ 1)t) exp(tU BU*) = exp(—2(c + 1)t)U exp(tB)U*.
Therefore,
M(exp(—tA))jx = (—1)+* exp(=2(c + D) M(exp(tB))jr,  (j,k € Ny),  (7.26)
so in particular, by (7.25),
(—1)7* M (exp(—tA));r > 0, (,k € Np).

For ¢ in [0, 0o[, we note here that

Lb;(—t) = c_q/ exp(—t:z:)ch(:z:)Pg(;r:) duc(z) = c_%M(eXp(—tA))qo, (7.27)

and hence it follows that (—1)?),(—t) > 0, which proves (ii).
To prove (iii), we need the following technical lemma:
7.6 Lemma. Let C' and D be bounded positive selfadjoint operators on {3(Ny), and

assume that the corresponding matrices (¢;i);ren, and (d;i);ren, satisfy the following
conditions:

(a) ¢jr >0 tor all j,k in No.
(b) ¢jr =0 when |5 — k| > 2.
(¢) djr = ¢jr, when (j,k) # (0,0).
(d) doo > coo.
For ¢, in (3(Ny), we define

[p: ¥lik = 2P (k) —p(R)P(5), (4, k € No).
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Consider then furthermore f, g from (3(Ny), satisfying that

(e) f(k) >0 and g(k) > 0 for all k in Ny.

(f) [f,9]ljx >0, for all k,j in Ny such that k > j.
Then for all j,k in Ny, such that k > j, we have that

(i) [CFf,Cgl;x=0.

(i) [Df,Cgljx = 0.

(iii) [D"f,C"gljx 2 0, for all n in N.

(iv) [exp(tD)f,exp(tC)gl;xr > 0, for all t in [0, co].

7.7 Remark. If ¢, ¢ are strictly positive functions in £3(Np), then the statement
[, ¥];x >0, forall 5,k in Ny, such that & > j,

is equivalent to the condition that

2(0) _ (1)
5(0) = 9(1)

Z Z O

Proof of Lemma 7.6. Note first that for any ¢, in £3(Ny) and j,k in Ny, we have that
(@, Y]k = —[@, ¥]r,;. In particular,

[0, 0] =0, (¢, € £r(Ny), j € No). (7.28)

Note also that the positivity of C' implies that

det (cjj cjk) >0, for all 7,k in Ny, such that j # k. (7.29)

Ckj Ckk

To prove (i), consider k, 7 in Ny, such that & > j > 0. We then have

: -1 (7 =1 +¢if(5) + ¢ fG+1), ifg>1,
C =
( f) (]) {6070.]6(0) + Co7lf(1), lf_] = 07

and since k # 0,

(Cg)(k) = crp-1g(k — 1) + crpg(k) + crprrg(k +1).

Thus,

J+1 k+1 o
=5-1 m=k—1 cﬂckm[fa g]l,mv lf.] Z 17

]
211:0 E::j:lk—l cOlckm[fa g]l,m7 lf] = 0.
Assume first that £ > 7+ 2. In this case, [ < 7+ 1 < k —1 < m, for all terms in the

above sums, and thus, by (f) and (7.28), [f, g]i,m > 0. Since ¢, > 0 for all [,m in Ny (by
(a)), it follows thus that [C'f, Cg];x > 0.

[Cf,Cqlix = {
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Assume next that £ = 57 + 1, and consider first the case 7 > 1. Then
JH1 42
[Of7 Og]j,k = Z Z cjlcj+1,m[f7 g]l,m- (730)

l=j—1 m=j

In 8 of the 9 terms in the sum above, [ < m, and hence [f,¢g];m > 0. Only in the case
(I,m)=(5+1,j), do we have [ > m. However, the sum of the two terms corresponding
o(l,m)=1(j,7+1)and ({,m)=(j+ 1,7) is non-negative, since

cjjCiv1i41lfs gliser + cijricivnlfy glivig = (Ciicivrin — ¢imcivr i), glii,

which is non-negative by (7.29). Since the remaining 7 terms in the sum on the right
hand side of (7.30) are also non-negative, it follows that [C'f,Cg];x > 0. If 7 = 0, and
k=741 =1, the same argument can be used to show that

[Cfvog cholclm f7 lmZO
(=0 m=0
This proves (i).
To prove (ii), note first that by (a) and (c¢), we have
(DF)G) = (CHG), ifj=1,
and
(Df)(0) = (Cf)(0) + (doo — co0) f(0).
Hence, if £ > 5 > 1, we get from (i), that
[Df,Cglin=1CF,Cglir 20

If £ > 7 =0, then

D, Cg]o,k = (Df) (0)<CQ>(k) - (Df) (k)<09)(0) =[Cf, CQ]O,k + (doo - Coo)f(o)(CQ)(k)-

But (doo — ¢o0) f(0) > 0 by (d) and (e), and since also (Cg)(k) = >",2, cg(l) > 0, by (a)
and (e), it follows by (i), that also [Df, Cglox > 0. This proves (ii).

Next, (iii) follows from (ii) and induction on n, and from noting (by induction), that

(D”f)( ), (C™g)(j) > 0 for all n in N and j in NO

To prove (iv), we let ¢ be a fixed number in [0, co[, and put
Con=1+4+1C, and D,=1+1D, (n € Np).

Then, for all n, C,, and D,, are positive selfadjoint operators on £5(Np), which also satisfy
the requirements (a)-(d). Hence, if f,g € 2(Ng) which satisfy (e) and (f), we conclude
from (iii), that

[(A+ D) f,(1+:C)"g],, >0, whenj >k,
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and hence, letting n — oo, we get that
[exp(tD)f, exp(to)g]jk >0, when j > k,

as desired. n

End of Proof of Proposition 7.5. Only (iii) in Proposition 7.5 remains to be proved.
Let A, B from B(Lg([a,b],,uc)) be as in the first part of the proof of Proposition 7.5.
Since A is the multiplication operator associated to a positive function on [a,b], and since
B > A, both A and B are positive selfadjoint operators on Ls([a,b],p.). Let C and D
be the operators in B(EQ(NO)) corresponding to A and B respectively, via the natural
Hilbert space isomorphism between Ly([a,b], ) and €5(Np), given by the orthonormal
basis (pg)qen, for La([a,b], pic). Then C' and D are positive selfadjoint operators and by
(7.22) and (7.24), they satisfy the conditions (a)-(d) of Lemma 7.6. Now, let both f and
g be the first basis vector in the natural basis for /3(Ny) (i.e., f(k) = g(k) = g for all
k in Ng). Then (e),(f) of Lemma 7.6 are also satisfied, and hence we obtain from (iv) of
that lemma, that for all .k in Ny such that & > 7,

(exp(tD)[)(5)(exp(tC)[) (k) = (exp(tD)[) (k) (exp(tC)[)(4) = 0,
B (exp(tB)py, p5) - (exp(tA)pg, pi) = (exp(tB)p5, pi.) - ( exp(tA)pg, p5).

For j = 0, we get in particular,

M (exp(tB))ko < M (exp(tB))oo
M(exp(tA))ro ~— M(exp(tA))oo’

(k € No). (7.31)

Note here, that by (7.26),
(=1 M (exp(—tA))ro = exp(—2(c + 1)t)M(exp(tB))xo > 0, (k € Np).
Inserting this in (7.31), it follows that

(=1)*M (exp(—tA))ro < M (exp(—tA))oo
M (exp(tA))ro = Mi(exp(tA))oo

(k € Ny). (7.32)

By (7.23) and (7.27),

[N

M (exp(£tA))po = ¢ / exp(ttz)P(x) du.(z) = cgg/),i(:lzt), (k € Np).

Hence, (iii) in Proposition 7.5 follows from (7.32). [

7.8 Theorem. Let H and K be Hilbert spaces, and let ay, ... ,a, be elements of B(H,K)
such that ) ._ afa; = clgm), and ), a;a} = lg), for some constant c in [1,00].
Consider furthermore independent elements Y, ...,Y, of GRM(n,n, %), and put S =
Yoy a; @Y. Then for any t in [0, 2],

=1

E[exp(—t5*5)] < exp (= (Ve— 1)1+ (c+1)*- £) - Laen. (7.33)
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Proof. Consider a fixed ¢ in [0, 7-]. By Proposition 7.4 and Proposition 7.5 we then have

[E[exp(—t5™5)][| < D 1o5(=0)I - [E[Py(5"5)] |
- (7.34)

< WU S~ e P(s9)] |

p=0 TE€Sp
00
1
p=0 k,leN
k+l§p+1

i

where 6(p, k,1) was introduced in (3.6). Applying now Lemma 3.6, we get for ¢ in [0, 7],
that

S wi(0)- [ELF (S S)]| < exp (0 + 2)(2)7) [ exp (2(0) il

b
<exp((e+ 17+ £) [ explta) dicle).
Note here, that ¥§(t) = fab exp(tx) du.(x), and hence we get by (7.34), that
HE[ exp(—t5*9)] H <exp ((c+1)* %)@bg(—t)
b
= exp ((c +1)%- %)/ exp(—tz) du.(z).
But exp(—tz) < exp(—ta) = exp(—t(y/c+1)?) for all z in [a, b], and hence it follows that
HE exp(—tS* S H < exp ((c—l— 1) —) exp(—(v/e — 1)), (t €[0,3]).
This proves (7.33). [

7.9 Remark. By application of the method of Remark 3.7, it is easy to extend Theo-
rem 7.8, to the case where

r r

Zafai = clpm, and Z aza; = dlgy,

for constants ¢, d such that ¢ > d > 0. In this case, one obtains that for ¢ in [0, 3],

E[exp(—t5"S)] <exp (= (Ve—Vd) i+ (c+d)*-5) 1gpm. O
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8 Asymptotic Lower Bound on the Spectrum of S'S,
in the Exact Case

Let H and K be Hilbert spaces, and consider elements ay, . .. ,a, of B(H,K). Let A denote
the C*-subalgebra of B(H), generated by the family {afaj ‘ 1,7 €{1,2,... ,r}}. Consider

furthermore, for each n in N, independent elements Yl(n), e ,Yr(n) of GRM(n,n, %), and
define

r

Sp=Y a@Y,",  (neN) (8.1)

=1

In this section, we shall determine (almost surely), the asymptotic behaviour of the small-
est element of the spectrum of 5%S,,, under the assumptions that A is an exact C*-algebra
and that aq,... ,a, satisfy the condition

r r

Z aja; = clpm) and Z a;a; < 1pxy, (8.2)

for some constant ¢ in [1,00[. We start, however, by considering the simpler case, where,

instead of (8.2), ay,...,a,, satisfy the stronger condition
Z a;a; = clge and Z aza; = 1px), (8.3)

for some constant ¢ in [1,00[. Once this simpler case has been handled, we obtain the
more general case by virtue of a dilation result.

As in Section 4, we determine first the asymptotic behaviour of the smallest eigenvalue

of V,,, where
V= (® ®id,)(S5S,), (n € N), (8.4)
and ®: A — M,(C) is a completely positive mapping, for some d in N.

8.1 Lemma. Let S,, n € N, and V,,, n € N, be as in (8.1) and (8.4), and assume that
ai,...,a, satisfy the condition (8.3). Let Amin(V,) denote the smallest eigenvalue of V,,
(considered as an element of My, (C)). Then for any € in |0, 00[, we have that

S P (V) < (Ve 1) — ) < oc.

Proof. The proof is basically the same as the proof of Lemma 4.2; the main difference
being that in this proof we apply Theorem 7.8 instead of Theorem 3.3. Consequently, we
shall not repeat all details in this proof.
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For fixed n in N, and arbitrary ¢ in 0, oo[, we find that

P(z\min(Vn) < (Ve—1)7° - 6) = P(exp ( — min(Vy) + t(Ve — 1) — te) > 1)
< expli(v/E— 1) — 1) - E[exp ( — Duin(Vi))] (55
< exp(t(ve —1)> —te) - Eo Try, [exp(—tV )]

By application of Lemma 4.1(ii), we have here, that

trdn[exp(—tVn)] = try, [exp ( —t(P® idn)(S;Sn))] < trg, [(CI) ® idn)(exp(—tS;Sn))]
= try @ tr, [(CI) ® idn)(exp(—t&jsﬂ))] = ¢ ® tr, [exp(—tS;Sn)],
(8.6)

where ¢ is the state try o ® on A. It follows here from Definition 3.1 and Theorem 7.8,
that

E[¢ @ tr,(exp(—tS;5,))] = ¢ @ tr, (E[ exp(—1S555,)])
exp (—Uve—1)+E(c+1)Y),

for all ¢ in ]0, Z]. Combining now (8.5)-(8.7), it follows that for all ¢ in ]0, Z],

2c 2c

P (Amin(Va) S(Ve —1)* = ¢)
<dn - exp(t(v/c—1)* —te) - exp ( —t(Ve—1)72+ %(c + 1)2)
= dn - exp (t(%(c + 1) — 6))

(8.7)

From here, the proof is concluded exactly as the proof of Theorem 4.2. [

8.2 Proposition. Let S,, n € N, and V,,, n € N, be as in (8.1) and (8.4), and assume
that aq,... ,a, satisfy the condition (8.3). We then have

lim inf Apin(V5) > <\/E — 1)2, almost surely.

n—oo

Proof. By Lemma 4.2 and the Borel-Cantelli Lemma (cf. [Bre, Lemma 3.14]), we have for
any ¢ from |0, oo[, that

P<)‘min(vn) > (/e —1)* — ¢, for all but finitely many n) =1,

and from this the proposition follows readily. [

The next two lemmas enable us to pass from the situation considered in Proposition 8.2
to the more general situation, where it is only assumed that a4, ... ,a, satisfy (8.2).

8.3 Lemma. Let ¢ be a number in [1,00|[, and put ¢ = 2 + [¢|, where [¢] denotes the

integer part of c. Then there exist elements xq,... ,x, in the Cuntz algebra O, such that

q

q
* _ . *
g zrix; = clo,, and g zx = 1o,.
=1

i=1
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Proof. Recall that O, is the unital C*-algebra C*(s1, s2) generated by two operators s1, so
satisfying that sfs; = &;;10,, 1,5 € {1,2}, and that s187 + s283 = 1o,. Define then
l1,... ,ty—1 in Oy, by the expression

o s%_lsl, if je{l,2,...,qg—2},
T st if j=q—1.

Then tft; = 4, ;10,, for all 4,7 in {1,2,... ,¢ — 1}, and

q—1 q—3
Zt]‘ H 522 102 — 825 ( ) ‘|‘82 ( - 2) = 102, (88)
7=1 =0
(i.e., ty1,... ,t,_1 generates a copy of O,_; inside O3). Define now zy,...,z, in O, by
c—1\z .
(—) i;, ifie{1,2,...,¢q—1}
T, = 9= 2 1
qg—1—c\2 e
(7> lo,, ifi=gq.
q—2
Then ,
c—1 —1—-c
w;'k‘rl = ((]_ 1) _9 '102 g _9 102 61027
=1
and by (8.8),
. 1 g—1—c¢
Z i, = —° 102 + 102 = 102
P -2 -2
Thus, z4,...,z, have the desired properties. [

8.4 Lemma. Let H and K be Hilbert spaces, and let ay, ... ,a, be elements of B(H,K),
such that Y ._ a‘a;, = clpyy, and Yo_jaiar < 15(x)-

Then there exist Hilbert spaces H,K, s in {r,r+1,r+2,...} and elements ay,. .. ,as of
B(H,K), such that the following conditions hold:

(i) HOH and KDK.

.. ~ ag, if 1 S 7 S r,
(ii) aijly = . .
0, if r+1<1<s.
Proof. By Lemma 8.3, we may choose finitely many elements z;,...,z, of the Cuntz

algebra Oy, such that > 7 a7z, = clo, and Y ! 227 = 1p,. We assume that O, is
represented on some Hilbert space £, so that xy,...,z, € B(L). Define then

H=HoL) &KL and K=(KoL) & (HoL).

For Hilbert spaces V, W, an element v of B(V, W), and an element y of B(L), we consider
v ® y as an element of B(V ® L,V & L) in the natural manner. Moreover, given vy in
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B(HR LK@ L), vizin B(K® L), vy in B(H® L) and vy in B(K® L,H® L), we shall
consider the matrix (vij)1<ij<1 as an element of B(?—[ IC) in the usual way. With these
conventions, consider now the following elements of B(?—[ /C)

i = (‘“ ®01’3<£> 8) . Ge{n2... .,

0 (s — Dy @ia?)? © x; -
b]‘:<0 (B(/C) Zz_olaa) $J>’ (]6{1,2,...,(]}),

0 0 ) )
Ciik = (0 ﬁ'“?@) (J:]:L'k)> , (ce{l,2,...,r}, 5,k e{1,2,....q}).

It follows then by direct calculation, that

Za az—l—Zb*b —I—ZZ ”kcuk

=1 =1 7,k=1
. ([zz;l ] & s : ) =t
0 [e(Lsge) — Yol @iaf) + e X0, aiaf] @15 sy
and that
rooq
> + Zb D D iy
i=1 i=1 j k=1
_ [Ele aia; + (Lpgey — iy @iaf)] @ (g 0 1.
0 [FXi gl @lse) PO
Thus, if we put s = r + g+ rq¢?, and let d,41,d,49,... ,ds, be new names for the elements

in theset {b; |7 €{l,...,q¢}}U{cijelee{l,...,r}, j,k€{l,... ,q}}, then it follows
that @, a,, ... ,a, satisfy condition (iii).

Choosing a fixed unit vector £ in £, we have natural embeddings ¢3.: H — Hand ix: K —
K given by the equations

LH(h) = (h®§)@07 (hEH)v

e(k)=(E®§ a0, (k€ K).
This justifies (i), and moreover, it is straightforward to check, that under the identifica-

tions of ‘H with ty(H) and K with (¢ (K), condition (ii) is satisfied. This concludes the
proof. [

8.5 Proposition. Let S,, n € N, and V,,, n € N, be as in (8.1) and (8.4), and assume
now that ay, ... ,a, satisfy the condition (8.2). Then

lim inf Apin(V,) > <\/E — 1)2, almost surely.

n—00
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Proof. By Lemma 8.4, we may choose Hilbert spaces H,K, s in {r,r+1,...,} and ele-

ments @, dz, ... ,ds of B(H,K), such that conditions (i)-(iii) of Lemma 8.4 are satisfied. If

r < s, then for each n in N we choose additional elements Kn(:i, e ,Ys(n) of GRM(n, n, %),

such that Yl(n), YQ(n), . ,Ys(n) are independent. We then define

S

=Y wav™, = (neN)

=1
Recall from (8.4), that
V= (® ®id,)(S5Sn), (n € N),

where ®: A — M,(C) is a completely positive mapping from the C*-subalgebra A of
B(H) generated by {afa; | 1,7 € {1,2,...,r}}, into the matrix algebra M,(C). By [Pa,
Theorem 5.2], there exists a completely positive mapping ®: B(H) — M;(C) extending
®. Note that since ® is unital, so is ;.

Consider next the orthogonal projection Py of H onto H. Then the mapping
Cp,,: b PybPy: B(H) — PyB(H)Py ~ B(H),
is unital completely positive. Hence, so is the mapping ®,: B(H) — My(C), given by
Dy(b) = &y (PybPy) = &0 Cp,(b), (b B(H)).

Thus, if we define ) o
V, = (@5 0id,)(5550), (n € N),

then it follows from Lemma 8.4(iii) and Proposition 8.2, that

lim inf Amin(vn) > <\/E — 1)2, almost surely. (8.9)

n—oo

However, by Lemma 8.4(ii), we have here that

S

Vo= (0 0idy) | Y @t @ (V) } Z @, (aa;) @ (V) v
1,5=1 7,7=1
= Z O, (Pyaza; Py) ® (V™) Z &y (aza;) © (VM) v
7,7=1 ij=1

Therefore (8.9) yields the desired conclusion. [

It remains now to show that we can replace V,, in Proposition 8.5 by S5, itself. Before
proceeding with this task, we draw attention to the following simple observation:
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8.6 Lemma. For eachn in N, let B,, be a unital C'*-algebra, and let b,, be an element of
B,.. Then for any R in [0, 00|, the following two conditions are equivalent:

(i) limsup|lb.|| < R

n—oo

(ii) limsupmax(sp(b,)) < R, and liminfmin(sp(b,)) > —R.

n—00 n—roeo

Proof. This is clear, since, for each n, ||b,]|| is the largest of the two numbers max(sp(b,))
and — min(sp(b,,)). [

8.7 Theorem. Let ay, ... ,a, be elements of B(H,K), such that ) _, afa; = clpy) and
Yooy aiaf < 1pxy, for some constant ¢ in [1,00[. Assume, in addition, that the unital C*-
subalgebra A of B(H), generated by the set {afa; | 1,j,€ {1,2,... ,r}}, is exact. Consider
furthermore, for each n in N, independent elements Yl(n), e ,Yr(n) of GRM(n,n, %), and

put S, =3 _a;® Y,L-(n), n € N. We then have
lim inf min [sp(S;Sn)] > (Ve —1)%, almost surely. (8.10)
n—r 00

Proof. Put £ = span{ala; | 1,5 € {1,2,...,r}}, and note that * € F for all z in F, and
that 14 = ¢ 'Y I_, afa; € E. Thus, E is a finite dimensional operator system, and since
A is exact, it follows thus from Proposition 4.4, that for any e from |0, oc[, there exist d
in N and a unital completely positive mapping ®: A — M,(C), such that

[(@@id)(2)]| > (1 =e)fzll,  (n €N, =€ M(E)). (8.11)
Consider now a fixed ¢ from ]0, o[, let d, ® be as described above, and define
V, = (® ®id,)(S5S,), (n € N).
Recall then from Proposition 4.3 and Proposition 8.5, that
lim supmax [sp(V,)] < c+1+ 2/, almost surely,

n—oo

lim inf min [sp(Vn)] >c4+1—2ve, almost surely,
n— oo

and hence that
lim sup max [sp(Vn —(c+ 1)1dn)] < 2V/e, almost surely,

n—oo

lim inf min [sp(Vn —(c+ 1)1dn)] > —2\/c, almost surely.

n—o0

By Lemma 8.6, this means that
lim sup HV“ —(c+ 1)1d”H < 24/, almost surely. (8.12)
n— oo

Note here, that since S;5, — (¢ + 1)1 agm, ) € Mn(E), for all n, it follows from (8.11),
that

|

SrS, — (C + 1)1A®Mn((C) H < (1 — 6)_1H (CI) & ldn) [SZSn — (C + 1)1A®Mn(©] H
=(1- 6)_1HVn —(c+ 1)1dnH,
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for all n in N. Hence (8.12) implies that

lim sup HSZSn —(c+ Dlagm, H <(1—e)7" 2V, almost surely.

n—oo

Since this holds for arbitrary ¢ from |0, oo[, it follows that actually

(c+1) 1A®M H < 24/, almost surely.

n—oo

By Lemma 8.6, this implies, in particular, that

lim inf min [sp(S;Sn) —(c+ 1)] > -2/, almost surely,

n—o0

and this proves (8.10). [

8.8 Remark. As for the upper bound (cf. Section 4), Theorem 8.7 does not, in general,
hold without the condition, that the C*-algebra generated by {afa; | 1 < i,5 < r} be
exact. In fact, for any ¢ in |1, oo, it is possible to choose a finite set of elements aq, ... , a,
of B(H), for an infinite dimensional Hilbert space H, such that

r

Za a; = clgy and Zaa = 1w

i=1
but at the same time

P( 0 € sp(S7S,), for all but finitely many n) =1,

where S, = > a; ® Yi(n), as in (8.1). The proof of this is, however, much more com-
plicated than the corresponding proof of the possible violation for the upper bound (cf.
Proposition 4.9(ii)), and it will be presented elsewhere. O

9 Comparison of Projections in Exact C*-algebras
and states on the Kj-group

In [Haa], the first named author proved that quasitraces on exact, unital C*-algebras are
traces. This result implies the following two theorems

9.1 Theorem. (cf. [Han], [Haa]) If A isan exact, unital, stably finite C*-algebra, then
A has a tracial state.

9.2 Theorem. (cf. [BR, Corollary 3.4]) If A is an exact, unital C*-algebra, then every
state on Ko(A) comes from a tracial state on A.

The proof given in [Haa| of the fact that quasitraces in exact unital C*-algebras are traces,
is based on an ultra-product argument, involving ultra products of finite AW *-algebras.
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The aim of this section is to show that Theorem 9.1 and Theorem 9.2 can be obtained
from the random matrix results of the previuos sections, without appealing to results on
quasitraces and AW*-algebras.

We start by recapturing some of the standard notions and notation in connection with
comparison theory for projections in C*-algebras. For a C"*-algebra A, we put

= M.(4

neN

where elements are indentified via the (non-unital) embeddings M,,(A) — M,+1(A), given
by addition of a row and a column of zeroes. Given two projections p,q in M., (A), we
say, as usual, that p and ¢ are (Murray-von Neumann) equivalent, and write p ~ ¢, if
there exists a u in My (A), such that u*u = p and uu* = q. We let V(A) denote the
set of equivalence classes (p) of projections p in M, (A), w.r.t. Murray-von Neumann
equivalence, and we equip V(A) with an order structure and an addition, as follows:
For projections p,q in M. (A), we write (q) < (p) if ¢ < p, i.e., if ¢ is equivalent to a
subprojection of p. Moreover, we define (p)+ (q) to be (p’'+¢'), where p', ¢’ are projections
in M. (A), satisfying that p’ ~ p, ¢ ~ ¢ and p’ L ¢'. Finally, for k& in N, we let k(p)
denote the equivalence class (p) + --- 4+ (p) (k summands).

Recall that Ky(A) is the additive group obtained from the semi group V(A), via the
Grothendieck construction (cf. [B11]), and that K¢(A)+ denotes the range of V(A) under

the natural map

p: V(A) = Ko(A).
In particular, we have that Ky(A) = Ko(A); — Ko(A)4.
For a projection p in M, (A), we put

[Pl = p({p))-

Note then, that for projections p,q in My (A), [p] =
projection r in My, (A), such that (p) + (r) = (¢) + (r).

[¢] if and only if there exists a

9.3 Lemma. Let A be a C*-algebra, and let p,q be projections in A. Then with I(p)
the ideal in A generated by p, the following three conditions are equivalent:

(i)  (q) < k(p), for some k in N.
(ii) g€ I(p)
(i) g€ I(p).

Proof. (i) = (ii) : Assume that (i) holds, i.e., that there exists & in N and u in My(A),

such that
0 P 0
uru = (q ) and wu" <

00
0 p
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This implies that u is of the form

where wuq1,us1, ... ,ur € pAg. It follows thus, that

k k
g=Y whuu =Y ujpup € I(p),
7=1 7=1

as desired.

(ii) = (iii) : This is trivial.

(iii) = (i) : Assume that (iii) holds. Then there exist k in N and ay,... ,ag, by,... b in
A, such that

|30 =] < 0.1

Furthermore, we may assume that pb;q = b; for all j (otherwise, substitute b; by pb;q),

and that A is a C*-subalgebra of B(H) for some Hilbert space H. From (9.1), it follows
then that

H (i(ajpbj)f) — SH < Hj¢||,  for all £ in g(H).

Hence, with ¢ = maX{HajH ‘ je{L,2, ... ,k}}, we have that

tZ (o)l > | i(ajpbj)fﬂ > el (€ € alH).

which by the Cauchy-Schwarz inequality implies that

WE(Ipbl) = el (€ € a()). 92)

k
J=1

Since b;q = b; for all j, we have that ) °_, b%pb; € ¢.Aq, and hence (9.2) implies that

k
1’k Y " biph; > 1q.
7=1
Thus, Zle bipb; is invertible in the unital C*-algebra qAq. Let h € qAq be the inverse
of Zle bipb; in ¢Ag, and put ¢; = b]'h%, for all j. Then since pb;q = b; for all 3, pc;q = ¢;
for all 7, and hence



Define now

¢ 0 - 0
u=|: . | e M(A).
c 0 - 0
Then P
S — (ijé e 8) _ (g 8) ’
and

uu” = (¢ic)i<ij<k € Mr(pAp).
Since u*u is a projection, so is uu*. Thus uu* is a projection in the C*-algebra My(pAp),
and hence uu* < p ® 1. Taken together, we have verified that

(g g) =uu~uu < pR ly,

which shows that (i) holds. n

9.4 Lemma. Let M be a von Neumann algebra, and let p be a projection in M. Then
any o-weakly lower semi-continuous trace

T (pj\/lp)+ — [0, o0],
has an extension to a o-weakly lower semi-continuous trace 7 on M.

Proof. We can assume that p # 0. Choose then a maximal family (p;);c;r of pairwise
orthogonal projections in M, such that p; < p for all 2 in I. Then, by standard comparison

theory, it follows that
> pi=cl(p),

el
where ¢(p) denotes the central support of p in M. Choose next, for each 7 in I, a partial

isometry v; in M, such that

viv,=p; and v < p, (1el).

Define then 7: M, — [0, 00], by the equation
Ha)= Yor(an?), (0 € M),
el

Clearly 7 is additive, homogenous and o-weakly lower semi-continuous. To show that 7
has the trace property, note first that since pv; = v; for all 7, we have also that ¢(p)v; = v;
for all 7. Since ¢(p) is in the center of M, it follows thus, that for any x in M,

Tlxa™) = Z T(viza*vl) = Z (c(p)vizz™vl

el iel
— Z T(vixc(p);t:*vi*) = Z Z T((vixv;)(vjx*vj)),
el el jel
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and similarly

Tlx™x) = Z Z T((vjz* o)) (viav])).

Jel i€l
But by the trace property of 7 on pMp, we have that
7 ((vizv]) (vja™v))) = 7((vja"v]) (viav])),

for all 7, 7, and since all the terms in the above sums are positive, we can permute their
order without changing the sums, and thus obtain

Tlxx™) = 7(a"z).

Taken together, we have verified that 7 is a o-weakly lower semi-continuous trace on M,
and it remains thus to show that 7 coincides with 7 on (pA/lp)_l_. Given a from (p./\/lp)_i_,

we have that v;a € pMp, for all ¢, and therefore

7(a) = ZT((via%)(a%vi*)) = ZT(G%UZ»*UM%) = T(qic(p)a%> = 7(a),
as desired. [

9.5 Lemma. Let M be a von Neumann algebra, and let 1 denote the unit of M. Let
furthermore p, q be projections in M, that satisfy the following two conditions:

) 1€ 1)
(ii) 7(q) < 7(p), for any normal, tracial state 7 on M.

Then ¢ < p.

Proof. Let M =eM @ (1 — €)M, be the decomposition of M into a finite part e M and
a properly infinite part (1 — e)M, by a central projection e. Since any normal, tracial
state on M must vanish on (1 — €)M, condition (ii) is equivalent to the condition

T(eq) < 7(ep), for any normal tracial state 7 on e M.

By comparison theory for finite von Neumann algebras (cf. e.g. [KR, Theorem 8.4.3(vii)]),
this condition implies that

eq<ep in eM, (9.3)
By Lemma 9.3, condition (i) implies that there exists a k in N, such that
1®enr <pR1;, in Mp(M),
where (e€;j)1<;,j<x are the usual matrix units in My(C). Therefore, we have also that
l—e)@en<1—ep®1lp in M((1—e)M).
At the same time, since 1 — e is a properly infinite projection in M, we have that

l-e)®en~1—-e)®1p in M((1 —e)M).
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It follows thus, that
1-e)g1l; <(1-€e)@lr~1—-€)@en <(1—€e)p@1; in My((1—e)M),
and by [KR, Exercise 6.9.14], this implies that
1—e)g=<(1—¢€)p in (1—eM. (9.4)
Combining (9.3) and (9.4), it follows that ¢ < p, as desired. n

9.6 Lemma. Let M be a von Neumann algebra, and let p,q be projections in M. Then
the following two conditions are equivalent

(i) ¢=<p.
(ii) q € I(p), and 7(q) < 7(p) for every o-weakly lower semi-continuous trace 7 on M.
Proof. Clearly (i) implies (ii). To show that (ii) implies (i), assume that (ii) holds. By
Lemma 9.3 there exists then a & in N, such that (¢) < k(p), i.e., such that

qRen~q <p@ 1,
for some projection ¢’ in My(M). Consider now the von Neumann algebra

N = My (pMp),

with unit 15y = p ® 1;. Set p’ = p ® e11. Then p', ¢ are both projections in A, and

1y € Ix(p), (9.5)
where Iy (p') is the ideal in N generated by p'.
We show next, that

7(q¢") < 7(p'), for any normal, tracial state 7 on N. (9.6)

Indeed, if 7 is a normal, tracial state on A, then by Lemma 9.4, the restriction 7y, of 7
to N can be extended to a o-weakly lower semi-continuous trace 7 on My(M),. Then
the mapping

a— 7(a® e), (a € M),

is a o-weakly lower semi-continuous trace on My, and hence the assumption (ii) yields
that

Tg®en) <T(p®en).
Since ¢ ~ g® e11, P = pQ ey and p', ¢ € N, it follows thus that
7(¢) =7(¢) =7(q@en) < F(p@en) =7(p) = 7(p),
which proves (9.6).

Applying now Lemma 9.5, it follows from (9.5) and (9.6), that ¢’ < p’ in NV, and hence
that

gRen~q <p =p®en in M(M),
which implies that ¢ < p in M. [
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9.7 Proposition. Let A be a C*-algebra, and let p,q be projections in A. Then the
following two conditions are equivalent:

(i) g <pin A,

(ii) 7(q) < 7(p), for every (norm) lower semi-continuous trace 7 on A,.

Proof. (i) = (ii) : Assume that ¢ < p in A**, and choose v in A**, such that u*u = ¢ and
uu* < p. Then ||u|]| < 1, and hence by the Kaplansky Density Theorem, we may choose
a net (ug)gep from A, such that

|lugl| <1, for all 8 in B, and ug — u in the strong (operator) topology.

Define now: vg = pugq, (8 € B), and note that vg — pug = u in the strong (operator)
topology, so that vjvs — u*u = g in the weak (operator) topology. Since [lvg|| < 1 for all
(3, this implies that actually

vgvg — q in the o-weak topology.
Note also, that since |Jug|| < 1 for all 3,
vgvg <p, (B € B). (9-7)

Recall now that the o-weak topologi on A** is the weak* topology i.e., the o(A**, A*)-
topology, and hence its restriction to A is the weak topology, i.e., the o(A, A*)-topology.
Since vg € A for all 3, we have thus, that

vivs — q in the o(A, A”)-topology.

Consider then the convex hull K of {vjvs | B € B}. Then q € K=7AA) but since
convex sets in a Banach space have the same closure in weak and norm topology (cf.
[KR, Theorem 1.3.4]), it follows that actually ¢ € K™™°™. Hence, we may choose a
sequence (wy,)nen from K, which converges to ¢ in norm. Then, for any (norm) lower
semi-continuous trace 7: Ay — [0, 0o,

7(q) < liminf 7(w,) < sup 7(vzvg) = sup 7(vgvg) < 7(p), (9.8)
n—o0 ﬁEB ﬁEB

and this proves (i).

(ii) = (i) : Assume (ii) holds. We set out to show that condition (ii) in Lemma 9.6 is
satisfied, in the case M = A**. Consider first the function 75: Ay — [0, 00], defined by

0, ifa € 14(p)s+,
m0(a) = _
00, ifae A\ 14(p)+.
Then 79 is a (norm) lower semi-continuous trace on A, and hence the assumption (ii)
yields that 79(q) < 70(p) = 0, which means that g € [4(p);+. According to Lemma 9.3,
this implies that actually ¢ € Ta(p) C L4 (p).
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Note next, that for any o-weakly lower semi-continuous trace 7 on (A**)4, the restriction
T4, is a (norm) lower semi-continuous trace on A, and hence, by the assumption (ii),

7(q) < 7(p).
Taken together, we have verified that the projections p,q satisfy the condition (ii) in

Lemma 9.6, in the case M = A**  and hence this lemma yields that ¢ < p in A**, as
desired. [

9.8 Corollary. Let A be a C*-algebra, and let p,q be projections in A. Then the fol-
lowing two conditions are equivalent:

(i) dk € N: k(q) < (k—1)(p) in V(A™).

(ii) de>0: 7(q) < (1 —¢€)7(p), for any (norm) lower semi-continuous trace 7 on A,.

Proof. (i) = (ii) : Assume that (i) holds, and define, for the existing k, ¢ = ¢ ® 1} and
pP=p® (Zf:_ll 6“’). Then ¢',p’ are projections in Mj(A), and the assumption (i) implies
that

g <p in M(A™). (9.9)
Given now any (norm) lower semi-continuous trace 7 on A, , note that the expression

k

me(a) =Y r(aq),  (a=(a;) € My(A)4),

=1

defines a (norm) lower semi-continuous trace 7 on My(A);. Thus, by Proposition 9.7,
(9.9) implies that 7(¢") < 7(p’), i.e., that k7(¢) < (k—1)7(p). This shows that (ii) holds
for any € in ]0, £].

(ii) = (i) : Assume that (ii) holds, and choose, for the existing ¢, a & in N such that
= < €. Define then, for this k, ¢’ and p' as above.

Now, for any (norm) lower semi-continuous trace 7 on My(.A)4, the mapping
a— 7(a® e), (a € Ay),
is a (norm) lower semi-continuous trace on A,, and thus the assumption (ii) yields that
(q@en) <(1—er(p@en) < EL-7(p@en),
and hence that
T(q)=k-m(q@en) < (k=1)-7(p@en) =7(p).

According to Proposition 9.7, this means that ¢’ < p' in My (A™)(= Mi(A)**), which
shows that (i) holds. ]

9.9 Lemma. Let A be a C*-algebra, and let p, q be projections in A. Then the following
two conditions are equivalent:
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(i) There exists an € in ]0, oo, such that

7(q) < (1 —€)7(p), for any (norm) lower semi-continuous trace 7 on A,.

(ii) There exist € in ]0,00[, r in N and a4, ... ,a, in A, such that
Z a‘a; = q, and Z a;a’ < (1 —¢)p.
=1 =1

Proof. The proof follows the ideas of the first section of [Haa].

Note first that (ii) clearly implies (i). To show the converse implication, assume that (i)
holds. Then, by Corollary 9.8, there exists a k in N, such that

qX 1, < pR (Zf:_llen) n Mk(.A**),
i.e., such that
uu=q® 1, and et < p® (Ef:_lleii), (9.10)

for some u = (ujj)1<ij<x in Mi(A*). For this u, we have then that

k k k
O unuig =Y (utw)j; = ke,
i=1 i=1 =1
and that
k k k
SN wgu = (wut) < (k- 1)p.
=1 j=1 =1

Thus, if by,... bz € A denote the elements ﬁuij, i,7 € {1,2,...,k}, listed in any
fixed order, then we have that

k2 k2
Y bbi=gq, and ) bb; < Elp.

Note also, that (9.10) implies that b; € pA**q for all i. Consider then the subset K of
A @ A, defined by

K={(SL ceg+ XL )

Then K is clearly closed under addition and multiplication by a non-negative scalar, and

reN, c,...,c € pAg, g€ (p.Ap)+}.

thus K is a convex cone in A & A.

Recall next, that the o-strong® topology on a von Neumann algebra M., is generated by
the semi-norms

N

T p(z e 4+ za”)?, (p € (My)g).
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Since the o-strong* continuous functionals on M are also o-weakly continuous (i.e., belong
to M,; cf. [Ta, Lemma I1.2.4]), any convex set in M has the same closure in o-strong*
and o-weak topology. In particular it follows that

pAq is o-strong™ dense in pA™q, and (pAp)y is o-strong™ dense in (pA™p)y.

Thus, we may choose a net (¢f,...,¢%,9%)aca in [69;?2:1 p.Aq] & (pAp), such that

e ¢ — b;, in the o-strong* topology, for all 7 in {1,2,... ,k*},

o ga>0 for all a,

o ¢° — ¢k p ZZ L b:b7, in the o-strong™ topology.
It follows then that y
lim (Z(cf)%f) =g, o-weakly,
and that y

liclyn (ga + Z cf(cf)*) = 21p, o-weakly.
i=1

But since the o-weak topology on A** is just the weak*-topology (i.e., the o(A**, A*)-
topology), its restriction to A is the weak topology (i.e., the (A, A*)-topology) on A. It
follows thus that

(q,551p) € KoABAA BA).

But convex sets in a Banach space have the same closure in weak and norm topology (cf.
[KR, Theorem 1.3.4]), so it follows that in fact

(q,%1p) € K—norm, (9.11)
Since (1 — 5)_1(1“%1 + 5) — k%l < 1,as § = 0, we may choose 4, ¢ in |0, 1[, such that
(1-8)"(Er+d8)=1-c
By (9.11), there exist then r in N, ¢1,... ,¢, in pAqg and ¢ in (pAp)4, such that
Hq - Z: lcz Ci

The first inequality in (9.12) implies that > ._, cf¢; is invertible in the C*-algebra q.Aqg.
Let h € (¢Aq)+ denote the inverse of > '_, ¢fe; in ¢ Ag. Since

<4 and Hk_Tlp—g—(Zflcz )

<o (9.12)

1—5q<ch2_ 1+ 4d)g

it follows then that

(1+6)'g<h<(1-8)""q. (9.13)
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Define now: a; = c;hz, i € {1,2,...,r}. Then > '_ a’a; = ¢, and moreover, by (9.13)
and the second inequality in (9.12),

Zaa —Zczhc <(1=46)" Zcic:< 1—90)" (g—l—ZcZ )

=1

_(1—5) "L+ 8)p=(1-¢)p.
Thus, it follows that (ii) holds. [

9.10 Theorem. Let A be an exact C*-algebra, and let p, q be projections in A. Assume
that there exists € in |0, oo[, such that

7(q) < (1 —€)r(p), for any (norm) lower semi-continuous trace 7 on Aj.
Then there exists n in N, such that

g1, <p®1, in M,(A).

Proof. By Lemma 9.9, we get (after multiplying the a;’s from Lemma 9.9(ii) by (1 — e)_%),
that there exist ¢ in |1, 00[, 7 in N and a4,... ,a, in A, such that

r r

Z a‘a; = cq, and Z a;al < p. (9.14)

=1 =1
We may assume that A is a C*-subalgebra of B(H) for some Hilbert space H. Then (9.14)
implies that we may consider ay, ... ,a, as elements of B(q(H),p(H)), and that

r r

Z aja; = clyyy, and Z aza; < 1y

Moreover, the set {afaj ‘ i, € {1,2,... ,r}} is contained in the exact, unital C*-
algebra q.Aq Choosing now, for each n in N, independent elements Yl(n), . ,Yr(n) of
GRM(n,n, 1), it follows from Theorem 8.7, that with

r

Sp=Y aaY",  (neN),

=1

we have that

lim inf [mm {sp (w)*Sn(w))}] > <\/E — 1)2, for almost all w in €.

n—oo

In particular, there exsits one(!) w in €, and an n in N, such that S, (w)*S,(w) is invertible

in the C*-algebra M,,(¢Aq). For this pair (w,n), we define

U = S (w) [Sn(w)*Su(w)] 2,

o=
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where the inverse is formed w.r.t. M,,(¢Aq). Then v € M, (pAg), and
uu =1y @1, =g 1,. (9.15)

Moreover, uu* € M, (B(p( ))), and since u*u is a projection in M, (B(q(?—[))), uu® is a
projection in M, ( (p (7—[))), so that

un* < Ly @1, =p®1,. (9.16)
Combining (9.15) and (9.16), we obtain the desired conclusion. ]

9.11 Corollary. If A is an exact, unital and simple C*-algebra, and p, q are projections
in A, such that p # 0 and 7(q) < 7(p) for all tracial states T on A, then for some n in N

q®1, <p®1, in M,(A). (9.17)

Proof. By simplicity of A, 7(p) > 0 for all tracial states 7 on A, and hence by weak*
compactness of the set of tracial states on A, there exists ¢ in ]0, oo[, such that

7(q) < (1 = ¢)7(p),

for all tracial states 7 on A. By the assumptions on A, A is algebraicly simple. Hence, ev-
ery non-zero trace 7: A, — [0, 00| is either equal to +00 on all of A4\ {0}, or proportional
to a tracial state. Hence we can apply Theorem 9.10. |

9.12 Remark. In the “inequality” (9.17) in Corollary 9.11, the tensoring with 1, can
in general not be avoided. This follows from Villadsen’s result in [Vi] that there exist
nuclear (and hence exact) unital simple C*-algebras with perforation. Recall that a unital
C*-algebra A has perforation, if there exists z in Ky(A), such that ¢ Ko(A)4, but
nr € Ko(A)y \ {0}, for some n in N. To see how Villadsen’s result implies, that we
cannot, in general, avoid tensoring with 1, in (9.17), let A be a unital exact simple C*-
algebra, and assume that @ € Ko(A), such that ¢ Ko(A); and nx € Ko(A); \ {0}, for
some positive integer n. Write then x in the form z = [p] — [¢], where p, ¢ are projections
in My (A) for some k in N. By the assumption that nz € Ky(A)4\ {0}, and the simplicity
of A, it is not hard to deduce that

(T @ trg)(p) > (7 @ tre)(q),

for all tracial states 7 on A, and hence 7(p) > 7(q) for all tracial states 7 on My(.A).
However, since x ¢ Ky(A)4, ¢ cannot be equivalent to a subprojection of p. m

9.13 Theorem. Let A be a unital, exact C*-algebra. Then the following two conditions
are equivalent:

(i) A has no tracial states.

(ii) For some n in N there exist projections p,q in M, (A), such that

plg and p~g~la®1,.
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Proof. Clearly, (ii) implies (i). To show the converse implication, assume that (i) holds,
and consider then the two projections p’, ¢ in M3(.A) given by

p_<00’ and q = 0 14)°

Since A has no tracial states, 4** has no normal tracial states, and hence A** is a properly
infinite von Neumann algebra. Therefore,

(14) =4(14) in V(A™),

which implies that
() =2(¢) in V(My(A™)).
Hence by Corollary 9.8 and Theorem 9.10, there exists an n in N, such that

¢ 21, <p @1, in My,(A).

Here, p' ®1,, ~ <1A %{) L, 8), and thus there exists u in My,(.A), such that
wu = <1A %{) L, 1 (2{)1 ) , and uu™ < <1A %{) 1. 8) . (9.18)
A n

The inequality in (9.18) implies that u has the form

_f U1 Uiz
-\ 0 0/’
for suitable w1, usg from M,(A). The equality in (9.18) yields then subsequently that

* * *
U U = Ui =14 ® 1, and ujurz = 0.

Defining now
* *
P = Uity and q = U2y,

it follows that p, g are orthogonal projections in M,,(A), such that p ~ ¢~ 14®1,. This
shows that (ii) holds. u

In particular, Theorem 9.15 implies the validity of Theorem 9.1:

9.14 Corollary. If A is an exact, unital, stably finite C*-algebra, then A has a tracial
state.

Proof. This is an obvious consequence of Theorem 9.13. [

Consider next an arbitrary unital C*-algebra A. A function ¢: V(A) — R, is said to be
a state on V/(A), if it satisfies the following three conditions:

e p(z)>0, for all z in V(A).
o p(x+y)=9(x)+e(y), forall z,yin V(A).
o o((la) =1.
We denote by S(V/(A)), the set of states on V(A). It is elementary to check that S(V/(A))

is a convex set, and that S(V(A)) is compact in “the topology of pointwise convergence”.
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9.15 Lemma. Let A be a unital, exact C*-algebra, and let p,q be projections in A, such
that

7(q) < 7(p), for any tracial state T on A. (9.19)

Then for any k in N, there exists n in N, such that
whk{a) < nk(p) +n{ly).

Proof. Let k from N be given, and consider then the projections p’, ¢’ in Mj;1(.A) defined

by:
P=p2 (X ei) +la@eppipe,  and ¢ =q@ (XL, ).

Given now an arbitrary non-zero, bounded trace 7 on Mj11(A), note that the mapping
a— 7(a®e), (a € A),

is proportional to a tracial state on A. It follows thus from the assumption (9.19), that
7(q® e11) < 7(p ® e11), and hence

™(¢)=k-T(q@en) <k-t(p@en)= kkj “T(p @ 1pyr) < k% -7(p').

Since 14 ® ey < p/, any unbounded (lower semi-continuous) trace 7 on Myyq(A) must
take the value +oc at p’, and hence we have also in this case, that

7(¢') < &5 - 7(p).

Applying now Theorem 9.10, it follows that there exists an n in N, such that n(¢") < n(p'},
and hence such that nk(q) < nk(p) + n(l4), as desired. [

Next, we need the following version of the Goodearl-Handelman theorem (see [B12, 3.4.7],
[Go, 7.11] and [Rg¢, Lemma 2.9]).

9.16 Lemma. Let A be a unital C*-algebra, and consider a convex subset K ofS(V(A)),
which is closed in “the topology of pointwise convergence”. Assume furthermore that the
following implication holds

Yo,y e V(A): Vo€ K:o(z) < o(y)] = [Vo € S(V(A): p(2) < p(y)].  (9:20)
Then K = S(V(.A)).

Proof. The lemma is just a small variation of [Rg, Lemma 2.9]; the only difference being
that in [Rg, Lemma 2.9], the condition (9.20) is replaced by the following

Vz,y e V(A):  [Vp € K: p(z) < p(y)] = [Vp € S(V(A)): p(z) < ¢(y)]. (9.21)
It suffices thus to show, that among the conditions (9.20) and (9.21) on K, (9.20) is the

stronger.
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So assume that (9.20) holds, and consider elements z,y of V(A), satisfying that
o(z) < ¢(y), forall pin K.

Then since S(V(.A)), and hence K, is compact in “the topology of weak convergence”, it
follows that there exists a k in N, such that

o(z) + % < p(y), forall pin K,

i.e., such that
o(kz + (14)) < ¢(ky), forall ¢ in K.

Applying then (9.20), it follows that for all ¢ in S(V(.A)),
pr) =1 plke) < §-elke +(14) < £ o(ky) = ¢(y),
which proves that (9.21) holds. [

9.17 Theorem. Let A be a unital, exact C*-algebra. Then for any state ¢ on V(A),
there exists a tracial state T on A, such that

o((p)) = (1 @ Tr,)(p), for all projections p in M,,(A), and m in N. (9.22)

Proof. Let K denote the subset of S(V(.A)) consisting of those states on V(A), that are
given by (9.22) for some tracial state 7 on A. Then K is clearly a convex, compact subset
of S(V(/—l)), and hence, by Lemma 9.16, it suffices to verify that K satisfies condition
(9.20). So consider projections p,q in M, (A). We may assume that p,q € M,,(A), for
some sufficiently large positive integer m. Suppose then that

(1@ Trm)(q) < (1 ® Trp)(p), for all tracial states 7 on A.

Since any tracial state on M,,(A) has the form % -7 ® Tr,,, for some tracial state 7 on A,
it follows then from Lemma 9.15, that for any k& in N, there exists an n in N, such that

nk(q) < nk(p) +n(ls ©1,.).

Hence for any ¢ in S(V(.A)), and any k in N, we have that

e((q) < el(p) + 1,

and this shows that K satisfies condition (9.20). n

Recall that a state on Ko(.A) is an additive map ¢: Ko(A) — R, such that ¢ (Ko(A)4) C
[0, 00[ and ¥([14]) = 1. Note that the natural map p: V(A) — Ky(A), gives a one-to-one
correspondance between states on V(. A) and states on Ko(A). Hence, Theorem 9.17 gives
a new proof, not relying on quasitraces, for the following

9.18 Corollary. Let A be a unital, exact C*-algebra. Then any state on Ko(A) comes
from a tracial state on A.
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