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1 Introduction

The aim of these notes is to describe some aspects of the change of time and the
change of measure for L�evy processes. The problems under consideration are closely
connected with the stock price modelling.

Section 2 contains a very brief overview of some classical and modern stock price
models used in the mathematical �nance. In particular, we consider the exponential
L�evy models

St = S0e
Xt; t � T; (1.1)

where (Xt)t�T is a L�evy process, and the time-changed exponential L�evy models

St = S0e
(X��)t; t � T; (1.2)

where (Xt)t�0 is a L�evy process and (�t)t�T is an increasing c�adl�ag process that is
independent of X . Here, (X � � )t := X�t . We also compare the adequacy of di�erent
models (see Table 1 on page 4).

Section 3 deals with the following problem: which processes X can be represented

as X
law
= B � � , where B is a Brownian motion? This problem is considered in 5

di�erent settings:

I. B is an (Ft)-Brownian motion, and � is an (Ft)-time-change;

II. B is an (Ft)-Brownian motion, and � is a continuous (Ft)-time-change;

III. B is a Brownian motion, and � is an independent increasing c�adl�ag process;

IV. B is a Brownian motion, and � is an independent increasing continuous process;

V. B is a Brownian motion, and � is an independent subordinator.

The answer to the above problem in Settings I, II, and IV is known (see Subsec-
tion 3.1). The answer to this problem in Setting V is presented in these notes (see
Subsection 3.2). The problem in Setting III remains open.

In Section 4, we �rst cite some known general results related to the change of
measure for L�evy processes (see Subsection 4.1). Then we apply these results to
derive the necessary and su�cient conditions for the absence of arbitrage and for the
completeness of models (1.1) (see Subsection 4.2).

In Section 5, we �rst describe some nice properties of models (1.2): stationarity of
increments, persistence of volatility,... (see Subsection 5.1). Then we derive the nec-
essary and su�cient conditions for the absence of arbitrage and for the completeness
of models (1.2) (see Subsection 5.2).

The Appendix contains some known de�nitions and facts that are used in the
notes as well as the statements needed to solve some exercises.

Each of Sections 2{5 contains exercises. The following notation is used:
� | a simple exercise;

# | an important exercise;

*
| a di�cult exercise.

Each of Sections 3{5 contains an open problem.

Acknowledgement. A part of these notes was written during the stay of A.S. Cherny
at the Vienna University of Technology. It is a pleasure to thank W. Schachermayer
and F. Hubalek for their hospitality.



2 Some Financial Models

2.1 De�nitions of Models

In what follows, S means the discounted price of an asset. We will consider one-
dimensional models with a �nite time horizon T .

The most classical model is

The Bachelier model:

St = S0 +Bt; t � T;

where (Bt)t�T is a Brownian motion.

The main disadvantage of this model is that the process S here can take negative
values. This is overcome by

The Black-Scholes-Samuelson model:

St = S0e
�t+�Bt; t � T;

where (Bt)t�T is a Brownian motion and �; � 2 R.
There are two main disadvantages of this model:

� the increments of lnS are Gaussian;

� the increments of lnS over disjoint intervals are independent.

The �rst of these disadvantages is overcome by

The exponential L�evy model:

St = S0e
Xt; t � T; (2.1)

where (Xt)t�T is a L�evy process.

Actually (2.1) is a whole class of models. It includes, in particular, the following
models with a �nite number of parameters:

� X is a variance gamma (VG) process;

� X is a Carr-Geman-Madan-Yor (CGMY) process;

� X is a normal inverse Gaussian (NIG) process;

� X is a hyperbolic (HYP) process;

The de�nitions of these processes are given in Subsection 3.1.

The main disadvantage of model (2.1) is that the increments of lnS over disjoint
intervals are independent. In other words, this model does not tackle the phenomenon
of the persistence of volatility (clustering). This disadvantage is overcome by

The time-changed exponential L�evy model (Carr, Geman, Madan, Yor [3]):

St = S0e
(X��)t; t � T; (2.2)

where (Xt)t�0 is a L�evy process and (�t)t�T is an increasing c�adl�ag process that is
independent of X . Here,

(X � � )t := X�t; t � T:
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Actually (2.2) is a whole class of models. It includes, in particular, the following
models with a �nite number of parameters:

� X is a variance gamma (VG) process;

� X is a Carr-Geman-Madan-Yor (CGMY) process;

� X is a normal inverse Gaussian (NIG) process;

� X is a hyperbolic (HYP) process;

� � is a Cox-Ingersoll-Ross (CIR) process, i.e.

�t =

Z t

0

ysds; t � T;

where y is a solution of the stochastic di�erential equation

dyt = �(� � yt)dt+ �
p
ytdBt:

Another modi�cation of model (2.1) that tackles the phenomenon of the volatility
persistence is

The exponential L�evy model with the stochastic integrals (Eberlein,
Kallsen, Kirsten [8]):

St = S0e
(��X)t; t � T; (2.3)

where (Xt)t�T is a L�evy process and (�t)t�T is an X -integrable process that is inde-
pendent of X . Here,

(� �X)t :=

Z t

0

�sdXs; t � T:

2.2 Comparison of Di�erent Models

Below is a list of some desirable properties of a �nancial model:

1. The marginal distributions of the increments of lnS are skewed.

2. The marginal distributions of the increments of lnS have heavy tails.

3. The increments of lnS are stationary in time.

4. The increments of lnS over disjoint intervals are not correlated.

5. The absolute values of the increments of lnS over disjoint intervals are positively
correlated (the e�ect of \clustering", \volatility persistence").

6. The model is arbitrage free.

7. The model depends on a small number of parameters.

Table 1 shows which of these properties are satis�ed for the models introduced
above. For example, if we consider model (2.1), where X is a VG, CGMY, NIG, or
a HYP process, then this model satis�es conditions 1, 2, 3, 4, 6 (to be more precise,
this can be achieved by an appropriate choice of the model parameters). This model
does not satisfy condition 5, and the number of the parameters is 3 for the VG model
and 4 for the CGMY, NIG, or HYP model.



4 Section 2. Some �nancial models

A model 1 2 3 4 5 6 7

St = S0e
�t+�Bt � � + + � + 2

St = S0e
Xt, X is VG, CGMY, NIG, or HYP + + + + � + 3,4

St = S0e
(X��)t, X is VG, CGMY, NIG, or HYP,

� is CIR
+ + + + + + 6,7

St = S0e
(��X)t, X is VG, CGMY, NIG, or HYP,

� is CIR
+ + + + + + 6,7

Table 1: Comparison of di�erent models

2.3 Exercises

� Exercise 2.1. Give an example of a Brownian motion B and an independent
increasing continuous process � such that the process B � � cannot be represented as

B�� law
= ��W , where W is a Brownian motion and � is an independent W -integrable

process.

�# Exercise 2.2. Let W be a Brownian motion and � be an independent
W -integrable process, i.e.

8t � 0;

Z t

0

�2sds <1 a.s.

Prove that there exists a Brownian motion B and in independent increasing process �

such that � �W law
= B � � .

(Hint: Use Proposition 3.6.)



3 Change of Time for a Brownian Motion

3.1 Various Time-Changes

In this section, we consider the following problem.

The main problem. Which processes (Xt)t�0 (we assume that X0 = 0) can be

represented as X
law
= B � � , where (Bt)t�0 is a Brownian motion and (�t)t�0 is an

increasing c�adl�ag process with �0 = 0?

Making this problem precise leads to 5 possible settings.

Setting I. B is an (Ft)-Brownian motion (i.e. B is a Brownian motion, B is

(Ft)-adapted and, for any s � t, the increment Bt�Bs is independent of Fs ), and �
is an (Ft)-time-change (i.e. each �t is an (Ft)-stopping time, �0 = 0, and the maps

t 7! �t are a.s. increasing and c�adl�ag), where (Ft) is an arbitrary �ltration.

Proposition 3.1. If Z is an (Ft)-semimartingale and � is an (Ft)-time-change,
then Z � � is an (F�t)-semimartingale.

For the proof, see [18; Ch. 4, x7].

Proposition 3.2. If Z is an (Ft)-semimartingale and (Gt) is a �ltration such

that FZ
t � Gt � Ft , then Z is a (Gt)-semimartingale.

For the proof, see [18; Ch. 4, x6].

Proposition 3.3. A process X can be represented as X
law
= B � � in the sense of

Setting I if and only if X is a semimartingale (with respect to its own �ltration).

Proof. The \only if" part. It follows from Propositions 3.1 and 3.2 that B � � is a
semimartingale with respect to its own �ltration. Hence, X is also a semimartingale
with respect to its own �ltration.

The \if" part was proved by I. Monroe [19]. 2

Setting II. B is an (Ft)-Brownian motion, and � is a continuous (Ft)-time-
change, where (Ft) is an arbitrary �ltration.

Proposition 3.4. (Dambis-Dubins-Schwarz.) If X is a continuous local mar-

tingale, then there exists a Brownian motion B (that may be de�ned on a possibly en-

larged probability space (e
; eF ; eP) = (
;F ;P)� (
0;F 0;P0)) and a �ltration (Gt) such
that B is a (Gt)-Brownian motion, hXi is a (Gt)-time-change, and X = B � hXi.

For the proof, see [21; Ch. V, Theorems 1.6, 1.7].

Proposition 3.5. A process X can be represented as X
law
= B � � in the sense of

Setting II if and only if X is a continuous local martingale (with respect to its own

�ltration).
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Proof. The "only if" part. Let B be an (Ft)-Brownian motion and � be a

continuous (Ft)-time-change such that X
law
= B�� . Set �n = infft � 0 : jB�� jt � ng.

Obviously, (B � � )�n = B�n � � , where �n = infft � 0 : jBtj � ng. The process B�n

is a uniformly integrable (Ft)-martingale. By the optional stopping theorem (see [21;
Ch. II, Theorem 3.2]), for any s � t, we have

E
�
B�n
�t j F�s

�
= B�n

�s :

Consequently,
E
�
B�n
�t j FB��

s

�
= B�n

�s :

This means that B � � is a local martingale. Hence, X is also a local martingale.
The \if" part follows from the Dambis-Dubins-Schwarz theorem. 2

Remark. Note that any continuous local martingale X can actually be repre-
sented as X

a.s.
= B � � (possibly, on an enlarged probability space), and not only as

X
law
= B � � . 2

Setting III. B is a Brownian motion, and � is an independent increasing c�adl�ag

process.

We do not know the answer to the problem in this setting.

Setting IV. B is a Brownian motion, and � is an independent increasing con-

tinuous process.

Proposition 3.6. (Ocone.) The following conditions are equivalent:

(i) X can be represented as X
law
= B � � in the sense of Setting IV;

(ii) X is a continuous local martingale, and, for any a � 0, we have�Z t

0

Ha
s dXs; t � 0

�
law
= (Xt; t � 0);

where Ha
t = I(t � a)� I(t > a);

(iii) X is a continuous local martingale, and, for any (FX
t )-predictable process H

with jHj = 1, we have �Z t

0

HsdXs; t � 0

�
law
= (Xt; t � 0);

(iv) X is a continuous local martingale, and if we set Q' = Law(Xt; t�0jhXi = '),
then, for a.e. ' (with respect to the measure Law(hXit; t � 0)), the coordinate process
Z on C(R+) is a Q' -local martingale with hZi = '.

For the proof, see [20].

De�nition 3.7. A process X that satis�es the conditions of Proposition 3.6 is
called the Ocone martingale.

Remark. Note that any Ocone martingale X can actually be represented as

X
a.s.
= B � � (possibly, on an enlarged probability space), and not only as X law

= B � � . 2
Setting V. B is a Brownian motion, and � is an independent subordinator (i.e.

an increasing L�evy process).

The answer to the problem in this setting is provided by Theorem 3.17.
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3.2 Time-Change by an Independent Subordinator

This subsection is devoted to the solution of the above problem in Setting V.

Lemma 3.8. If X is a L�evy process and � is an independent subordinator, then

X � � is a L�evy process.

The proof is Exercise 3.32.

Example 3.9. (The Cauchy process.) Let (B1; B2) be a two-dimensional

Brownian motion. Set

�t = inffs � 0 : B1
s > tg; t � 0:

Then B2�� is a Cauchy process, (i.e. (B2�� )1 has the standard Cauchy distribution).

Proof. We can assume that (
;F ;P) = (
1;F1;P1)�(
2;F2;P2) and B1 = B1(!1),
B2 = B2(!2). Then, for any � 2 R, we have

Eei�(B
2��)1 =

Z

1

Z

2

exp
�
i�B2

�1(!1)
(!2)

	
P2(d!2)P1(d!1)

=

Z

1

e�
�2

2
�1(!1)P1(d!1) = Ee�

�2

2
�1:

(3.1)

The process

exp

�
j�jB1

t^�1 �
�2

2
t ^ �1

�
; t � 0

is a uniformly integrable martingale (note that it is bounded). Hence,

E exp

�
j�jB1

�1
� �2

2
�1

�
= 1:

Since B1
�1

= 1, we get Ee�
�2

2
�1 = e�j�j . This, combined with (3.1), completes the

proof. 2

Example 3.10. (The NIG process.) Let � 2 R+, � 2 [��;�], � 2 R+. Let

(B1; B2) be a two-dimensional Brownian motion with the drift (
p
�2 � �2; �). Set

�t = inffs � 0 : B1
s > �tg; t � 0:

Then, by the de�nition, B2 � � is a normal inverse Gaussian (NIG) process with

parameters �; �; 0; � . (A NIG(�; �; �; �) process is obtained by adding the drift �t to
this process.)

Example 3.11. (The VG process.) Let B be a Brownian motion with a drift

and � be an independent gamma process (i.e. �1 has gamma distribution). Then, by
the de�nition, B � � is a variance gamma (VG) process.
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De�nition 3.12. A L�evy process X has the characteristics (b; c; �)h if

Eei�Xt = exp

�
t

�
i�b� �2

2
c+

Z
R

�
ei�x � 1� i�h(x)

�
�(dx)

��
:

Here, h is a truncation function. (We will also take h = 0 if
R
R
jxj ^ 1 �(dx) < 1.)

In what follows, H denotes the \canonical" truncation function, i.e.

H(x) = xI(jxj � 1): (3.2)

Lemma 3.13. (Transformation of the characteristics under subordina-
tion.) Let B be a Brownian motion and � be an independent subordinator with the

characteristics (�; 0; �)0 . Then B � � has the characteristics (0; �; �)H , where

� =

Z 1

0

Qz�(dz);

i.e. for any A 2 B(R), �(A) =
R1
0 Qz(A)�(dz). Here, Qz denotes the normal

distribution with the zero mean and with the variance x.

Proof. For any � 2 R, we have

Eei�(B��)1 = Ee�
�2

2
�1

= exp

�
��

2

2
� +

Z 1

0

�
e�

�2

2
z � 1

�
�(dz)

�

= exp

�
��

2

2
� +

Z 1

0

Z
R

�
ei�x � 1

�
Qz(dx)�(dz)

�

= exp

�
��

2

2
� +

Z 1

0

Z
R

�
ei�x � 1 � i�xI(jxj � 1)

�
Qz(dx)�(dz)

�

= exp

�
��

2

2
� +

Z
R

�
ei�x � 1� i�xI(jxj � 1)

�
�(dx)

�
:

In the �rst equality, we have used Fubini's theorem (compare with (3.1)); in the last
equality, we have used the estimatesZ 1

0

Z
R

��ei�x � 1� i�xI(jxj � 1)
��Qz(dx)�(dz)

� c�

Z 1

0

Z
R

x2 ^ 1Qz(dx)�(dz) � c�

Z 1

0

x ^ 1 �(dx) <1: 2

Remark. An extension of this lemma to general L�evy processes instead of a Brow-
nian motion can be found in [22; Theorem 30.1]. 2

Example 3.14. (L�evy measure of the VG process.) Let B be a Brownian

motion and � be an independent gamma process with parameters �; � , i.e. �1 has the

density
x��1e�x=�

���(�)
I(x > 0):
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Then B � � has the characteristics (0; 0; �)H , where

�(dx)

dx
=

�

jxje
�
p
2�jxj:

Proof. The process � has the characteristics (0; 0; �)0 , where

�(dx)

dx
=
�e��xI(x > 0)

x

(see [22; Example 8.10]). By Lemma 3.13, B � � has the characteristics (0; 0; �)H ,
where

�(dx)

dx
=

Z 1

0

�p
2�z

exp

�
�x

2

2z

�
e��z

z
dz

=
2�p
2�

Z 1

0

exp

�
�x

2y2

2
� �

y2

�
dy =

�

jxje
�
p
2�jxj:

In the last equality, we have applied [12; (3.325)]. 2

We now turn to the solution of the main problem in Setting V.

De�nition 3.15. A function ' : (0;1)! (0;1) is completely monotone if ' is
in�nitely di�erentiable, '0 < 0 on (0;1), '00 > 0 on (0;1) '000 < 0 on (0;1), and
so on.

Proposition 3.16. (Bernstein.) A function ' : (0;1) ! (0;1) is completely

monotone if and only if there exists a positive (not necessarily �nite) measure � on

[0;1) such that

'(x) =

Z 1

0

e�xy�(dy); x > 0: (3.3)

For the proof, see [10; Ch. XIII, x4].
Remark. A measure � satisfying (3.3) is unique (see [10; Ch. XIII, x1]). 2

Theorem 3.17. (a) Let X be a L�evy process with the characteristics (b; c; �)H .

Then X can be represented as X
law
= B � � in the sense of Setting V if and only if

(i) b = 0;
(ii) � is symmetric, absolutely continuous with respect to the Lebesgue measure,

and the density q(x) = �(dx)
dx

can be chosen in such a way that q(
p
x), x > 0 is

completely monotone.

(b) Suppose that conditions (i) and (ii) are satis�ed. Then there exists a unique

positive measure � on (0;1) such that

q(
p
x) =

Z 1

0

e�xy�(dy); x > 0:

Then a subordinator � satisfying the condition X
law
= B � � should have the charac-

teristics (�; 0; �)0 , where

� = c; �(dx) =
p
2�x(� � ��1)(dx):

Here, � : x 7! 1
2x
.
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Remark. The distribution of � is determined uniquely by the distribution of X
(see Exercise 3.24). 2

Proof of Theorem 3.17. (a) We �rst make the following observation. If � is a
positive measure on (0;1) and the measure

� :=

Z 1

0

Qz�(dz)

satis�es Z
R

x2 ^ 1 �(dx) <1;

then Z 1

0

x ^ 1 �(dx) <1:

In order to prove this, we writeZ
R

x2 ^ 1 �(dx) =

Z 1

0

Z
R

x2 ^ 1Qz(dx)�(dz) =

Z 1

0

'(z)dz

and note that

'(z) �
(
z; z ! 0;

1; z !1:

We now proceed as follows:

X can be represented as X
law
= B � �

() b = 0 and � =

Z 1

0

Qz�(dz); where � is a positive measure on (0;1)

such that

Z 1

0

x ^ 1 �(dx) <1

() b = 0 and � =

Z 1

0

Qz�(dz); where � is a positive measure on (0;1)

() b = 0 and � has the density q(x) =

Z 1

0

1p
2�z

e�
x2

2z �(dz); where � is a

positive measure on (0;1)

() b = 0 and � has a symmetric density q(x) such that, for x > 0;

q(
p
x) =

Z 1

0

e�xy�(dy); where � is a positive measure on (0;1)

() b = 0 and � has a symmetric density q(x) such that q(
p
x); x > 0

is completely monotone.

In the �rst equivalence we have applied Lemma 3.13; in the last equivalence we have
used Proposition 3.16 and the fact that a measure � satisfying the equality q(

p
x) =R1

0 e�xy�(dy) has no mass at zero (otherwise �([1;1)) would be in�nite).

(b) This statement easily follows from the reasoning above. 2

Remark. The above proof also shows that a probability distribution on R can be
represented as a mixture of the normal distributions with the zero mean if and only
if it is symmetric and admits a density q(x) such that q(

p
x), x > 0 is completely

monotone. 2
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Lemma 3.18. (a) If ' and  are completely monotone, then ' is completely

monotone.

(b) If ' is completely monotone and  : (0;1) ! (0;1) has a completely

monotone derivative, then ' �  is completely monotone.

Proof. (a) This is a direct consequence of the equality

(' )(n) = '(n) + C1
n'

(n�1) (1) + � � �+ Cn�1
n '(1) (n�1) + ' (n):

Here, '(n) denotes the n-th derivative of '.

(b) The proof is Exercise 3.36. 2

De�nition 3.19. A CGMY process is a L�evy process with the zero di�usion co-
e�cient and with the L�evy measure

�(dx)

dx
=
Ce�GjxjI(x < 0) + Ce�M jxjI(x > 0)

jxjY+1 :

Here, C > 0, G > 0, M > 0, Y < 2.

Theorem 3.17 and Lemma 3.18 yield

Corollary 3.20. A CGMY process X with G = M , 0 � Y < 2 can be repre-

sented as X
law
= B � � in the sense of Setting V.

3.3 Exercises

Exercise 3.21. (On (Ft)-Brownian motions.) Let B be a Brownian motion
on a probability space (
;F ;P) and (Ft) be a �ltration on this space. Prove that
the following conditions are equivalent:

(i) B is an (Ft)-local martingale;
(ii) B is an (Ft)-martingale;
(iii) B is (Ft)-adapted, and, for any s � t, the increment Bt�Bs is independent

of Fs .
(Hint: Use Exercise 4.9.)

� Exercise 3.22. Let B be a Brownian motion. Construct an (FB
t )-time-change �

such that (B � � )t = t; t � 0.

Exercise 3.23. Let B be an (Ft)-Brownian motion and H be an (Ft)-predictable
process such that

8t � 0;

Z t

0

H2
s ds <1 a.s.

Set

Mt = exp

�Z t

0

HsdBs � 1

2

Z t

0

H2
s ds

�
; t � 0:

Prove that n
lim
t!1

Mt = 0
o
=

�Z 1

0

H2
s ds =1

�
a.s.;n

lim
t!1

Mt 2 (0;1)
o
=

�Z 1

0

H2
s ds =1

�
a.s.
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# Exercise 3.24. (Revealing the law of the time-change.) Let B be a Brow-
nian motion and � , e� be increasing c�adl�ag processes that are independent of B .

Supppose that B � � law
= B � e� . Prove that � law

= e� .
Example 3.25. Give an example of a Brownian motion B and an independent

increasing c�adl�ag process � such that B � � is not a local martingale.

� Exercise 3.26. Give an example of a continuous local martingale started at zero
that is not an Ocone martingale.

� Exercise 3.27. Give an example of an Ocone martingale that is not a martingale.

# Exercise 3.28. (Determining the law of a martingale by the law of its
bracket.) (a) Give an example of two continuous local martingales X and Y started

at zero such that hXi law
= hY i, but X and Y have di�erent laws.

(b) Let X and Y be two Ocone martingales such that hXi law
= hY i. Prove that

X
law
= Y .

Exercise 3.29. Let X be an Ocone martingale and H be an (FX
t )-predictable

process with jHj = 1. Prove that�Z t

0

HsdXs; hXit; t � 0

�
law
= (Xt; hXit; t � 0):

Exercise 3.30. (An extension of P. L�evy's theorem to Ocone martin-
gales.) Let X be an Ocone martingale. Set St = supu�tXu and let L denote the
local time of X at zero. Prove that

(S �X;S)
law
= (jXj; L):

(Hint: Use P. L�evy's theorem; see [21; Ch. VI, Theorem 2.3].)

*
Exercise 3.31. Prove the implication (i))(iii) in Proposition 3.6.

# Exercise 3.32. Prove Lemma 3.8.

# Exercise 3.33. (Change of time for a Brownian motion with a drift.)
Let B� be a Brownian motion with a drift � and let � be an independent subordi-
nator with the characteristics (�; 0; �)0 . Prove that the di�usion coe�cient of B� � �
equals � and the L�evy measure of B��� equals

R1
0
Qz�(dz), where Qz is the normal

distribution with the mean �z and the variance z .

Exercise 3.34. (L�evy measure of the VG process.) Let B� be a Brownian
motion with a drift � and � be an independent gamma process with parameters �; �
(see Example 3.14). Prove that the L�evy measure of B� � � is given by

�(dx)

dx
=

�

jxje
�(p�2+2�+�)jxjI(x < 0) +

�

jxje
�(p�2+2���)jxjI(x > 0):

(Hint: Use Exercise 3.33.)
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# Exercise 3.35. Let X be a L�evy process with the characteristics (b; c; �)H . Prove
that X can be represented as

(Xt; t � 0)
law
= (t+ (B� � � )t; t � 0);

where �;  2 R, B� is a Brownian motion with a drift � and � is an independent
subordinator, if and only if � admits the density e�xq(x), where q(x) is symmetric
and q(

p
x), x > 0 is completely monotone.

# Exercise 3.36. Prove Lemma 3.18 (b).

# Exercise 3.37. Let (�;A; �) be a measurable space with a positive measure � .
Let f(�; x) be an A � B(R+)-measurable function such that, for any � 2 �, the
function f(�; �) is completely monotone.

(a) Let �� denote the (unique) measure such that

f(�; x) =

Z 1

0

e�xy��(dy); x > 0:

Prove that, for any A 2 B(R+), the map � 7! ��(A) is A-measurable.
(b) Suppose that the function

f(x) :=

Z 1

0

f(�; x)�(d�)

is �nite for any x > 0. Prove that f is completely monotone.

�# Exercise 3.38. (Generalized hyperbolic distributions.) The generalized

hyperbolic distribution (GHYP) with parameters �; �; �; �; � (here, � 2 R, � > 0,
� 2 (��;�), � > 0, � 2 R) is known to be in�nitely divisible with the L�evy measure

�(dx)

dx
=

8>>>><>>>>:
e�x

jxj
�Z 1

0

expf�
p
2y + �2jxjg

�2y(J2
�(�
p
2y) + Y 2

� (�
p
2y))

dy + �e��jxj
�

if � � 0;

e�x

jxj
Z 1

0

expf�p2y + �2jxjg
�2y(J2

��(�
p
2y) + Y 2

��(�
p
2y))

dy if � < 0

(3.4)

(see [7; (3.10),(3.11)]). Here, J� and Y� are the Bessel functions of the �rst and
the second kind, respectively. This class of distributions includes NIG and HYP as
particular cases.

(a) Prove that a symmetric generalized hyperbolic L�evy process X can be repre-

sented as X
law
= B � � in the sense of Setting V.

(Hint: Use Exercise 3.37.)
(b) Prove that any generalized hyperbolic L�evy process X can be represented as

(Xt; t � 0)
law
= (t+ (B� � � )t; t � 0);

where  2 R, B� is a Brownian motion with a drift � and � is an independent
subordinator.

(Hint: Use Exercises 3.35 and 3.37.)
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Exercise 3.39. Let B be a Brownian motion and � be an independent subordi-
nator. Prove that the following conditions are equivalent:

(i) B � � is a � -martingale (see De�nition A.9);
(ii) B � � is a martingale;
(iii) for any t � 0, E

p
�t <1;

(iv) the L�evy measure � of � satis�es
R1
1

p
x�dx <1.

(Hint: For the implication (i))(ii), use Exercise 4.22. For the equivalence
(iii),(iv), use Proposition A.2.)

Exercise 3.40. Let B be a Brownian motion and � be an independent subordi-
nator. Prove that the following conditions are equivalent:

(i) B � � is a process of �nite variation;

(ii) the L�evy measure � of � satis�es
R 1

0

p
x�(dx) <1.

(Hint: Use Proposition A.6.)

An open problem is

Problem 3.41. Which processes X can be represented as X
law
= B � � in the

sense of Setting III?



4 Change of Measure for L�evy Processes

4.1 General Theorems

Throughout this section, T is a �xed positive number meaning the time horizon.

De�nition 4.1. Let
�

;F ; (Ft)t�T ;P

�
be a �ltered probability space. A process

(Xt)t�T is called an (Ft)-L�evy process if X is a L�evy process, X is (Ft)-adapted,
and, for any s � t, the increment Xt �Xs is independent of Fs .

Lemma 4.2. If (Xt)t�T is an (Ft)-L�evy process, then, for any s � T , the � -�eld
�(Xt �Xs; t 2 [s; T ]) is independent of Fs .

The proof is Exercise 4.10.

Lemma 4.3. (Change of measure for compound Poisson processes.) Let

(Xt)t�T be an (Ft;P)-L�evy process with the characteristics (0; 0; �)0 , where � is a

�nite measure (i.e. X is a compound Poisson process). Let e� be a �nite measure

such that e� � � . Consider

Mt = exp

�
t(�(R)� e�(R))+X

s�t
ln �(�Xs)

�
; t � T;

where � = de�
d�

(we set �(0) = 0). Then M is an (Ft;P)-martingale. If we seteP =MTP, then X is an (Ft; eP)-L�evy process with the characteristics (0; 0; e�)0 .
Proof. As �(R)<1, the process X has a.s. only a �nite number of jumps, and

thus, M is de�ned correctly. For any s � t, we have

E(Mt j Fs) =Ms expf(t� s)(�(R)� e�(R))g E Y
s<r�t

�(�Xr)

=Ms expf�(t� s)e�(R)g 1X
k=0

((t� s)�(R))k

k!

�Z
R

�(x)

�(R)
�(dx)

�k

=Ms:

In the �rst equality, we have applied Lemma 4.2.
In order to prove that X is an (Ft; eP)-L�evy process with the prescribed charac-

teristics, it is su�cient to note that, for any s � t and � 2 R,

E
ePu

�
ei�(Xt�Xs)

��Fs

�
= E

�
ei�(Xt�Xs)

Mt

Ms

����Fs

�
= E exp

(X
s<r�t

i��Xr + (t� s)(�(R)� e�(R))+ X
s<r�t

ln �(�Xr)

)

= expf�(t� s)e�(R)g 1X
k=0

((t� s)�(R))k

k!

�Z
R

ei�x+ln�(x)

�(R)
�(dx)

�k

= exp

�
�(t� s)e�(R)+ (t� s)

Z
R

ei�x+ln�(x)�(dx)

�
= exp

�
(t� s)

Z
R

�
ei�x � 1

�e�(dx)�:
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In the �rst equality, we have used the Bayes formula; in the second equality, we have
applied Lemma 4.2. Consequently, Xt�Xs is eP -independent of Fs (see Exercise 4.9)
and has the prescribed characteristic function. 2

Proposition 4.4. (Change of measure for L�evy processes.) Let (Xt)t�T
and ( eXt)t�T be L�evy processes with the characteristics (b; c; �)H and (eb;ec; e�)H , re-
spectively. Then Law(Xt; t � T ) � Law( eXt; t � T ) if and only if the following

conditions are satis�ed:

(i) either c > 0, or c = 0 and

eb = b+

Z
fjxj�1g

x(� � e�)(dx); (4.1)

(ii) ec = c;
(iii) e� � � and Z

R

�p
�(x)� 1

�2
�(dx) <1; (4.2)

where � = de�
d�
.

For the proof, see [22; Theorem 33.1].

Remark. Condition (4.2) guarantees thatZ
fjxj�1g

jxjdVar(� � e�)(dx) <1;

and thus, the rigth-hand side of (4.2) is de�ned correctly (see Exercise 4.12). 2

Proposition 4.5. Let (Xt)t�T and ( eXt)t�T be L�evy processes with the character-

istics (b; c; �)H and (eb;ec; e�)H , respectively. Suppose that e� � � . Then the distribu-

tions Law(Xt; t � T ) and Law( eXt; t � T ) are either equivalent or singular.

For the proof, see [2].

4.2 No Arbitrage and Completeness of Exponential L�evy

Models

Let
�

;F ; (Ft)t�T ;P

�
be a �ltered probability space. Let (Xt)t�T be an (Ft)-L�evy

process. Consider an exponential L�evy model for the discounted stock price:

St = S0e
Xt; t � T; (4.3)

where S0 > 0.
In the following theorems we exclude the trivial case X � 0.

Theorem 4.6. (No arbitrage.) (a) Model (4.3) does not satisfy the (NFLVR)
condition (see De�nition A.12) only in the following cases:

(i) S is increasing;

(ii) S is decreasing.

(b) Moreover, if the (NFLVR) condition is satis�ed, then there exists a measureeP � P such that S is an (Ft; eP)-martingale and X is an (Ft; eP)-L�evy process.
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Theorem 4.7. (Completeness.) Suppose that model (4.3) satis�es the (NFLVR)
condition and Ft = FS

t . Then the model is complete (see De�nition A.14) only in the

following cases:

(i) Xt = �t + �Bt , where B is a Brownian motion and � 6= 0;

(ii) Xt = �t+ �N�t , where N is a standard Poisson process and �� < 0.

Remarks. (i) Theorem 4.6 (a) was proved in the paper [15] by P. Jakub_enas. We
will give here a di�erent proof.

(ii) M. Yor and J. de Sam Lazaro [26; Appendix] proved the following result.
Suppose that (Xt)t�0 is a martingale such that, for any s � 0, Law(Xt; t � 0) =
Law(Xt+s �Xs; t � 0). Set Ft = FX

t . Then any (FX
t )-local martingale started at

zero can be represented as a stochastic integral with respect to X if and only if X is a
Brownian motion or a compensated Poisson process (compare with Exercise 4.24). 2

In what follows, we use the notation

Ha(x) = xI(jxj � a); (4.4)

where a is a positive real number.

The expectation sign with no subscript will always mean the expectation with
respect to the original measure P.

Lemma 4.8. Let a > 0 and (Xt)t�T be an (Ft)-L�evy process with the character-

istics (b; c; �)Ha . Let e� be a positive measure such that e� = � on fjxj � ag, e� � �

on fjxj > ag, and e�(fjxj > ag) <1. Then there exists a measure eP � P such that

X is an (Ft; eP)-L�evy process with the characteristics (b; c;e�)Ha .

Proof. Consider the processes

X1
t =

X
s�t

�XsI(j�Xsj > a); X2
t = Xt �X1

t ; t � T:

Then X1 and X2 are independent L�evy processes with the characteristics
�
0; 0; �jfjxj>ag

�
0

and
�
b; c; �jfjxj�ag

�
Ha
, respectively. Moreover, the two-dimensional process (X1;X2)

is an (Ft)-L�evy process (see Exercise 4.20).

Set

Mt = exp

�
t(�(fjxj > ag)� e�(fjxj > ag)) +

X
s�t

ln �(�X1
s )

�
; t � T;

where � = de�
d�
. Similarly to the proof of Lemma 4.3, we check that M is an (Ft;P)-

martingale. Consider eP =MTP. Then, by Lemma 4.3, X1 is an (Ft; eP)-L�evy process
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with the characteristics
�
0; 0; e�jfjxj>ag�0 . Furthermore, for any s � t, � 2 R, we have

E
�
ei�(Xt�Xs) j Fs

�
= E

�
ei�(Xt�Xs)

Mt

Ms

���� Fs

�
= Eei�(Xt�Xs)

Mt

Ms
= Eei�(X

1
t�X1

s )
Mt

Ms
Eei�(X

2
t�X2

s )

= exp

�
(t� s)

Z
fjxj>ag

�
ei�x � 1

�e�(dx)�
� exp

�
(t� s)

�
i�b� �2

2
c+

Z
fjxj�ag

�
ei�x � 1� i�x

�
�(dx)

��
= exp

�
(t� s)

�
i�b� �2

2
c +

Z
R

�
ei�x � 1 � i�Ha(x)

�
�(dx)

��
:

(4.5)

Consequently, Xt � Xs is eP-independent of Fs (see Exercise 4.9) and has the pre-
scribed characteristic function. 2

Proof of Theorem 4.6. Throughout the proof, c denotes the di�usion coe�cient
of X and � denotes the L�evy measure of X . We will prove the theorem by considering
several cases.

Case I. Suppose that there exists a > 0 such that �((�1;�a)) > 0 and
�((a;1)) > 0. Let b be the �rst characteristic of X with respect to Ha . There
exists a positive measure e� such thate� = � on fjxj � ag; (4.6)e� � � on fjxj > ag; (4.7)e�(fjxj > ag) <1; (4.8)Z

fjxj>ag
exe�(dx) <1; (4.9)

b+
c

2
+

Z
R

�
ex � 1� xI(jxj � a)

�e�(dx) = 0: (4.10)

In order to construct such a measure, it is su�cient to take �rst a rapidly decreasing at
in�nity function � such that � > 0, � = 1 on [�a; a], and the measure � = �� satis�es
conditions (4.6){(4.9). Then, using the density of the form e� = �I(x � a)+�I(x > a)
with �; � > 0, one can construct a measure e� = e�� that satis�es conditions (4.6){

(4.10). By Lemma 4.8, there exists a measure eP � P such that X is an (Ft; eP)-
L�evy process with the characteristics (b; c; e�)Ha . It follows from Proposition A.5 that

E
eP
eXt = 1, t � T . Now, it is easy to see that eX is an (Ft; eP)-martingale.

Case II. Suppose that � is concentrated on (0;1) and
R 1

0 x�(dx) =1. Let b(a)
denote the �rst characteristic of X with respect to Ha . Then, for a 2 (0; 1),

b(a) = b(1) �
Z
fa<x�1g

x�(dx);

and, due to the condition
R 1

0
x�(dx) = 1, we can choose a > 0 such that

�(fx > ag) > 0 and

b(a) +
c

2
+

Z
f0<x�ag

�
ex � 1 � x

�
�(dx) < 0:
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Obviously, there exists a positive measure e� that satis�es conditions (4.6){(4.10). We
now proceed as in Case I.

Case III. Suppose that � is concentrated on (0;1),
R 1

0 x�(dx) <1, and c > 0.
By the L�evy-Itô decomposition (see Proposition A.7), X can be represented as
X = X1 +X2 , where X1 and X2 are independent L�evy processes with the charac-
teristics (0; 0; �)H and (b; c; 0)H , respectively. (Here, b denotes the �rst characteristic
of X with respect to H .) The two-dimensional process (X1;X2) is an (Ft)-L�evy
process (see Exercise 4.19). There exists a positive measure e� that satis�es condi-
tions (4.6){(4.9) with a = 1. Take

eb = � c
2
�
Z
R

�
ex � 1�H(x)

�
�(dx)

and set

Mt = exp

�
t(�(fjxj > 1g � e�(fjxj > 1g)) +

X
s�t

ln �(�X1
s )

�

� exp

�eb� b

�2
X2
t �

(eb� b)2

2�2
t

�
; t � T;

where � = de�
d�
. Computations similar to (4.5) show that M is an (Ft;P)-martingale,

and X is an (Ft; eP)-L�evy process with the characteristics (eb; c; e�)H , where eP =MTP.
We now proceed as in Case I.

Case IV. Suppose that � is concentrated on (0;1),
R 1

0 x�(dx) <1, c = 0, and
b < 0, where b is the �rst characteristic of X with respect to the zero truncation
function. The �rst characteristic b(a) with respect to Ha is given by

b(a) = b+

Z
f0<x�ag

x�(dx):

We can �nd a > 0 such that �((a;1)) > 0 and

b(a) +

Z
f0<x�ag

�
ex � 1 � x

�
�(dx) < 0:

We now proceed as in Case I.

Case V. Suppose that � is concentrated on (0;1),
R 1

0 x�(dx) < 1, c = 0, and
b � 0, where b is the �rst characteristic of X with respect to the zero truncation
function. In this case X is a subordinator (see [22; Theorem 21.5]), and hence, S is
increasing.

Case VI. Suppose that � = 0. In this case the desired statement follows from
Girsanov's theorem.

The cases, where � is concentrated on (�1; 0), are considered similarly to
Cases II{V. 2

Proof of Theorem 4.7. Part I. Let us �rst prove that in cases (i), (ii) the model
is complete.

In case (i) this is the Black-Scholes-Samuelson model, and its completeness is
widely known.
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In case (ii) we have, by Itô's formula (see [14; Ch. I, Theorem 4.57]),

St = S0 +

Z t

0

eXs�dXs +
X
s�t

�
eXs � eXs� � eXs��Xs

�
= S0 + �

Z t

0

eXs�ds+ �

Z t

0

eXs�dN�s +
X
s�t

eXs�
�
e��N�s � 1 � ��N�s

�
= S0 + �

Z t

0

eXs�ds+
X
s�t

eXs�
�
e��N�s � 1

�
= S0 + �

Z t

0

eXs�ds+ (e� � 1)

Z t

0

eXs�dN�s

= S0 + (e� � 1)

Z t

0

eXs� d

�
N�s � �

1� e�
s

�
; t � T:

(4.11)

In view of Lemma 4.3, there exists a measure eP � P such that with respect to eP the
process (N�t)t�T is a Poisson process with intensity �

1�e� (note that �
1�e� < 0 since

�� < 0). Then �
1�e� t is the

eP-compensator of N�t , and it is known that any (Ft; eP)-
local martingale M (recall that Ft = FS

t = FN
t ) started at zero can be represented

as

Mt =

Z t

0

Ks d

�
N�s � �

1� e�
s

�
(see [14; Ch. III, Theorem 4.37]). Hence, M can also be represented as a stochastic
integral with respect to S . Now, it follows from the Second Fundamental Theorem
of Asset Pricing (see Proposition A.15) that the model is complete.

Part II. Let us prove that model (4.3) is complete only in cases (i) and (ii). Let �
denote the L�evy measure of the process X . Suppose that the support of � contains
more than one point. The analysis of the proof of Theorem 4.6 shows that in this
case one can construct two di�erent measures eP and eP0 that are equivalent to P and
such that S is a martingale with respect to both of them. So, in this case the model
is not complete.

Suppose now that the L�evy measure of X is concentrated at one point. Then X
can be represented as

Xt = �t+ �Bt + �N�t; t � T; (4.12)

where �; �; � 2 R, � > 0, B is a Brownian motion, and N is a standard Poisson
process that is independent of B . By Itô's formula (compare with (4.11)),

St = S0 +

Z t

0

eXs�d

�
�s+

�2

2
s+ �Bs + (e� � 1)N�s

�
; t � T: (4.13)

Using Girsanov's theorem and Lemma 4.8, we can, for each a 2 R, b > 0, construct
a measure ePab � P such that with respect to this measure B is a Brownian motion
with the drift a and N is a Poisson process with the intensity b that is independent
of B . If

�+
�2

2
+ �a+ (e� � 1)�b = 0; (4.14)
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then, in view of (4.13), the process S is an (Ft; ePab)-local martingale.
Suppose that �; � 6= 0. Then there exist di�erent pairs (a; b) satisfying (4.14) and

hence, di�erent equivalent local martingale measures for S . As a result, model (4.3)
with X given by (4.12) can be complete only if � = 0 or � = 0. But these are exactly
cases (i) and (ii). 2

4.3 Exercises

# Exercise 4.9. (On conditional characteristic functions.) Let � be a
d-dimensional random variable on (
;F ;P) and G � F . Suppose that

8� 2 Rd; E
�
eih�;�i j G� = Eeih�;�i:

Prove that � is independent of G .
# Exercise 4.10. Prove Lemma 4.2.

(Hint: Use Exercise 4.9.)

� Exercise 4.11. Let (Xt)t�T and ( eXt)t�T be compound Poisson processes with

L�evy measures � and e� , respectively. Prove that Law( eXt; t � T )� Law(Xt; t � T )
if and only if e� � � .

� Exercise 4.12. Prove the remark following Proposition 4.4.

# Exercise 4.13. (Revealing the drift of a L�evy process.) Let (Xt)t�T be a
L�evy process with the di�usion coe�cient c. Let a 6= 0.

(a) Prove that if c 6= 0, then Law(Xt + at; t � T ) � Law(Xt; t � T ).
(b) Prove that if c = 0, then Law(Xt + at; t � T ) ? Law(Xt; t � T ).

# Exercise 4.14. (Revealing the time scale of a L�evy process.) Let (Xt)t�0
be a L�evy process. Let a > 0 and a 6= 1.

(a) Prove that if X is a compound Poisson process, then Law(Xat; t � T ) �
Law(Xt; t � T ).

(b) Prove that if X is not a compound Poisson process, then Law(Xat; t � T ) ?
Law(Xt; t � T ).

Exercise 4.15. (Singularity of distributions of L�evy processes with dif-

ferent di�usion coe�cients.) Let (Xt)t�T and ( eXt)t�T be two L�evy processes

with di�erent di�usion coe�cients. Prove that Law( eXt; t � T ) ? Law(Xt; t � T ).
(Hint: Use the L�evy-Itô decomposition; see Proposition A.7.)

Exercise 4.16. (Singularity of distributions of di�erent stable processes.)

Let (Xt)t�T and ( eXt)t�T be two stable L�evy processes with di�erent distributions.

Prove that Law( eXt; t � T ) ? Law(Xt; t � T ).

# Exercise 4.17. (Singularity of distributions of di�erent L�evy processes.)

Let (Xt)t�0 and ( eXt)t�0 be two L�evy processes with di�erent distributions. Prove

that Law( eXt; t � 0) ? Law(Xt; t � 0).
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� Exercise 4.18. Give an example of two L�evy processes (Xt)t�T and ( eXt)t�T such
that neither of the following conditions is satis�ed:

Law( eXt; t � T )� Law(Xt; t � T );

Law(Xt; t � T )� Law( eXt; t � T );

Law( eXt; t � T ) ? Law(Xt; t � T ):

# Exercise 4.19. Let (Xt)t�0 be an (Ft)-L�evy process and X
1 , X2 be the processes

given by the L�evy-Itô decomposition (see Proposition A.7). Prove that the two-
dimensional process (X1;X2) is an (Ft)-L�evy process.

# Exercise 4.20. Let a > 0 and (Xt)t�0 be an (Ft)-L�evy process with the charac-
teristics (b; c; �)Ha . Set

X1
t =

X
s�t

�XsI(j�Xsj > a); X2
t = Xt �X1

t ; t � 0:

(a) Prove that X1 and X2 are independent L�evy processes with the characteristics�
0; 0; �jfjxj>ag

�
0
and

�
b; c; �jfjxj�ag

�
Ha
, respectively.

(Hint: Use the L�evy-Itô decomposition; see Proposition A.7.)
(b) Prove that the two-dimensional process (X1;X2) is an (Ft)-L�evy process.

# Exercise 4.21. (No arbitrage for a linear L�evy model.) Let (Xt)t�T be an
(Ft)-L�evy process. Consider a linear L�evy model

St = S0 +Xt; t � T;

where S0 2 R.
(a) Prove that this model does not satisfy the (NFLVR) condition only in the

following cases:
(i) S is increasing;
(ii) S is decreasing.
(b) Prove that if the (NFLVR) condition is satis�ed, then there exists a measureeP � P such that X is an (Ft; eP)-martingale and an (Ft; eP)-L�evy process.
(Hint: Use Proposition A.4.)

*
Exercise 4.22. (On L�evy martingales.) (a) Let (Xt)t�0 be an (Ft)-L�evy

process. Prove that the following conditions are equivalent:
(i) X is an (Ft)-� -martingale (see De�nition A.9);
(ii) X is an (Ft)-martingale.
(Hint: Use Propositions A.4 and A.11.)
(b) Let (Xt)t�0 be an (Ft)-L�evy process. Prove that the following conditions are

equivalent:
(i) eX is an (Ft)-� -martingale;
(ii) eX is an (Ft)-martingale.
(Hint: Use Propositions A.5 and A.11.)
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# Exercise 4.23. (Completeness for a linear L�evy model.) Suppose that a
linear L�evy model introduced in Exercise 4.21 satis�es the (NFLVR) condition and
Ft = FS

t . Prove that the model is complete only in the following cases:
(i) Xt = �t+ �Bt , where B is a Brownian motion and � 6= 0;
(ii) Xt = �t+ �N�t , where N is a standard Poisson process and �� < 0.

# Exercise 4.24. (Predictable representation property for L�evy processes.)
Let (Xt)t�0 be a L�evy process. Suppose that X is a martingale and any
(FX

t )-local martingale started at zero can be represented as a stochastic integral
with respect to X . Prove that either Xt = �Bt , where B is a Brownian motion, or
Xt = �N�t � ��t, where N is a standard Poisson process.

(Hint: Use Exercise 4.23 and the Second Fundamental Theorem of Asset Pricing;
see Proposition A.15.)

Exercise 4.25. (On the condition Ft = FS
t .) Give an example of an (Ft)-

Brownian motion B and an (Ft)-local martingale started at zero that cannot be
represented as a stochastic integral with respect to B .

Exercise 4.26. (On the condition Ft = FS
t .) Give an example of an (Ft)-

Brownian motion B such that (Ft) is strictly larger than (FB
t ), but any (Ft)-local

martingale started at zero can be represented as a stochastic integral with respect
to B .

An open problem is

Problem 4.27. (Exponential L�evy models with an in�nite time horizon.)
Consider model (4.3) with an in�nite time horizon. In which cases does this model
satisfy the (NFLVR) condition?
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5.1 Nice Properties of Time-Changed Exponential L�evy

Models

Throughout this section, T is a �xed positive number meaning the time horizon.
Let

�

;G; (Gt)t�0;P

�
be a �ltered probability space and (Xt)t�0 be a (Gt)-L�evy

process. Let (�t)t�T be an increasing c�adl�ag process that is G0 -adapted (in particular,
X and � are independent; see Lemma 4.2). Consider a time-changed exponential L�evy

model for the discounted stock price:

St = S0e
(X��)t; t � T; (5.1)

where S0 > 0. The �ltration (Ft)t�T is an arbitrary �ltration such that FS
t � Ft � G�t .

De�nition 5.1. A process Z has stationary increments if the distribution of
Zt � Zs depends only on t� s.

Lemma 5.2. Let (Xt)t�0 be a L�evy process and (�t)t�T be an independent increas-

ing c�adl�ag process with stationary increments. Then X �� has stationary increments.

Proof. We can assume that (
;F ;P) = (
1;F1;P1)�(
2;F2;P2) and X = X(!1) ,
� = � (!2). Denoting by �(�) the characteristic exponent of X (i.e. Eei�Xt = et�(�)),
we get, for any s � t, � 2 R,

Eei�((X��)t�(X��)s) =
Z

2

Z

1

exp
�
i�
�
X�t(!2)(!1)�X�s(!2)(!1)

�	
P1(d!1)P2(d!2)

=

Z

2

exp
�
(�t(!2)� �s(!2))�(�)

	
P2(d!2) = Eei(�t��s)�(�);

and this quantity depends only on t� s and �. 2

Lemma 5.3. Let (Xt)t�0 be a L�evy process such that, for any t � 0, EX2
t < 1

and EXt = 0. Let (�t)t�T be an independent increasing c�adl�ag process such that, for

any t � 0, E�t < 1. Then, for any t � 0, E(X � � )2t < 1 and E(X � � )t = 0.
Moreover, the increments of X � � over disjoint intervals are not correlated.

The proof is Exercise 5.8.

5.2 No Arbitrage and Completeness of Time-Changed

Exponential L�evy Models

In the following theorems we exclude the trivial case X � 0.

Theorem 5.4. (No arbitrage.) (a) Model (5.1) does not satisfy the (NFLVR)
condition (see De�nition A.12) only in the following cases:

(i) S is increasing;

(ii) S is decreasing.

(b) Moreover, if the (NFLVR) condition is satis�ed, then there exists a measureeP � P such that S is an (Ft; eP)-martingale and

Law((X � � )t; t � T j eP) = Law((Z � �)t; t � T );

where Z is a L�evy process and � is an independent increasing c�adl�ag process.
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Theorem 5.5. (Completeness.) Suppose that model (5.1) satis�es the (NFLVR)
condition and Ft = FS

t . Then the model is complete (see De�nition A.14) only in the

following cases:

(i) Xt = �t+ �Bt , where B is a Brownian motion, � 6= 0, and � is a continuous

deterministic function;

(ii) Xt = �t+ �N�t , where N is a standard Poisson process, �� < 0, and � is a

continuous deterministic function.

Proof of Theorem 5.4. (a) The conditions of the theorem imply that X is
neither increasing nor decreasing. The analysis of the proof of Theorem 4.6 shows that
there exists an (FX

t )-adapted (Gt;P)-martingale (Mt)t�0 such that, for any u � 0,

the process (Xt)t�u is a (Gt; ePu)-L�evy process and (eXt)t�u is a (Gt; ePu)-martingale,

where ePu =MuP. Denote

Q = Law(Xt; t � 0);eQu = Law(Xt; t � 0 j ePu); u � 0;

R = Law(�t; t � T );

so that Q, eQu are measures on D(R+) and R is a measure on D([0; T ]). Since (Xt)t�u
is a ePu -L�evy process and E

ePu
eXt = 1 for t � u, we conclude by Proposition A.3 that

E
ePu
supt�u e

Xt <1.

Obviously, there exists a measure eR � R such that the density � = deR
dR

is bounded
and Z

D([0;T ])

Z
D(R+)

sup
t��T

eXt eQ�T (dX) eR(d� ) <1: (5.2)

(In order to construct such a measure, it is su�cient to consider the density of the
form �(� ) = '(�T ), where ' is a bounded rapidly decreasing at in�nity function.)

Set eP = �(� )M�T (X)P. It follows from the equalities

E�(� )M�T (X) =

Z
D([0;T ])

e�(� ) Z
D(R+)

M�T (X)Q(dX)R(d� ) =

Z
D([0;T ])

�(� )R(d� ) = 1

and

P
�
�(� )M�T (X) > 0

�
=

Z
D([0;T ])

I(�(� ) > 0)

Z
D(R+)

I(M�T (X) > 0)Q(dX)R(d� )

=

Z
D([0;T ])

I(�(� ) > 0)R(d� ) = 1

that eP is a probability measure and eP � P.
Set Yt = Xt^�T . Then

E
eP
sup
t�0

eYt = E
eP
sup
t��T

eXt =

Z
D([0;T ])

�(� )

Z
D(R+)

sup
t��T

eXtM�T (X)Q(dX)R(d� )

=

Z
D([0;T ])

Z
D(R+)

sup
t��T

eXt eQ�T (dX) eR(d� ) <1
(5.3)



26 Section 5. Change of time for L�evy processes

(see (5.2)). For any u � 0, the process (Mte
Xt)t�u is a (Gt;P)-martingale (see [14;

Ch. III, Proposition 3.8]). Hence, (Mte
Xt)t�0 is a (Gt;P)-martingale. Consequently,

(Mt^�T e
Yt)t�0 is a (Gt;P)-martingale. Since �(� ) is bounded and G0 -measurable, the

process (�(� )Mt^�T e
Yt)t�0 is a (Gt;P)-martingale. Notice that (�(� )Mt^�T )t�0 is the

density process of eP with respect to P. Thus, (eYt)t�0 is a (Gt; eP)-martingale (see [14;
Ch. III, Proposition 3.8]). Combining this with (5.3), we conclude that (eYt)t�0 is a

uniformly integrable (Gt; eP)-martingale. The theory of martingales ensures that there
exists a random variable � such that, for any t � T , e(Y ��)t = E

eP
(� j G�t). This

implies that the process eY �� is a (G�t; eP)-martingale. Obviously, eY �� = eX�� , and
hence, eX�� is an (Ft; eP)-martingale.

(b) The analysis of the proof of Theorem 4.6 shows that there exists a L�evy process
(Zt)t�0 such that, for any u � 0,

Law(Xt; t � u j ePu) = Law(Zt; t � u):

Obviously,
Law((X � � )t; t � T j eP) = Law((Z � �)t; t � T );

where Z , � are independent and Law(�t; t � T ) = eR. 2

Proof of Theorem 5.5. Part I. Let us prove that in case (i) the model is com-

plete. Obviously, there exists a measure eP � P such that Xt = � eBt � �2

2 t, where

( eBt)t��T is a Brownian motion with respect to eP (recall that � is deterministic).

Let (Mt)t�T be an (Ft; eP)-martingale started at zero. Set �t = inffs � 0 : �s > tg
for t < �T and ��T = T . Then � is an increasing right-continuous function. The

process (M�t)t��T is an (F�t; eP)-martingale. Note that Ft = FS
t = FX

�t
= F eB

�t
, t � T .

In view of the continuity of � , we have F�t = F eB
��t

= F eB
t , t � �T . Hence, there exists

an (F eB
t )-predictable eB -integrable process (Ht)t��T such that

M�t =

Z t

0

Hsd eBs; t � �T :

In view of the equality

eXt = 1 + �

Z t

0

eXsd eBs; t � 0;

we have

M�t =
1

�S0

Z t

0

Hue
�Xud(S0e

Xu) =

Z t

0

eHud(S0e
Xu); t � �T :

Using the time-change formula for stochastic integrals (see [21; Ch. V, Proposi-
tion 1.5]), we deduce that

M��t
=

Z t

0

eH�udSu; t � T:

Let [a; b] be an interval of constancy of � , i.e. �a = �b . Then Fa = Fb up to
P-null sets, and hence, Ma = Mb a.s. Since M is c�adl�ag, this means that almost
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all the paths of M are constant over all the intervals of constancy of � . Hence,
M��t

=Mt for t � T .

Thus, any (Ft; eP)-martingale started at zero can be represented as a stochastic

integral with respect to S . Then this is also true for all the (Ft; eP)-local martingales.
By the Second Fundamental Theorem of Asset Pricing, the model is complete.

The proof of the completeness for case (ii) is similar.

Part II. Suppose that the model is complete. Assume �rst that � is not determin-
istic. Then there exists r 2 [0; T ] such that the support of Law(�r) contains at least
two points a, b. We can choose a sequence of bounded densities �n(� ) such that they
satisfy (5.2) and

Law(�r j �nR) w���!
n!1

�a:

Here, R = Law(�t; t � T ) and �a is the Dirac measure at the point a. There also
exists a sequence �0n(� ) satisfying the same conditions and such that

Law(�r j �0nR) w���!
n!1

�b:

If we set ePn = �n(� )M�T (X)P, eP0n = �0n(� )M�T (X)P, where M the same as in the

previous proof, then (St)t�T is a martingale with respect to all the measures ePn , eP0n
(see the proof of Theorem 5.4).

There exists a L�evy process (Zt)t�0 such that, for any u � 0,

Law(Xt; t � u j ePu) = Law(Zt; t � u);

where ePu =MuP. Then

Law((X � � )r j ePn) w���!
n!1

Law(Za);

Law((X � � )r j eP0n) w���!
n!1

Law(Zb);

which shows that there exists n such that

Law((X � � )r j ePn) 6= Law((X � � )r j eP0n):
Hence, there exist di�erent equivalent martingale measures for S . By the Second
Fundamental Theorem of Asset Pricing, the model is not complete. Thus, � is a
deterministic function.

Now, the arguments used in the proof of Theorem 4.6 show that the model can
be complete only if X is a Brownian motion with a drift or a Poisson process with a
drift.

Finally, let us prove that � is continuous. Suppose that there exists r 2 [0; T ]
such that �r� 6= �r . Then, by considering densities of the form �(X�r � X�r�), one
can construct di�erent martingale measures for S . 2

5.3 Exercises

Exercise 5.6. Let (Xt)t�0 be a L�evy process and (�t)t�T be an independent in-
creasing c�adl�ag process, whose increments are stationary in the following sense: if a
collection (t00; : : : ; t

0
n) is obtained from (t0; : : : ; tn) by a shift, then

Law
�
�t0

1
� �t0

0
; : : : ; �t0n � �t0n�1) = Law

�
�t1 � �t0; : : : ; �tn � �tn�1):

Prove that the increments of X � � are stationary in the same sense.
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# Exercise 5.7. Let (Xt)t�0 be a L�evy process such that, for any t � 0, EX2
t <1

and EXt = 0. Prove that there exists k � 0 such that EX2
t = kt, t � 0.

# Exercise 5.8. Prove Lemma 5.3.
(Hint: Use Exercise 5.7.)

� Exercise 5.9. Let (Xt)t�0 be a strictly �-stable L�evy process and (�t)t�T be an
independent strictly � -stable subordinator. Prove that X � � is a strictly �� -stable
L�evy process.

(Hint: Use the fact that a L�evy process X is strictly �-stable if and only if for

any k; t � 0, Xkt
law
= k�Xt .)

##Exercise 5.10. Let X be a symmetric L�evy process that belongs to one of the
following classes of processes: VG, CGMY, GHYP. Let (�t)t�T be an independent

increasing c�adl�ag process. Prove that X � � can be represented as X � � law
= B � � ,

where B is a Brownian motion and � is an independent increasing c�adl�ag process.

Exercise 5.11. (No arbitrage for a time-changed linear L�evy model.)
Consider a time-changed linear L�evy model

St = S0 + (X � � )t; t � T;

where S0 2 R, and X , � , (Ft) are the same as in (5.1).
(a) Prove that this model does not satisfy the (NFLVR) condition only in the

following cases:
(i) S is increasing;
(ii) S is decreasing.
(b) Prove that if the (NFLVR) condition is satis�ed, then there exists a measureeP � P such that S is an (Ft; eP)-martingale and

Law((X � � )t; t � T j eP) = Law((Z � �)t; t � T );

where Z is a L�evy process and � is an independent increasing c�adl�ag process.
(Hint: Use Exercise 4.21.)

Exercise 5.12. (Completeness for a time-changed linear L�evy model.)
Suppose that a time-changed linear L�evy model introduced in Exercise 5.11 satis�es
the (NFLVR) condition and Ft = FS

t . Prove that the model is complete only in the
following cases:

(i) Xt = �t+ �Bt , where B is a Brownian motion, � 6= 0, and � is a continuous
deterministic function;

(ii) Xt = �t + �N�t , where N is a standard Poisson process, �� < 0, and � is a
continuous deterministic function.

Exercise 5.13. Let � be a Poisson random variable with parameter �. Let
(�m)1m=1 be a sequence of independent random variables (that are also independent
of �) with

P(�m = 1) = p; P(�m = 0) = 1 � p:

Prove that � :=
P�

m=1 �m has the Poisson distribution with the parameter p�.
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*
Exercise 5.14. (Filtering the time-change.) Let (Xt)t�0 be a L�evy process

with the characteristics (b; c; �)H and (�t)t�T be an independent increasing continuous
process.

(a) Suppose that �(R) =1. Find disjoint sets (An)1n=1 such that �(An) 2 [1;1).
Let (�nm)

1
m;n=1 be independent random variables (that are also independent of (X; � ))

with

P(�nm = 1) =
1

�(An)
; P(�nm = 0) = 1� 1

�(An)
:

Set

�n =
X
t�T

I(�(X � � )t 2 An); �n =

�nX
m=1

�nm:

Prove that

�T = (a.s.) lim
N!1

1

N

NX
n=1

�n:

(b) Suppose that c > 0. Prove that

�T =
1

c

�
[X � � ]T �

X
s�T

�(X � � )2s
�
:

(c) Suppose that �(R) < 1, c = 0, but X is not a compound Poisson process.
Then X can be represented as

Xt = t+
X
s�t

�Xs; t � T:

Prove that

�T =
1



�
(X � � )T �

X
t�T

�(X � � )t
�
:

**
Exercise 5.15. (Conditional law of the time-change.) Let (Xt)t�0 be a L�evy

process and (�t)t�T be an independent increasing c�adl�ag process with independent
increments. Set Q' = Law(�t; t � T j X � � = '). Prove that, for a.e. ' (with
respect to the measure Law((X � � )t; t � T )), the canonical process Z on D([0; T ])
has independent increments with respect to Q' .

An open problem is

Problem 5.16. (Time-changed exponential L�evy model with an in�nite
time horizon). Consider model (5.1) with an in�nite time horizon. In which cases
does this model satisfy the (NFLVR) condition?



AAppendix

A.1 L�evy Processes

De�nition A.1. A function f : R! R+ is called submultiplicative if there exists
a constant a such that, for any x; y 2 R, we have f(x+ y) � af(x)f(y).

Remark. The functions ex and jxj� _ 1 with � > 0 are submultiplicative (see [22;
Proposition 25.4]. 2

Proposition A.2. Let X be a L�evy process and f(x) be a submultiplicative func-
tion. Then the following conditions are equivalent:

(i) Ef(Xt) <1 for some t > 0;
(ii) Ef(Xt) <1 for any t > 0;
(iii) the L�evy measure � of X satis�es the conditionZ

fjxj>1g
f(x)�(dx) <1:

For the proof, see [22; Theorem 25.3].

Proposition A.3. Let X be a L�evy process and f be a continuous submulti-

plicative function increasing to 1 as x ! 1. Then the following conditions are

equivalent:

(i) Ef(jXtj) <1 for some t > 0;
(ii) Ef(jXtj) <1 for any t > 0;
(iii) Ef

�
sups�t jXsj

�
<1 for some t > 0;

(iv) Ef
�
sups�t jXsj

�
<1 for any t > 0.

For the proof, see [22; Theorem 25.18].

Proposition A.4. (The �rst moment of a L�evy process.) Let a > 0 and X
be a L�evy process with the characteristics (b; c; �)Ha (Ha is de�ned in (4.4)). Suppose
that Z

fjxj>ag
jxj�(dx) <1:

Then, for any t � 0, EjXtj <1 and

EXt = t

�
b+

Z
fjxj>ag

x�(dx)

�
; t � 0:

For the proof, see [22; Example 25.12].

Proposition A.5. (The exponential moment of a L�evy process.) Let a > 0
and X be a L�evy process with the characteristics (b; c; �)Ha (Ha is de�ned in (4.4)).
Suppose that Z

fjxj>ag
ex�(dx) <1:

Then

EeXt = exp

�
t

�
b+

c

2
+

Z
R

�
ex � 1�Ha(x)

�
�(dx)

��
; t � 0:
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For the proof, see [22; Example 25.17].

Proposition A.6. (L�evy processes of �nite variation.) Let X be a L�evy

process with the characteristics (b; c; �)H (H is de�ned in (3.2)). Then X has �nite

variation if and only if c = 0 andZ
R

jxj ^ 1 �(dx) <1:

For the proof, see [22; Theorem 21.9].

Proposition A.7. (L�evy-Itô decomposition.) Let (Xt)t�0 be a L�evy process

with the characteristics (b; c; �)h , where h is a truncation function.

(a) The random measure

N(!;B) :=
X
s�0

I(�Xs 6= 0; (s;�Xs) 2 B); B 2 B(R+�R)

is a Poisson random measure with the intensity measure dt� �(dx).
(b) With probability one the limit

X1
t := lim

"#0

�X
s�t

�XsI(j�Xsj > ")� t

Z
fjxj>"g

h(x)�(dx)

�
; t � 0

is de�ned for all t � 0, and the convergence is uniform in t on every compact interval.

If we set X2 = X �X1 , then X1 and X2 are independent L�evy processes with the

characteristics (0; 0; �)h and (b; c; 0)h , respectively.

For the proof, see [22; Theorem 19.2].

A.2 Sigma-Martingales

Proposition A.8. Let (Xt)t�T be a semimartingale on a �ltered probability space�

;F ; (Ft)t�T ;P

�
. The following conditions are equivalent:

(i) there exists a sequence of predictable sets Dn � 
�[0; T ] such that Dn�Dn+1 ,S
nDn = 
 � [0; T ], and , for each n, the process

R �
0 IDndXs is an (Ft)-martingale;

(ii) there exist an (Ft)-local martingale M and an M -integrable process H such

that

Xt = X0 +

Z t

0

HsdMs; t � T:

For the proof, see [24; Lemma 5.1].

De�nition A.9. A process X that satis�es the equivalent conditions of Proposi-
tion A.8 is called a � -martingale.

This class of processes was introduced by C.S. Chou [4] and M. �Emery [9] under the
name \semimartingales de la classe �m" (they de�ned a � -martingale as a stochastic
integral with respect to a local martingale). F. Delbaen and W. Schachermayer [6]
called these processes \� -martingales". The description of � -martingales through
predictable sets Dn was proposed by T. Goll and J. Kallsen [11]. For more information
on � -martingales, see also the paper by J. Kallsen [17].

Obviously, any local martingale is a � -martingale. The reverse is not true. A
corresponding example was constructed by M. �Emery [9].
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Proposition A.10. (Ansel, Stricker.) A � -martingale that is bounded below

is a local martingale.

For the proof, see [1].

Let (Xt)t�T be an (Ft)-semimartingale with the characteristics (B;C; �)h , where
h is a truncation function. Then there exist predictable processes b, c, a transition
kernel K(!; t; dx) from (
� [0; T ];P) (here, P stands for the predictable � -�eld) to
(R;B(R)), and an increasing predictable process A such that

Bt =

Z t

0

bsdAs; Ct =

Z t

0

csdAs; �(!; dt; dx) = K(!; t; dx)dAt(!)

(see [14; Ch. II, Proposition 2.9]).

Proposition A.11. The process X is a � -martingale if and only if for P� dA-a.e.
(!; t), we have Z

fjxj>1g
jxjK(!; t; dx) <1

and

b(!; t) +

Z
R

(x� h(x))K(!; t; dx) = 0:

For the proof, see [16; Lemma 3].

A.3 Fundamental Theorems of Asset Pricing

Let
�

;F ; (Ft)t�T ;P; (St)t�T

�
be a model of a �nancial market. Here, S is an (Ft)-

semimartingale. From the �nancial point of view, S is the discounted price of an
asset. Recall that a strategy is a pair (x;H), where x is F0 -measurable and (Ht)t�T
is an S -integrable process (for the de�nition of integrability, see, for instance, [24]).
The discounted capital of this strategy is the process x+

R �
0HudSu .

The following notion of the no free lunch with vanishing risk was introduced by
F. Delbaen and W. Schachermayer [5]. It serves as an adequate continuous-time
analogue of the no arbitrage condition.

De�nition A.12. A sequence of strategies (xn;Hn) realizes free lunch with van-

ishing risk if
(i) for each n, xn = 0;
(ii) for each n, there exists an 2 R such that

P

�
8t � T; x+

Z t

0

HudSu � an

�
= 1;

(iii) for each n, Z T

0

Hn
u dSu � �1

n
a.s.;

(iv) there exists � > 0 such that, for each n,

P

�Z T

0

Hn
u dSu > �

�
> �:

A model satis�es the no free lunch with vanishing risk condition if such a sequence
of strategies does not exist. Notation: (NFLVR).
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Proposition A.13. (First Fundamental Theorem of Asset Pricing.)
A model satis�es the (NFLVR) condition if and only if there exists an equivalent

� -martingale measure, i.e. a measure eP � P such that S is an (Ft; eP)-� -martingale.
Statement (a) was proved by F. Delbaen and W. Schachermayer [6]; compare with

Yu.M. Kabanov [16].

Remark. If the process S is nonnegative, then the word \� -martingale" in the
above theorem can be replaced by the word \local martingale". This follows from
Proposition A.10.

De�nition A.14. A model is complete if for any bounded F -measurable func-
tion f , there exists a strategy (x;H) such that

(i) there exist constants a, b such that

P

�
8t � T; a � x+

Z t

0

HudSu � b

�
= 1;

(ii) f = x+

Z T

0

HudSu a.s.

Proposition A.15. (Second Fundamental Theorem of Asset Pricing.)
Suppose that a model satis�es the (NFLVR) condition and F =

W
t�0Ft . Then the

following conditions are equivalent:

(i) the model is complete;
(ii) the equivalent � -martingale measure is unique;

(iii) there exists an equivalent � -martingale measure eP such that any (Ft; eP)-local
martingale started at zero can be represented as a stochastic integral with respect to S .

This statement follows from [6; Theorem 5.14]. It can also be derived from [1] or
[13; Th�eor�eme 11.2]. An explicit proof of the Second Fundamental Theorem of Asset
Pricing in this form can be found in [24].

Remark. If the process S is nonnegative, then the word \� -martingale" in the
above theorem can be replaced by the word \local martingale". This follows from
Proposition A.10.
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Solutions of the Exercises

Section 2

Exercise 2.1. If � is not absolutely continuous, then B �� cannot be represented

as B � � law
= � �W since hB � � i = � , while h� �W i = R �

0
�2sds.

Exercise 2.2. The process � �W obviously satis�es condition (iii) of Proposi-
tion 3.6.

Section 3

Exercise 3.21. It will su�ce to prove the implication (i))(iii). By Itô's formula,
for any � 2 R, the process

ei�Bt+�2

2
t; t � 0

is an (Ft)-local martingale. Being (locally) bounded, it is a martingale. Hence, for
any s � t, we have

E
�
ei�(Bt�Bs) j Fs

�
= e�(t�s)

�2

2 :

We now apply Lemma 4.2.

Exercise 3.22. Consider �t = inffs � 0 : Bs = tg.
Exercise 3.23. Set

Nt =

Z t

0

HsdBs; t � 0:

By the Dambis-Dubins-Schwarz theorem, N can be represented as N
a.s.
= W � hNi,

where W is a Brownian motion (possibly de�ned on an enlarged probability space).
Then, obviously, M = E(W ) � hNi, where E(W )t = eWt�t=2 . Now, the statement
follows from the equality

hNi1 =

Z 1

0

H2
s ds

and the fact that limt!1 E(B) = 0 a.s.

Exercise 3.24. Fix 0 = t0 � t1 � � � � � tn . Then, using Fubini's theorem
(compare with (3.1)), we get, for any �1; : : : ; �n 2 R,

E exp
�
i�1((B � � )t1 � (B � � )t0) + � � �+ i�n((B � � )tn � (B � � )tn�1)

	
= E exp

�
��

2
1

2
(�t1 � �t0)� � � � �

�2n
2
(�tn � �tn�1)

�
:

Hence, the multidimensional Laplace transform of ((�t1 � �t0); : : : ; (�tn � �tn�1)) is
uniquely determined by the distribution of B � � .

For any random variable (�1; : : : ; �n) with positive components, its distribution is
uniquely determined by the multidimensional Laplace transform

'(�1; : : : ; �n) = E expf��1�1 � � � � � �n�ng; �1; : : : ; �n 2 R+:

Indeed,
E expf��1�1 � � � � � �n�ng = E��11 : : : ��nn ;
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where �k = e��k . By the Weierstrass approximation theorem, any continuous function
on [0; 1]n can be uniformly approximated by the linear combinations of the functions
having the form x�11 : : : x�nn . Thus, the distribution of (�1; : : : ; �n) as well as the
distribution of (�1; : : : ; �n) are uniquely determined by '.

Exercise 3.25. Set �t = �I(t � 1), where � is a positive random variable with
E
p
� =1. Then (B � � )t = B�I(t � 1). Using Fubini's theorem, one can verify that

EjB�j =
p
2=�E

p
� = 1. Furthermore, for any (FB��

t )-stopping time � , we have
either � < 1 or � � 1 since FB��

1� is trivial. Hence, B � � is not a local martingale.

Exercise 3.26. Let B be a Brownian motion. Set

Xt =

Z t

0

�
I(t � 1) + I(t > 1; B1 > 0)

�
dBs; t � 0:

Then X and �X have di�erent distributions, and therefore, X is not an Ocone
martingale.

Exercise 3.27. If B is a Brownian motion and � is an independent increas-
ing continuous process with E

p
�1 = 1, then, by Fubini's theorem, EjB � � j1 =p

2=�E
p
�1 =1.

Exercise 3.28. (a) It will su�ce to consider X constructed in the solution of
Exercise 3.26 and to take Y = �X .

(b) Since X is an Ocone martingale, it can be represented as X
law
= B�� , where B

is a Brownian motion and � is an independent increasing continuous process. We have

hXi law
= hB � � i = � (see [21; Ch. V, Proposition 1.5]). Consequently, X

law
= W � hXi,

where W is a Brownian motion that is independent of hXi. This shows that the
distribution of X is uniquely determined by the distribution of hXi.

Exercise 3.29. Set Yt =
R t
0
HsdXs . Then Y obviously satis�es condition (iii) of

Proposition 3.6, and hence, it is an Ocone martingale. Since hY i = hXi, then, by
Exercise 3.28, Y

law
= X . This leads to the equality (Y; hY i) law

= (X; hXi), which is the
desired statement.

Exercise 3.30. Without the loss of generality, we may assume that X
a.s.
= B � � ,

where B is a Brownian motion and � is an independent increasing continuous process.
Set SBt = supu�tBu and let LB denote the local time of B at zero. P. L�evy's theorem
states that

(SB �B;SB)
law
= (jBj; LB): (S:1)

Obviously, S = SB � � . It follows from Tanaka's formula (see [21; Ch. VI, Theo-
rem 1.2]) and the time-change formula for stochastic integrals (see [21; Ch. V, Propo-
sition 1.5]) that L = LB � � . Furthermore, � is independent of both (SB � S; SB)
and (jBj; LB). Now, the desired result follows from (S.1).

Exercise 3.31. Without the loss of generality, we may assume that X
a.s.
= B � � ,

where B is a Brownian motion and � is an independent increasing continuous process.
Consider the �ltration Ft = FB

t _ F �
1 . Then B is an (Ft)-Brownian motion and X

is (F�t)-adapted (see [21; Ch. V, Proposition 1.4]). Set

Mt =

Z t

0

HsdXs; t � 0
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and consider

�t = inffs � 0 : �s > tg; t � 0

(here, inf ; =1). We haveZ 1

0

�
Hs �H��sI(��s <1)

�2
dhXis =

Z 1

0

�
Hs �H��s I(��s <1)

�2
d�s

=

Z 1

0

�
H�s �H�sI(�s <1)

�2
I(�s <1)ds = 0:

In the second equality, we have applied [21; Ch. 0, Proposition 4.9]. Therefore,

Mt =

Z t

0

H��s I(��s <1)dXs =

Z t

0

H��s I(��s <1)dB�s

=

Z �t

0

H�sI(�s <1)dBs; t � 0:

In the last equality, we have used [21; Ch. V, Proposition 1.5]. The process

Wt =

Z t

0

�
H�sI(�s <1) + I(�s =1)

�
dBs; t � 0

is a Brownian motion and an (Ft)-local martingale. It follows from Exercise 3.21
and Lemma 4.2 that W is independent of F0 . In particular, W is independent of � .

Finally, we get M = W � � law
= B � � = X .

Exercise 3.32. Fix 0 = t0 � t1 � � � � � tn . For any �1; : : : �n 2 R, we have

E expfi�1((X � � )t1 � (X � � )t0) + � � �+ i�n((X � � )tn � (X � � )tn�1)g
= E expf(�t1 � �t0)�(�1) + � � �+ (�tn � �tn�1)�(�n)g
= E expf(�t1 � �t0)�(�1)g : : :E expf(�tn � �tn�1)�(�n)g;

where �(�) denotes the characteristic exponent of X (i.e Eei�Xt = et�(�)).

Exercise 3.33. The proof is similar to the proof of Lemma 3.13.

Exercise 3.34. We have

�(dx)

dx
=

Z 1

0

�p
2�z

exp

�
�(x� �z)2

2z

�
e��z

z
dz

=
�p
2�
e�x

Z 1

0

1

z3=2
exp

�
�x

2

2z
� �2z

2
� �z

�
dz

=
2�p
2�
e�x

Z 1

0

exp

�
�x

2y2

2
� �2

2y2
� �

y2

�
dy

=
�

jxje
�x�p�2+2�jxj:

In the last equality, we have applied [12; (3.325)].
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Exercise 3.35. The proof is similar to the proof of Theorem 3.17. The di�erence
is that instead of Lemma 3.13, we should use Exercise 3.33, and instead of the equality

q(x) =

Z 1

0

1p
2�z

e�
x2

2z �(dz);

we will have the equality

q(x) =

Z 1

0

1p
2�z

exp

�
�(x� �z)2

2z

�
�(dz) = e�x

Z 1

0

1p
2�z

e�
�2z
2 e�

x2

2z �(dz):

Exercise 3.36. Let us prove by the induction the following statement: for any
completely monotone function ' and any  : (0;1) ! (0;1) with a completely
monotone derivative, we have sgn(' �  )(n) = (�1)n . To this end, write

(' �  )(n+1) = ((' �  )0)(n) = ( 0('0 �  ))(n)
=  (n+1)('0 �  ) + C1

n 
(n)('0 �  )(1) + � � �+ Cn�1

n  (2)('0 �  )(n�1) +  (1)('0 �  )(n):

We now apply the induction hypothesis to the terms ('0 �  ); : : : ; ('0 �  )(n) .
Exercise 3.37. (a) Let h : R+ ! R be a continuous function, whose support

is compact and does not include 0. Then h(x) can be uniformly approximated by a
sequence (hn), where each hn(x) has the form

Pm
k=1 ake

�xyk with ak 2 R, yk > 0.
(In order to see this, it is su�cient to consider the transformation [0;1) 3 x 7! e�x 2
[0; 1) and to apply the Weierstrass approximation theorem.) Set

g(�) =

Z 1

0

h(x)��(dx); gn(�) =

Z 1

0

hn(x)��(dx); � 2 �:

Then each gn is A-measurable, and g is a pointwise limit of gn . Hence, g is also
A-measurable. Now, the proof is easily completed.

(b) In view of (a), the measure

� :=

Z
�

���(d�)

is well de�ned. Obviously,

f(x) =

Z 1

0

e�xy�(dy); x > 0:

By Proposition 3.16, f is completely monotone.

Exercise 3.38. (a) The function under the integral in (3.4) is positive, and the
result follows from Theorem 3.17, Lemma 3.18, and Exercise 3.37.

(b) The result follows from Exercise 3.35, Lemma 3.18, and Exercise 3.37.

Exercise 3.39. (i),(ii) This equivalence is a direct consequence of Lemma 3.8
and Exercise 4.22.

(ii),(iii) This equivalence follows from the equality EjB � � jt =
p
2=�E

p
�t and

the fact that a L�evy process with the zero mean is a martingale.
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(iii),(iv) This equivalence follows from Proposition A.2.

Exercise 3.40. Let � denote the L�evy measure of B � � . Using Lemma 3.13 and
Proposition A.6, we can writeZ

R

jxj ^ 1 �(dx) =

Z 1

0

Z
R

jxj ^ 1Qz(dx)�(dz) =

Z 1

0

'(z)�(dz) <1;

where Qz denotes the normal distribution with the zero mean and the variance z .
The function ' is strictly positive on (0;1) and '(z) �

p
2z=� as z ! 0. This

leads to the desired statement.

Section 4

Exercise 4.9. Let � be a G -measurable random variable. Then, for any
�1; : : : ; �d+1 2 R, we have

E expfi�1�1 + � � �+ i�d�d + i�d+1�g
= E

�
E
�
expfi�1�1 + � � �+ i�d�d + i�d+1�g j G

��
= E

�
expfi�d+1�gE

�
expfi�1�1 + � � �+ i�d�dg j G

��
= E expfi�d+1�gE expfi�1�1 + � � �+ i�n�ng:

Exercise 4.10. Fix t0 � � � � � tn 2 [s; T ]. For any �1; : : : ; �n 2 R, we have

E
�
expfi�1(Xt1 �Xt0) + � � �+ i�n(Xtn �Xtn�1)g j Fs

�
= E

�
E
�
expfi�1(Xt1 �Xt0) + � � �+ i�n(Xtn �Xtn�1)g j Ftn�1

� j Fs

�
= E expfi�n(Xtn �Xtn�1)gE

�
expfi�1(Xt1 �Xt0) + � � �+ i�n�1(Xtn�1 �Xtn�2)g j Fs

�
= � � � = E expfi�1(Xt1 �Xt0)g : : :E expfi�n(Xtn �Xtn�1)g:

We now apply Exercise 4.9.

Exercise 4.11. The \if" part follows from Lemma 4.3. In order to prove the
\only if" part, suppose that e� is not absolutely continuous with respect to � . Find
A 2 B(R) such that e�(A) > 0, while �(A) = 0. Then P(9t � T : � eXt 2 A) > 0,
while P(9t � T : �Xt 2 A) = 0.

Exercise 4.12. Combining (4.2) with the inequalityZ
fjxj�1g

x2�(dx) <1;

we get Z
fjxj�1g

jx(
p
�(x)� 1)j�(dx) <1;

and hence, Z
fjxj�1g

jx(�(x)� 1)j�(dx) <1;

which is the desired statement.
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Exercise 4.13. (a) The proof of this statement follows the same arguments as
the proof of Theorem 4.6 in Case III.

(b) This statement follows immediately from Propositions 4.4 and 4.5.

Exercise 4.14. (a) The process (Xat; t � T ) is a compound Poisson process
with the L�evy measure a� . Now, the result follows immediately from Lemma 4.3.

(b) Let X have the characteristics (b; c; �)H . Then (Xat)t�T has the characteris-
tics (ab; ac; a�)H . It follows from Proposition 4.5 that the measures Law(Xt; t � T )
and Law(Xat; t � T ) are either equivalent or singular. Suppose that they are equiva-
lent. Then it follows from Proposition 4.4 that c = 0 and �(R)<1. Hence, X is a
compound Poisson process with a nonzero drift. The proof is now easily completed.

Exercise 4.15. Let (b; c; �)H and (eb;ec; e�)H denote the characteristics of X

and eX , respectively. Let Z be the coordinate process on D([0; T ]). Set

Q = Law(Xt; t � T ), eQ = Law( eXt; t � T ). By the L�evy-Itô decomposition, with
Q-probability one there exists a limit

Z1
t := lim

"#0

�X
s�t

�ZsI(j�Zsj > ")� t

Z
fjxj>"g

H(x)�(dx)

�
; t � T;

and the convergence is uniform in t. With eQ-probability one there exists a limit

eZ1
t := lim

"#0

�X
s�t

�ZsI(j�Zsj > ")� t

Z
fjxj>"g

H(x)e�(dx)�; t � T;

and the convergence is uniform in t.
If the limit

lim
"#0

�Z
fjxj>"g

H(x)�(dx)�
Z
fjxj>"g

H(x)e�(dx)� (S:2)

does not exist, then, obviously, eQ ? Q.
Suppose that limit (S.2) exists and equals  . Then the process ( eZ1

t )t�T is well

de�ned Q-a.s. and equals (Z1
t � t)t�T . Set eZ2 = Z � eZ1 . Then eZ2 is a Q-L�evy

process with the characteristics (b+ ; c; 0)H . Let (Sn) be a sequence of partitions of
[0; T ] with d(Sn)! 0. We can extract a subsequence (S0n) such thatX

si2S0n
(eZ2

si
� eZ2

si�1
)2

Q-a.s.���!
n!1

cT:

On the other hand, eZ2 is a eQ -L�evy process with the characteristics (eb;ec; 0)H . Hence,
we can extract a subsequence (S00n) from (S0n) such thatX

si2S00n
( eZ2

si
� eZ2

si�1
)2

eQ-a.s.���!
n!1

ecT:
Consequently, eQ ? Q.

Exercise 4.16. Let � and e� denote the indices of stability of X and eX , respec-
tively.
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If � = e� = 2, then the statement is proved by considering the quadratic variation
of X and eX (compare with the solution of Exercise 4.15).

If � = 2 and e� < 2, then the paths of X are continuous, while the paths of eX
are not continuous.

Now, suppose that �; e� 2 (0; 2). In this case the L�evy measures of X and eX have
the form

�(dx)

dx
=
m1I(x < 0)

jxj� +
m2I(x > 0)

jxj� ;

e�(dx)
dx

=
em1I(x < 0)

jxje� +
em2I(x > 0)

jxje� ;

respectively. If m1 > 0 and em1 = 0, then X a.s. has in�nitely many positive
jumps, while eX has no positive jumps. In a similar way, we consider the cases
m1 = 0; em1 > 0; m2 > 0; em2 = 0; m2 = 0; em2 > 0.

The remaining case is e� � � . By Proposition 4.5, in this case the measures
Law(Xt; t � T ) and Law( eXt; t � T ) are either equivalent or singular. Suppose that
they are equivalent. Taking into account condition (iii) of Proposition 4.4, we conclude

that � = e� . Hence, X and eX di�er by a drift. We now apply Exercise 4.13.

Exercise 4.17. Since the processes X and eX have di�erent distributions, the
random variables X1 and eX1 have di�erent distributions. Find A 2 B(R) such that

p 6= ep , where p := P(X1 2 A), ep := P( eX1 2 A). Then
1

N

NX
n=1

I(Xn �Xn�1 2 A) a.s.���!
N!1

p;

while
1

N

NX
n=1

I( eXn � eXn�1 2 A) a.s.���!
N!1

ep:
Exercise 4.18. It is su�cient to consider two compound Poisson processes with

the L�evy measures � and e� , respectively, such that neither of the following conditions
is satis�ed: e� � �; � � e�; e� ? �:

Exercise 4.19. For " > 0, we set

Y "
t =

X
s�t

�XsI(j�Xsj > ")� t

Z
fjxj>"g

h(x)�(dx); t � 0

and Z" = X �Y " . It follows from Lemma 4.2 that, for any s � t and any " > 0, the
random variable (Y "

t � Y "
s ; Z

"
t � Z"

s ) is independent of Fs . In order to complete the
proof, note that

Y "
t � Y "

s
a.s.�!
"#0

X1
t �X1

s ; Z"
t � Z"

s
a.s.�!
"#0

X2
t �X2

s :

Exercise 4.20. (a) Let Z1 and Z2 denote the processes given by the L�evy-Itô
decomposition of X , i.e.

Z1
t := lim

"#0

�X
s�t

�XsI(j�Xsj > ")� t

Z
fjxj>"g

Ha(x)�(dx)

�
; t � 0
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and Z2 = X � Z1 . Since Z2 is continuous, we have

X1
t =

X
s�t

�Z1
s I(j�Z1

s j > a); t � 0:

It follows from Proposition A.7 (a) that X1 is a compound Poisson process with the
L�evy measure �jfjxj>ag . Furthermore, for any " > 0, the process X1 is independent
of the process

Y "
t :=

X
s�t

�Z1
s I(" < j�Z1

s j � a)� t

Z
fjxj>"g

Ha(x)�(dx)

=
X
s�t

�XsI(j�Xsj > ")� t

Z
fjxj>"g

Ha(x)�(dx)�X1
t ; t � 0:

Consequently, X1 is also independent of Y := Z1�X1 . As X1 and Y are functionals
of Z1 and since Z1 is independent of Z2 , we conclude that X1 , Y , and Z2 are
independent.

It follows from Proposition A.7 (a) that, for each " > 0, Y " is a L�evy process.
Hence, Y = lim"#0 Y " is a L�evy process. Consequently, Y + Z2 is a L�evy process.
Obviously, Y + Z2 = X2 . We already know that X1 and X2 are independent
and X1 has the characteristics

�
0; 0; �jfjxj>ag

�
0
. It has the same characteristics with

respect to Ha since
R
fjxj>agHa(x)�(dx) = 0. Now, we conclude that X2 has the

characteristics
�
b; c; �jfjxj�ag

�
Ha
.

(b) This is a consequence of Lemma 4.2.

Exercise 4.21. The proof is similar to the proof of Theorem 4.6. The only
di�erence is that Proposition A.4 should be used instead of Proposition A.5.

Exercise 4.22. (a) Suppose that X is an (Ft)-� -martingale. Let (b; c; �)H
be the characteristics of X . Then its semimartingale characteristics (B;C; �)H are
given by Bt = bt, Ct = ct, �(dt; dx) = dt�(dx). It follows from Proposition A.11
that Z

fjxj>1g
jxj�(dx) <1

and

b+

Z
fjxj>1g

x�(dx) = 0:

By Proposition A.4, for any t � 0, we have EjXtj <1 and EXt = 0. Now, the proof
is easily completed.

(b) Suppose that X is an (Ft)-semimartingale. Let (b; c; �)H be the character-
istics of X . Then the third characteristic � of the semimartingale eX is given by
�(!; dt; dx) = dtK(!; t; dx), where K(!; t; �) is the image of � under the map

R 3 x 7�! eXt�(!)(ex � 1) 2 R:
Using Proposition A.11, we deduce thatZ

fjxj>1g
jex � 1j�(dx) <1:
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It follows from Proposition A.5 that EeXt = e�t with some � 2 R.
The process Mt = eXt��t is an (Ft)-martingale. By Itô's formula,

eXt = e�tMt = 1 +

Z t

0

�e�sMs�ds +
Z t

0

e�sdMs; t � T:

Since the integrand e�s is bounded, the process
R �
0
e�sdMs is a local martingale.

By Proposition A.10, eX is a local martingale. Therefore,
R �
0
�e�sMs�ds is a local

martingale. But this is an increasing process. As a result, � = 0. This completes the
proof.

Exercise 4.23. The proof is similar to the proof of Theorem 4.7.

Exercise 4.24. This is an immediate consequence of Exercise 4.23 and the Second
Fundamental Theorem of Asset Pricing.

Exercise 4.25. Let B;W be two independent Brownian motions. Consider
Ft = FB;W

t . Then B is an (Ft)-Brownian motion and W is an (Ft)-martingale.
Suppose that W can be represented as

R �
0
HsdBs . Then we would have

hW it =
�
W;

Z �

0

HsdBs

�
t

=

Z t

0

HsdhW;Bis = 0; t � 0:

Exercise 4.26. Let W be a Brownian motion. Consider B =
R �
0
sgnWsdWs and

Ft = FW
t . Then FB

t is strictly smaller that Ft (see [21; Ch. VI, Corollary 2.2]). On
the other hand, any (Ft)-local martingale M started at zero can be represented as

Mt =

Z t

0

HsdWs =

Z t

0

Hs sgnWsdBs; t � 0:

Section 5

Exercise 5.6. Using Fubini's theorem (compare with the proof of Lemma 5.2),
for any 0 � t0 � � � � � tn and �1; : : : ; �n 2 R, we get

E expfi�1((X � � )t1 � (X � � )t0) + � � �+ i�n((X � � )tn � (X � � )tn�1)g
= E expf(�t1 � �t0)�(�1) + � � �+ (�tn � �tn�1)�(�n)g;

where � is the characteristic exponent of X . The last quantity does not change under
the shifts of the collection (t0; : : : ; tn).

Exercise 5.7. Obviously, for any t � 0 and any n 2 N, we have EX2
nt = nEX2

t .
Hence, for any t 2 Q+ , EX

2
t = tEX2

1 . Using the monotonicity of the function
'(t) = EX2

t , we complete the proof.

Exercise 5.8. We can assume that (
;F ;P) = (
1;F1;P1) � (
2;F2;P2) and
X = X(!1), � = � (!2). Then, for any t � 0, we have

E(X � � )2t =
Z

2

Z

1

X2
�t(!2)(!1)P1(d!1)P2(d!2) =

Z

2

k�t(!2) = kE�t <1;

where k is given by Exercise 5.7. The other statements are proved similarly.
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Exercise 5.9. For any k; t � 0, we have

X�kt
law
= Xk��t

law
= k��X�t:

Exercise 5.10. This is an immediate consequence of Example 3.14, Corol-
lary 3.20, and Exercise 3.38.

Exercise 5.11. The proof is similar to the proof of Theorem 5.4.

Exercise 5.12. The proof is similar to the proof of Theorem 5.5.

Exercise 5.13. Without the loss of generality, we may assume that �m = I(Um �
p), where (Um)1m=1 are independent uniformly distributed on [0; 1] random variables
that are also independent of �. Set

Xt =
�X

m=1

I(Um � t); t � 1

and let (Nt)t�1 be a Poisson process with the intensity �. Then X1
law
= N1 , and, for

any 0 = t0 � � � � � tn = 1, k 2 N, we have
Law(Xt1 �Xt0 ; : : : ;Xtn �Xtn�1 j X1 = k)

= Law(Nt1 �Nt0; : : : ; Ntn �Ntn�1 j N1 = k)

(see [22; Proposition 3.3]). Consequently, Law(Xt; t � 1) = Law(Nt; t � 1). Now,

note that � = Xp
law
= Np .

Exercise 5.14. (a) Suppose �rst that �T is a degenerate random variable. Then
it follows from Proposition A.7 (a) that �1; �2; : : : are independent Poisson random
variables with the parameters �T�(A1); �T�(A2); : : : . By Exercise 5.13, �1; �2; : : : are
independent Poisson random variables with the parameter �T . The result follows from
the strong law of large numbers.

Now, let �T be arbitrary. We can assume that (
;F ;P) = (
1;F1;P1) �
(
2;F2;P2)� (
3;F3;P3) and X = X(!1), � = � (!2), �nm = �nm(!3). Then

P

�
lim
N!1

1

N

NX
n=1

�n = �T

�

=

Z

2

Z

1�
3

I

�
lim
N!1

1

N

NX
n=1

�n(!1;!2;!3)X
m=1

�nm(!3) = �T (!2)

�
P1 � P3(d!1; d!3)P2(d!2);

and the result follows from the above argument for a degenerate �T .

(b) We have

[X]t = ct+
X
s�t

�X2
s ; t � 0

(see [14; Ch. I, Theorem 4.52]). Using [14; Ch. I, Theorem 4.47] and keeping in mind
that � is continuous, we deduce that [X � � ]T = ([X] � � )T . Hence,

[X � � ]T = c�T +
X
s��T

�X2
s = c�T +

X
s�T

�(X � � )2s:

(c) This statement is obvious.
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Exercise 5.15. For a random process Y and times s � t, we set FY
[s;t] =

�(Yr � Ys; r 2 [s; t]). Fix 0 = t0 � � � � � tn = T . For any �1; : : : ; �n 2 R, we have

E
�
expfi�1(�t1 � �t0) + � � � + i�n(�tn � �tn�1)g j FX��

T

�
= E

�
E
�
expfi�1(�t1 � �t0) + � � �+ i�n(�tn � �tn�1)g j FX��

[0;t1]
_ FX��

[t1;T ]
_ F �

[t1;T ]

� j FX��
T

�
= E

�
expfi�2(�t2 � �t1) + � � �+ i�n(�tn � �tn�1)g
E
�
expfi�1(�t1 � �t0)g j FX��

[0;t1]
_ FX��

[t1;T ]
_ F �

[t1;T ]

� j FX��
T

�
= E

�
expfi�2(�t2 � �t1) + � � �+ i�n(�tn � �tn�1)gE

�
expfi�1(�t1 � �t0)g j FX��

[0;t1]

� j FX��
T

�
= E

�
expfi�1(�t1 � �t0)g j FX��

T

�
E
�
expfi�2(�t2 � �t1) + � � �+ i�n(�tn � �tn�1)g j FX��

T

�
= � � � = E

�
expfi�1(�t1 � �t0)g j FX��

T

�
: : :E

�
expfi�n(�tn � �tn�1)g j FX��

T

�
:

In the third equality we have used the following fact: if � is an integrable ran-
dom variable and A, B are � -�elds such that �(�) _ A is independent of B , then
E(� j A _ B) = E(� j A).


