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Preface

These lecture notes were prepared for the Instructional and Research Workshop on
Multiplicative Processes and Fluid Flows at MaPhySto, Aarhus University, 23-28
August 2001. Much of this is based upon collaborations within the Focussed Re-
search Group1 on Navier-Stokes equations at Oregon State University/Indiana Uni-
versity on the one hand and the turbulence research group2 around the Max-Planck
Institute for Physics of Complex Systems, Dresden, on the other. In particular, the
treatment of multiplicative Fourier cascade solutions to di�usion, fractional di�u-
sion, reaction-di�usion, Burgers, and Navier-Stokes are largely unpublished results
due to the OSU/Indiana Focussed Research Group. Also included are results of
long time collaborations with Vijay Gupta at University of Colorado on problems
concerning hydrologic ows in ungauged river basins.

1OSU/Indiana Focussed Research Group: Rabi Bhattacharya, Larry Chen, Scott Dobson,
Ronald Guenther, Chris Orum, Mina Ossiander, Enrique Thomann, Edward Waymire. Partially
supported by a grant from the National Science Foundation.

2Jochen Cleve, Thomas Dziekan (now University of Upsalla), Hans Eggers (University of Stel-
lenbosch), Martin Greiner (now Siemens M�unchen), J�urgen Schmiegel.
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LECTURES ONMULTISCALE ANDMULTIPLI-
CATIVE PROCESSES IN FLUID FLOWS

EDWARD C. WAYMIRE
Department of Mathematics, Oregon State University

1 Introduction and Preliminaries

These notes are intended to provide a mathematical framework for the methods,
problems, and results which will be discussed in the course of the tutorial lectures.
Explanations and proofs will be �lled in during the lectures. The notes will hopefully
provide background for the various more specialized research topic lectures described
in the extended abstracts appended to these notes.

A diverse array of disparate problem areas will be discussed within a mathe-
matical framework which highlights certain common structure and themes. One
such theme is the application of probabilistic and statistical methods to ostensibly
deterministic descriptions of physical phenomena. Various perspectives on multi-
ple scale hierarchical structure also provide a common theme for the phenomena
considered. Multiplicative/branching structure related to ows will be exploited
throughout these lectures.

The organization is as follows. In Section 2 we provide a deterministic derivation
of the di�usion equation from principles of mass balance and Fick's (empirical)
ux law. This is then connected to Brownian motion and stochastic di�erential
equations. We indicate the role of the martingale central limit theorem in obtaining
time-asymptotic solutions to di�usion equations. These lectures are intended to
provide some background for the topic discussed in the research lectures by R.
Bhattacharya, and by F. Mainardi. We also include Feynman-Kac formula and
Duhamel's formula, as these will be used in later sections and research topics.

Branching models provide the mathematical foundations for interpreting a vari-
ety of observations and data structures which will be presented in various research
lectures. In Section 3 we examine data structures associated with river network hy-
drology and consider several classes of deterministic and random tree graphs which
arise as network models. We shall show how Brownian excursions unify and ex-
plain a number of prior results on various river network statistics. While the results
may not be applicable to all models, this approach points to the essential underlying
structure which relates these statistics. The material covered in this section provides
background for the lectures by V. Gupta, B. Troutman, and R. Winn.

In Section 4 we introduce hierarchical models for rainfall. These include cluster
random �eld models introduced by LeCam (1961) and multiplicative cascade models
which have origins as statistical turbulence models. We indicate some standard
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2 E.Waymire

methods for analysis of the �ne scale structure of these models in the context of
data structures from rainfall and turbulence observations. These lectures provide
background for the research lectures by M. Ossiander and M. Greiner.

In Section 5 we present a derivation of the Navier-Stokes equations as conser-
vation laws. We then discuss multiplicative cascade solutions to linear, semilinear,
and quasilinear partial di�erential equations in Fourier space. These are determin-
istic ows which admit representations in Fourier space as expectations of certain
products over branching random walks. These lectures provide background for the
research lectures by E. Thomann, and C. Orum.

In Section 6 we discuss recent connections uncovered between real space and
Fourier space cascades for Fisher's equation and Burgers equation. The material
here is provided as natural follow-up to the ideas presented in Section 5.

2 Di�usion Models

Within the context of uid ow, di�usion equations describe the space-time evolution
of a concentration (amount per unit volume in R3) of a dilute substance (solute)
suspended in a uid medium moving with a velocity v(x; t): For concreteness one
may imagine a suspension of ink particles (dye) in a stream of water, or dust particles
suspended in air as may be observed beneath a bright lamp. De�ne

(solute concentration) c(t; x) = amount of di�using substance in an arbi-
trary region V of R3 with boundary surface @V:

(solute ux) � R
@V
q � n�(dx) = amount of substance owing out of V per

unit time, where n is the outward unit normal to @V:

(solute production rate)
R
V
Rdx = amount of substance created or removed

in V:

Then the principle of mass balance may be expressed as

d

dt

Z
V

c(t; x)dx = �
Z
@V

q � n�(dx) +
Z
V

Rdx (2.1)

Let us now recall the Gauss Divergence Theorem.

Theorem 2.1 Let V be a bounded open set in R3 with piecewise smooth boundary
surface @V: Let V = V [ @V and suppose that f : V ! R3 is a continuous vector
�eld which is also C1 on V: ThenZ

V

divfdx =

Z
@V

f � nd�;

where divf = r � f =
P

j
@fj
@xj
; f = (f1; f2; f3):
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Using the Divergence Theorem and the arbitrary choice of V; the equation (2.1)
may be expressed in local form as

@c

@t
= �r � q +R: (2.2)

The next basic assumption is the empirical hypothesis (Fick's Law) that the
mass of solute is transported by bulk movement of the uid with velocity v; and
spreads from regions of high concentration to low concentration at a (ux) rate in
proportion to the magnitude of the concentration gradient jrcj: That is

q = �D � rc+ vc; (2.3)

where the coeÆcient D; referred to as the dispersion or di�usion coeÆcient, is a
non-negative de�nite symmetric matrix.

Finally let us assume that the local production rate is of the form

R = �rc + g; (r � 0): (2.4)

Then one obtains the linear di�usion model

@c

@t
= r � (Drc)�r(vc)� rc+ g; (2.5)

for an initial concentration c(0+; x) = c0(x):

Remark 2.1 We have suppressed explicit space-time dependence of the parameters
D; r; v; g although such inhomogeneity is permitted within this general framework.
The case of constant parameters is important to consider for its simplicity. The
case of temporally constant parameters will be assumed for the most part without
further mention.

Remark 2.2 Remark 1.2 Although the formulation of the model was presented
in n = 3 dimensions, analagous modelling considerations, eg. for heat conduction
in a bar (n = 1), or a price of a portfolio of n securities, provide examples of the
pervasive role of such equations in all dimensions n � 1:

Remark 2.3 If D is concentration dependent or if R were a nonlinear function of
concentration, then the evolution equation for concentration is in turn nonlinear.
One particular illustration is that of reaction-di�usion where the production rate
R depends on concentration through biological or chemical reaction mechanisms.
A notable example was proposed by R.A. Fisher (1937) to model the spread of an
advantageous gene in a biological population. Here c(t; x) is the frequency of the
advantageous gene in the population, the parameter s is a measure of intensity of
selection, D is constant and the evolution is by the one-dimensional equation

@c

@t
= D

@2c

@x2
+ sc(1� c); c(0+; x) = c0(x): (2.6)
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A similar equation was also introduced by Kolmogorov, Petrovskii, and Piscunov
(1937), referred to as KPP equation, for population density. The rate of increase
sc(1�c) is derivable under some additional simple hypothesis, and Fisher added the
di�usion term by assuming that the migration of individuals is purely random, i.e.
as in kicks of a suspended particle by surrounding uid molecules, and, assuming a
constant population density, the genetic ux is proportional to the ux of individuals;
eg see Fife (1979).

Viewed probabilistically, the linear di�usion model arises quite naturally in con-
nection with the Central Limit Theorem. Speci�cally, in Einstein's (1905) inves-
tigation of the hypothesised molecular structure of matter he considered that a
suspended particle would su�er repeated random kicks by the molecules of the sur-
rounding uid. In a uid with constant bulk velocity v; a suspended particle initially
at x would undergo some ft kicks in time t; where f is the mean frequency of kicks.
So by the Central Limit Theorem in time t its position would be displaced by a
Gaussian random variable with mean vt and variance proportional to ft; say Dt:
That is, the probability density of �nding the particle intially at x displaced to a
position y at time t is given by

p(t; x; y) =
1p
2�Dt

expf� 1

2Dt
jy � x� vtj2g (2.7)

One may easily check by di�erentiation that

@p

@t
=

1

2
D
@2p

@y2
� v @p

@y
: (2.8)

For a dilute suspension of solute, the particles may be assumed to move (approx-
imately) independently of one another. Thus, by the Law of Large Numbers one
may de�ne solute concentration by

c(t; y) =

Z
R3

p(t; x; y)c0(x)dx: (2.9)

It is immediately clear that c obeys the linear di�usion equation with constant
coeÆcients without sources or sinks, r = g = 0: Note that the coeÆcient 1

2
D appears

naturally in the probabilistic model. In this context, D is referred to as the di�usion
coeÆcient, not 1

2
D:

Norbert Wiener's (1923) celebrated construction, cf Paley and Wiener (1934), of
the standard Brownian motion starting at 0; as a stochastic process fW (t) : t � 0g
on a probability space (
;F ; P0) such that
i. W(0) = 0
ii. For 0 = t0 < t1 < � � � < tk; the increments W (tj) � W (tj�1); 1 � j � k; are
independent
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iii. For 0 � s < t; W (t)�W (s) is Gaussian with mean zero and variance t
iv. For ! 2 
; t!W (!; t); t � 0; is continuous,
is the cornerstone to the probabilistic description of linear di�usions. Speci�cally,
Einstein's di�usion process fX(t) : t � 0g can be completed mathematically by
de�ning

X(t) = x + vt+
p
DW (t): (2.10)

This process will be referred to as Brownian motion with drift v and di�usion coef-
�cient D started at x:

In terms of the Ito calculus, this may be viewed (via stochastic integration) as
an evolution according to the stochastic di�erential equation

dX(t) = vdt+
p
DdW (t); X(0) = x: (2.11)

More generally, with the Ito calculus one may de�ne a general di�usion for given
coeÆcients where one may view (2.11) as a local description in time t to t + dt
for Lipschitz continuous coeÆcients as an \approxmiate Brownian motion"(with
v(X(t); t) and D(X(t); t) regarded as approximately constant over in�nitesimal time
intervals by continuity).

Let us also note that a natural adjoint equation to (2.8) may be obtained by
integration by parts (twice). Namely,

@p

@t
=

1

2
D
@2p

@x2
+ v

@p

@x
: (2.12)

Thus, for a bounded suÆciently smooth function f; de�ning

u(t; x) = Exf(X(t)) (2.13)

one has
@u

@t
=

1

2
D
@2u

@x2
+ v

@u

@x
; u(x; 0+) = f(x): (2.14)

In particular by a probabilistic construction of the standard Brownian motion on
a probabiility space (
;F ; P0); together with the development of Ito calculus, one
obtains a probabilistic representation of solutions to (2.14) as the expected value
u(t; x) = Exf(X(t)) for a suitable class of initial data f: This theme is elaborated
by examples and illustrations in Bhattacharya and Waymire (1991)

Let us give a more precise mathematical description to the picture developed
so far. For this let (
;F ; Px) denote the probability space for standard Brownian
motion started at x: fW (t) : t � 0g will denote standard Brownian motion started
at 0: Suppose given a Lipschitz continuous vector �eld �(x) = (�j(x))1�j�n and
Lipschitz continuous matrix function �(x) = ((�ij))1�i;j�n; x 2 Rn.
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Theorem 2.2 For each x 2 Rn; there is a unique (up to Px-null events) continuous
stochastic process X(t) : t � 0; nonanticipative with respect to the �ltration Ft; t � 0;
such that EjX(t)j2 <1; which satis�es the stochastic di�erential equation

dX(t) = �(Xt)dt+ �(X(t))dW (t); X(0) = x:

Moreover, fX(t) : t � 0g is a strong Markov process on Rn with

E(Xj(s+ t)�Xj(s))1[jX(s+ t)�X(s)j � �jX(s) = x) = t�j(x) + o(t)

Ej(Xi(s+t)�Xi(s))(Xj(s+t)�Xj(s))1[jX(s+t)�X(s)j � �jX(s) = x) = t(���)ij(x)+o(t)

P j(X(s+ t)�X(s))j > �jX(s) = x) = o(1);

as t! 0+; i; j = 1; : : : n:

De�nition 2.1 The continuous (strong) Markov process fX(t) : t � 0g satisfying
the conditions of Theorem 2.2 is referred to as the di�usion with drift � and di�usion
matrix D = ���; where � denotes matrix transpose.

Remark 2.4 It may noted that D = ��� is not required to be positive de�nite. In
particular the di�usion may be supported on a lower dimensional subspace of Rn;
referred to as singular di�usion. However, if in addition to the Lipschitz condition,D
is positive de�nite then it is known that the process will possess a smooth transition
probability density p(t; x; y); cf Stroock and Varadahn (1979).

Chief among the probabilistic tools which aid in the analysis of di�usion equa-
tions is Ito's lemma, which we record here for ease of reference.

Lemma 2.1 (Ito's Lemma). Let � = (�1; : : : ; �n) be a Lipschitz n-dimensional
vector �eld, and � = ((�ij))1�i;j�n an n�n matrix of real valued Lipschitz functions
on Rn: Let fX(t) : t � 0g be the n-dimensional di�usion de�ned by (the system of
n equations)

dX = �(X(t))dt+ �(X(t)) � dW(t); X(0) = x:

Let '(t;x) be a real-valued function on [0; T ]�Rn which is once continuously dif-
ferentiable in t and twice continuously di�erentiable in x such that

E

Z T

0

(@i')
2(s;X(s))j�i(X(s))j2ds <1;

where @i =
@
@xi
; 1 � i � n; @0 =

@
@t
�i = (�i1; : : : ; �in): Then

d'(t;X(t)) = f@0'(t; X(t)) + (A')(t;X(t)gdt+
nX
i=1

@i'(t;X(t))�i(X(t)) � dW(t);
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where

A =
1

2

X
1�i;j�n

dij(x)@i@j +
nX
i=1

�i(x)@i;

D = ((dij(x))) = ��tr:

Let us also record the important consequence of Ito's lemma that if in addition
@0' and @ij' are bounded, then

Y(t) = '(t;X(t))�
Z t

0

f@0'(s;X(s)) + (A')(t;X(s)gds (2.15)

is a martingale.

Remark 2.5 Under suitable conditions on the coeÆcients the di�usion fX(t) :
t � 0g will converge in distribution to a unique invariant probability � as t ! 1:
For such (ergodic) di�usions on a state space S the uctuations in

R t
0
g(X(s))ds�R

S
g(x)�(dx) may be obtained for a broad class of functions g in the range of A;

i.e. g(x) = A'(x); by appeal to the Martingale Central Limit Theorem and (2.15).
This is an essential tool in the problem discussed in the research topic lecture by R.
Bhattacharya on a multiscale model of solute transport and the \growth of dispersion
phenomena in saturated porous media."

We close this section with two additional basic equations of interest in applica-
tions discussed in the research topic lectures. The �rst may be obtained from Ito's
lemma applied to the 2n-dimensional process (X(t);

R t
0
R(X(s))ds):

Feynman-Kac Formula: Let � = (�1; : : : ; �n) be a Lipschitz n-dimensional vector
�eld, and � = ((�ij))1�i;j�n an n � n matrix of real valued Lipschitz functions on
Rn: Let fX(t) : t � 0g be the n-dimensional di�usion de�ned by (the system of n
equations)

dX = �(X(t))dt+ �(X(t)) � dW(t); X(0) = x:

Let u(t;x) be a real-valued function on [0;1) � Rn which is once continuously
di�erentiable in t > 0 and twice continuously di�erentiable in x such that

@u(t;x)

@t
= Au(t;x) +R(x)u(t;x); u(0;x) = f(x); (2.16)

A =
1

2

X
1�i;j�n

dij(x)@i@j +
nX
i=1

�i(x)@i; D = ((dij(x))) = ���; (2.17)

where f is a polynomial bounded continuous function, and R is a continuous function
bounded above on Rn. If ru(t;x) and Au(t;x) are polynomially bounded in x over
compact sets of t 2 (0;1); then

u(t;x) = Ex[f(X(t)) expf
Z t

0

R(X(s))dsg]: (2.18)
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Note that in the one-dimensional case with constant coeÆcients � = 0; �2 = 1; R(x) =
r > 0;

u(t;x) = Ex[f(X(t)) expf�
Z t

0

R(X(s))dsg] =
Z
R

f(y)e�rtg(t; y � x); (2.19)

where g(t; x� y) = 1p
2�t
e�

(y�x)2

2t :
Duhamel Principle:Consider the one-dimensional di�usion with drift coeÆcient
�(y) and di�usion coeÆcient �2(y): Assume that there is a smooth transition prob-
ability density p(t; x; y): Consider the equation

@c(t; y)

@t
= � @

@y
(�(y)c(t; y))+

@2

@y2
(
1

2
�2(y)c(t; y))+f(t; y); c(0; y) = c0(y); (2.20)

where f(t; y) is a bounded continuous function of t; y and
R jh(t; x)jp(t; x; y)dx <1:

Assume also that c0(y) is integrable. Then,

c(t; y) =

Z
R

c0(x)p(t; x; y)dx+

Z t

0

Z
R

f(s; x)p(t� s; x; y)dxds: (2.21)

A similar result holds for the adjoint di�usion equation. In the case of constant
coeÆcients � = 0; �2 = 1; one has p(t; x; y) = g(t; x� y) = 1p

2�t
e�

1
2t
(y�x)2 :

It will also be illuminating to return to the role of multiplicative branching
processes for nonlinear evolution equations in this context of linear di�usion and
reaction-di�usion (KPP). This topic will be revisited in a later lecture.

3 Tree Graphs: As Network Models

Branching networks play a pervasive role in the hydrologic science of river networks
and other hierarchical space-time phenomena. In this section we introduce some
simple branching models within this context.

To continue with the ow theme, however, let us begin with a description of ows
on river networks to motivate some of the mathematical development. For this one
considers a �nite rooted tree graph � to represent the drainage network. The size of
� , denoted jj� jj; is de�ned by the total number n of vertices (sources and junctions)
v 2 �: The root is a distinguished vertex, denoted �; respresenting the network
outlet. The root may be used to direct the tree as follows. The height of a vertex
v 2 � is de�ned by the number jvj of edges (links) on the unique path connecting
v and �; with j�j := 0: The edge e is directed as e = (e; e); for vertices e; e 2 �;
where jej = jej+ 1: We identify edges and vertices according to the convention that
to each edge e there is a unique vertex v such that e = v: A ghost edge (stem) may
be added to � when necessary to complete the convention. We write both e 2 � and
v 2 � to denote an edge e or vertex v belongs to the network �; respectively. Also
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Figure 3.1: Schematic of tree graph notation

de�nitions for vertices are applied interchangeably to edges by this convention, e.g.
the height of an edge e is jej; see Figure 3.1.

We �x a time scale on which ow in the network is observed at times t = n�t; n =
0; 1; : : : : As an example, one may view �t as the time required for water to ow
through a link with some mean velocity v; i.e �t = l

v
: We suppress �t when clear

from context and simply write t = 0; 1; 2; : : : : An input (rainfall runo�) volume
R(t; e)a(e) per unit time arrives from two adjacent hills of area a(e) at an edge e:
Water will then be drained from edges f = (f; f) into the uniquely determined edge
e 2 �; de�ned by e = f: River discharges are then represented by a space-time
random �eld q(t; e) assigned to edges e 2 � at times t � 0; representing the volume
of ow accross the edge (e; e); per unit time satisfying the mass balance principle

�S(t; e) = �q(e; t)�t +
X
f :f=e

q(t; f)�t+R(t; e)a(e)�t t � 1; (3.1)

where the left-hand side �S(t; e); e 2 �; t � 0; represents the total volume of runo�
per unit length stored in the edge e:

Figure 3.2: Width function hydrograph q(t; e); t = 0; 1; 2; 3:

Observe that in the case of unit instantaneously applied rainfall-runo� de�ned
by R(0; e)a(e) = 1; R(t; e) � 0; t � 1; one obtains for constant storage capacity, i.e.
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�S(t; e) � 0; that
q(e; t) = Ze(t); t = 1; 2; : : : ; (3.2)

where fZv(t) : t = 1; 2; : : :g is the number of edges located at height t in the subtree
rooted at v; see Fig 3.2. Hydrologists and geomorphologists refer to the function
t! Zv(t); t = 1; 2; : : : ; as the local width function at v: The structure of this solution
depends on the underlying network model for �:

So the focus of this section is to provide some orientation to empirical structure
of these quantities as observed in real networks and then consider corresponding
mathematical versions for some simple network models. In addition to the structure
of the network, for ows one must also consider the structure of the inputs into the
network, eg rainfall, snowmelt. A mathematical description of inputs compatible
with the branching structure of the network will be discussed in a later section. The
research lectures by B.Troutman and V. Gupta will illustrate an approach to the
above network ow problem which exploits self-similarities in both the inputs and the
network. The network idealization incorporates self-similarities but is not spatially
embedded. As a result one loses certain geometric structure of natural river basins.
In the research topic lecture by R.D. Winn a singular di�usion will be introduced
which is obtained as a limit distribution in a class of ow path models for river
networks embedded in a geometric surface. An excellent (though somewhat dated)
reference to the early empirical and theoretical results in geomorphology/hydrology
of river networks is Jarvis and Waldenberg (1984).

Let us begin with a canonical representation of tree graphs. The binary tree
assumption may be violated in nature but its occurence is rare enough that it is
generally ignored by geomorphologists. However, for the sake of mathematical dis-
cussion we shall not always constrain the trees to binary trees when introducing
more generally valid notions. Let T be the space of (possibly in�nite) labelled tree
graphs rooted at �. An element � of T may be coded as a set of �nite sequences of
positive integers < i1; i2; : : : ; in > 2 � such that:
(i) � 2 � is coded as the empty sequence
(ii) If < i1; : : : ; ik > 2 � then < i1; : : : ij >2 � 8 1 � j � k:
(iii) If < i1; i2; : : : ; in > 2 � then < i1; : : : in�1; j > 2 � 8 1 � j � in:

If < i1; : : : ; in > 2 � then < i1; : : : ; in�1 > 2 � is referred to as the parent vertex
to < i1; : : : in > : A pair of vertices are connected by an edge (adjacent) if and only if
one of them is parent to the other. In this way edges are identi�ed with the (unique)
non-parental or descendant vertex. This speci�es the graph structure of � and makes
� a rooted connected graph without cycles. T may be viewed as a metric space with
metric �(�; ) = (supfn+ 1 : jn = � jng)�1; and � jn = f< i1; : : : ; ik >2 � : k � ng:
The countable dense subset T0 of �nite labelled tree graphs rooted at � makes T a
Polish space. This fact is useful for the construction of stochastic network models
as probability distributions on T:

A variety of river basin characteristics may be associated with the bifurcation
or topological structure of the network in the form of positive weights w(e); e 2 �:
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Hydrologists interpret the weights as geomorphologic parameters such as lengths,
elevation drops, drainage areas etc., associated with river networks. The weighted
height of vertex < i1; i2; : : : ; ik > is de�ned as

hw(i1; i2; : : : ; ik) =

kX
j=0

w(i1; i2; : : : ; ij): (3.3)

The weighted tree height of � is de�ned as

hw(�) = max<e>2�hw(e): (3.4)

As observed earlier, the width function associated with a tree arises naturally in the
consideration of instantaneous uniform inputs with nonattenuated ows. The width
function of the weighted tree � at height h is de�ned as

Z(h; �) =

�
1 for 0 � h < w�
#f< e >2 � : hw(e0) � h < hw(e)g else;

where < e0 > is the parent of < e > and # denotes the cardinality of the set. In the
special case in which all w(e) = W (i1; i2; : : : ; ik) = 1; the width function is given by

Z(h) = Zk; k � h < k + 1; k = 0; 1; : : : (3.5)

where Zk is the total number of vertices at height k + 1.
Finally we turn to a notion of spatial resolution associated with river networks

introduced by Horton (1945) and later re�ned by Strahler (1957) according to the
following algorithm (see Figure 3.3): First the vertices of either degree (or valence)
one or two will be called \non-branching". Those of degree one are called leaves. All
leaves and adjacent paths of adjacent non-branching vertices are assigned order one.
The orders of all other vertices (or associated edges) are recursively de�ned as the
maximum of orders of the o�spring vertices when these are not all equal, else it is
the common order of the o�spring incremented by one. A continguous path of edges
of equal order is called a stream of the said order. The order of the root � de�nes
the order of the network � and is denoted !(�): This scheme provides an \order
or scale of resolution" in which the given tree is regarded to be at the �nest scale
of resolution and the next level of coarsening is obtained by removing the order 1
streams. The next level of \non-branching"vertices in the pruned tree are assigned
order 2. The next level of coarsening is obtained by pruning o� the (lowest) order
2 streams, etc.
Remark It may be of independent interest to note that the same algorithm for
network order has been shown to provide a natural optimization parameter in binary
arithmetic register allocation problems in computer science; e.g. Ershov (1958),
Flajolet and Prodinger (1986). In this context one has an arithmetic expression to
evaluate, say ab + (c+d)/e, which will involve successive calculations and storage
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Figure 3.3: Horton order schematics

registers to get the �nal answer. Since these are binary operations they can be
organized along a binary tree. A ow for the above example might be as follows:

a in Reg 1
b*Reg 1 in Reg 2

c in Reg 1
d + Reg 1 in Reg 1
Reg 1/e in Reg 1
Reg 1 + Reg 2

A very ineÆcient alternative is:
a in Reg 1

b*Reg 1 in Reg 2
c in Reg 3

d + Reg 3 in Reg 4
Reg 4/e in Reg 5
Reg 2 + Reg 5

The point is that the �rst one is more eÆcient in its use of storage registers than the
second. The (two-fold) question becomes, for a given arithmetic expression, what is
the smallest number of storage registers required to evaluate it and whether there an
algorithm (arrangement of the sequence of operations on a tree) which will achieve
this minimum number of storage registers? The idea for Horton numbers can be seen
inductively on a tree as follows. Suppose that to get the end result involves a �nal
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binary operation of two values AoB, where o is the �nal binary operation. Suppose
it took a registers for A and b registers to evaluate B. Then the total number needed
is a + 1 if a = b and max(a; b) if a and b are not equal. Here is why: If a = b;
then use the b storage registers to calculate B and then store this answer (ie b + 1
registers). Now reuse the b registers to evaluate A. If a 6= b; say a > b; then make the
calculation of A using these registers and store it in one of these a registers. Since
B needs b registers and b � a � 1; there is enough to calculate B. Thus requiring
a = max(a; b) storage registers. There is more to the problem in terms of showing
the existence of an optimal tree (ie. a tree graph with minimal number of storage
registers), but, given existence of the tree, the number of registers will be its Horton
order.

Given the notion of (Horton) order, a �nite tree graph for which the number Tij
of order 1 � j � i�1 subtrees aÆxed to interior vertices of an order i stream, called
a stream order generator, is (1) the same for each order i stream in the network and
(2) a function of i; j only through i� j; j � i; is called topologically self-similar ; ie.
the matrix of stream order generators is Toeplitz; see Figure 3.4.

Figure 3.4: Self-similar network schematic examples

Before examining mathematical structures let us examine some observed river
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network data structures.
Sample Stream Order Generators: In river network analysis one computes the
sample average T ij of the number of order j subtrees supported by the various
streams of order i in the network. The stream order generators for the Kentucky
river network have the \approximate"Toeplitz form given by the matrix in Figure
3.5.

Figure 3.5: Sample stream order generators for Kentucky River Network

Sample Width Function: The sample width function for the Kentucky River
Network is given in Figure 3.6, 3.7. In one plot the length is by number of channel
segments (straight line length), while in Figure 3.7, the length is measured at the
�nest scale of resolution; for some interesting alternative de�nitions of channel length
see Troutman and Karlinger (1993).
Sample Mainchannel Length vs Area: The length of channel networks in re-
lation to basin size is often recorded in log-log plots whose slope is referred to as
a Hack exponent. Hack's law is a set of empirical observations which reports the
growth of the main channel to be O(Area)� with � � :6: A sample plot for the
Kentucky basin is given in Figure 3.8.

For a mathematical analysis we begin with a well-studied stochastic model in
both mathematics and the hydrology/geomorphology literature which serves as a
framework for viewing both agreements and departures from various empirical ob-
servations. This model was introduced into geomorphology by Shreve (1967) and is
referred to as the random model in which all binary rooted trees of size n are assigned
equal probability. The motivation was simply as an attempt to allow uctuations
which might occur in an idealized environment absent of geologic controls. For our
purposes we view this model as a Bieneyme-Galton-Watson branching process con-
ditioned on total progeny. Many of the earlier results for this model were obtained
by analytic and combinatoric calculations which provided little understanding to the
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Figure 3.6: Sample width function for Kentucky river network

inter-relationships involved in the structure of these processes. The basic mathemat-
ical lesson that we wish to present is that a deeper and more uni�ed understanding
of of these quantities and their inter-relatedness may be obtained within the frame-
work of this model by consideration of a naturally associated Brownian excursion
process with the network. In addition to the uni�cation, this approach also provides
additional information on uctuation laws which have not been accessible by the

Flow distance to outlet (km)

50 100 150 200 2500

Figure 3.7: Sample width function for Kentucky river network
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Figure 3.8: Sample mainchannel length versus area

analytic approaches.
Bienayme-Galton-Watson probability distributions (BGW) on the Borel sigma

�eld B of T with single progenitor and o�spring distribution pk; k = 0; 1; : : : for
which the probability assigned to a ball B(�; 1

N
); � 2 T0; N 2 f1; 2; : : : g is

P (B(�;
1

N
)) =

Y
v2� j(N�1)

pl(v); (3.6)

where l(v) = #fj :< v; j >2 � jNg: The weighted BGW model refers to a random
�eld fW<e>g of positive weights independent of �:

Here are some corresponding mathematical results which we wish to explain from
the perspective of excursion theory.

Let �n(h) be the conditional expectation of the width function evaluated at h
given total progeny � = n; i.e.:

�n(h) = E[Z(h)j� = n]: (3.7)

Let Kn be the normalization constant de�ned by

Kn =

Z 1

0

�n(h)dh: (3.8)

and de�ne a probability measure Fn with density K�1
n �n(h); suitably scaled. That

is,
d

dh
Fn(h) = anK

�1
n �n(anh); h � 0 (3.9)
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where an is positive scale parameter. If we take an =
p
n in (3.10), then

Theorem 3.1 (Troutman and Karlinger (1984); Ossiander, Waymire, Zhang (1997))
Let �n be a conditioned Galton-Watson process whose o�spring distribution L sat-
is�es EL = 1; 0 < V arL = �2 < 1; gcdfj : P (L = j) > 0g = 1: Suppose that
the iid weights fW<e>g; independent of �n, have mean one, variance s2, and assume
limx!1(x log x)2P (jW� � 1j > x) = 0: Then,

Fn ) F

where

F 0(h) =
h

2
e�

h2

4 ;

is a Rayleigh density and \) " denotes convergence in distribution.

For the longest channel one has the following structure.

Theorem 3.2 (Gupta, Mesa, Waymire (1989), Durrett, Kesten, Waymire (1991))
Consider a critical weighted BGW model whose o�spring distribution has �nite sec-
ond moment and with i.i.d. weights.
CASE 1. If y2P (W > y)! 0; as y !1 then for a suitable constant c > 0

P (cn�
1
2h(�) � hj�(�) = n)!

1X
k=�1

(1� (kh)2)e�k
2h2:

CASE 2.If P (W > y) � y��L(y) (y ! 1) for L a slowly varying function and
0 � � < 2 then for scaling coeÆcients cn such that nc��n L(cn) � 1 as n!1;

P (cnh(�) � hj�(�) = n)! eh
��

:

Remark Kesten (1994) also calculated the asymptotic distribution conditioned on

both total progeny n and the unweighted height kn; such that k2n
n
is bounded away

from 0 and 1 and the weights have �nite fourth moment. Kesten shows that the
centered weighted height rescaled by n�

1
4 is asymptotically Gaussian. As Kesten

notes, this shows that most of the uctuation in the weighted height is due to
uctuations in the unweighted height in this case.

For network self-similarity one has the following.

Proposition 3.1 (Shreve (1967), Burd, Winn, Waymire (1999)) Suppose �n is a
critical binary Galton-Watson process. Let Tij denote the number of order j subnet-
works in a randomly selected order i stream. Then

ETij =
1

2
2i�j
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In particular the expected BGW critical tree is self-similar. A natural extension
to a form of stochastic self-similarity was introduced in Burd, Waymire, and Winn
(1999) as follows. De�ne a map � on the subset T0 of �nite trees in T by �(f�g) = �;
else �(�) is the tree graph obtained by pruning the lowest order streams from �: Also
de�ne �(�) as the tree graph obtained from �(�) by identifying adjacent vertices of
degree one or two with a single vertex. Then the order !(�) of the tree may be
expressed as

!(�) = inffn : �(n�1)(�) = f�gg (3:15)

Remark. We refer to the invariance under the composite map � of the distribution
of a �nite random tree � , conditional on Z0 > 0, as stochastic self-similarity. The
following result shows that the well-studied random model is the only such model
within the branching process framework.

Theorem 3.3 (Burd et al,1999) A BGW model is stochastically self-similar if and
only if it has a critical binary o�spring distribution.

In order to explain the above results within the context of Brownian excur-
sions consider the so-called search-depth walk de�ned by the polygonal path pro-
cess following the contour of the tree as follows. If �n is a labelled rooted tree
with n vertices then de�ne v0(�n) = � and, given vk(�n) =< i1; : : : ; im >; de-
�ne vk+1(�n) =< i1; : : : ; im; j >; where j = minfi : i1; : : : ; im; i > 2 �n and
< i1; : : : ; im; i > 6= vl(�n)8l � k + 1g, provided the latter set is non-empty, in
which case vk+1(�n) =< i1; : : : ; im�1 >. The unit search-depth walk is then de�ned
by

Sk(�n) = jvk(�n)j; k = 0; 1; : : : ; 2n; (3.10)

for the height function j � jde�ned earlier, with linear interpolation between values
to de�ne fSt(�n) : 0 � t � 1g; see Figure 3.9.

Figure 3.9: Standard search-depth walk corresponding to �n

Proposition 3.2 Let �n be distributed as a Galton-Watson tree conditioned to have
total progeny n. Then fSk(�n)g2n�1k=0 is distributed as a simple random walk condi-
tioned to be positive over k = 0; : : : ; 2n�2 and hit zero for the �rst time at k = 2n�1
if and only if the o�spring distribution is geometric.
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We refer to the conditioned random walk in Propositon 3.2 as a random walk
excursion. It follows from results of Kaigh (1976) and/or Durrett and Iglehart (1976)
that the random-walk excursion suitably scaled converges to the continuous state
Brownian excursion fB+(t) : 0 � t � 1g. The Brownian excursion may be de�ned,
up to a reparameterization of time, as a standard Brownian motion starting at 0 on
the time interval [�1; �2]; where �1 is the time of the last zero before time t = 1 and
�2 is the time of the �rst zero after time t = 1: The following recent result of Aldous
(1993) �lls the gap for more general o�spring distributions.

Theorem 3.4 Let �n be a conditioned Galton-Watson process whose o�spring dis-
tribution L satis�es EL = 1; 0 < V ar(L) = �2 < 1; gcdfj : P (L = j) > 0g = 1:

Let S
(n)
t (�n) denote the search-depth process in (2.2) with edges scaled by �p

n
: Then

fS(n)
t (�n) : 0 � t � 1g ) f2B+(t) : 0 � t � 1g:

For the applications of interest to us here we require an extension of Aldous'
theorem to weighted trees given in Ossiander et al (1997) as follows.

Theorem 3.5 Let �n be a conditioned Galton-Watson process whose o�spring dis-
tribution L satis�es EL = 1; 0 < V arL = �2 < 1; gcdfj : P (L = j) > 0g = 1:
Suppose that the iid weights fW<e>g; independent of �n, have mean one, variance
s2, and assume limx!1(x logx)2P (jW� � 1j > x) = 0: Then the weighted search-

depth process fŜ(n)
t=2n(�n)g; de�ned by weights ��W<e>p

n
; converges in distribution to

f2B+
t : 0 � t � 1g:

Let us now consider the network statistics from the perspective of this theory.
Since clearly tree height is a continuous functional one gets weak convergence

to the height of the Brownian excursion immediately from the above theorem of
Ossiander et al (1997). Apart from the log factor, the conditions in Ossiander et al
(1997) on the tails of the weight distribution are nearly best possible. However in
the special case of this particular functional Durrett, Kesten, and Waymire (1991)
is a slightly sharper result.

Next observe that the (weighted) width function may be approximated by the
local time of the weighted search-depth process as follows. That is

Ŝk(�n) = hw(vk(�n)); (3.11)

with linear interpolation between values to de�ne the weighted search depth process
fŜt : t � 0g; see Figure 3.10.

Now, for a Borel subset J of R; de�ne the (total) search-depth occupation time
by

�(J) =
1

2

Z 1

0

IJ(Ŝt)dt (3:12)
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Figure 3.10: Weighted search-depth process corresponding to �n

The search-depth local time is then de�ned as the Radon-Nikodym derivative (with
respect to Lebesgue measure � on R) accordingly as

(h) =
d�

d�
(h) (3:13)

Then observe that in the case of unit weights

(h) =
1

2
p
n
Z(
p
nh); (3:14)

while under the conditions of Theorem 3.5, Ossiander et al (1997) show that Z(h)
and (h) suitably scaled di�er by a o(1) term in probability.

So, to obtain the result of Ossiander et al (1997) showing that the uctuation law
for the weighted width function, viewed as a random measure, follows that of the
occupation time for the Brownian excursion in the large total progeny limit one uses
the fact that the Brownian excursion has a density to show that the occupation time
is a.s. continuous with respect to the Brownian excursion and therefore convergence
in distribution follows from Theorem 3.5 as follows.

Theorem 3.6 Under the conditions in Theorem 3.5, let (n)(h) denote the local

time density for the weighted search-depth process Ŝ
(n)
t having weights rescaled by

�p
n:
Then Z b

a

(n)(
p
nh)p
n

dh)
Z 1

0

I

�
ap
2
� B+(t) <

bp
2

�
dt

for any 0 < a < b; where fB+(t) : 0 � t � 1g is Brownian excursion.

Remark. Theorem 3.6 also provides a weak form of a conjecture of Aldous (Con-
jecture IV, 1991). The more diÆcult problem is that of proving weak convergence of
the local time processes was recently obtained by Dromta and Gittenberger (1996)
using generating function methods and by Kersting (personal communication) using
random walk transformations, but the extension to weighted trees is open.
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The expected value results noted above of Troutman and Karlinger (1984) will
now follow as a corollary from the uctuation law calculations using a computa-
tion by Chung (1976) of the expected occupation time of fB+(t)g contained in the
following result.

Theorem 3.7 Let

S([a; b)) =

Z 1

0

I(a � B+(t) < b)dt

for 0 < a � b <1: Then

ES([a; b)) =

Z b

a

4he�2h
2

dh:

Let us now turn to self-similarity properties of the random model. As suggested
by Neveu (1986), these results may be anticipated by corresponding results on Brow-
nian excursions of Neveu and Pitman (1989) as follows. Consider the excursions of
a Brownian motion conditioned to reach a level a; referred to as an a�excursion
from 0; de�ned as follows by Ito (1970). Fix a > 0 and let fB+

t : 0 � t < �g be the
portion of the Brownian motion started at 0 after the last zero before the �rst time
to reach a; until it returns to zero; see Figure 3.11.

Figure 3.11: a-excursion sample paths

Then Neveu and Pitman (1989) show that the counting process fN (a)
x : x � 0g of

the number of a�excursions (upcrossings from x to x+ a) in the Brownian motion
started at 0 is a continuous parameter critical Galton-Watson binary branching
process with rate 1

a
: The corresponding embedded tree is depicted in Figure 3.12.

In particular the leaves of the tree, denoted �; correspond to local a�maxima, and
branch points Æ are local a�minima as de�ned below. From here one may deduce
that the tree structure should be invariant under erasure of the tips of the tree at
some unit rate. That this is in fact true is given in Neveu (1986) for continuous
parameter Galton-Watson and in Burd, Waymire, Winn (1999) for discrete trees.
Remark. Lest one think all things are possible for this model via excursion theory,
the following result does not seem amenable to this approach. Namely, using ana-
lytic/combinatoric methods Theorem 3.1 was extended to allow for certain weight
distributions which depend on location through size of the drainage network in
Waymire (1992). In particular one has
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Figure 3.12: Tree embeddings in excursions

Theorem 3.8 (Waymire, (1992)) Suppose that � is a random treee distributed as a
BGW with binary o�spring distribution. Suppose that the weights are independently
distributed such that the weight at a vertex of a subtree of size m has an exponen-
tial distribution with mean e�(m�1)��; � > 0: Then Fn ) F where F is uniquely
determined by its moments given byZ 1

0

hkF (dh) =
�kek�r̂(1

4
e�(k+1)�)k!

r̂(1
4
e��
qQk

j=1(1� e�j�))
;

where

r(s) =
1

2
(1�p1� 4s):

The decay of the mean in Theorem 3.8 roughly corresponds to the concave shape
of river basins in which the weights represent elevation drops and the larger the
drainage area supported by a vertex the closer to the outlet and the smaller the
elevation drop in an edge; i.e. a cheap way to incorporate \geometry"without spatial
embedding. A special case of interest for which there are no precise results is that
in which the exponentially decaying mean is replaced by a power law decay of the
from m���: In fact, data analysis in Gupta and Waymire (1989) suggests this power
law form.

Let us now turn to other network models. The interest in main channel length is
inspired by work of Hack (1957) on the behavior of the length of the main channel
as a function of basin size. Hack's law is a set of empirical observations which
reports the growth of the main channel to be O(Area)� with � � :7: A model
which has been shown to naturally exhibit this behavior is the coalescing random
walk Scheidegger (1967), Ngyuen (1990); see Troutman and Karlinger (1998) for a
general perspective on these models. The basic idea is to consider the tree graph
obtained by consideration of a system of coalescing simple random walks S

(0)
k on a
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triangular lattice initiated at a level L and conditioned to reach the orign; see Figure
3.13. The basin size A may be represented as the area between two independent
(boundary )random walks, the di�erence of which is a random walk. That is A is
the area under a random walk starting at 0 and conditioned to return to 0 in L
steps. That is,

A =
LX
n=0

S(0)
n = L

3
2

LX
n=0

S
(0)
kp
L
� 1
L
� L

3
2

Z 1

0

B
(0)
t dt: (3.12)

In particular, therefore, L � A
2
3 as L ! 1: This and related models will be

discussed in the research lecture by D. Winn.

Figure 3.13: Coalescing random walks

Another special class of deterministic trees, referred to as Recursive Replacement
Trees, may be constructed as iterated function systems in the plane as de�ned in
Barnsley (1988), for example. For this let F be a closed subset ofRk and recall that a
map s : F ! F is called a contraction transformation if there is a number 0 < � < 1
such that js(x)� s(y)j � �jx� yj; x; y 2 F: In the case of equality then the map is
called a similarity. The set F is said to be invariant under a given set s1; : : : ; sN
of contractions on F if F = [Ni=1si(F ) and the collection s1; : : : ; sN is called an
iterated function system (IFS) for F. The usual Cantor set is a familiar example of
an invariant subset of the number line with similarities s1(x) =

x
3
; s2(x) =

x
3
+ 2

3
;

i.e. �1 = �2 =
1
3
in this example. The following theorem is a standard result which

provides the foundation for the trees considered here.

Theorem 3.9 Let s1; : : : ; sN be a family of contractions on a closed subset K of Rd:
Then there is a unique invariant compact subset F � K for this iterated function
system. Moreover,

F = \1j=1sj(K)
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for any nonempty compact set K for which si(K) � K; i = 1; : : : ; N; where s1(K) =
s(K) := [Ni=1si(K) and sj(K) := sj�1(s(K)); j = 2; 3; : : : :

A convenient method of de�ning similarities introduced by Mandelbrot (1982)
is by speci�cation of an IFS-generator G consisting of a number of straight-line
segments and two speci�ed points such that similarity maps s1; : : : ; sN are associated
with each line segment which map the two points onto the endpoints of the segment.
Using the IFS-generator one obtains a sequence of sets approximating the limiting
invariant set by iterating the process of replacing each line segment by a similar copy
of the generator. While the planar similitudes are de�ned by the IFS-generator only
to within reection, the orientations may be prescribed by showing the �rst iteration
s(G). We are interested in trees, referred to as recursive replacement trees, for which
the IFS-generator is itself a �nite b-ary tree graph embedded in the plane, say with n
vertices of degree b+1 of the form given in Figure 3.14. In particular, this generator
de�nes an IFS in the plane consisting of N = nb + 1 similarity maps with common
similarity ratio � = 1

n+1
: We will refer to

F (m) = \mj=1sj(G) (3:16)

as the mth scale resolution of G:

Figure 3.14: b-ary tree generator

The following theorem is a special case of much more general results known in
geometric measure theory; Falconer (1990).

Theorem 3.10 Suppose that F is a resursive replacement tree in the plane. Then F
has �nite positive Hausdor� measure. Moreover, the Hausdor� and box dimensions
of F coincide and are given by the solution �c to

NX
i=1

��ci = 1:

As a Corollary to Theorem3.10 one readily obtains the following formula �rst
argued along other lines by Peckham (1995).
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Theorem 3.11 The Hausdor� and box dimension of the recursive replacement tree
is given by

dim =
log(nb + 1)

log(n+ 1)
:

Peckham (1995) has computed the generators of recursive replacement trees as
follows: Write Tk = Ti;i�k:

T1 = (b� 1)(n� 1); Tk = (b� 1)n2(n+ 1)k�2; k � 2: (3:17)

The recursive structure of an SST gives rise to a recursion equation for the number
Nj of streams of order j in the network from which Peckham (1995) also obtains
the following result.

Theorem 3.12

lim
!!1

N!

N!+1
= Rb = nb + 1

where Rb is the bifurcation ratio de�ned above.

Let us consider the width function asympototics for two classes of special deter-
ministic self-similar trees, the so called Peano trees and uniform b-ary trees. Note
that two trees can have the same generators and still be di�erent, owing to two
freedoms in adding the edges.

Figure 3.15: Self similar trees: m = 3; b = 2; Tk = Ti;i�k = 2k�1; k � 1

The Peano tree is represented by a class of self-similar trees with branching
number b = 3 and generators fT1 = 0; Tk = 2k�1 : k = 2; 3; : : : g. Figure 3.14
provides examples of the Peano trees with order 2, 3, and 4. The dashed lines are
subtrees which are put in according to the generators.
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Figure 3.16: Order m = 3 basin partition by a Peano tree with b = 3

These trees are associated with a partition of a rectangular basin depicted in
Figure 3.16.

Let Zm;k be the numbers of edges of the kth generation of a Peano tree of order
m. The width functions of a self-similar tree of order m and generator fT1 = 0; Tk =
2k�1; k = 1; 2; : : :g is

Zm(h) =
2m�1�1X
k=0

Zm;k+1 � I(k � h < k + 1); (3:20)

where m = 2; 3; : : : : A simple induction argument shows that a Peano tree of order
m has height 2m�1 and total progeny 4m�1: We de�ne a normalized width density
fm as

fm(h) =
Zm(h)

Nm
; (3:21)

where h 2 [0; 2m�1) andNm = 4m�1: Then fm de�nes a measure �m with distribution
function

�m[0; h] =

Z 2m�1h

0

fm(y) dy =

Z h

0

2m�1fm(2m�1y) dy (3:22)

for h 2 [0; 1).
At the initial scale of resolution on a unit segment network the width function

is the unit mass distributed uniformly over [0,1]. At the �rst stage this channel is
subdivided into half, and two side tributaries are added at the node in the middle.
The width function can be written as,

f1(h) =

�
1=4 if 1 � h � 1=2;
3=4 if 1=2 < h � 1:

(3.13)

At the second stage of construction, each link of length 1/2 is subdivided into
half, and two side tributaries are added at each node in the middle. The width
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function can be expressed as,

f2(h) =

8>><>>:
1=16 if 1 � h � 1=4;
3=16 if 1=4 < h � 1=2
3=16 if 1=2 < h � 3=4
9=16 if 3=4 < h � 1:

The following theorem formalizes observations of Marani et al (1991); see Ossiander
et al (1997) for precise details.

Theorem 3.13 �m converges weakly to a continuous singular probability measure
on [0; 1] as m!1; namely the induced in�nite product measure (1

4
Æ0+

3
4
Æ1)

N under
the map �(x) = (x1; x2; : : : ); x =

P1
i=1 xi2

�i; x 2 [0; 1]:

More generally, the second class of problems which we consider is that of com-
puting the width function for the class of deterministic self-similar trees de�ned by
generators fTk(b) = (b�1)2k�1, k=1, 2, . . . g. We set the problem up in this section
but provide the main result in the next section.
The uniform b-ary self-similar trees are de�ned as the trees having generators
fTk(b) = (b�1)2k�1; k = 1; 2; : : : g: The recursive equations of fZm;k; k = 1; 2; : : : ; 2m�
1g are:

Zm;1 = 1 (3:25a)

Zm;j+1 = bZm�1;j (3:25b)

Zm;j+2n�1 = bZm�1;j; (3:25c)

for j = 1; 2; : : : ; 2m�1 � 1. The total progeny is

Nm = 2bNm�1 + 1 = (2b)m�1 + (2b)m�2 + � � �+ 1 =
(2b)m � 1

2b� 1
; (3:26)

where b = 2; 3; : : : , n = 2; 3; : : : , and Z1;1 = N1 = 1.
The width functions of a b-ary tree of given order, as a normalized probabilty

measure, converge weakly to a uniform distribution function over [0, 1]. Let us now
consider the width function of the uniform b-ary trees of order ! with generator
fTk(b) = (b� 1)2k�1k = 1; 2; : : :g: In particular, let

Z!(x) =
2!�2X
k=0

Z!;k+1 � I(k � x < k + 1); (3:25)

where ! = 2; 3; : : : and let

f!(x) =
Z!(x)

N!
: (3:27)
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The height of b-ary tree of order ! is given by H! = 2!� 1, so that the distribution
function is

F!(x) =

Z H!x

0

f!(y) dy =

Z H!x

0

Z!(y)

N!
dy =

Z x

0

Z!(H!y)
N!

H!

dy: (3:28)

If we let F! denote the distribution function de�ned by the density function

Z!(H!x)
N!

H!

; (3:29)

then we have the following theorem.

Theorem 3.14 F! converges weakly to the uniform distribution on [0; 1] as ! !1.

The following theorem of Troutman and Karlinger (1984) is of interest for com-
parison of these results to expected behavior of critical Galton-Watson trees.

Theorem 3.15 Let �n;! be distributed as a Galton-Watson binary branching process
conditioned to have order ! and total progency n. Then, the expected width function
converges weakly to a uniform distribution.

A randomization of the recursive replacement trees was introduced by Veitzer
(1999), Veitzer and Gupta (2000), referred to as random self-similar networks (RSN),
which may be viewed as a random iteration of the similarity maps in an IFS as
follows. The similarity maps are pairs (si; ti); i = 1; 2 : : :N possibly acting di�erently
on segments designated interior or exterior. For example, consider the RSN which is
obtained by replacing interior edges by the generator in Figure 3.17a with probability
p; or Figure 3.17b with probability q = 1�p: Similarly, exterior edges are replaced by
the generators in Figure c with probability p or those in Figure 3.17c with probability
q = 1 � p: Veitzer and Gupta (2000) observe that the number of edges Cm; m =
1; 2; : : : in a stream of order m evolves according to a supercritical Galton-Watson
branching process. This, for example, leads to a Horton law of stream numbers by
application of the martingale convergence theorem to C!=EC! as ! !1:

4 Multiplicative Cascades: Statistical Rainfall and Turbu-
lence Models

During the 1950's and 1960's a central theme of rainfall research in hydrology was
to �t parameters of various time series models to point rainfall measurements on
time scales ranging from hourly, daily, monthly and yearly. Examples of time series
models include mth order wet/dry Markov chain models, renewal sequences, moving
average models; see Katz (1985), Waymire and Gupta (1981). As attention turned
to more physically based approaches to take into account observed clustering in
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Figure 3.17: Random self-similar network generators

space and time, this theme was further explored into the following decades using
compound Poisson and compound Neyman-Scott time series models; see Rodriguez-
Iturbe (1986). The lesson learned was that up to second order, moment character-
istics could be \reasonably well reproduced by a variety of models at a given scale".
Better understanding of the temporal evolution would require the physical structure
of storm events which is furnished by spatial observations.

The hierarchical structure of spatial rainfall �elds takes the form of clusters of
high intensity rain cells embedded in clusters of lower intensity regions, called small
mesoscale areas (SMSA), which are in turn embedded in rainbands of identi�ably
lower intensity, called large mesoscale areas (LMSA), embedded in a still larger
scale synoptic rain area of lower rainrate. This structure is supported by radar and
raingage observations of the type analyzed by Austin and Houze (1972); see Figure
4.1 for a schematic.

While this structure is the supposed consequence of combined e�ects of vertical
and horizontal motions, the precise dynamics of rainfall formation are not available.
As a rule of thumb, the (possibly arti�cial) scales of these regions decrease by suc-
cessive factors of 1

10
from the synoptic scale through LMSA, SMSA, and down to

a cell, while the corresponding rainrates nearly double at each level until the scale
of a cell where this rule generally breaks down; supercells are possible where the
rainrate may be larger than the SMSA by several orders of magnitude.

One of the earliest studies of the spatial and temporal variability of rainfall was
that of LeCam (1961) based on spatial cluster point processes and random mea-
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Figure 4.1: Schematic of spatial rainfall hierarchy

sures of the type also occuring in the study of the clustering of galaxies, earthquake
aftershock sequences, population growth, etc. A substantial body of research has
evolved over the past decade involving various problems associated with this ap-
proach to describing rainfall. Among these is a reasonably accurate computation
of spatial/temporal correlation structure down to the scales of cells; see Zawadzki
(1973), Waymire, Gupta, Rodriguez-Iturbe (1984), Rodriguez-Iturbe, Cox, Isham
(1987), Phelan and Goodall (1990), Bell (1987), Smith and Karr (1985). However,
the lower scale high intensity regions have not been adequately represented in this
approach. Of course these high intensity localized rainfall events cannot be neglected
from the point of view of oods.

It is interesting for us to note that the development of new mathematical/statistical
methods to represent space-time rainfall phenomena in LeCam (1961) was also mo-
tivated by hydrologic ows. Namely, quoting from LeCam (1961): \The problems
encountered by this group included the evaluation of probabilities of excessive dis-
charges, the evaluation of probabilities of excessive droughts, as well as the develop-
ment of optimal management procedures for the big and small hydroelectric reser-
voirs. As the studies progressed, the need for a mathematically tractable description
of the random structure of stream ow became more and more imperative. To obtain
such a description it was found necessary to start with a description of the random
structure of rainfall." This is not a new problem but it continues to be a basic
motivation for research in surface water hydrology.

Scaling notions for random �elds are prominent in the probability and mathe-
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matical physics literature largely motivated by symmetries in critical phenomena.
A random �eld fR(x) : x 2 Rkg is said to be simple scaling if

fR(�x)g = f��R(x)g (4:1)

where equality is in the sense of joint distributions. The scaling exponent � is a real
number parameter.

A familiar example of a simple scaling stochastic process (k = 1) is standard
Brownian motion starting at 0; and more generally Levy stable processes and frac-
tional Levy noises. Of course these are non-stationary processes. That there are no
nontrivial stationary simple scaling processes with minimal sample path regularity
may be cast as follows.

Proposition 4.1 If fR(x) : x 2 Rdg is a translation-invariant simple scaling ran-
dom �eld having stochastically continuous sample paths then fR(x) : x 2 Rdg is
constant with probability one and � = 0:

As a result of Proposition 4.1 one is led to considerations of generalized random
�elds (random linear functionals) as models for statistically homogeneous rainfall
distributions; e.g. Gaussian white noise is homogeneous simple scaling with � =
d
2
: An important class of random linear functionals to represent such phenomena

continue to be classes of singular random measures. In fact, scaling observations
have led to new classes of multiplicative structures which in this respect are not
unlike the cluster models initiated with LeCam (1961).

One approach to determining scaling structure in spatial rainfall is to consider
the behavior of rainfall moments over regions �� of area �k where simple scaling
would imply

logERh(��) = h� log�+ ch: (4:2)

In particular simple scaling translates into two properties:
i. log-log linearity between a speci�ed moment and length scale.
ii. a linear change in slope s(h) = �h of the line as a function of moment order.

The analysis of spatial rainfall data leads to a very interesting phenomenon.
Namely, property (i) is preserved but the slope function s(h) in (ii) is nonlinear; see
Gupta and Waymire (1993), Gupta and Over (1994); see Figures 4.2a, 4.2b.

A second important characteristic of rainfall is it observed intermittancy struc-
ture in space and time. It is both the observed moment structure and intermittency
properties which have led to the study of cascade measures of the type originating in
the statistical theory of turbulence as models for rainfall distributions. Some specu-
late that it is in fact the atmospheric turbulence patterns which are being displayed
and modelled as rainfall!
Remark Early versions of multiplicative cascades were introduced by Kolmogorov
(1941, 1962) in the statistical theory of turbulence for use in modeling the redistri-
bution of energy under a rapid stirring motion as a repeated random splitting of
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Figure 4.2a: Empirical multiscaling moment plots for rainfall

energy into �ner scale eddies. These ideas followed earlier thinking of Richardson
Re�nements were developed further by Yaglom (1948) and by Mandelbrot (1974),
and steps toward a rigorous mathematical foundation were initiated by Kahane and
Peyri�ere (1976); also see Frisch (1998) in this context. Other highly variable and in-
termittent phenomena whose statistics appear to be reasonably represented by such
models are internet traÆc, �nancial markets, etc., eg. Gilbert et al (1999), Man-
delbrot (1998), respectively. Moreover such models were also considered by Jo�e,
LeCam, and Neveu (1973) from a purely mathematical point of view. Our goal is to
extend some of the existing statistical theory required for rigorous statistical tests
and parameter estimations within this framework.

Before we consider random cascades in detail, let us consider a classical mathe-
matical structure which illustrates the notion of a deterministic cascade and which
already occured in our width function analysis of the preceeding section.

Example 4.1 (Deterministic Multinomial Cascades). Let T = [0; 1] and let b �
2 be an arbitrary but �xed integer. Let p0; p1; : : : ; pb�1 be non-negative numbers
such that

Pb�1
i=0 pi = 1: For each n = 1; 2; : : : ; t1; : : : ; tn 2 f0; 1; : : : ; b � 1g let

f�(t1 : : : tn) � [0; 1]g denote the partitioning subinterval de�ned by

�(t1 : : : tn) := [
nX
i=1

tib
�i;

nX
i=1

tib
�i + b�n]: (4.1)

Then de�ning

�(�(t1 : : : tn)) =
b�1Y
j=0

p
(j;t1:::tn)
j
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Figure 4.2b: Empirical multiscaling slope plots for rainfall

where

(j; t1 : : : tn) = #fi � n : ti = jg; j = 0; 1; : : : ; b� 1;

uniquely determines a product measure � on [0; 1] for the given parameters. This
measure is referred to as a deterministic multinomial cascade; see Figure 4.3. Note
that � is the distribution of a point t 2 [0; 1] with b-ary expansion t = (t1; t2; : : : );
i.e. t =

P1
i=1 tib

�i; with coordinates t1; t2; : : : selected independently according to
the distribution p0; : : : ; pb�1 on f0; 1; : : : ; b�1g: In particular the Cantor distribution
is obtained by taking b = 3; p0 = p2 =

1
2
; p1 = 0:

Figure 4.3: Multinomial cascade

From the point of view of dynamical systems � may be viewed as an invari-
ant measure on [0; 1] for the shift map f(

P1
i=1 tib

�i) =
P1

i=1 ti+1b
�i: Also observe

that the width function of the Peano and b-ary uniform measures computed in the
previous section may also be viewed as deterministic multinomial cascades.
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In the simplest models of random cascades one imagines repeated splittings of
the unit interval into a number bn � 2 subintervals of lengths 1

bn
; n = 1; 2; : : : ;

such that the nth-stage mass of the interval [
Pn

k=1 tkb
�k;
Pn

k=1 tkb
�k + b�(n+1)); tk 2

f0; 1; : : : ; b�1g is given by �n([
Pn

k=1 tkb
�k;
Pn

k=1 tkb
�k+b�(n+1))) = b�n

Qn
k=1W<t1:::tk>;

where Wv; v 2 f0; 1; : : : b� 1gk; k � 1 are i.i.d. non-negative mean one random vari-
ables; see Figure 4.4. The cascade measure �1 is obtained as the a.s. vague limit
of the sequence �n as n!1:

Figure 4.4: Multiplicative random cascade schematic

The main problem for applications is to infer the distribution of the random fac-
torsWv from data on the randommasses �1([

Pn
k=1 tkb

�k;
Pn

k=1 tkb
�k+b�(n+1))); (t1; : : : ; tn) 2

f0; 1; : : : ; b� 1gn; at some prescribed �ne scale b�n: This problem will be addressed
in the research talk by M. Ossiander.

Now to be more precise let b � 2 be a natural number and let T denote the
product space

T = f0; 1; 2; : : : ; b� 1gN (4.2)

equipped with the metric �(s; t) = b�js^tj; s; t 2 T, where js^tj = inffn � 0 : sn+1 6=
tn+1g; s = (s1; s2; : : : ); t = (t1; t2; : : : ) 2 T: B(T) will denote the corresponding Borel
sigma�eld on T for this metric.

For t = (t1; t2; : : : ) 2 T let tjn = (t1; t2; : : : ; tn): If points t 2 T are viewed as
paths through a b-ary tree then v = tjn denotes the nth generation vertex along t:
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For s 2 T; n 2 N; let

�n(s) � �n(sjn) = Bb�n(s) = ft 2 T : ti = si; i � ng (4.3)

denote the closed ball of radius r = b�n centered at s 2 T: The normalized Haar
measure � on T; viewed as a countable product of cyclic groups of order b; is speci�ed
by

�(�n(s)) = b�n; s 2 T; n � 1: (4.4)

Now let fWv : v 2 f0; 1; : : : ; b � 1gn; n � 1g be a denumerable family of i.i.d.
non-negative mean one random variables de�ned on a probability space (
;F ; P ).
Also let Fn; n � 1; denote the �ltration de�ned by

Fn = �fWv : jvj � ng; n � 1; (4.5)

where for v = (v1; v2; : : : ; vn); vi 2 f0; 1; : : : ; b � 1g; n � 1; jvj = n: The random
variablesWv are referred to as the cascade generators and, as such, de�ne a sequence
of random measures �n on (T;B(T)); n � 1; via

d�n
d�

(t) = Qn(t) =
nY
i=0

Wtji; t 2 T =W;
nY
i=1

Wtji; t 2 T; (4.6)

where W;, referred to as the cascade initiator, is an a.s. positive random variable
independent of Fn; n � 1; andWtji is the cascade generator at vertex v = (t1; : : : ; ti):

It is well-known, e.g. see Kahane and Peyri�ere (1976), Jo�e et al (1973), that
there is a random measure �1 on (T;B(T)) such that

P (�n ) �1 as n!1) = 1; (4.7)

where, throughout, ) denotes vague convergence. In fact, for any countable family
� of bounded Borel measurable functions, cf. Kahane (1989),

P [ lim
n!1

Z
T

f(t)�n(dt) =

Z
T

f(t)�1(dt); f 2 �] = 1: (4.8)

The random measure �1 de�nes the multiplicative cascade. The following basic
structure theorem for �1 is also well-known. First let

�b(h) = logbE[W
h1[W > 0]]� (h� 1); (4.9)

where W is a generic cascade generator distributed as Wv for v 6= ;: The function
�b(h) is de�ned for all real numbers h but may be in�nite, with the conventions that
00 = 0; 0 � 1 = 0:
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Theorem 4.1 (Kahane and Peyri�ere (1976) (i:)E�1(T) > 0 i� �0b(1�) < 0:
(ii:)E�h1(T) < 1 for 0 � h � 1; and, if hc := supfh � 1 : �b(h) � 0g > 1;
then E�h1(T) <1 for 1 < h < hc: (iii:)dim(supp(�1)) = (1� EW logbW ) ^ 0:

An extension of this theorem allows for independent identically distributed ran-
dom branching numbers at each generation and independent of the cascade gen-
erators. In particular, assuming the branching number distribution has moments
of all orders h � 1; Peyri�ere (1977) notes without proof that the above theorem
applies with b replaced by E[b]. This result was extended by Burd and Waymire
(1999) assuming only a EL logL <1 moment condition on the o�spring distribu-
tion. Complete extensions of the Kahane-Peyri�ere theory have also been obtained
in the case of certain types of dependent cascades (eg.Markov cascades) in Waymire
and Williams (1996,1997). The basic idea for this is the size-bias method described
below.

The theory of multiplicative random cascades is a special case of Kahane's posi-
tive T-martingales; eg. see Kahane (1991) and references therein, and from a math-
ematical point of view it is advantageous to view random cascades within this more
general framework. For this, let T be a compact metric space with Borel sigma�eld
B; and let (
;F ; P ) be a probability space together with an increasing sequence
Fn; n = 1; 2; : : : of sub-sigma�elds of F :

De�nition 4.1 A positive T-martingale is a sequence fQng of non-negative func-
tions on T �
 such that (i.) For each t 2 T; fQn(t; �) : n = 0; 1; : : : g is a martingale
adapted to Fn; n = 1; 2; : : : ; (ii.) For P � a:s:! 2 
; fQn(�; !) : n = 0; 1; : : : g is a
sequence of Borel measurable non-negative real-valued functions on T.

Given fQng and a measure � in the space M+(T ) of �nite measures on T de�ne

Qn�(B) = �n(B) =

Z
B

Qn(t)�(dt); B 2 B: (4:3)

Then essentially by the martingale convergence theorem one obtains Q1� = �1 =
limQn� a.s. in the sense of vague convergence. That is,

lim
n!1

Z
T

f(t)Qn�(dt) =

Z
T

f(t)Q1�(dt)f 2 C(T ); (4:4)

where C(T ) is the space of (bounded) continuous real-valued functions on T: As
suggested by the notation, it is the intention to viewQ1 as a random operator acting
on M+(T ): Let q(t) := EQn(t); t 2 T: While typically one has mean conservation
in the form of q(t) � 1; more generality is essential to the mathematical theory as
indicated by the following basic proposition of Kahane (1987).
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Theorem 4.2 Let fQng be a positive T-martingale. Then corresponding to � 2
M+(T ) such that L1(�) 3 q; there is a unique decomposition of fQng as a sum of
two positive T-martingales fQ0

ng fQ00
ng; such that for each t 2 T

Qn(t) = Q0
n(t) +Q00

n(t)

[Q0
1lives on�] : EQ

0
1�(B) = q0�(B); B 2 B; q0 := EQ0

n;

[Q00
1dies on�] : Q

00
1� = 0 a:s:

Remark. Theorem 4.2 makes a notion of cascade survival precise and is a major
tool for calculations; see Waymire and Williams (1996). In particular we say that the
cascade survives on (nonzero) � i� it has a nontrivial living part Q0

1 with positive
probability.
Example 4.1(Independent Bernoulli Zero/Non-Zero Generators) The �-model is
an important cascade de�ned by independent cascade generators distributed as

W =

�
1
p
= b� with probability p = b��

0 with probability q = 1� b��:

Observe that the total mass at the n�th generation �n(T ) = (1
p
)nYnb

�n; where Yn
is the number of non-zero o�spring in the n-th generation. In particular, Yn; n =
1; 2; ::: is a Galton-Watson branching process with Binomial o�spring distribution
having mean bp: Thus the positive martingale Yn

(bp)n
is a.s. convergent to zero (i.e.

degenerate) if and only if bp � 1:
Example 4.2 (Independent Uniform [0,2] Generators) For this example we consider
generatorsW which are uniformly distributed on [0; 2] with binary branching number
b = 2: In this case one may check that the total mass Z1 := �1(T) satis�es the
distributional recursion

Z1 =
1

2
W0Z

(1)
1 +

1

2
W1Z

(2)
1 (4.10)

where Z
(1)
1 ; Z

(2)
1 are independent and identically distributed as Z1; and independent

ofW0;W1: From here one may check that the Gamma distribution is the unique non-
negative solution.

P (Z1 2 dx) = 4xe�2xdx; x � 0: (4.11)

More generally, in the case of mean one Beta distributed generators on b-ary trees
the total mass has a Gamma distribution.

In a certain general sense it is clear that nondegenerate cascades owe their
structure to large deviations from average behavior; e.g. with P-probability one
a product of i.i.d. mean one variables along a given path tends to zero. Fortu-
nately, the tree T contains uncountably many paths. We take advantage of this by
transforming (size-biasing) the probability measure in such a way that the essential
computations become law of large number computations. The trick is to �nd the
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\right"probability measure! In the present framework a natural choice is to choose
a path at random according to the cascade measure at level n and then average and
pass to the limit as n ! 1: More precisely, de�ne a sequence Qn of measures on

n � T;
n := [0;1)T

�(n); byZ

n�T

f(!; t)Qn(d! � dt) := EP

Z
T

f(!; t)Qn(t)�(dt); (2:5)

for bounded measurable functions f; see Figure 4.5. Then one normalizes the masses
of the Qn by a factor Z; := EW; and extends to a probability Q1 using the
Kolmogorov extension theorem. Of course, the nontrivial initialization Z; > 0 will
be required wherever Q1 is applied.

Figure 4.5: Size-biased cascade generators

Remark. The so-called Peyri�ere probability by Kahane was introduced in Peyri�ere
(1976) under the apriori condition P (�1(T ) > 0) of nondegeneracy of the cascade.
The main di�erence here with Peyri�ere (1976) is that an apriori nondegeneracy is not
required. As a result Q1 may be used to study the degeneracy vs. non-degeneracy
problem.

The third ingredient to this theory is a corollary to a general composition the-
orem proved in Waymire and Williams (1996) which we refer to as the percolation
theorem in the spirit of terminology introduced in Lyons (1990). The di�erence with
Lyons (1990) is that here we consider a \measure valued"percolation in place of \set
valued"percolation. The idea is still that multiplication by an independent cascade
with i.i.d. zero/non-zero valued generators corresponds to an independent pruning
of the tree under which one studies the critical parameters governing the survival of
mass. This is an extremely powerful tool for analyzing dimension spectra.
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Theorem 4.3 (A Lebesgue Decomposition) Let �
 denote the coordinate projection
map on 
� T: Then,

Q1 Æ ��1
 (d!) = Z�1; �1(T )(!)P (d!) + 1(�1(T ) =1)Q1 Æ ��1
 (d!);

where �1 = Q1�:

Corollary 4.1 If Z; > 0 then

�n(T )! �1(T )in L1 () �1(T ) <1 Q1 � a:s: (4.12)

() EP�1(T ) = Z;: (4.13)

Theorem 4.4 (A Size-Bias Transform Disintegration) For each t 2 T; n � 1 de�ne
a probability Pt << P on Fn by

dPt
dP
jn = Z�1;

nY
i=0

Wtji:

Also let Pt denote the Kolmogorov extension to F : Then,
Q1(d! � dt) = Pt(d!)�(dt);

Moreover, de�ning Ft;n := �fWtjn; n � 0;W; jj � ng; t 2 T; n � 0; one has

�n(T ) =
nX
j=0

b�j
jY
i=0

WtjiMn;j(t);

where each Mn;j(t) :=
P

jj=n� j

j16=tjj+1 b

�(n�j)Qn�j
i=1 Wtjj�ji; 1 � j � n; is the total

mass in the (slightly irregular) subtree started at tjj; and given Ft;0; the Mn;j(t); j =
0; 1; : : : n are independent. Moreover,

EP [�n(T )jFt;0] =
nX
j=0

b�j
jY
i=0

Wtji(
b� 1

b
+
1

b
Æj;n);

where Æj;n is the Kronecker delta.

Note. In the decomposition represented by the above Theorem4.4, at each node,
say tjj; of the t-path one has a subtree generated at that site. However, there is a
slight irregularity in the sub-tree since, at the �rst generation, the root tjj subse-
quently generates only b-1 o�spring, while each of these will generate b o�spring.
This is of no major consequence, however it tends to have subtle (arithmetic) e�ect
on some calculations. Also, �n(T ) need not be in L1(Pt); in which case the \condi-
tional expectation"formula is an abuse of notation which is to be interpreted as a
disintegration formula.
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Corollary 4.2 If Z; > 0 then

Q1(d! � dt) (4.14)

= Z�1; �1(dt)P (d!) + 1(�1(T ) =1)Æ�(!)(dt)Q1 Æ ��1
 (d!); (4.15)

where � is a T-valued random path.

Remark 4.1 The proof of Corollary 4.2 makes the following heuristic precise. By
de�nition the construction of Q1 involves renormalization of the mass by the total
mass at each stage of the cascade and then passing to the limit. If the total is �nite
in the limit then one simply gets the total mass as the renormalization of P. On the
other hand, if the limit is in�nite then the renormalization results in a delta mass
along a single surviving path.

Theorem 4.5 (A 1st Departure Submartingale Bound) Let Ft;n := �fWtji;W : i �
0; jj � ng: Fix ck � 0; such that ck is Ft;0�measurable, EQ1

P
k ck <1: Then, for

arbitrary t 2 T (with 0
0
:= 1),

b�n
nY
i=0

Wtji � �n(T ) � b�n
nY
i=0

Wtji + sup
j
(b�j

Qj
i=1(Wtji)
cj

)Mn;

where

Mn =
n�1X
j=0

cjb
�(n�j) X

jj=n� j

j16=tjj+1

n�jY
i=1

Wtjj�[ji

is a non-negative submartingale with respect to Ft;n; whose Doob decomposition has
the predictable part An =

b�1
b

P
j�n cj; and limMn exists Q1�a.s.

Let us refer to c0js satisfying the conditions of the previous theorem as admissible.

Corollary 4.3 Fix t 2 T: If

�ft : Pt(
X
j

b�j
jY

k=1

Wtjk <1) > 0g > 0

then
P (�1(T ) > 0) > 0:

If for �� a:e:t;
Pt(
X
j

b�j
jY

k=1

Wtjk <1) = 1

then
EP�1(T ) = Z;
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and
�n(T )! �1(T ) in L1(P ):

If for �� a:e:t;
Pt(lim sup

n!1
b�n

nY
k=1

Wtjk =1) = 1

then P-a.s.
�n(T )! 0:

Remark 4.2 To obtain the convergence in Corollary 2.3 it is often useful to do a

\root test"as the computation of j

q
b�j
Q

k�jWtjk is often calculable using an ergodic

theorem. Alternatively, it is sometimes convenient to do a \comparison test"based
on the simple fact that for admissible c0js;

sup
j

b�j
Q

k�jWtjk
cj

<1)
1X
j=1

b�j
Y
k�j

Wtjk <1;

and conversely.

The following the composition theorem and its corollary (the percolation theo-
rem) complete this set of tools.

Theorem 4.6 (Composition Theorem) Let T be an arbitrary compact metric space
and let fRng and fSng be independent arbitrary positive T-martingales de�ned on
a probability space (
;F ; P ); with respect to independent increasing sigma�eld se-
quences fRng and fSng; respectively. Let Fn;m := �fRn [ Smg: De�ne Qn(t) :=
Rn(t)Sn(t); t 2 T; n � 1: Then fQng is a positive T-martingale with respect to Fn;n
and for � 2M+(T ) one has R1(S1�) = Q1� a:s:

As an illustration of an application of Theorem 4.6 to get information about
the support of an arbitrary cascade Q1�; one applies the following \percolation
method"proposed by Kahane (1991); see Waymire andWilliams (1995) for the proof.

First apply the �� model, denotedQ
(�)
1 toQ1�: The general criterion of composition

theorem can then be applied to determine the non-degeneracy (i.e. survival) of the
product. This can be equated with the critical parameter for the survival of the ��
model acting on a given measure � which can be determined with the aid of the
following proposition Kahane (1991).

Proposition 4.2 For 0 < � < 1; 0 6= � 2 M+(T );

(a0) Q�� = 0) dim(�) � �

(b0) EQ�� = � ) dim(�) � �
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Another application of the composition theorem shows that the log-in�nitely
divisible generators occupy a somewhat privileged role with respect to independent
composition. Compositions, possibly dependent, arise naturally in extensions of the
spatial cascade distribution to temporal evolutions where one replaces the generator
random variablesW by generator stochastic processes fW(s) : s � 0g: This induces
a time evolution of the cascade operators Q1(s); s � 0: For the case of log-in�nitely
divisible generators taking the generator proceses fW(s) : s � 0g as exponentials
of processes with stationary independent increments, one may use the composition
theorem to compute the extinction time in terms of the spatial survival criteria;
Waymire and Williams (1996). A simple Markovian space-time cascade was studied
by Over (1995) as a model of GATE rainfall scans in which independent generator
processes each evolved as a stationary two state (zero/nonzero) ��model. It is
interesting to note that a �� generator is log in�nitely divisible as an extended real-
valued random variable (in the sense of division into arbitrary n term independent
sums). An attempt was made to interpret the rainfall probability parameter for
this model in terms of large scale climatic forcing; see also Over (1995). Other
applications of cascade compositions arise in consideration of temporal evolutions of
spatial cascades and in the interaction of rainfall and landforms in the ood problem
to be described in section 5.

Given the high degree of variability and intermittancy of rainfall it is the �ne scale
structure of cascades which is of particular interest in applications. As an illustration
consider the multinomial cascade of Example 4.1. While purely mathematical, this
example is presented as a way to simply illustrate the various mathematical concepts
involved in the analysis of �ne scale structure.
Example 4.1 In view of Borel's classic normal number theorem (Billingsley, 1986)
or law of large numbers, one knows that the subset

Fp = ft = (t1; t2; : : : ) 2 [0; 1] :
#fi � n : ti = jg

n
! pj; j = 0; 1; : : : ; b� 1g; (4:10)

for prescribed non-negative frequencies p = (p0; : : : ; pb�1);
Pb�1

j=0 pj = 1; has full

Lebesgue measure one () pj =
1
b
; j = 0; 1; : : : ; b � 1: More generally, the multi-

nomial cascade � is supported by the set Fp: While the calculation of the Hausdor�
dimension of Fp dates back to at least Eggleston (1949), the proof was dramatically
improved by the following results of Billingsley (1960). Let �; � be two probabil-
ity measures on the Borel sigma�eld of a metric space S and de�ne a generalized
Hausdor� measure by

H�;�(F ) = lim
Æ!0

inff
X
i

��(Ji) : [iJi � F; �(Ji) < Æg (4:11)

where Ji is a ball in S. Observe that in the case S is Euclidean space and �
is Lebesgue measure then �(Ji) / diam(Ji) and H�;� is usual Hausdor� measure.
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Billingsley's generalized Hausdor� dimension is then the critical parameter de�ned
by

dim�(F ) = �c = supf� : H�;�(F ) =1g = inff� : H�;�(F ) <1g: (4:12)

The following (heuristically simple) theorem demonstrates the power of these ideas
in computation of �ne scale structure.

Theorem 4.7 If F � fs 2 S : limn
log �(Jn(s))
log �(Jn(s))

= �g; where Jn(s) are balls shrinking
to s, then

dim�(F ) = �dim�(F ):

Note that since the multinomial cascade is supported on Fp; i.e. �(Fp) = 1; one
has dim�(Fp) = 1: In particular, from Billingley's Theorem 4.7 applied to the multi-
nomial cascade one obtains the classic (1949) Eggleston formula for the Hausdor�
dimension of Fp; that is the support of �;

dim(Fp) = �dim�(F ) = � (4.16)

where for Jn(s) = ft = (t1; t2; : : : ) 2 [0; 1] : ti = si; i � ng by the law of large
numbers under the probability measure �;

� = lim

P
i log pti
�n log b = �

b�1X
j=0

pj logb pj: (4.17)

More generally, the singularity spectrum de�ned by

f(�) = dimft 2 [0; 1] : lim
n

log�(Jn(t))

�n log b = �g (4.18)

may be computed using Billingsley's theorem as follows. For a real parameter q
de�ne

pj(q) = P�1(q)pqj ; j = 0; 1; : : : ; b� 1; (4.19)

where

P (q) =

b�1X
j=0

pqj : (4.20)

Then let �q denote the multinomial cascade for this choice of parameters. Now
observe that

f(�) = dimft 2 [0; 1] : lim
n

log�(Jn(t))

�n log b = �g (4.21)

= dimft 2 [0; 1] : lim
n

log�q(Jn(t))

�n log b = logb P (q) + �qg (4.22)

= logb P (q) + �q; (4.23)
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where q is selected such that �q(ft 2 [0; 1] : limn
log �(Jn(t))
�n log b = �g) = 1. That is

logb P (q) + �q = �
b�1X
j=0

pqj
P (q)

logb(
pq

P (q)
) (4.24)

In particular

�P (q) = �
b�1X
j=0

pqj logb pj = �P 0(q); (4.25)

or equivalently, q is selected to maximize logb P (q) + �q as a function of � and
therefore the singularity spectrum is given by the Legendre transform

f(�) = sup
q
flogb P (q) + �qg (4.26)

of the cascade structure function

�(q) = � logb P (q) = � logb

b�1X
j=0

pq: (4.27)

The computation of these exponents are also required for the case of random
cascades. Expected value computations in the case of random cascades often appear
in the physical science literature and are easily obtained as follows. Let ��(i); i =
1; 2; : : : denote a partition of a region X of d-dimensional space into cells at the
length scale �: Then

logbE[
X
i

�h1(��(i))] = �d�b(h) log(�) + logE�h1(X); (4.28)

where
�b(h) = logb

�
EW h

�� (h� 1) (4.29)

logb Prob[�1(��) > �d�]

log�
! �d��b(1� �); �! 0 (4.30)

where
��b(a) = sup

h
[ah� �b(h)] (4.31)

is the Legendre transform of �b(h): Note from (4.23) that the structure function
exponent for random cascades is given by �d�b(h):

In order to apply these formulae to sample realizations one needs to be able to
\drop the expectations". However because of long-range spatial correlations the cas-
cade �elds are nonergodic and one cannot simply replace expected values by spatial
averages. Since data typically consists of a single spatial sample realization, this
problem cannot be ignored. Holley and Waymire (1992) applied the idea described
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for the multinomial cascade above to compute the singularity spectrum for a large
class of random cascades; namely those with suitably bounded cascade generators.
De�ne nth-scale sample moments by

Mn(h) =
X
jvj=n

�h1(�n(v)); h 2 R: (4.32)

Then introduce h-cascades, denoted by the random measures �1(h; dt); h 2 R;
de�ned via the h-cascade generators

Wv(h) =
W h
v

EW h
v

; h 2 R: (4.33)

With this one may easily check that

�hn(�n(v))

bn�b(h)
= �n(h; �n(v)); (4.34)

where
d�n(h; �)
d�

(t) � Qn(h; t) =
nY
i=0

Wtji(h); t 2 T; (4.35)

is the sequence of nth level h-cascades, n = 1; 2; : : : :

Proposition 4.3 For h 2 R; n � 1; one has

Mn(h)

bn�b(h)
=
X
jvj=n

Zh
1(v)�n(h; �n(v)) =

Z
T

Zh
1(tjn)�n(h; dt)

where a.s.

Z1(v) = lim
N!1

X
juj=N�n

N�nY
i=1

Wv�<u1 :::ui>b
�(N�n);

and * denotes the concatenation

< v1; : : : ; vn > � < u1; : : : ; uN >=< v1; : : : ; vn; u1; : : : ; uN > :

The crude idea is to then consider

logbMn(h)

n
=

1

n
logb(b

n�b(h)
Mn(h)

bn�b(h)
) = �b(h) +

1

n

logb(Mn(h)

bn�b(h)
(4.36)

and show that logb(Mn(h)

bn�b(h)
has a positive limit as n ! 1: Related ideas have also

been applied by Molchan (1996), Troutman and Vecchia (1999) and Ossiander and
Waymire (2000) to obtain con�dence intervals for statistical estimation of generator
distributions from sample data. Although typically not present in current data
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analysis, one may expect that scienti�c standards for testability of claims made in
data analysis to be an achievable part of this theory. This will be discussed in the
research lecture by M. Ossiander.

As noted in Section 3, in the simplest hydrologic context one imagines a rain of
particles uniformly distributed over the network �n and traveling at constant rate
v. Then the (hydrograph) proportion of particles which reach the outlet (�) in time

t is represented by the width function Z(vt)
n

suitably normalized. The (conditional)
expected value is the best approximation in the mean square sense given the size of
the network. This simple idealization illustrates the use of some basic results from
Section 3 for prediction problems based on maps of river basins (in place of stream
gauge networks). For example, using Shreve's random model one obtains a Rayleigh
density for the hydrograph for large networks with constant velocity. The following
simple calculations illustrate the basic elements of a theory which computes ow as
a composition of rainfall and landform cascade structure. First consider the case of
uniform rainfall over a square partitioned by the Peano network described in Section
3. As discussed in (3.24) and in view of Example 4.1 the width function for the Peano
network can be viewed as a Binomial cascade with parameters p0 = 1=4; p1 = 3=4;
see Figure 4.3. Taking unit velocity for the ow one sees immediately the scaling
exponent for the ow from the de�nition of dimension as follows. Since ��dimD / the
number of cells which cover D at the scale �; which in turn is q(�) normalized by �2;
i.e. q(�)��2; one has for uniform rain and constant velocity that q(�)��2 � ��dimD;
where as computed in Theorem 3.13, dimD = log 3

log 2
: Alternatively, the peak ow at

the network outlet q(�n) = maxtQ
(n)(t) at the nth scale of resolution (and length

�n = 2�n) is (3
4
)n: Thus one has

log q(�n) = n log(
3

4
) = (2� log 3

log 2
) log�n: (4.37)

In Gupta et al (1996) and in Troutman and Over (2001), the authors provide
calculations via certain approximations and simulations to suggest a relationship
with the peak ow exponent in the case of a ��model rainfall composed with the
Peano network landform. These preliminary calculations illustrate the nature of
the broad theoretical objective in (ow) predictions in ungauged basins (PUB). In
fact, a signi�cant part of the PUB problem is reduced to this and the corresponding
mathematical problem for general cascades on the Peano network. The problem
which will be addressed in lectures by B. Troutman and V. Gupta concern the ows
from the network.

To accomodate spatial variability in the analysis of rain data over a network
as a b-ary cascade one is �rst confronted with determination of the paramter b:
However, within the framework of the present theory considerations of the parameter
b arise also in connection with self-similar partitions of the drainage basin area
by the network. In particular one hypothesises that the landform partitioned by
the network provides a self-similar b-ary tiling of the plane over which rainfall is
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distributed as a b-ary cascade. One approach to incorporate this hypothesis is to
assume that the distribution of rainfall generators does not depend on the choice of b
dictated by the landform structure beyond a scale factor. Over (1995) observes that
this will be the case under the assumption that the generators have a log-in�nitely
divisible distribution. More precisely one has

Proposition 4.4 If the generators of an independent b-ary cascade are log-in�nitely
divisible say, W = eX�a; a = logEeX ; where X has an in�nitely divisible distribution
then

�b(h) = �� 1
log b

X(1) + log� 1
log b

X(h)� (h� 1);

where �cX(h) = EehcX ; c > 0:

In view of Proposition 4.4 the choice of the parameter b simply sets a scale
for the exponent of a log-in�nitely divisible cascade generator. It is interesting to
note that the familiar cascade generators Beta, lognormal, logPoisson which arise in
the statistical analysis of turbulence data and theory are all log-in�nitely divisible.
Lovejoy and Schertzer (1990) argue that such forms of universality must hold.

We close this section with a discussion of the statistical estimation problem
implied by the observations plotted in Figure 4.6 from Frisch (1995).

Figure 4.6: Empirical turbulence exponents
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The energy dissipation rate � de�ned by

�(x) =
�

2

3X
i;j=1

(
@ui
@xj

)2; x 2 R3; (4.38)

is computed in terms of the uid velocity u = (u1; u2; u3) as the local rate of decay
of kinetic energy d

dt
1
2

R
V
ju(x)j2dx from the incompressible Navier-Stokes equation

in a region V with viscosity parameter � > 0: However in Kolmogorov's statistical
theory of turbulence the energy dissipation rate, denoted �(x) per unit volume at
the point x is a generalized random �eld represented by a multiplicative cascade in
the sense that the amount of heat dissipated in a ball Br(x) located at x per unit
time is �r(x) �

R
Br(x)

�(y)dy = �1(Br(x)): Data analysis depicted in Figure 4.6 from

Frisch (1995) suggests that the competition between generators is resolved to that
of logPoisson; see the discussion following (4.40) for relationship between �p = �(p)
and �(p): However, the question is much more delicate than indicated by expected
value analysis.

The multiplicative cascade with iid non-negative mean one generators is assumed
to be a valid statistical model for the turbulent redistribution of energy in the
statistical model of the random dissipation �eld �(dx) over an appropriate range
of length scales, referred to as the Kolmogorov inertial range. The Kolmogorov
inertial range is an interval of length scales from the largest length scale at which
energy is input down to the smallest length scale where energy is dissipated by uid
viscosity. Actual observations of � are one-dimensional cross sections wherein (4.38)
is replaced by the surrogate measurement 15�(@u1

@x1
)2: As a result Jouault, Greiner,

and Lipa (2000) have e�ectively argued that iid mean one generators provide the
appropriate model for measurements of energy dissipation rates from the point of
view of conservation laws. In particular, taking one-dimensional cuts through the
three dimensional energy dissipation �eld makes the measurements non-conservative
in an almost sure sense. The statistical model with iid mean one generators provides
conservation on average.

The Kolmogorov lognormal hypothesis leads to quadratic structure function
�b(h): Early data analysis revealed a departure from quadratic multiscaling ex-
ponents which is now understood to be remarkably adjusted by a linear correction.
This e�ect had already been anticipated by preliminary calculations in the physics
literature by Lovejoy and Schertzer (1991), and Molchan (1997). It is the subject of
the lecture by Ossiander in these lectures.

Largely prompted by observations in the form of Figure 4.6, various adhoc alter-
natives to the lognormal hypothesis have been considered in the physics literature.
However, the logPoisson distribution surfaced as an alternate hypothesis as a some-
what indirect consequence of an analysis by She and L�evêsque (1994), Dubrulle
(1994), and She and Waymire (1994,1995). Speci�cally, She and L�evêsque (1994)
obtain the following second order, linear, nonhomogeneous di�erence equation for
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the scaling exponents.

�(h + 2)� (1 + �)�(h+ 1) + ��(h) +
2

3
(1� �) = 0; (4.39)

where � = 2
3
; and �(0) = �(1) = 0 as a consequence of the following log-convexity

hypothesis on the structure of the size-biased moments �
(h)
l := E�h+1l =E�hl of energy

dissipation:
�
(h+1)
l = Ah(�

(h)
l )�(�

(1)
l )1��; 0 < � < 1: (4.40)

According to She (personal communication) this hypothesis was formulated in re-
sponse to observations made in numerical simulations of Navier-Stokes equations. A
plot of the scaling exponents with and without the linear correction for logPoisson
generators against the Anselmet data is given in Figure 5.2a,b, respectively.

Obviously if one were permitted to use Figure 4.6 to test hypothesis of logNor-
mal vs. logPoisson then the need for extensive statistical theory would hardly be
justi�ed. However, the problem to distinguish models based on the appropriate
linear corrections requires the suitable error bars which will be described in the ac-
companying lectures by Ossiander; also see Ossiander and Waymire (2001,2002).
The multiscaling estimations require data at the level of the measured dissipa-
tion rates. In the literature the reported data is often that of velocity expo-
nents �(h) de�ned by E(u1(x + �) � u1(x))h � � (h) from which �(h); de�ned by
E�h(dx) � (dx)�(h); is obtained by the assumed relationship based on dimensional
arguments that  (h) = h

3
+ �(h

3
):

The lecture by Greiner provides new and convincing alternative arguments in
favor of lognormal hypothesis over logPoisson; see Jouault, Greiner, Lipa (2000).
Another approach based on statistical analysis of the velocity data may be found in
Barndor�-Nielsen, Jensen, and Sorensen (1990).

Finally, we wish to record that the statistical theory is complimented on the
purely mathematical side by foundational e�orts which seek to explain observed
qualitative structure in turbulence measurements directly from analysis of incom-
pressible Navier-Stokes equations. An extensive collection of references in this regard
may be found in the recent monograph by Foias, Manley, Rosa, and Temam (2001).
Recent alternative probabilistic analysis of Navier-Stokes is the subject of the lec-
tures by Thomann and by Orum in this workshop. Some background material is
provided in the next section.

5 Navier-Stokes Equations and Multiplicative Cascades

The Navier-Stokes equations provide a non-linear model of the ow of uid as ob-
served from a �xed location x; i.e. the so-called Eulerian description. These equa-
tions were �rst formally written down by the French hydrologist Claude Louis Navier
and, some �fty years later, rediscovered in the mathematically more rigorous work
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of George Gabriel Stokes. The equations are essentially a manifestation of Newton's
law of motion obtained by resolving external body forces such as gravity and surface
stress forces. Consider the velocity vector of a uid parcel (material point) given
by

v(t,x) = velocity of uid element at x at time t
If the ow carries a uid parcel from location X = '(0; X) to x = x(t) = '(t; X)
at time t; where '(t; X) is a smooth one-to-one map (Fig 5.1) with smooth inverse,
then one may write

x = '(t; X); v(t; x) =
@'

@t
(t; X) = 't(t; '

�1(t; x)) (5.1)

Figure 5.1: Schematic of uid ow map

Thus, acceleration of the parcel is given by

d2x

dt2
= ('t(t; '

�1(t; x)))t =
@v

@t
+

3X
j=1

@v

@xj

dxj
dt
; (5.2)

or, equivalently,
d2x

dt2
=
@v

@t
+ (v � r)v: (5.3)

Most signi�cant is the fact that the nonlinearity (v � r)v is intrinsic to the Eulerian
acceleration and is NOT due to modelling considerations.

Lemma 5.1 (Euler) Let

J(t; x) = det((
@'i(t; X)

@Xj
)):

Then,

Jt(t; X) = J � div(v);
where

div(v) =
3X
j=1

@vj
@xj

:



Lectures on Multiscale and Multiplicative Processes in Fluid Flows 51

In particular, observe that if div(v) = 0 then Jt = 0: In this case the uid is said
to be incompressible. The equation of mass balance for this model is obtained as an
application of Gauss's Divergence theorem to the mass in an arbitrary uid element
as follows. Let

� = �(t; x) = density of uid at location x and time t:

For an initial volume V0; let
V (t) = '(t; V0):

Then the principle of mass balance may be expressed asZ
V0

�dX =

Z
V (t)

�dx: (5.4)

In particular
d

dt

Z
V

�dx = 0: (5.5)

Thus, using Euler's lemma,

0 =
d

dt

Z
V (t)

�dx

=
d

dt

Z
V0

�('(t; x); t)J(t; x)dX

=

Z
V0

f�t('(t; x); t) +
X
j

@�

@xj

@'j
@t
gJdX +

Z
V0

�JtdX

=

Z
V (t)

f�t +r� � v + �div(v)gdx

=

Z
V (t)

f�t + div(�v)gdx: (5.6)

Since V0 is arbitrary one has the following localized form of mass conservation,
referred to as the continuity equation.

�t + div(�v) = 0: (5.7)

Note that if � is constant then the uid must be incompressible. We will assume �
is constant from here out.

According to Newton's Law of Motion, the time rate of change of momentum of
a uid parcel is the sum of the forces acting on a uid parcel. Thus using (5.3), we
write Z

V0

�fvt + (v � r)vgdx = d

dt

Z
V0

�v =

Z
@V (t)

Sd� +
Z
V (t)

g(t; x)dx; (5.8)
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where g(t; x) represents a body force, e.g. g(t; x) = �(0; 0;�g) in the case of weight
of parcel due to gravity, and S is a stress vector acting on the uid parcel surface (as
a force per unit area). One makes the modelling hypothesis that the stress forces
act linearly as

S(n) = �n

where � = ((�ij))1�i;j�3 is a symmetricmatrix and n = (n1; n2; n3) is the unit normal
to the surface. The symmetry of � may be shown to be required for conservation
of angular momentum. With this hypothesis one may apply the Gauss Divergence
Theorem to (5.8) to obtainZ

V0

�fvt + (v � r)vgdx =
Z
V (t)

div(T )dx+

Z
V (t)

g(t; x)dx; (5.9)

where

div(T ) = (

3X
j=1

@�ij
@xj

)i=1;2;3: (5.10)

Write
@vi
@xj

=
1

2
(
@vi
@xj

+
@vj
@xi

) +
1

2
(
@vi
@xj
� @vj
@xi

) := D + 
:

Then D is referred to as the deformation tensor. Rigid motion may be de�ned by
D = 0:

A Stokes Fluid is de�ned by the additional hypothesis that T is an aÆne linear
function of the deformation rate D of the form

T = T (D) = �pI + 2�D;

where �pI = T (0) de�nes the pressure. The parameter � is referred to as the shear
viscosity. Now, using incompressibility, one may compute that

div(D) =
1

2

X
j

@

@xj
(
@vi
@xj

+
@vj
@xi

) =
1

2
r2v =

1

2
�v:

In particular it is the divergence of the deformation tensor which is responsible for
the Laplacian term in the equation. Now,

div(T ) = �rp + �r2v = �rp + ��v:

The above modelling hypothesis thus provides the following incompressible 3d-
Navier-Stokes equations as a model for uid motion:

�(vt + (v � r)v) = ���rp+ g; r � v = 0:

In the case � > 0 this is referred to as the viscuous equation. The inviscid equation
is also called the Euler equation. As noted earlier, the nonlinear convection term (v �
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rv)v is intrinsic to the de�nition of acceleration, while the linear di�usion term �v
occurs as a result of modelling hypotheses. For scale considerations it is convenient
to write the equations in dimensionless form by introducing u = U�1v; y = L�1x; s =
T�1t; where U; L; and T are (somewhat arbitrarly) chosen characteristic velocity,
length and time scale parameters. With this substitution the incompressible Navier-
Stokes equations transform to

@u

@s
+ u � ru = �rq +R�1�u+ f; ru = 0; (5.11)

where q = p
�U2 ; f = Lg

�U2 and the parameter R = LU
�
is the so-called Reynolds number.

We will refer to these equations with the original notation of t in place of s; p in
place of q; � = R�1; f in place of f = Lg

U2 ; but retain u for velocity. Thus our
standard equation notation will be:

@u

@t
+ u � ru = �rp + ��u+ g; r � u = 0: (5.12)

Remark Once again, the model is derived in n = 3 dimensions but admits a math-
ematical formulation in any n � 2 dimensions. The incompressibility condition
r � u = 0 requires at least two space dimensions. The n = 1�dimensional equation

@u

@t
= �

@2u

@x2
+ u

@u

@x
+ g; (5.13)

is referred to as Burgers equation.
The 3d-Navier-Stokes equations is a system of 3 equations in the 3 unknown

velocity components vi; i = 1; 2; 3 and unknown pressure p: The incompressibility
condition provides a 4th equation. There are a couple ways in which to proceed with
these equations by �rst removing the pressure term, solve for v and then compute
pressure from the velocity.
Method 1. (Vorticity method). If one takes the curl ! = r ^ u; where ^ is used to
denote the usual cartesian cross product then, since the curl of a gradient is zero, the
pressure term is removed and one obtains an equation in the vorticity !: (In 2d, one
may write ! = (!; 0; 0) and obtain a scalar vorticity equation.) In particular, using
the vector identities (u � r)u = 1

2
rjuj2 + ! ^ u; and r^ (! ^ u) = u � r! � ! � ru;

one obtains

@!

@t
+ (u � r)! � (! � r)u = ��! +r^ g; r � ! = 0: (5.14)

Equivalently,
@!

@t
+r^ (! ^ u) = ��! +r^ g; r � ! = 0: (5.15)

If the vorticity is solved then one may compute the velocity �eld from vorticity, and
then the pressure as will be explained below.
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Method 2. (Orthogonal Projection). According to the Helmholtz-Hodge Decom-
position, any smooth vector �eld u in R3 which falls o� suÆciently fast at large
distances can be uniquely represented as the superposition of a gradient and curl

u = u1 + u2 (5.16)

where
u1 = �r�; u2 = r^ 	 (5.17)

for a scalar potential � and vector potential 	 obtained by solving

��� = r � u (= !) (5.18)

and
��	 = � ^ u; r �	 = 0 (5.19)

In particular, therefore, u2 is divergence free. Thus one may de�ne a linear or-
thogonal projection operator, ie. bounded, linear, idempotent operator, onto the
divergence free component by Pu = u2: Now, for incompressible u satisfying Navier-
Stokes, one has Pu = u and P(�rp) = 0: Therefore,

@u

@t
= P(�(u � r)u+ ��u+ g); r � u = 0: (5.20)

The point is that (5.20) eliminates the pressure term and expresses @u
@t

in terms of u
alone. The pressure can be recovered from the solution u of (5.20) as the gradient
part of �u � ru��u+g: Finally note also that in view of (5.18) one may recover the
velocity from the vorticity formulation in the form, known as the Biot-Savart Law,

u(t; x) = K � !(t; x); (5.21)

where K is a linear operator given by solving (5.18). Speci�cally, one may check by
a change of variables that inverting the Laplacian via

	(t; x) = � 1

4�

Z
R3

1

jx� yj!(t; y)dy (5.22)

also solves r �	 = 0 since r � ! = 0: Now one has

u(t; x) = r^ (� 1

4�

Z
R3

1

jx� yj!(t; y)dy)

=
1

4�

Z
R3

ry
1

jx� yj ^ !(t; y)dy
= K � !(t; x): (5.23)

Alternatively, in the Fourier domain one readily observes that incompressibility
r � u = 0 is the orthogonality �i� � û = 0: Thus, one may take Fourier transforms
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of the Navier-Stokes equation and project onto the plane orthogonal to the Fourier
wave number �: Since û is in this plane it is invariant under the projection. However
the Fourier transform of the pressure gradient rp; namely �i�p̂; is in the plane of
the wave number itself and will, hence, be projected out of the equation. Again one
obtains an equation in the Fourier transform of the velocity �eld, and if the velocity
is determined then the unkown pressure may be computed from the velocity �eld.

LeJan and Sznitman (1997) observed that the Fourier transformed version of
the Navier-Stokes equations in 3-dimensions are amenable to a representation of
the solution as an expected value of a certain product of Fourier transformed initial
data and forcing over a branching random walk. We will see that the approach taken
by LeJan-Sznitman (1997) may be extended to other dimensions, lower as well as
higher, and to a wide variety of partial di�erential equations pertaining to ows,
both linear and non-linear; cf Bhattacharya et al (2001). This will be discussed in
more detail in related research lectures by E.Thomann and C. Orum. The basic
idea for this approach is easily illustrated by the following simpler examples.
Example 5.1 (Simple Linear Di�usion). Consider one-dimensional heat equation
on (�1;1) with constant coeÆcients a > 0; b 2 R; given by

ut = auxx + bux (5.24)

with initial data u(0; x) = u0(x): The (spatial) Fourier transform of equation (5.24)
may be expressed as

ût(t; �) = �a�2û(t; �) + ib�û(t; �); (5.25)

where the Fourier transform f̂ of an integrable function f on the real number line
is de�ned by

f̂(�) =
1p
2�

Z 1

�1
e�ix�f(x)dx: (5.26)

Regarding the �rst term on the right hand side as an integrating factor, the equation
(5.25) readily integrates to the equivalent equation for � 6= 0;

û(t; �) = û0(�)e
��(�)t +

Z t

0

�(�)e��(�)s
ib�

�(�)
û(t� s; �)ds; (5.27)

where
�(�) = a�2: (5.28)

Now, consider the following lineal stochastic cascade. A root particle � of type
� 6= 0 holds for an exponentially distributed length of time S� with parameter �(�):
When the clock rings the particle is replaced by 1 o�spring < 1 > of the same
type �; i.e. one particle of type � = � selected according to the probability kernel
K(�; d�) = Æ�(d�): The clock is reset for the statistically independent new particle's
waiting time S<1>, and so on. This results in a linear graph � = f< � >;< 1 >
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Figure 5.2: Linear cascade

; < 11 >;< 111 >; : : :g rooted at a vertex � of type �; and i.i.d. exponentially
distributed times S�; S<1>; S<11>; : : : as depicted in Figure 5.2.

Note The sequence of exponential holding times associated with the vertices of �
are implicit to future references to the \tree �". For example, reference to the sub-
tree � re-rooted at < 1 >; denoted �<1>; is de�ned by the shifted sub-sequences
f� =< 1 >;< 11 >; : : : g and S<1>; S<11>; : : : :

In the case of lineal trees it is convenient to identify a vertex < 11 : : : 1 > of k 1's
with its length k = j < 11 : : : 1 > j; 0 = j < � > j: Now consider the product of values
over the vertices of the tree furnished by the recursively de�ned \times functional":

ih(û0; �; t) =
�
û0(�); if S� > t;
ib�
�(�)
� ih(û0; �<1>; t� S�) if S� < t;

(5.29)

where �<1> is the lineal subtree of � re-rooted at < 1 > and S� is the replacement
time for �: In particular, performing the stochastic iteration one obtains

ih(û0; �; t) = (
ib�

�(�)
)Ntû0(�); (5.30)

where Nt denotes the number of clock rings by time t as given by

Nt = supfn : S0 + S1 + � � �+ Sn�1 � t < S0 + S1 + � � �Sng; (5.31)

sup ; = 0: In particular fNt : t � 0g is a Poisson process with parameter �(�): Now
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observe that

û(t; �) = expf�a�2t+ itb�gû0(�)
= expf( ib�

�(�)
� 1)�(�)tg

= E(
ib�

�(�)
)Ntû0(�)

= E�ih(û0; �; t): (5.32)

Thus the expected product is the Fourier transform of the solution to the heat equa-
tion (5.24) with initial data u0(x): Observe that a similar graphical representation
is valid for higher dimensions with only nominal change.

Example 5.2 (Forced Heat Equation). Next let us consider the one-dimensional
heat equation (5.24) on (�1;1) with a space-time forcing term g(t; x) given by

ut = auxx + bux + g(t; x) (5.33)

and initial data u(0; x) = u0(x): One may write for � 6= 0;

û(t; �) = û0(�)e
��(�)t+

Z t

0

�(�)e��(�)sfp ib�

p�(�)
û(t�s; �)+q 1

q�(�)
ĝ(t�s; �)gds; (5.34)

where

�(�) = a�2; pq 6= 0; p+ q = 1: (5.35)

Now, consider the following lineal stochastic cascade. A root particle � of type � 6= 0
holds for an exponentially distributed length of time S� with parameter �(�):When
the clock rings the particle is removed and replaced by 1 o�spring of the same type
� with probability p; or it is replaced by 0 o�spring with probability q. The clock is
reset for the statistically independent new particle's waiting time S<1>, and so on.
This results in a linear graph as depicted in Figure 5.3. Let ��; �<1>; : : : be an i.i.d.
sequence of Bernoulli 0-1 valued random variables and independent of S�; S<1>; : : : ;
with p = P (� = 1) = 1 � P (� = 0): The number Nt of clock rings and particle
reproductions by time t is distributed as the smallest of a Poisson random variable
and an independent Geometrically distributed random variable with parameters
�(�)t and p; respectively.

Next form a product of values over the vertices of the tree by the recursively
de�ned times functional:

ih(ĝ; û0; �; t) =

8><>:
û0(�); if S� > t;
ĝ(t�S� ;�)
q�(�)

; if S� < t; �� = 0
ib�
p�(�)
� ih(ĝ; û0; �<1>; t� S�) if S� < t; �� = 1;

(5.36)
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Figure 5.3: Linear cascade with forcing

where �<1> is again the lineal subtree of � re-rooted at < 1 > and S� is the replace-
ment time for �: Performing this iterated multiplication yields

ih(ĝ; û0; �; t) = û0(�)1[S0 > t] +
g(t� S0; �)
q�(�)

1[S0 < t](1� �0)

+(
ib�

p�(�)
)Ntû0(�)1[S0 + � � �+ SNt�1 < t < S0 + � � �+ SNt]

Nt�1Y
j=0

�j1[Nt � 1]

+(
ib�

p�(�)
)Nt�1 ĝ(t� S0 � � � � � SNt�1; �)

q�(�)
1[S0 + � � �+ SNt�1 < t]

�
Nt�2Y
j=0

�j(1� �Nt�1)1[Nt � 2]: (5.37)

Let fYt : t � 0g denote a Poisson process with intensity �(�) and let Wq denote
an independent geometrically distributed random variable with parameter p; ie.
P (Wq = j) = pj�1q; j = 1; 2; : : : : Then

Nt =
dist Yt ^Wq (5.38)

and
Nt�1Y
j=0

�j =
dist 1[Wq > Yt]: (5.39)

Note that the conditional distribution of Nt given the event [
QNt�1

j=0 �j = 1] is Poisson
with parameter �(�): Moreover, it is well-known that conditionally given Yt; the
jump times are distributed as the order statistics of Yt iid values from the uniform
distribution on [0; t]: In particular the conditional distribution of the jth jump time
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has a density given by j
�
Yt
j

�
(s=t)j�1(1� s=t)Yt�j(1=t). Thus we obtain a variant on

the classical \Duhamel principle"viewed on the Fourier side. Namely,

û(t; �) = Eih(ĝ; û0; �; t)
= E(

ib�

p�(�)
)Ytû0(�)1[Wq > Yt]

+E(
ib�

p�(�)
)Wq�1 ĝ(t�

PWq

j=1 Sj; �)

q�(�)
1[Wq � Yt] (5.40)

so that

û(t; �) = Eih(ĝ; û0; �; t)

=
1X
k=0

1X
j=k+1

pj�1q(
ib�

p�(�)
)k
(�(�)t)k

k!
e��(�)tû0(�)

+
1X
k=1

(�(�)t)k

k!
e��(�)t

kX
j=1

Z t

0

ĝ(t� s; �)
q�(�)

(ib�)j�1

(p�(�))j�1
pj�1q

� k!

(j � 1)!(k � j)!t
�ksj�1(t� s)k�jds

= expfib�t� a�2tgû0(�) +
Z t

0

ĝ(t� s; �)efib�s�a�2sgds
(5.41)

Note that this imposes no further integrability constraints on the Fourier transform
of the forcing than those required for the existence of the Fourier transform. Also,
it is noteworthy that in the case of drift b 6= 0; the forcing adds an additional
randomization to the o�spring distribution (p0 = q; p1 = p) that was not required
in the previous unforced case where p1 = 1: In a sense which will become more
transparent, this is the result of a competition of the lower order terms in the
equation (i.e. lower order than the second order term).

Remark. Observe that in the above examples it is not necessary that the expecta-
tions be evaluated in closed form in order to prove that they solve the given equation.
In particular, once it is known that the expectation is �nite (well-de�ned) then it
follows from the stochastic recursion that the equation must be satis�ed by simply
conditioning on the time S� relative to t: The closed form calculations were provided
merely for familiarity as an aid to the exposition. Proceeding along these lines one
may obtain a Feynman-Kac formula on the Fourier side by considerations of a linear
production rate. In particular, as will be discussed in the lecture by Thomann, this
provides a very simple probabilistic interpretation of the complex measure condition
for Feynman-Kac obtained by Ito (1967).
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Example 5.3 (Burgers Equation). Burgers equation is the one-dimensional non-
linear partial di�erential equation

ut(t; x) + uux(t; x) = �uxx(t; x) + f(t; x); (5.42)

� > 0; equipped with various boundary and/or initial data. Let us consider Burgers
equation (5.42) on [0; 1] with periodic L1 initial data

u(0; x) = u0(x) (5.43)

and periodic boundary condition

u(t; 0) = u(t; 1); t � 0: (5.44)

The term f(t; x); referred to as a forcing term, is also minimally required to be an
L1�function. In view of a Galilei invariance lemma, cf. Foias (1994), without loss
of generality we also assumeZ

[0;1]

u0(x)dx =

Z
[0;1]

f(t; x)dx = 0; t � 0; (5.45)

ie. in general there is a number c =
R
[0;1]

u0(x)dx such that

w(t; x) := u(t; x+ ct+

Z t

0

Z s

0

Z
[0;1]

f(�; x)dxd�ds)�
Z t

0

Z
[0;1]

f(s; x)dxds� c

solves the same problem with u0 replaced by u0(x) = w(0; x) + c and f replaced by
~f(t; x) = f(t; x)� R

[0;1]
f(t; x)dx: MoreoverZ

[0;1]

w(t; x)dx =

Z
[0;1]

~f(t; x)dx = 0; t � 0:

Let

u(t; x) =
X
k

û(t; k)eikt (5.46)

and

f(t; x) =
X
k

f̂(t; k)eikt: (5.47)

Then from (5.42) one obtains upon writing uux = 1
2
(u2)x and denoting discrete

convolution sums by �;
dû(t; k)

dt
+ i

1

2
û � û(t; k) = ��k2û(t; k) + f̂(t; k): (5.48)



Lectures on Multiscale and Multiplicative Processes in Fluid Flows 61

Multiplying by the integrating factor e�t
2
and making the indicated integration one

obtains the multiplicative recursion for k 6= 0;

û(t; k)

�
=
û0(k)

�
e��k

2t

+

Z t

0

�k2e��k
2(t�s)[

1

2

1

k

X
j

(�i) û(s; j)
�

û(s; k � j)
�

+
1

2

2f̂(s; k)

�2k2
]ds: (5.49)

Thus it is convenient to introduce

'(t; k) :=
2f̂(t; k)

�2k2
; �(t; k) :=

û(t; k)

�
; t � 0; k 2 Z: (5.50)

Fix frequency k � 1 and time t > 0: Consider a branching random walk which
holds in state k for an exponential time with parameter �(k) = �k2: When the
clock rings, with probability 1

2
the particle dies and replaced by no o�spring, or

with probability 1
2
it is replaced by two frequencies j and k � j; with j picked

uniformly over 1; : : : k � 1: This process is repeated independently for each of the
o�spring frequencies; see Figure 5.4. Let @+(!t) denote the vertices which are born
before time t but not replaced by time t; and let @0(!t) denote those vertices which
are born before time t; but die and are replaced by no o�spring before time t: At
the input nodes we will attach the values �0(kv) for v 2 @0(!t); and the values
'(t� �v; kv) for v 2 @+(!t): For a given initial data, forcing, and viscosity, we build
a multiplicative functional ih(t; !) by recursive application of the following product:
For each operational node, take �i times the product of the pair of values attached
to the corresponding pair of input nodes. Then ih(t; !) is the value obtained by
recursive application of this rule to !t.

Figure 5.4: Branching random walk for Burgers' equation

Lemma 5.2 Let �0(k) and '(t; k) be given measurable functions de�ned for each
k = 1; 2; : : : ; t � 0: De�ne, for k � 1; t > 0

�(k; t) = Ekih(t):
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Then �(t; k) satis�es

�(t; k) = e��k
2t�0(k)

+

Z t

0

�k2e��k
2(t�s)f1

2
(�i)

X
k1;k22Z

�(s; k1)�(s; k2)pk(k1; k2) +
1

2
'(s; k)gds

To prove this simply decompose the expected value according to the four cate-
gories of events which may occur and apply the Strong Markov property.

Lemma 5.3 Suppose the progenitor of the branching process is of type k0 6= 0: Then,X
v2@0(!t)[@+(!t)

kv = k0:

To identify the class of initial data for which this recursion is valid we recall
the theorem of Riesz characterizing functions whose Fourier transform vanishes for
negative frequencies. Let us denote by (Hp; jj � jjp); 1 � p � 1; the usual Banach
space of complex valued holomorphic functions h on the unit disc for which each
hr(�) = h(rei�); 0 < r < 1 is bounded in Lp; with (eg. see Rudin (1966))

jjhjjp =

8>><>>:
limr!1 exp

h
1
2�

R �
�� log

+ jf(rei�)jd�
i
; if p = 1;

limr!1

h
1
2�

R �
�� jf(rei�)jpd�

i 1
p

; if 1 < p <1
limr!1 sup� jf(rei�)j; if p =1:

(5.51)

Equivalently by the Riesz Conjugacy Theorem, this space may be identi�ed with
the Lp�functions h on the unit circle whose Fourier coeÆcients ĥ(k); k 2 Z vanish
at negative frequencies, i.e.

ĥ(k) =
1

2�

Z
[0;1]

h(x)e�ikxdx = 0; k = �1;�2; : : : ; (5.52)

where extrapolation to the unit disc is via the Poisson Integral Formula. It is this
latter version of Hp as a space of periodic functions which will be useful for us here.

Proposition 5.1 Assume that f̂(t; k) = û0(k) = 0; for all k = 0;�1;�2; : : : : Also
suppose that for some � > 0 one has

jû0(k)j � �e��k; jf̂(t; k)j � �2k2

2
e��k; k = 1; 2; : : : ; t � 0:

Then the complex Burgers equation has a unique classical solution u(t; x): Moreover,

û(t; k) = 0; k � 0 & jû(t; k)j � �e��k; k > 0;

and û(t; k) is explicitly given by the formula

û(t; k) = Ekih(t):
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To see this de�ne

�0(k) =
û0
�
; '(t; k) =

2f̂(t; k)

�2k2
; t � 0:

Then the key calculation is the following sample pointwise consequence of the con-
servation of frequency types given in Lemma 5.3:

jih(t)j =
Y

v2@0(t)
j�0(kv)j

Y
v2@+(t)

j'(t� �v; kv)j � e
��Pk2@0(t)[@+(t) kv = e��k0 :

Thus it follows that

j�(t; k)j � e��k; k = 1; 2; : : : ; t � 0:

Clearly

�(t; x) =
1X
k=1

�(t; k)eikx

belongs to Hp for any p � 1: In particular, �(t; x) 2 L2[0; 1]: From Lemma 5.2 it
follows that

d�(t; k)

dt
= ��k2�(t; k) + 1

2
(�i�k)

kX
j=0

�(t; j)�(t; k � j) + 1

2
�k2'(t; k):

De�ne
û(t; k) = ��(t; k):

Then û(t; k) 2 L1[0; 1]; and

dû(t; k)

dt
= ��k2û(t; k) + 1

2
(�ik)

kX
j=0

û(t; j)û(t; k � j) + f̂(t; k):

Applying the Fourier Inverson formula one now arrives at Burgers equation.
Example 5.4 (Fisher/KPP Equation). Consider

@u

@t
= �uxx + u2 � u; u(0; x) = u0(x): (5.53)

Taking Fourier transform and introducing the integrating factor expf��(�)tg; with
�(�) = 1 + �j�j2; (5.54)

one has

û(t; �) = ef��(�)tgû0(�)

+

Z t

0

Z
R

e��(�)sû(t� s; � � �)û(t� s; �)d�: (5.55)
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In general one may relate the representation of the Fourier transform of the
solution of a general semilinear heat equation with quadratic nonlinearities in the
form of an expected value, i.e.

û(t; �) = h(t; �)E(t;�)(ih(û0; ĝ; ��; t)); (5.56)

since the Fourier transform of a PDE with a quadratic nonlinearity can be written
as

@û

@t
(t; �) = ��(�)û(t; �) + (�)

Z
û(t; � � �)
� û(t; �)d� + ĝ(t; �): (5.57)

For example the meaning of �;  and the operation at the node for the Navier Stokes
equation are given by

�(�) = �j�j2; a
� b =

�
a � �j�j

�
��(b) (5.58)

where �� denotes the projection perpendicular to the direction of � and (�) = j�j:

6 Branching Brownian Motion, Fisher/KPP Equation, Burg-
ers Equation: Real Space Cascades

The role of branching Brownian motions in the representation of solutions to Fisher's
equation were uncovered in a classic paper by McKean (1975). This is a real space
solution, but has a dual expression on the Fourier side along the lines indicated
for Navier-Stokes in the previous section; see Bhattacharya et al (2001). Thus it
is natural to inquire about real space branching representations to Navier-Stokes.
While this question is largely open for Navier-Stokes equation, the one-dimensional
case of Burgers' equation admits such a real space representation.

Let us �rst consider McKean's (1975) representation of solutions to the Fisher/KPP
equation. Recall that the solution of

@u

@t
=

1

2

@2u

@x2
+ u2 � u; u(x; 0) = u0(x): (6.1)

is represented as (see Figure 6.1)

u(t; x) = E
NtY
j=1

u0(x+Bj(t)) (6.2)

This representation can be obtained by noting that from Duhamel's Principle
discussed in Section 2, one may write

u(t; x) = e�t
Z
R

g(t; x� y)u0(y)dy +
Z t

0

Z
R

e�sg(t� s; x� y)u2(y; s)dyds
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Figure 6.1: Branching Brownian motions

where g(t; x � y) = p(t; y; x) is the Gaussian kernel (2.7) with v = 0 and D = 1:

Since ĝ(t; �) = e�
1
2
j�j2t it follows that with �(�) = 1 + 1

2
j�j2

û(t; �) = e��(�)tû0(�) +
Z t

0

e��(�)s
Z
û(t� s; � � �)û(t� s; �)d�ds

One may check that the Fourier transform of the formula of McKean (1975) cor-
responds to the representation of the Fourier transform of solution as an expected
value of the branching process on the Fourier side.

It is perhaps a bit more interesting that one may obtain similar dual branching
random walk products in the case of Burgers' equation as well; cf Bhattacharya et
al (2001). Suppose that u solves Burgers equation (5.42) and de�ne

v(t; x) = e�Ætu(t; x): (6.3)

Then one has (taking � = �
2
for convenience)

@v

@t
=
�

2
vxx + eÆtvvx (6.4)

We refer to this transformation as the Æ-method. This will be revisited in the research
talk by C. Orum for the 2-d Navier-Stokes equation.

Regarding the non-linearity vvx =
1
2
(v2)x as a forcing term one has again by a

Duhamel principle that

v(t; x) =

Z
R

~g(t; x� y)v0(y)dy

+

Z t

0

Z
R

~g(t� s; x� y)1
2
(v2)x(s; y)dyds; (6.5)
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where ~g(s; z) = e�Æsg(s; z) = e�Æs 1p
2��s

e
�1
2�s z2 is the Green's function for the heat

equation with sink term �v (i.e. a Feynman-Kac term). Now, performing an inte-

gration by parts in the second integral and noting that @g(s;z)
@z

= � z
�s
g(s; z); yields

v(t; x) =

Z
R

e�Ætg(t; x� y)v0(y)dy

+

Z t

0

Z
R

e�Æs(
x� y
�(t� s))g(t� s; x� y)

1

2
(v2)(s; y)dyds: (6.6)

This recursion now admits a representation as a Branching Brownian motion
with multiplicative factors as follows: First, let us introduce a canonical model for
binary Branching Brownian motions. Let

V = [1n=0f1; 2gn; f1; 2g0 = f�g:
Each particle performs a Brownian motion until its death, upon which it is replaced
by two Brownian particles started at the same location as the parent upon its death.
Brownian particles have independent exponentially distributed life-lengths Sv: Indi-
vidual motions are then paths fBv(t) : tv � t � tv+Svg; where tv =

Pjv�1j
j=0 S<v1;:::;vj>

is the time of birth of the \v�th Brownian motion", such that B�(0) = 0; Bvj(tvj) =
Bv(tv + Sv); v 2 V; j = 1; 2:

ih(t; x) =
�
u0(x +Bt); if S� > t;
et�S�
2S�

BS� � ih(1)(t� S�; BS�)ih(2)(t� S�; BS�) if S� < t;
(6.7)

Thus, iterating this stochastic recursion one obtains

v(t; x) = Eih(t; x)
= E

�
(
et

2
)N

(0)
t

Y
v2A(t)

u0(x+B<v>(t))

Y
v2A(0)(t)

e(t�
Pjvj

j=0 S<v1;:::;vj )
�B<v>(tv)

Sv

	
; (6.8)

where
A(t) = fv : tv � t � tv + Svg (6.9)

is the set of particles alive at time t;

A(0)(t) = fv : tv + Sv � tg (6.10)

the set of those particles born and replaced before time t; and

�B<v>(tv) = B<v>(tv + Sv)� B<v>(tv): (6.11)
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In particular, in view of the nonlinearity uux it is interesting to note the presence
of the factors u0(x+B<v>(t))

�B<v>(tv)
Sv

:
A more complete treatment of the methods given in this note are being prepared

for a monograph by Bhattacharya et al (2001). These will include applications to
linear and nonlinear equations of the type discussed in these lecture notes.
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MULTISCALE DIFFUSION EQUATIONS

RABI BHATTACHARYA
Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.

In geosciences multiscale phenomena occur in problems of transport in inhomoge-
neous media with evolving heterogeneities, such as solute transport in saturated
aquifers. For an understanding of this complex phenomenon consider a Fokker-
Planck equation governing solute concentration

c(t; y) : @c=@t = � (b(y) + �(y=a)) � 5c
+
1

2

X
i;j

@2=@yi@yj(Dij(y)c);
(1)

with initial condition Æx0(dy). Here `a' is a large parameter, b(�) and �(�=a) represent
`local' and `largescale' divergence free velocity �elds, respectively, D(y) � ((Dij(y)))
is positive de�nite. Since the solution to this equation is c(t; y) = p(t; x0; y), where
p(t; x; y) is the transition probability density of a Markov process (di�usion) fXtg
with drift b(�)+�(�=a) and di�usion matrix D(y), one may derive asymptotic prop-
erties of c(t; y) from those of fXtg.

It turns out that the uctuations of the slowly evolving large scale velocity �eld
�(�=a) may be ignored, i.e., �(�=a) may be replaced by its constant initial value,
for times t << a2=3 during which time the dynamics is governed essentially by the
uctuations of b(�). For larger times the large scale uctuations of �(�=a) come into
play and are often dominant.

To gain further insight consider some classes of velocity �elds b(�); �(�) which
give rise to di�erent Gaussian phases and phase transitions as time progresses, as
observed in many hydrologic experiments. For this let b(�) and �(�) be divergence free
and periodic with the same period, `a' positive integral (parameter) and D(y) = D
a constant positive de�nite matrix. For times 1 << t << a2=3 the process fXtg (and,
therefore, c(t; y)) is asymptotically Gaussian whose dispersion depends on b(�), but
not on �(�). For times t >> a2 a second (and �nal) Gaussian phase occurs whose
dispersion coeÆcients either grow quadratically with `a', or to a constant (in `a'),
depending on the geometry of �(�). This provides an explanation of the so-called
`scale e�ect' in dispersion observed in many experiments. For a special class of
strati�ed media, a range of non-Gaussian phase transitions are shown to occur in
between the two Gaussian phases considered above.
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Precise statements of the results outlined above and their detailed proofs may
be found in [3], where a logarithmic factor loga or (loga)2 appears with the time
scale t >> a2 in the �nal phase. These results �rst appeared in [5], but with a
gap in the proofs recti�ed in [3]. Apart from the CLT for di�usions with periodic
coeÆcients (see [1],[2]), these proofs make use of the spectral theory of compact skew
symmetric operators to estimate the growth in dispersion with `a' ([3],[5],[7]), and
estimates of the speed of convergence to equilibrium of a di�usion on a `big' torus
fx 2 Rk : x mod ag ([3],[5],[11],[12],[19]). The removal of the logarithmic factor
from, a2 loga or a2 (loga)2 (see [3]) is achieved by using a recent result on the speed
of convergence to equilibrium given in [13].

For earlier literature on the `scale e�ect' in dispersion we refer to [6],[15],[17],[18],[22].
For general surveys in the engineering literature on this and related topics, see
[14],[10].

It is of much interest to consider more general models (1) where the coeÆcients
comprise a realization from an ergodic random �eld. In the absence of a scale param-
eter `a', CLT's under this ergodic random �eld assumption are proved in [20],[21],
when the parabolic operation in (1) is in divergence form. Formal derivations for
more general parabolic equations (with coeÆcients realized from an ergodic random
�eld), appropriate for solute transport in a porous medium, are given in [15],[22],
again without the introduction of multiple scales.

From a mathematical point of view it is of interest to consider nondivergence-free
velocity �elds b(�); �(�). The techniques used for the divergence free case in [3],[5],[7]
break down in this case. For the one-dimensional case, however, one may investigate
this problem combining explicit computations and asymptotic analysis (see [3],[4]),
thus providing an insight into the general nondivergence-free case.
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TURBULENT RANDOM MULTIPLICATIVE
BRANCHING PROCESSES

MARTIN GREINER
Max-Planck-Institut f�ur Physik komplexer Systeme, N�othnitzer Str. 38, D{01187 Dresden,

Germany

All of us know about turbulence. It is a real-life phenomenon describing far-out-
of-equilibrium situations: turbulent human relationships, turbulent ball games or
turbulent stock markets, just to name a few. As those events come and go, no one
is really able to predict, control and understand them. The latter is also exactly
the case for the physics process coining the name: fully developed turbulence of
uid ows. Some even say that this process might represent the biggest challenge
of classical statistical physics. In fact, this fortress has not been taken by cohorts of
scientists besides many heroic attempts during the past century [1, 2]. How comes
that turbulence is so tremendously diÆcult to understand?

To give a feeling for this, let us face the underlying equation of motion for
incompressible uid ows, the Navier-Stokes equation:

@t~v + (~v � ~r)~v = �~rp + � ~r2~v + ~f : (1)

It represents Newton's second law of classical mechanics: the left-hand side is the
acceleration of a uid particle moving with velocity ~v and the right-hand side are
the forces acting on it. ~f stands for external forces representing in some respect
the boundary conditions; this term introduces a large length-scale L. The friction
force with viscosity � introduces another distinct length-scale, which is called the
dissipation scale � and which is still macroscopic, but much smaller than L. In
order to see what role the advection term (~v � ~r)~v and the pressure term �~rp do
play, we transform Eq. (1) into an energy balance equation by multiplication with
~v, subsequent integration over a large volume and assuming stationarity:

D
~v � ~f

E
�
*
�

2

3X
i;j=1

(@ivj + @jvi)
2

+
= 0 : (2)

The �rst term with the external force feeds energy into the turbulent ow at the
large scale L and dissipation takes it out at the small scale � as kinetic energy is then
converted into heat. Somehow the energy has to be transported from L down to �.
This is what the nonlinear local advection term and the nonlinear nonlocal pressure
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term are in charge for. Hence, turbulence is a multiscale process. The number
of degrees of freedom are about (L=�)3; since L=� = O(103�104) for realistic jet,
wind-tunnel or atmospheric boundary layer turbulence this number is of the order
1010. Because of the nonlinearities and nonlocalities involved in the energy cascade
transport the interaction between these too-many degrees of freedom is strong. This
is exactly the point why all analytical and numerical approaches starting with the
Navier-Stokes equation have more or less failed to provide a complete understanding
of turbulence.

The very large number of degrees of freedom justi�es a statistical approach.
Here two di�erent routes have to be distinguished: a top-down approach, which
again starts right away with the Navier-Stokes equation, but is again haunted by
notorious diÆculties. The other approach is bottom-up, aims at understanding
the data phenomenology with simple empirical models �rst and only then tries to
connect all the way back to the Navier-Stokes equation. It is the latter approach we
are conveying.

Typically data is taken with an anemometer, which records components (typi-
cally only one) of the velocity �eld as a time series, as the turbulent ow is sweep-
ing over it. Assuming uctuations around the mean velocity to be small, such
time-series can be interpreted as one-dimensional spatial series by the frozen ow
hypothesis. These signals look very irregular, i.e. turbulent. The standard observ-
ables are velocity structure functions, which are moments of velocity increments
�vl = v(x+ l)� v(x). They show an approximate scaling h�vnl i � l�n for distances
� << l << L; scaling exponents are found to be �n � n=3��n=3, where �n=3 represent
the intermittency corrections to the n=3-behavior of Kolmogorov's K41 picture [3]
of fully developed turbulence. This scale-invariance is to be expected since, as we
have already argued before, no distinct length scales are present in the Navier-Stokes
equation other than the large and small scales L and �, respectively. However, the
observed scaling is not perfect. Hence, legitimate questions to ask are: are velocity
structure functions the ideal observational tool for scaling? Maybe other observables
are more suited? Perhaps other �elds than the velocity �eld should be looked at?

Picking up the last question and remembering our intuitive picture on the energy
transport process through the scales, a kind of \energy" �eld appears to be more
appealing. A good representative is the so-called energy dissipation �eld "(~r), which
is the quantity given within the angle bracket of the second term of Eq. (2). The
surrogate �eld "(x) = 15�(@xvk)2 is easily constructed from the streamwise compo-
nent of the measured velocity �eld and reveals how energy ux is taken out at the
dissipation scale: spatial uctuations "(x)=h"i around the average are anomalously
strong and intermittent, values ranging between about 10�2 to 102 for large-Reynolds
number turbulent ows. The spatial statistics of these �elds now serve as guidance
to learn about the details of the energy cascade process and to construct respective
models.

A particular attractive and robust class of such data-driven models are random
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multiplicative branching processes. They introduce a nested hierarchy of scales
lj = L=2j ranging from the large scale L down to the small scale � = L=2J . The
synthetic �eld construction uses a cascade generator, which redistributes the energy
ux density �k1���kj associated to the parent interval with length lj nonuniformly onto
the left (k1 � � �kj0) and the right (k1 � � �kj1) o�spring intervals with length lj+1:

�k1���kj0 = qk1���kj0�k1���kj ;

�k1���kj1 = qk1���kj1�k1���kj ; (3)

the random variables q are drawn from a scale-independent probabilistic splitting
function psf(qk1���kj0; qk1���kj1) and are independent from those belonging to other
branchings. Starting at L the cascade generator is applied over and over again
until � is reached. Then the energy ux amplitudes are set equal to the energy
dissipation amplitudes:

"k1���kJ = �k1���kJ = qk1qk1k2 � � � qk1���kJ : (4)

They are a product of J iid random numbers with mean hqi = 1, so that with some
small probability the observed strong intermittent uctuations around h"i = 1 are
easily reproduced. A synthetic model �eld realization comes with support [0; L] and
can be expressed as

"(x) =
1X

k1;:::;kJ=0

"k1���kJ�

 
L

�

 
x�

JX
j=1

kjlj

!!
; (5)

with the index function �(x) = 1 for 0�x�L and 0 otherwise.
The qualitative reproduction of the observed intermittent uctuations is only

a �rst test of the model. A much more sophisticated and complete test would be
to compare the spatial statistics. The latter is characterized by the multivariate
probability distribution function

p�eld("(x)) = p�eld("0���0; : : : ; "1���1) ; (6)

which gives the probability that a speci�c cascade �eld con�guration with the 2J am-
plitudes "k1���kJ occurs. Another, but equivalent characterization of the �eld statistics
is given by the Fourier transform of (6):

Z[��] =

Z
d"0���0 � � �d"1���1 p�eld("0���0; : : : ; "1;:::;1) exp

 
i
X
�

��"�

!

=

*
exp

 
i
X
�

��"�

!+

= 1 + i
X
�1

��1��1 +
i2

2!

X
�1

X
�2

��1��2��1�2 + : : : ; (7)
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here we have used the abbreviation � = (k1 � � �kJ) for the binary address of the
�eld amplitude "�. Z[��] contains the same information as p�eld("(x)). The second
step of (7) is simply a shorthand notation of the �rst line, where the angle brackets
symbolize an expectation value. The coeÆcients of the Taylor expansion of (7) are
the n-point correlation densities

��1����n = h"�1 � � � "�ni =
1

in
@nZ[��]

@��1 � � �@��n

����
�=0

: (8)

This equation is the reason why Z[��] is called a generating or characteristic func-
tional. All this demonstrates that

p�eld("(x))  ! Z[��]  ! ��1����n (9)

all access the spatial statistics in a complete way and are thus equivalent to each
other. Experimentalists like to analyse the n-point correlation densities, whereas
mathematicians and theoretical physicists like to deal with the generating functional.

For the randommultiplicative branching process of (3){(5) an analytic expression
for the generating functional can be given [4, 5]. The secret here is to use the
logarithm of (4), i.e.

ln "k1���kJ =
JX
j=1

ln qk1���kj ; (10)

and the modi�ed generating functional

K[��] = ln ~Z[��] = ln

*
exp

 X
�

�� ln "�

!+
: (11)

For demonstration we pick a branching process of only J=2 cascade steps; then (11)
becomes:

K[�00; �01; �10; �11] =

= ln


"�0000 "

�01
01 "

�10
10 "

�11
11

�
= ln



(q0q00)

�00(q0q01)
�01(q1q10)

�10(q1q11)
�11
�

= ln


q�00+�010 q�10+�111

�
+ ln



q�0000 q

�01
01

�
+ ln



q�1010 q

�11
11

�
= Q[�00+�01; �10+�11] +Q[�00; �01] +Q[�10; �11] : (12)

In the third step we have used that the bituples of random multiplicative weights
(q0; q1), (q00; q01) and (q10; q11) belong to di�erent branchings and are thus indepen-
dent from each other. The branching generating function

Q[�L; �R] = ln

�Z
dqLdqR psf(qL; qR)q

�L
L q�RR

�
(13)
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is directly linked to the splitting function psf(qL; qR) of the cascade generator and is
the building block for the generating functional (12): one Q for the only branching of
the �rst cascade step and two Qs for the two branchings of the second cascade step;
see last line of (12). It is this structure, which directly generalizes to an arbitrary
number J of cascade steps [4, 5]: the generating functional (11) is a sum of branching
generating functions over all branchings.

From the analytic solution of the generating functional various types of n-point
correlation densities can be calculated straightforwardly: n-point correlation densi-
ties between logarithmic �eld amplitudes,

hln "�1 � � � ln "�ni =
@n exp(K[��])

@��1 � � �@��n

����
�=0

; (14)

n-point cumulants between logarithmic �eld amplitudes,

hln "�1 � � � ln "�nic =
@nK[��]

@��1 � � �@��n

����
�=0

; (15)

as well as n-point correlation densities between conventional �eld amplitudes,

h"�1 � � � "�nic = exp (K[��=�i=1; ��6=�i=0]) : (16)

Their values depend on a set of mutual ultrametric distances D(�1; �2) between
two bins �1 and �2, which is a quantity inherent to the hierarchical binary tree-
like structure of the random multiplicative branching process. An experimentalist
is not able to observe it. Consider for example a two-point correlation density,
which is sampled over point pairs with Euclidean two-point distance d. In order
to realistically compare quantities like (14){(16) to their experimental counterparts,
we have to introduce an additional experimental-like nonrestrictive sampling using
conditional probabilities like psamp(Djd); see Refs. [6, 7] for more details. Then
two-point correlators take on the form [7]

h"n1(x+ d)"n2(x)i
h"n1(x+ d)i h"n2(x)i = an1n2

�
L

d

�� [n1;n2]
fn1n2(d=L) ; (17)

where fn1n2(d << L) = 1 represents a scaling function and � [n1; n2] = �n1+n2��n1��n2
with �n = log2hqni. Analogously, two-point cumulants become [6]


lnn�1"(x+ d) ln "(x)
�
c
= G(d; J)hlnnqic ; (18)

where the geometric function G does not depend on the order n and is related to the
�rst moment of psamp(Djd). Observables like (17) and (18) help to test the validity
of random multiplicative branching processes for fully developed turbulence and to
learn about the best approximate cascade generator psf(qL; qR) via the extractable
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multifractal scaling exponents �n and the same-lineage cumulants hlnnqic; consult
Ref. [8] for more details.

There are also other observables which test the validity of random multiplicative
branching processes and allow to bridge the latter to other data-driven models.
One of these non-standard observables are breakup coeÆcients, often also called
multipliers,

M(x; l) =
"(x� l=4; l=2)

2"(x; l)
; (19)

where

"(x; l) =
1

l

Z x+l=2

x�l=2
"(x0)dx0 (20)

is the coarse-grained energy dissipation �eld. Experimental distributions pM(M) of
breakup coeÆcients have been found to be scale-independent in the range �<<l�L
and, at �rst, have been interpreted in terms of a conservative cascade generator
psf(qL; qR) = p(qL)Æ(qL+qR�2), invoking the associationM $ qL. Conditional dis-
tributions pM(M(l)jM(2l)) 6= pM(M(l)) have been observed with scale-correlations
and have been interpreted to be in conict with the random multiplicative branch-
ing processes, where branchings are independent from each other. However, these
two conclusions are not correct. For a realistic comparison with data, these model
observables have to be sampled unrestrictively over positions x as in experiments.
Also, a non-conservative splitting function psf(qL; qR) = p(qL)p(qR) should be taken,
since it accounts best for the fact, that three-dimensional turbulence is observed
in only one dimension. Including these two points into the model simulations, the
scale-independent unconditional distribution pM(M) comes out right and turns out
to be a scale-independent �xed-point resulting from the coarse-graining (20). The
observed conditional distributions pM(M(l)jM(2l)) are also reproduced, but only
if the splitting function p(q) has a positive skewness. This rules out log-Poisson
and log-stable distributions. For more details consult Refs. [9, 10]. { Another class
of non-standard observables are Markovian Kramers-Moyal coeÆcients, which ad-
dress the issue of observed scale correlations in a di�erent way. As demonstrated in
Ref. [11], random multiplicative branching processes are capable to quantitatively
describe the experimental �ndings, too.

Fundamentally the presented random multiplicative branching processes have
the drawback of having no time degree of freedom. However, generalizations in this
direction are possible [12] and might help to learn about dynamical properties of
the turbulent energy cascade. { For the ultimate goal to understand the random
multiplicative branching processes in terms of the Navier-Stokes equation still some-
thing can be learned from the geometric cascade models: a wavelet representation of
the respective two-point correlation densities leads to a more-or-less complete diag-
onalisation [13, 14, 15, 16], revealing that wavelets 	jm(x) appear to be the correct
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degrees of freedom to describe turbulence. A very severe truncation

~v(~r; t) �! v(x; t) =
X
jm

vjm(t)	jm(x) ; (21)

of the velocity �eld, once inserted into (1), motivates the dynamical toy-model
amplitude equations

@tv1 = ik1
X
2;3

c(1; 2; 3)v2v3 � �k21v1 + f1 ; (22)

known as the hierarchical shell model [17]. The last two terms only act at the small
and large scales. Here it would be very interesting to �nd out which, if any, structure
of the coupling c(1=j1m1; 2=j2m2; 3=j3m3) between wavelet modes is required to
reproduce the spatial statistics of the random multiplicative branching processes.
This then would serve as a �rst link between the empirical random multiplicative
cascade processes and the Navier-Stokes equation. Work and more dreams in this
direction are presently in progress.
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MULTISCALE FLOOD ANALYSIS ON SELF-
SIMILAR RIVER NETWORKS

VIJAY K. GUPTA
Cooperative Institute for Research in Environmental Sciences, University of Colorado,

Boulder, USA 80309

River ows shape landforms and create channel networks. Once formed, river net-
works determine the space-time dynamics of river ows. This reciprocal coupling
between channel networks and river ows is depicted in empirical power-law rela-
tionships, which can be written in a generic form, Y � Xb, where b is an empirical
parameter. These empirical power laws have been obtained using multiple regres-
sion. Well known examples in hydrology come from regional frequency analyses
of peakow and lowow quantiles representing Y , and drainage area representing
X; see Gupta and Dawdy (1995), Goodrich et al. (1997); Cathcart (2001) for
peakows, and Furey and Gupta (2000) for lowows. Examples in geomorphology
include the systematic down-stream variations of hydraulic-geometric variables on a
channel network representing Y, e.g., velocity, depth, width, slope and friction, and
the bankfull discharge representing X (Leopold, Wolman and Miller, 1964, Ibbitt et
al. 1998). In ecology, myriad ecological phenomena from metabolic rate to biome
formation are organized with respect to speci�c spatial and temporal scales. This
hierarchy has been represented as a power law (Delcourt et al. 1982, Milne 1998a).
Eventhough, the above empirical relationships have been known for a long time,
only within the last decade it has been recognized that some of these relationships
may be physically understood on the basis of mathematical ideas of scale invariance
and scale dependence (Gupta and Waymire, 1998a, 1998b).

A long-term objective of our research is to develop a new mathematical `scaling
theory', which can unify diverse empirical observations from hydrology, geomorphol-
ogy, ecology and meteorology based on conservation laws and other fundamental
biophysical principles for medium to large drainage networks. Another long-term
goal is to solve the long-standing classic applied problem of prediction of peakows
and lowows from basins that have inadequate stream ow and other biophysical
data in space and time. Referred to as, poorly gauged and ungauged, most basins
worldwide fall into this category. We believe that a scienti�c uni�cation of hydrol-
ogy, geomorphology, ecology and meteorology is necessary to solve the problem of
ungauged basins. In this extended abstract, I will illustrate some elements of this
newly developing mathematical theory with examples.
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The signature of network geometry on the dynamics of river ows can be illus-
trated through regional, or spatial, ood frequency analyses. The US Geological
Survey has performed these analyses on a state by state basis throughout the US
since the middle 1960s. They contain a wealth of regional information on ood
response to precipitation input, and they served as the �rst major impetus to sys-
tematically identifying signatures of scale invariance in data (Gupta and Dawdy,
1995). Let Q(A) be a random variable denoting the annual maximum ows from
subbasins A with drainage areas jAj within a basin or a region D. Then the regres-
sions of the p-th quantile, qp(A), de�ned as,

PfQ(A) > qp(A)g = p; (1)

where 1=p is the return period, against jAj for di�erent p values generally show
log-log linearity,

qp(A) = qp(1)jAj�(p) (2)

Here, both the coeÆcient qp(1) and the exponent �(p) can be functions of p. When
the scaling exponent �(p) � �, is a constant, then (2) exhibits simple scaling. The
oods generated by snowmelt and stratiform rainfall have been observed to obey (2).
When �(p) varies systematically as a function of p, then (2) exhibits multiscaling.
Floods generated by convective rainfall have been observed to obey (3) (Gupta
and Dawdy, 1995). These notions can be made mathematically precise in terms
of scale invariance of probability distributions of the random �eld fQ(A)g (Gupta
and Waymire, 1998a, 1998b). Simple- and multi- scaling may be viewed as working
hypotheses that have been guiding the development of a physical-statistical theory of
oods. The main goal of this theory is to provide a rigorous physical understanding
of the empirical scaling exponent �(p), and the intercept qp(1), on the basis of
conservation principles and other biophysical processes that govern the generation
of oods from precipitation.

Before explaining some elements of this mathematical theory, let me mention
another recent empirical observation that complements (2). The physical process
of ood generation takes place in a river basin, which consists of a nested channel
network and a collection of hills on both sides of a network. Hills produce runo� and
feed it into a channel network. The US Department of Agriculture has operated a
nested basin as an experimental facility in the semiarid south western US, known as
Walnut Gulch. An empirical study on peak ow quantiles for Walnut Gulch showed
that (Goodrich et al., 1997),

qp(A) = qp(1)jAj�(p);
�

0:85 � � � 0:9 jAj < jAC j = 1km2

0:55 � � � 0:58 jAj > jAC j: (3)

Equation (3) shows that there exists a critical drainage area, jAC j = 1km2, above
and below which the scaling exponents are di�erent. Moreover, the scaling exponent
is lower in the upper range of drainage areas than in the lower range (Goodrich et.
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al., 1997, Fig. 4). This empirical observation concerning a break in the scaling of
peak ows on nested subbasins is the �rst one to my knowledge.

Another recent study has found a break in scaling of mean annual oods in the
western coast of Oregon (Cathcart, 2001). However, this study was carried out on
a regional basis, where each region contains several basins that are unnested. These
results suggest that the existence of a critical area at which the scaling exponents for
the mean and other quantiles change is a general feature of spatial ood statistics.
Therefore, a mathematical theory should explain why this break happens and give
a physical explanation of the two sets of scaling exponents. In the rest of this
abstract, I will focus on explaining some recent mathematical results, which illustrate
a physical basis of eqs. (2) and (3).

Consider a recent formulation of a mass balance equation for a network as our
starting point. The reader can refer to Gupta and Waymire (1998a, 1998b) for
details of various assumptions leading to this equation. Let q(e; t), e 2 �; t � 1, be
a space-time �eld representing river discharge, or the volume of ow per unit time,
across a link e in a channel network � in the time interval (t� 1) of unit length 4t.
A link is de�ned as a segment of a channel between two consecutive junctions, or
a junction and a source. The ow out of a link from its bottom vertex e is de�ned
as q(e; t) = �q(e; t). Let R(e; t)a(e) denote the volume of runo� into a link e from
the two adjacent hills in time interval (t � 1; t), where a(e) denotes the area of the
hillsides, and R(e; t) is the runo� intensity measured in the units of length per unit
time. This term can also include the volume of runo� depletion per unit time due to
channel in�ltration losses or evaporation from channel surface in link e, but we will
not introduce these physical features to keep our problem simple. Let S(e; t) denote
the total volume of runo� stored in link in time interval (0; t), and the change in
the total volume of runo� stored in time interval (t� 1; t) be denoted by 4S(e; t).
Then the equation of mass balance for a network-hills system can be written as,

4S(e; t)
4t = �q(e; t) +

X
f :f=e

q(f; t� 1) +R(e; t)a(e); e 2 �; t � 1: (4)

The sum on the right hand side of (4) consists of discharges from all the links that
join with link e at its top node e. The above formulation does not assume that the
channel network is binary, although river networks are generally binary. However,
it assumes that no loops are present in the network.

Solutions of (4) depend on the branching and geometric structure of a network
through the summation term on its right-hand side, and on the physical-statistical
structure of storage �eld, S(e; t) and the runo� generation �eld, R(e; t). A key
physical issue is to explicitly understand the role of these three terms on the spatial
scaling statistical of peak ows given by (2) and (3). Eq. (4) can be solved iteratively
to obtain q(e; t), e 2 �; t � 1, which represents the runo� hydrograph at the bottom
of every link, and then analyze the scaling of peak ows. Gupta et. al (1996),
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Gupta and Waymire (1998a, 1998b), and Troutman and Over (2001) have obtained
analytical results under certain simplifying assumptions. Manabde et al. (2001),
and Manabde and Sivapalan (2001) have carried out iterative numerical simulations
to solve (4) by relaxing some of these assumptions. I will give a brief summary
of assumptions, and some results by these investigators, and point out connections
to the empirical observations reported in eqs. (2) and (3). However, this body of
research is in its infancy, and not much is known about general statistical solutions
of (4) within a space-time context.

Analytical solutions of (4) can be obtained under idealized conditions, which
provide a glimpse into a physical interpretation of the scaling exponent in (2). As-
suming that 4S(e; t) = 0, the runo� �eld a(e)R(e; t) = aR(t), t � 0; e 2 � , is
spatially uniform, where a denotes the combined area of hills on either side of a
channel link. It follows from (4) that the river runo� in each link is given by a
convolution,

q(e; t) = a
t�1X
s=0

We(t� 1� s)R(s); t � 1; e 2 �; (5)

where We(x), x � 0, is called the local geomorphologic width function of a network
for each link e 2 � . It is de�ned as the number of links at a distance x from the
bottom most vertex known as an outlet, denoted by �. In order to introduce the
notion of distance, de�ne the lengths of vertices as, jej = jej + 1, and j�j = 0. This
de�nition can be used iteratively to assign a distance to every link from the outlet
and thereby compute the width function.

To further understand the importance of the width function in the present con-
text, assume that runo� is applied instantaneously on a network; that is, R(s) = R
if s = 0 and R(s) = 0 otherwise. This simpli�es (5) to,

q(e; t) = We(t� 1)Ra; t � 1; e 2 �: (6)

This means that the width function, up to a scale transformation from space to time
via x = t=v, where v is a constant velocity of ow through out a network, determines
the response of the channel network to an instantaneous, spatially uniform, runo� .
This key concept is called a geomorphologic instantaneous unit hydrograph (GIUH).
De�ning peak ows as the maximum of q(e; t) over an arbitrary time interval, it
follows from (6) that,

Q(e) = max
t
q(e; t) = max

t
We(t� 1)Ra; e 2 �: (7)

Eq. (7) shows that, to a �rst-order approximation, the scale invariance of peak ows
can be understood from that of the width function, which is purely a geometric
network function. This insight is physically very signi�cant.

The branching and the geometric patterns of a channel network determine the
width function. Three comprehensive channel network models have been introduced
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within the last 35 years. The �rst and the most well known of these three is the
random model (Shreve, 1967). It assumes that a channel network is a binary Galton-
Watson critical branching process. A classic book on channel networks containing
many of the key papers published between 1945 and 1975 is by Jarvis and Wolden-
berg (1984). The second model, known as the Tokunaga model (Tokunaga, 1994),
is based on the assumption of mean self-similarity in network topology. For exam-
ple, the random model has been shown to exhibit mean self-similarity. Tokunaga
model has gained considerable recognition in the recent literature (Peckham, 1995;
Tarboton, 1996; Turcotte, 1997; Dodds and Rothman, 1999) because it gives certain
predictions of empirical observations, which the random model can not. However,
it is severely limited, because it does not incorporate statistical variability that is so
pervasive in real channel networks. A newly introduced third model, known as the
random self-similar model (RSN), remedies this situation (Veitzer and Gupta, 2000).
It gives many empirical predictions that the random model can not. Moreover, under
certain conditions, the predictions of the random model and the Tokunaga model
can be obtained as special cases of the RSN model. Preliminary solutions of (4)
have been investigated under all these three classes of network models.

Gupta et al. (1996) considered a Peano network as an idealized example of a
mean self-similar network (Mandelbrot, 1983; Marani et. al, 1991). They showed,
as can be easily checked, that maxtWe(t� 1) scales with respect to the size of the
subnetworks, j�(e)j = jA(e)j, the upstream drainage area, in a power law manner
with an exponent log 3= log 4. Therefore, it follows from (7) that the ood scaling
exponent � in (2) is log 3= log 4 = 0:792. Manabde et al. (2001) relaxed the assump-
tion that 4S(e; t) = 0, and considered dynamic changes in storage through iterative
numerical solutions of (4). They observed that scaling in peak ows holds asymp-
totically as drainage area increases, but the scaling exponent � decreased from 0.792
to 0.63 due to dynamic storage e�ects. An analytical demonstration of this �nding
remains open. Manabde and Sivapalan (2001) also analyzed the e�ect of spatially
variable velocity on scaling exponent by incorporating the hydraulic-geometric re-
lations described at the very beginning. They found that the scaling exponent is
further reduced over its value under a constant velocity. The above results give a
�rst set of evidence that the empirical scaling exponent � has a fundamental physical
basis. Other analytical results for the ood scaling exponent have been obtained by
assuming that a random cascade model describes spatial rainfall input on a Peano
network (Gupta et al., 1996). This result has been generalized to more realistic
mean self-similar networks by Troutman and Over (2001).

Finally, we relax the assumption of instantaneous runo� input in (4) and consider
a �nite duration runo� forcing, i.e., R(t), 0 � t � T , and 0 otherwise. Physically
runo� generation is attenuated in time due to �nite rainfall duration, and in addition
due to subsurface runo� contribution to stream ows in humid climates. By con-
trast, in semi-arid climate of the Walnut Gulch basin, there is no subsurface runo�
contribution to stream ows, and the runo� attenuation is purely due to rainfall.
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Castro (1998) illustrated the e�ect of duration T on the scaling exponent within the
context of the Peano example. She showed that the scaling exponent for smaller
basins is 1, and it switches to log 3= log 4 after a critical basin size is reached. In
other words, she observed a break in scaling, which is qualitatively similar to the
e�ect shown in (3). To understand this e�ect physically, assume that the runo� term
is not instantaneous but persists for a longer time T . Then smaller-order subbasins
begin to "saturate". This means that the entire drainage basin contributes to the
peak ow, rather than only a fraction of it given by the peak of the width function
in (7). Therefore, the peak ow becomes proportional to the drainage area with an
exponent 1. This time to saturation is called the concentration time, at which the
river discharge reaches its maximum value. The discharge remains in a steady state
as long as R(t) > 0 after the concentration time is reached. If j(T ) denotes the scale
index for the largest subbasin in the Peano example that has become saturated at
a �xed duration T , then the peak ow scaling exponent for subbasins with scale
index k < j(T ) is 1. In larger basins with k > j(T ), it is log 3= log 4. The saturation
extends to still larger subbasins as duration T increases. This argument illustrates
that runo� attenuation is responsible for scale break and may provide a physical
explanation of the empirical observation shown in (3). This e�ect is analytically
illustrated in Gupta and Waymire (1998a) using the width function calculations for
the random model (Troutman and Karlinger, 1984), as shown in Figure-1.

Figure 1: Schematic depiction of the e�ects of rainfall duration and basin size on
the scaling exponents for oods (Gupta and Waymire, 1998a).

Manabde and Sivapalan (2001) also noted the presence of scaling break using
numerical solutions of (4) under more realistic physical conditions than considered
in Castro (1998), or in Gupta and Waymire (1998a). They also found that the
e�ects of dynamic storage and nonlinear velocity decrease the scaling exponents on
both sides of the critical area jAC j.

The above physical explanation for a change in the ood scaling exponent also
suggests that the critical basin area, jAC j, would be smaller in semi-arid climate of
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Arizona than in the humid climate of western Oregon. The reason is that rainfall
events are typically of longer duration in Oregon than in Arizona, and the presence
of baseow in stream ow in Oregon would further increase the e�ect of duration
on the size of jAC j. It is noteworthy, that this prediction is borne out by data.
Cathcart (2001) observed that jAC j � 50km2 for a humid region in western Oregon
compared to jAC j � 1km2 in the Walnut Gulch basin located in a semi arid part of
southern Arizona (Goodrich et al., 1997). Further tests of our theoretical prediction
are needed on more basins from di�erent climates.
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STOCHASTIC CASCADES AND 2D FOURIER
NAVIER-STOKES EQUATIONS

JOHN C. ORUM
Oregon State University

Certain solutions of the three dimensional Fourier transformed Navier-Stokes (FNS)
equations may be represented, pointwise, as the expected value of a kind of branch-
ing process statistic. The statistic samples the Fourier transforms of both the initial
data and the forcing at various random frequencies as directed by the leaves of the
branching process, and then combines the results together, in a multiplicative way,
according to the nodes of the branching process. This method began with the paper
of LeJan and Sznitman [3] who remark that the method depends on the three di-
mensional situation. We review this representation method by considering, as far as
possible, both the three- and two-dimensional FNS equations simultaneously. Then
at a certain point a discriminating problem for the two-dimensional case appears.
This involves a nonlinear convolution equation for the majorizing kernel, namely
h�h(�) = j�jh(�), or even the inequality h�h(�) � j�jh(�). The concept of a majoriz-
ing kernel was introduced after the appearance of [3] and its role in the theory is now
more explicit. The problem here is that while solutions to this convolution equation
may be obtained in three dimensions, it has no known solution in two dimension.
Nevertheless, we may get around this problem by introducing a time dependent
transformation v̂(�; t) = û(�; t)e�Æt, where û(�; t) solves the two dimensional FNS.
This is discussed here; the three dimensional case is considered by Thomann [this
volume]. These results are new enough that their position and importance in the
developing theory is not clear. Consequently the emphasis here is on an informal
discussion of the route to the results.

The representation method rests on writing the FNS equations in a form that
admits a probabilistic interpretation. This is equation (10) below. The most trans-
parent way to get there is to begin with the Navier-Stokes equations for an incom-
pressible uid �lling all of Rn (n = 2 or 3). These equations for an unknown velocity
vector u = (uk(x; t)1�k�n) 2 Rn and pressure p = p(x; t) 2 R are given by

@

@t
uk + u � 5uk = � 4 uk � @p

@xk
+ fk (1)

div u =
nX
k=1

@uk
@xk

= 0 (2)
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with initial data u(x; 0) = u0(x), x 2 R
n . The initial data and external forcing

f = (fk(x; t))1�k�n are assumed to be divergence free. The ensuing computations
are facilitated by writing everything componentwise and incorporating the incom-
pressibility condition into the nonlinear term:

@uk
@t

+
@

@xj
(ukuj) = �

@2uk
@xj@xj

� @p

@xk
+ fk;

@uk
@xk

= 0: (3)

Repeated indices denote summation. The Fourier transform is applied, where û =
û(�; t) = (2�)�n=2

R
e�i��xu(t; x)dx, resulting in the set of FNS equations

@ûk
@t

+
i

(2�)n=2
�j(ûk�ûj) = �i�kp̂� �j�j2ûk + f̂k; �kûk = 0: (4)

These are converted to a system of integral equations by combining @tûk and �j�j2ûk
via the integrating factor exp(�j�j2t), and then integrating between time s = 0 and
time s = t:

ûk(�; t) = e��j�j
2tûk(�; 0) +

Z t

0

e��j�j
2(t�s)

� �i
(2�)n=2

�j(ûk�ûj)� i�kp̂+ f̂k

�
ds: (5)

The convolution terms are expanded as integrals and everything is recombined into
the vector integral equation

û(�; t) = e��j�j
2tû0(�)+ (6)Z t

0

e��j�j
2(t�s)

� �i
(2�)n=2

Z
Rn
û(�; s) � �û(� � �; s)d� � i�p̂(�; s) + f̂(�; s)

�
ds:

The standard technique of removing the pressure term is the application of the or-
thogonal projection P� : C

n ! h�i?. This projects onto the orthogonal complement
of �, i.e. P�(�) = 0. An equation for pressure may be recovered by taking the di-
vergence of (1) using (2) [4]. Using the assumption that the initial data and forcing
are divergence free, application of P� gives

û(�; t) = e��j�j
2tû0(�)+ (7)Z t

0

e��j�j
2(t�s)

� �i
(
p
2�)n

Z
Rn
û(�; s) � �P�û(� � �; s)d� + f̂(�; s)

�
ds:

The next adjustments are the multiplication and division by j�j, and the substitution
s! t� s giving

û(�; t) = e��j�j
2tû0(�)+ (8)Z t

0

e��j�j
2s

� �ij�j
(
p
2�)n

Z
Rn
û(�; t� s) � �j�jP�û(� � �; t� s)d� + f̂(�; s)

�
ds:
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The following times operation is introduced because of its ability to simplify no-
tation, and its persistence in the solution representation where it appears as the
predominant algebraic operation at the nodes of the branching process: a 
� b =
�ij�j�1(a � �)P�(b), a; b 2 C n . This results in

û(�; t) = e��j�j
2tû0(�)+ (9)Z t

0

e��j�j
2s

� j�j
(
p
2�)n

Z
Rn
û(�; t� s)
� û(� � �; t� s)d� + f̂(�; t)

�
ds:

A key idea of the representation method is the introduction a class of majorizing
kernels. These are positive functions h(�) with the property that h�h(�) can nor-
malize h(�)h(���)d� to a probability measure. Generally this measure is expressed
symmetrically as the law K�(d�1; d�2) (supported on the set �1 + �2 = �) of a pair
of correlated random vectors summing to �. Certain other conditions are put on
h(�) stemming from the particular equation under consideration. See Waymire [this
volume]. For the FNS equations a majorizing kernel should satisfy

1. 0 < h(�) <1 almost everywhere,

2. h�h(�) <1 almost everywhere,

3. h�h(�) � Cj�jh(�) where C is a constant.

The reason for the third condition is explained below. The term majorizing kernel
refers to any function used in the analysis of a PDE as it is here, and its name comes
from its role in tracking the size of solutions from the size of the Fourier transformed
initial data. (Hence its utility in tracking the regularity and support of solutions in
physical space.)

The following adjustments involving a majorizing kernel h(�) (that is yet to be
made explicit) are now made to equation (9): Divide through by h(�) and also
multiply and divide by h(�), h(� � �), h�h(�), �j�j2, and the number 2. The result
is

�(�; t) = e��j�j
2t�0(�) +

Z t

0

�j�j2e��j�j2s f� � � g ds (10)

f� � � g = 1

2
m(�)

Z
Rn
�(t� s; �)
� �(t� s; � � �)K�(�; � � �)d� + 1

2
�(t� s; �)

where

�(�; t) =
û(�; t)

h(�)
; �0(�) =

û0(�)

h(�)
; m(�) =

2j�jh�h(�)
�j�j2(p2�)nh(�) ;

K�(�; � � �) = h(�)h(� � �)
h�h(�) ; �(�; t) =

2f̂(�; t)

�j�j2h(�) :
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This is the form of FNS that admits the interpretation in terms of a branching
process: Let S be an exponentially distributed random variable with parameter
�j�j2. Let � be a Bernoulli random variable with parameter 1

2
. Let �1 and �2 be a

pair of correlated random variables distributed as K�(d�1; d�2). Assume S, �, and
�1 (or �2) are independent. Then equation (10), interpreted probabilistically, may
be written

�(�; t) = E
�
�0(�)1[S�t] + �(�; t� S)1[S<t]1[�=0]+ (11)

m(�)�(�1; t� S)
� �(�2; t� S)1[S<t]1[�=1]
	
:

Consider the following heuristic: Let M (1)(�; t) denote the random variable under
the expectation on the right, so that �(�; t) = EM (1)(�; t). Let M (2)(�; t) denote the
result of replacing �(�1; t�S) and �(�2; t�S) by similarly de�ned random variables
M (1)(�1; t � S) and M (1)(�2; t � S), respectively. Iterate this replacement process,
obtaining for k = 1; 2; : : :,

M (k+1)(�; t) = �0(�)1[S�t] + �(�; t� S)1[S<t]1[�=0] + (12)

m(�)M (k)(�1; t� S)
� M (k)(�2; t� S)1[S<t]1[�=1]:

We would like to de�ne a random variable M (1)(�; t) that is the result of iterating
this replacement process as far as possible, and write

M (1)(�; t) = �0(�)1[S�t] + �(�; t� S)1[S<t]1[�=0] + (13)

m(�)M (1)(�1; t� S)
� M (1)(�2; t� S)1[S<t]1[�=1];
�(�; t) = EM (1)(�; t): (14)

The formal construction suggested by this heuristic is built on the following:

1. An underlying random process.

2. A multiplicative functional de�ned on this process, whose expected value is
�(�0; t0) when it is started, or restarted, at the possibly random �0; t0.

3. In view of the random restart times the underlying random process must have
the strong Markov property.

The underlying random process is a multi-type branching process whose particle
types are the non-zero frequencies � 2 R

n=f0g. It is the result of reducing the pro-
cedure of iterated replacements given by equations (11)-(14) to a skeleton of random
frequencies and their exponential lifetimes. Next, the de�nition of the multiplicative
functional becomes transparent when the remaining information in (11)-(14) is in-
cluded. Both the branching process and the multiplicative functional are described
here informally. A formal treatment is given by Waymire [this volume] and in [1].
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The branching process may be viewed as evolving backward or forward in time.
Here we depict the backward view: Starting at (�; t), a particle � lives for an ex-
ponentially distributed length of time S� with holding parameter �j�j2, and then
it dies. The branching process evolves backwards in time, since the temporal ar-
gument of �(�; t � S�) is previous to t. At the death of � a coin �� is tossed. If
�� = 0 no new particles are born. If �� = 1, then two new particles, �1, �2 are born,
distributed as K�(d�1; d�2). The process is repeated independently for each of the
new particle types �1; �2 whose exponential lifetimes S1, S2 have holding parameters
�j�1j2, �j�2j2, respectively. This process is iterated and branching continues long as
there are living particles above the threshold t = 0. This results in a random tree,
�(�; t), as illustrated in Figure 1.

Such a tree �(�; t) may have two types of nodes: operational nodes, and input
nodes. Operational nodes (�) occur at branch points, when a particle dies and is
replaced by two new particles. Input nodes (Æ) occur at the leaves, when a particle
either dies and is not replaced, or else when it dies below the threshold t = 0. If an
input node, (��; t�) say, occurs above t = 0, the tree samples the forcing evaluated
at this point: �(��; t�). If this input node occurs below t = 0, then the tree samples
the initial data, �0(�

�). The multiplicative functional combines these sampled values
through the non-associative binary operation (a; b) 7! m(�)a
� b where the nesting
of the operations corresponds to the branching structure of the tree: Starting at the
leaves the input vectors are sent up the tree until an operational node is encountered.
At an operational node, for particle type � say, whose two branches have sent in
the vectors a and b, combine a and b according to the times operation m(�)a 
� b
and send this up the tree. Multiply like this, working upward until the value of the
multiplicative functional is attained at the root (�; t). The multiplicative functional
is called the times functional and is denoted ih(�(�; t)). As an example, the times
functional on the tree � �(�; t)) shown in Figure 1, would assume the value

ih(� �(�; t)) = m(�)[m(�1)�0(�11)
�1 �0(�12)]
� �(�2; t� S� � S2): (15)

The times functional ih(�(�; t)) replaces the heuristic random variable M (1)(�; t)
that is anticipated by equations (13) and (14).

The representation �(�; t) = E ih(�(�; t)) depends on the integrability of the times
functional. The following results address this [1], [3]:

1. With probability one, the number of values m(�), �0(�), �(�; �) combined to-
gether by the times functional ih(�(�; t)) is �nite.

2. If the bounds j�0(�)j � 1, j�(�; t)j � 1, and m(�) � 1 hold for all � 2 R
n

and for all t � 0, then �(�; t) = E ih(�(�; t)) solves (10), and this solution is
unique among solutions that remain pointwise bounded by 1 on any �nite time
interval 0 � t � T .

This �rst result is ancillary to the second. By standardizing all the particle lifetimes
to a single epoch in discrete time, the resulting critical binary Galton-Watson process
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time

frequency

S�

(�; t)

�

Æ
Æ

�
S2

Æ (�2; t� S� � S2)

�1 �2

�11 �12

Figure 1: The branching process and multiplicative functional: A particle of type � 2 R
n

lives for an exponentially distributed lifetime with parameter �j�j2, then is replaced by

either zero particles or two particles distributed as K�(d�1; d�2), and the process begins

anew. The resulting random tree samples the initial data and forcing at the input nodes

(Æ) and then combines the results together at the internal nodes (�) according to the

operation (a; b) 7! m(�)a
� b.

terminates with probability one. Consequently the same holds for the tree �(�; t) in
continuous time, and with probability one, the number of input nodes is �nite. Using
this, and the fact that ja
� bj � jajjbj, it follows that if the stated bounds hold, then
times functional is bounded by 1 in absolute value almost surely. The �rst two of
these bounds may be met by assuming jû(�)j � h(�) and 2jf̂(�; t)j � �j�j2h(�). The
bound onm(�) � 1 is the source of the third condition on the FNS majorizing kernel.
In three dimensions this bound is obtained by solving the nonlinear convolution
equation h �h(�) = Cj�jh(�), where C = �(

p
2�)3=2. The known solutions to

h�h(�) = j�jh(�) in three dimensions are

h(�) =
1

�3j�j2 and h(�) =
�

2�

e��j�j

j�j � � 0: (16)

Rescaling either the dependent or independent variable attains the constant C. Even
more solutions to the inequality h�h(�) � j�jh(�) in three dimensions are known [1].

The discriminating problem for the two-dimensional FNS equations is that there
are no known solutions to the inequality h�h(�) � j�jh(�) (with h(�) non-negative
and fully supported). That is, there are no known 2d-FNS majorizing kernels.
Moreover, it is not even known if such functions exists.

It is not clear if this dimensional dependent problem of the majorizing kernels is
intrinsically related to the di�erence between FNS equations in di�erent dimensions.
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The above bounds were invoked simply to force the absolute value of the times
functional to be bounded by 1 almost surely, and hence integrable. More subtle
analysis on the branching process may allow the bounds on the multiplier m(�) to
be relaxed, and hence conditions on the majorizing kernel h(�) to be relaxed as well.

The present method requires the bound m(�) � 1, but we may get around this
problem in two dimensions by making a time dependent transformation v̂(�; t) =
û(�; t)e�Æt, where û(�; t) solves FNS. This actually works for either the two- or
three-dimensional case. After this transformation the FNS equations (4) become
the Æ-FNS equations

@v̂k
@t

+ (Æ + �j�j2)v̂k = �i
(
p
2�)n

�j(v̂k�v̂j)eÆt � i�kp̂e�Æt + f̂ke
�Æt (17)

The two sets of equations, FNS and Æ-FNS are compared in light of this change.
The viscosity term in the Navier-Stokes equations was the source of the clock in
the branching process, (i.e. the holding time parameter �j�j2). The transformation
changes this to a new clock Æ+ �j�j2; it also changes the multiplier m(�) to the new
(time dependent) multiplier

m0(�; t) =
2h�h(�)j�jeÆ(t�s)

h(�)(Æ + �j�j2)(2�)n=2 (18)

permitting a choice of a majorizing kernel h(�) making m0(�; t) � 1.
The probabilistic version of Æ-FNS is obtained directly from equation (10) with

the transformation �0(�; t) = v̂(�; t)=h(�) = û(�; t)e�Æt=h(�) = �(�; t)e�Æt. This gives
the integral equation

�0(�; t) = e�(Æ+�j�j
2)t�00(�) +

Z t

0

(Æ + �j�j2)e�(Æ+�j�j2)s f� � � g ds (19)

f� � � g = 1

2
m0(�; t)

Z
Rn
�0(�; t� s)
� �0(� � �; t� s)K�(�; � � �)d� + 1

2
�0(�; t� s)

where �0(�; t) = 2f̂(�; t)e�Æt=[(Æ + �j�j2)h(�)]. We obtain for this analogue of (10) a
similar solution representation �0(�; t) = E ih 0(� 0(�; t)). The representation method is
made to work over a �nite time interval 0 � t � T� where the factor eÆ(t�s) inm0(�; t)
is bounded by eÆT� . The bound m0(�; t) � 1 is achieved by �nding an h(�) > 0 such
that

M 0
Æ;T�(�)

def
=

2h�h(�)j�jeÆT�
h(�)(Æ + �j�j2)(2�)n=2 � 1 8� 2 R

n : (20)

Here � is intrinsic to Navier-Stokes and is �xed. The parameters Æ and T� are
chosen along with h(�) so that this inequality holds. This may done by taking
the majorizing kernel h(�) to be one of the n-dimensional analogues of the Cauchy
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density. These are the radially symmetric functions

h(�) = Cn
�

(�2 + j�j2)(n+1)=2 (21)

that share many properties of the one-dimensional Cauchy densities. Here � > 0
is a scale parameter and Cn = �(n+1

2
)��(n+1)=2 is the normalization constant. For

dimension n = 2, Feller [2] calls this, and not the product of two Cauchy densities,
the bivariate Cauchy density. The scale parameters add under convolution:

h�h(�) = Cn
2�

(4�2 + j�j2)(n+1)=2 : (22)

A proof of this using Fourier transforms on R
n is given in [5, p. 50]. Using this h(�),

the desired inequality (20) becomes�
�2 + j�j2
4�2 + j�j2

�(n+1)=2

� (Æ + �j�j2)(2�)n=2
4j�jeÆT� 8� 2 R

n : (23)

The supremum (over �) of the l.h.s. is 1, for any �, and the in�mum (over �) of the
r.h.s. occurs at j�j =pÆ=�, assuming the value

p
�Æ(2�)n=2=(2eÆT�). By taking

Æ =
4e

�(2�)n
; T� =

�(2�)n

8e
; (24)

the in�mum of the right side of (23) becomes 1, and the inequality is attained:�
�2 + j�j2
4�2 + j�j2

�(n+1)=2

� 1 =

p
�Æ(2�)n=2

2eÆT�
� (Æ + �j�j2)(2�)n=2

4j�jeÆT� 8� 2 R
n : (25)

With this bound m0(�; t) � 1, we may proceed as before and obtain the solution
representation �0(�; t) = E ih0(� 0(�; t)) for (19) over the �nite time interval 0 � t � T�,
that is similar to the representation �(�; t) = E ih(�(�; t)) for (10). The underlying
stochastic models for the FNS and the Æ-FNS are basically the same, except that
the transformation v̂(�; t) = û(�; t)e�Æt introduces a Æ term that changes the mean
particle lifetimes from 1=�j�j2 to 1=(Æ + �j�j2), and new particles are born with a
di�erent distribution that depends on the majorizing kernel (in two dimensions)

h(�) =
1

2�

�

(�2 + j�j2)3=2 : (26)

Note that there is no restriction on the scale parameter �. The times functional
ih0(� 0(�; t)) is almost the same as ih(�(�; t)) except that the multiplier m0(�; t) is time
dependent. The initial data and forcing must satisfy j�00(�)j � 1 and j�0(�; t)j �
1. Then �0(�; t) = E ih 0(� 0(�; t)) is bounded by 1 and uniquely solves (19) among
solutions that remain bounded by 1 over the time interval 0 � t � T�.
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ON ESTIMATION THEORY FORMULTIPLICA-
TIVE CASCADES

MINA OSSIANDER
Department of Mathematics, Oregon State University

1 Introduction

The notion of multiplicative cascade was introduced into the statistical theory of
turbulence by A.N. Kolmogorov (1941), (1962) as a phenomenological framework
intended to accommodate the intermittency and large uctuations observed in tur-
bulent uid ows. The basic idea is that energy is redistributed from larger to smaller
scales via a splitting mechanism involving random multiplicative factors known as
cascade generators. Primarily owing to the scaling structure of this class of models,
applications have been extended to a wide variety of other naturally occurring phe-
nomena such as rainfall, internet packet traÆc, market prices, etc. which exhibit
intermittent and highly variable behavior in space and time. The probability distri-
bution of the cascade generators represents a hidden parameter which is reected in
the �ne scale limiting behavior of certain scaling exponents calculated from a single
sample realization. This paper gives a sketch of the underlying statistical theory for
estimation of the distribution of the generators and describes related problems in
turbulence and precipitation.

2 An Overview of the Theoretical Foundations

In this section we provide precise statements of the basic results underlying current
statistical theory. Proofs of results given in this section may be found in Ossiander
and Waymire (2000).

Let b � 2 be a natural number and let T denote the product space

T = f0; 1; 2; : : : ; b� 1gN (2.1)

equipped with the metric �(s; t) = b�js^tj; s; t 2 T, where N denotes the set of
natural numbers and js ^ tj = inffn � 0 : sn+1 6= tn+1g; s = (s1; s2; : : : ); t =
(t1; t2; : : : ) 2 T: Denote the corresponding Borel sigma�eld on T by B(T). For
t = (t1; t2; : : : ) 2 T let tjn = (t1; t2; : : : ; tn): If points t 2 T are viewed as paths
through a b-ary tree then v = tjn denotes the nth generation vertex along t and we
write jvj = n.

For s 2 T; n 2 N; denote the closed ball of radius r = b�n centered at s by

�n(s) � �n(sjn) = Bb�n(s) = ft 2 T : ti = si; i � ng: (2.2)

109
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The normalized Haar measure � onT; viewed as a countable product of cyclic groups
of order b; is speci�ed by

�(�n(s)) = b�n; s 2 T; n � 1: (2.3)

The cascade generators are given by a denumerable family of i.i.d. non-negative
mean one random variables fWv : v 2 f0; 1; : : : ; b � 1gn; n � 1g de�ned on a
probability space (
;F ; P ). Let Fn; n � 1; denote the �ltration de�ned by

Fn = �fWv : jvj � ng; n � 1: (2.4)

The cascade generators de�ne a sequence of random measures f�n : n � 1g on
(T;B(T)) for n � 1 via

d�n
d�

(t) = Qn(t) =
nY
i=0

Wtji =W;
nY
i=1

Wtji; t 2 T; (2.5)

where W;, referred to as the cascade initiator, is an a.s. positive random variable
independent of Fn; n � 1:

One may easily check that for any bounded Borel measurable function f : T!
R, the sequence of random variables fR

T
fd�ng1n=1 is an L1�bounded martingale

with respect to Fn, and thus has an a.s. limit as n ! 1. This leads to a random
measure �1 on (T;B(T)) such that

P (�n) �1 as n!1) = 1; (2.6)

where ) denotes vague convergence; e.g. see Kahane and Peyri�ere (1976). Indeed,
for any countable family � of bounded Borel measurable functions, cf. Kahane
(1989),

P ( lim
n!1

Z
T

f(t)�n(dt) =

Z
T

f(t)�1(dt); f 2 �) = 1: (2.7)

The random measure �1 is known as the multiplicative cascade measure. The fol-
lowing basic structure theorem for �1 is also well-known; see Kahane and Peyri�ere
(1976). First let

�b(h) = logbE[W
h1[W > 0]]� (h� 1); (2.8)

where W is a generic cascade generator distributed as Wv for v 6= ;: The structure
function �b(h) is de�ned for all real numbers h but may be in�nite, with the con-
ventions that 00 = 0; 0 �1 = 0: Notice that �b is a modi�ed version of the cumulant
generating function of lnW . The use of the indicator function 1[W > 0] allows
incorporation of the case h < 0 into the general theory.

Theorem 2.1 (Kahane and Peyri�ere (1976))
(i.) (Nondegeneracy) E�1(T) > 0 i� �0b(1�) < 0:
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(ii.) (Convergence of moments) E�h1(T) <1 for 0 � h � 1; and, if hc := supfh �
1 : �b(h) � 0g > 1; then E�h1(T) <1 for 1 < h < hc:
(iii.) (Support dimension) If �1(T) > 0, then �1 is a.s. supported on a subset of
T with Hausdor� dimension ��0b(1�).

Notice that the last part of Theorem 1.1 delineates an important intermittency
parameter associated with the cascade measure �1, ��0b(1�), the a.s. Hausdor�
dimension of the subset of T that supports �1; see Waymire and Williams (1995)
for a proof in this generality. Two strongly consistent estimators of this parameter
are given in Section 3.

In most applications the probability distribution of the cascade generators is not
known apriori. However, one may have data in the form of a single sample realization
of the cascade measure of pixels at some prescribed �ne scale of resolution. The
following result shows that, asymptotically, such data consistently determines the
distribution of the cascade generators.

Theorem 2.2 (Ossiander and Waymire (2000)) Assume that �0b(1�) < 0: If E[W h

1[W > 0]] exists and is �nite for h belonging to some neighborhood of 0; then
f�1(�n(v)) : v 2 f0; 1; : : : ; b � 1gn; n � 0g uniquely determines the distribution
of the cascade generator W .

Throughout the remainder of the paper we will restrict our consideration to
cascade generators for which

�0b(1�) < 0; (2.9)

so that E�1(T) > 0; cf Theorem 2.1. A basic family of statistics which we consider
are the nth-scale sample moments de�ned by

Mn(h) =
X
jvj=n

�h1(�n(v)); h 2 R: (2.10)

These are a natural family of functionals which are computable from observing the
multiplicative cascade on pixels, or balls, �n(v). Two di�erent estimators of �b(h),b�n(h) and e�n(h), can be de�ned in terms of the Mn(h)'s as follows:

b�n(h) = n�1 logbMn(h) (2.11)

and e�n(h) = logb(Mn+1(h)=Mn(h)): (2.12)

It is convenient to introduce a class of random measures �1(h; dt); h 2 R; which we
refer to as h-cascades, and de�ne via the h-cascade generators

Wv(h) =
W h
v

EW h
v

; h 2 R: (2.13)
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The h-cascades are related to the original cascades via

�hn(�n(v))

bn�b(h)
= �n(h; �n(v)); (2.14)

where the sequence of nth level h-cascades, n = 1; 2; : : : is de�ned by

d�n(h; �)
d�

(t) � Qn(h; t) =
nY
i=0

Wtji(h); t 2 T: (2.15)

The following proposition points to the usefulness of h-cascades in this context.

Proposition 2.1 For h 2 R; n � 1; one has

Mn(h)

bn�b(h)
=
X
jvj=n

Zh
1(v)�n(h; �n(v)) =

Z
T

Zh
1(tjn)�n(h; dt)

where a.s.

Z1(v) = lim
N!1

X
juj=N�n

N�nY
i=1

Wv�(u1:::ui)b
�(N�n);

and * denotes the concatenation

(v1; : : : ; vn) � (u1; : : : ; uN) = (v1; : : : ; vn; u1; : : : ; uN):

Notice that this proposition gives an implicit decomposition of the limiting cas-
cade measures. This decomposition is crucial in reaching an understanding of the
properties of �1 and functionals thereof. There is one important family of cascade
generators for which analysis of this decomposition gives the exact distribution of
the cascade measure itself. Fix b � 2, and take W=b to have a Beta 3 distribution
with parameters r and (b� 1)r for some r > 0. Then the distribution of Z1 is that
of a Gamma r.v. with shape parameter br and scale parameter (br)�1. In particular
an exact simulation of the limit cascade may be achieved for models in this family.

The next proposition results from an application of Theorem 2.1 to describe the
limiting behavior of the h-cascades. The structure function of the Wv(h)'s is given
by

�b;h(r) = �b(hr)� r�b(h):
This yields

�0b;h(1) = h�0b(h)� �b(h):
It is easy to check that, as a function of h, �0b;h(1) is convex. In light of Theorem
2.1, this gives the following.

3In the physics literature the term beta-model is commonly used to describe the cascade model
generated with weighted Bernoulli r.v.'s that corresponds to a Galton-Watson branching process.
The physics terminology is at odds with the terminology used in the statistics literature, and thus
the reader is duly cautioned.



On Estimation Theory for Multiplicative Cascades 113

Proposition 2.2 Assume that �0b(1�) < 0 and let

H+
c = supfh � 1 : h�0b(h)� �b(h) < 0g

and
H�
c = inffh � 0 : h�0b(h)� �b(h) < 0g

Then H�
c � 0 < 1 � H+

c ; with h�
0
b(h) � �b(h) < 0 for all H�

c < h < H+
c : Further-

more, for h 2 [0; 1][(H�
c ; H

+
c ); �n(h;T)! �1(h;T) P�a.s., where E�1(h;T) = 1

and for h 2 (H+
c ; hc), �n(h;T)! 0 P�a.s. as n!1.

A discussion of the structure and relationship of the support sets in T of the
limiting h-cascades can be found in Ossiander (2000).

The following theorem is the basis of our derivation of the a.s. convergence of
both b�n(h) and e�n(h). A generalization of the �rst part of this theorem is given in
Section 3.

Theorem 2.3 (Ossiander and Waymire (2000))
(i.) For h 2 [0; 1] [ (H�

c ; H
+
c );

Mn(h)

bn�b(h)
! �1(h;T)E�h1(T)

P�a.s. as n!1:
(ii.) For h 2 (H+

c ; hc);
Mn(h)

bn�b(h)
! 0

P�a.s. as n!1.

Convergence of the estimators b�n(h) and e�n(h) to the structure function �b(h)
for h inside the critical interval (H�

c ; H
+
c ) is delineated in Corollaries 2.1 and 2.2

and Corollary 2.3 respectively.

Corollary 2.1 For any h 2 [0; 1][ (H�
c ; H

+
c ); the following hold P�a.s. as n!1

on the set [�1(T) > 0]:
(i.) (logbMn(h)� n�b(h))! logb �1(h;T) + logbE�

h
1(T)

and
(ii.) b�n(h)! �b(h):

Corollary 2.2 On the set [�1(T) > 0];

fb�n(h) : h 2 [0; 1] [ (H�
c ; H

+
c )g ! f�b(h) : h 2 [0; 1] [ (H�

c ; H
+
c )g

P�a.s. as n!1.
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Corollary 2.3 On the set [�1(T) > 0] one has P�a.s. that
fe�n(h) : h 2 [0; 1] [ (H�

c ; H
+
c )g ! f�b(h) : h 2 [0; 1] [ (H�

c ; H
+
c )g

as n!1.

Although both b�n(h) and e�n(h) converge to �b(h) for h within the critical regime,
in practice e�n(h) is a more useful estimate of �b(h) for moderate values of n. This
can be seen from the following heuristic calculations motivated by (i.) of Corollary
2.1:

b�n(h)� �b(h) = n�1 logbMn(h)� �b(h)
� n�1(logb �1(h;T) + logbE�

h
1(T)):

The term n�1(logb �1(h;T)+ logbE�
h
1(T)) can be thought of as an asymptotically

negligible bias term. On the other hand, e�n(h) is given by a weighted di�erencing
of b�n(h) in a way that decreases the bias term:

e�n(h)� �b(h) = (n+ 1)b�n+1(h)� nb�n(h) � 0: (2.16)

The following theorem reveals that the limiting behavior of b�n(h) = n�1 logbMn(h);
viewed as a function of h; is di�erent outside the set [0; 1] [ (H�

c ; H
+
c ); i.e. when

the low frequency h-cascade �n(h;T) dies out a.s. with respect to P: It also makes
clear that for estimation purposes the interval (H�

c ; H
+
c ) is a true critical interval.

Indeed, it shows that for h outside this interval b�n(h) estimates a linear extension of
�b(h) rather than �b(h) itself. Weaker versions of this result appear in Lovejoy and
Schertzer (1991), Holley and Waymire (1992), Collet and Koukiou (1992), Franchi
(1995), Molchan (1996), and Troutman and Vecchia (1999).

Theorem 2.4 (Ossiander and Waymire (2000)) Let

�b(h) =

8<:
h�0b(H

�
c ) if h � H�

c < 0
�b(h) if h 2 (H�

c ; H
+
c ) [ [0; 1]

h�0b(H
+
c ) if h � H+

c :

If H+
c < hc and H

�
c < 0; with EW h1[W > 0] < 1 for some h < H�

c ; then on
A = [�1(T) > 0];

fb�n(h) : h 2 Rg ! f�b(h) : h 2 Rg
P�a.s. as n!1. If H�

c = 0 and H+
c < hc; then on A;

fb�n(h) : h � 0g ! f�b(h) : h � 0g
P�a.s. as n!1.
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Some important open problems remain. For example the limiting behavior ofe�n(h) for h outside the critical region [H�
c ; H

+
c ] is poorly understood at best. In ad-

dition, the lack of satisfactory inversion theory makes it diÆcult to use the structure
function estimators to provide estimates of the distribution of the cascade genera-
tors.

Martingale central limit theory may be exploited to obtain asymptotic error
distributions for the estimators b�n(h) and e�n(h) for h within the scaled critical in-
terval (H�

c =2; H
+
c =2). The central limit theorem for the estimator e�n(h) is given in

Corollary 2.5. The key result for these error distributions may be stated as follows.
For each n � 1; let fXn(v) : jvj = ng be a collection of independent random

variables which are also independent of Fn: De�ne

Sn(h) =
X
jvj=n

Xn(v)�n(h; �n(v)): (2.17)

Also let

Rn(h) =
Sn(h)

(
P

jvj=n �
2
n(h; �n(v)))

1
2

: (2.18)

Theorem 2.5 (Ossiander and Waymire (2000))
If EX2

n(v) = 1 and EXn(v) = 0 for each v; and if

sup
n

sup
jvj=n

EjXn(v)j2(1+Æ) <1

for some Æ > 0; then for h 2 (H�
c =2; H

+
c =2);

lim
n!1

E[eizRn(h)jFn] = 1[�1(T) = 0] + e�
1
2
z21[�1(T) > 0]; (2.19)

with the convention that Rn(h) = 0 if �n(T) = 0:

Corollary 2.4 For h 2 (H�
c =2; H

+
c =2);

Rn(h)!d �Nh

where � = 1[�1(T) = 0] and Nh is an independent standard normal random vari-
able.

Note: it can also be shown that the Nh's are independent for di�erent values of
h.

The estimator e�n(h) of �b(h) is obtained by di�erencing the logarithms of the
h�th sample moments at scales of resolution n+1 and n; namely e�n(h) = logb(Mn+1(h)
=Mn(h)): In view of Corollary 2.3 we have asymptotic consistency of this estimator
for h 2 (H�

c ; H
+
c ): The following gives an observable normalization of this estimator,
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which allows computation of asymptotically exact con�dence intervals for �b(h) for
observation of a single realization of the random cascade.

De�ne

V 2
n (h) =

X
jvj=n

(
�h1(�n(v))

Mn(h)
�

b�1X
i=0

�h1(�n+1(v � i))
Mn+1(h)

)2: (2.20)

The following corollary then gives a central limit theorem for a completely ob-
servable statistic whose asymptotic distribution does not depend on the distributions
of the unobservable generator variables W or the unknown distribution of the cas-
cade itself, �1(T). The independence in h of the Nh's noted above indicates that
the errors in this estimator of �b(h); namely e�n(h), are asymptotically independent.
Corollary 2.5 For h 2 (H�

c =2; H
+
c =2);e�n(h)� �b(h)

Vn(h)
!d (log b)�1�Nh: (2.21)

3 Dimension Estimates: Some Recent Results

The intermittency of the cascade measure is reected in the Hausdor� dimension
of the supporting set of the measure. This important geometric parameter is given
by ��0b(1�) = 1 � EW logbW; the derivative of the structure function at h = 1,
whenever the cascade survives. Two natural estimators for the Hausdor� dimension
are bDn = �(n�1(T))�1

X
jvj=n

�1(�n(v)) logb �1(�n(v)); (3.1)

de�ned for n � 1, andeDn = (�1(T))�1 (
X
jvj=n

�1(�n(v)) logb �1(�n(v))�X
jvj=n+1

�1(�n+1(v)) logb �1(�n+1(v))); (3.2)

de�ned for n � 0. Notice that bDn = �b� 0n(1)=�1(T) and eDn = �e� 0n(1)=�1(T).bDn has been used by physicists as an estimator of the Hausdor� dimension of the
support set of a measure; see Chhabra and Jensen(1989). eDn was introduced by

Ossiander and Waymire (2001). The following theorem shows that both bDn and eDn

are strongly consistent estimators of ��0b(1).
Theorem 3.1 (Ossiander and Waymire (2001))) If hc > 1, then both

(i.) eDn ! ��0b(1)
and
(ii.) bDn ! ��0b(1)
P�a.s. as n!1.
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A central limit theorem for the estimator eDn is also obtainable. The observable
normalization is given by

eV 2
n =

X
jvj=n

(�1(�n(v)) logb �1(�n(v)) (3.3)

�
b�1X
i=0

�1(�n+1(v � i)) logb �1(�n+1(v � i))

��1(�n(v)) eDn)
2:

Theorem 3.2 (Central Limit Theorem for eDn) If H
+
c > 2, then

( eDn + �0b(1))�1(T)eVn !d �N;

where � = 1[�1(T) = 0] and N is an independent standard normal random variable.

The proofs of both Theorem 4.1 and 4.2 above can be found in Ossiander and
Waymire (2001). Both depend on the following generalization of Theorem 2.3.
It can be thought of a strong law of large numbers for a collection of identically
distributed r.v.'s fX(v)g with the random weights �n(�n(v)) playing the role of the
usual deterministic weights b�n.

Theorem 3.3 Suppose that fX(v) : jvj = n; n � 1g is a collection of identically
distributed random variables de�ned on (
;F ; P ) with EjX(v0)j1+� < 1 for some
� > 0 and, for each n � 1; fX(v) : jvj = ng is a collection of independent random
variables which is also independent of Fn: Then for h 2 [0; 1] [ (H�

c ; H
+
c );X

jvj=n
X(v)�n(h; �n(v))! �1(h;T)EX(v0)

P� a.s. as n!1:

The consistent statistical estimation of other parameters of the �ne scale struc-
ture, e.g. other points of the singularity spectrum and multifractal dimensions,
remains as an undeveloped problem.

4 Lognormal Versus log Poisson Generators; A Statistical
Problem in Turbulence

This section outlines a major outstanding problem for statistics in the physical
sciences, namely statistical inference for cascade models of energy dissipation in
turbulence. The research sketched below focuses on the multiscaling exponent data
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and theory available in the physics literature; alternative approaches are possible
which are not reviewed here, see for example Jouault, Greiner, Lipa (2000) and
Barndor�-Nielsen, Jensen, and Sorensen (1990).

The energy dissipation rate � de�ned by

�(x) =
�

2

3X
i;j=1

(
@ui
@xj

)2; x 2 R3; (4.1)

is computed in terms of the uid velocity u = (u1; u2; u3) as the local rate of decay
of kinetic energy d

dt
1
2

R
V
ju(x)j2dx from incompressible Navier-Stokes equation in a

region V with viscosity parameter � > 0:
One begins with the assumption that the multiplicative cascade with i.i.d. non-

negative mean one generators is a valid statistical model for the turbulent redis-
tribution of energy in the statistical model of the random dissipation �eld �(dx)
over an appropriate range of length scales, referred to as the Kolmogorov inertial
range. The Kolmogorov inertial range is an interval of length scales from the largest
length scale at which energy enters the system down to the smallest length scale
at which energy is dissipated by uid viscosity. Actual observations of � are one-
dimensional cross sections wherein (4.1) is replaced by the surrogate measurement
15�(@u1

@x1
)2: As a result Jouault, Greiner, and Lipa (2000) have e�ectively argued

that i.i.d. mean one generators provide the appropriate model for measurements of
energy dissipation rates from the point of view of conservation laws. In particular,
taking one-dimensional cuts through the three dimensional energy dissipation �eld
makes the measurements non-conservative in an almost sure sense. The statistical
model with i.i.d. mean one generators provides conservation on average.

Kolmogorov's lognormal hypothesis leads to a quadratic structure function �b(h)

as follows. A lognormal cascade generator can be written as W = e�Z�
�2

2 ; where Z
has a standard normal distribution. This gives the quadratic structure function

�b(h) =
�2

2 ln b
h2 � (

�2

2 ln b
+ 1)h+ 1 (4.2)

with critical values given by the roots

H+
c =

p
2 ln b

�
and H�

c = �
p
2 ln b

�
(4.3)

of h�0b(h) � �b(h). Early analysis of turbulence data revealed a departure from
quadratic multiscaling exponents, which is now understood to be remarkably ad-
justed by the linear correction �b(h) as depicted in Figure 1. The data points
depicted here are from Anselmet et al. (1984). This e�ect had already been antici-
pated by preliminary calculations in the physics literature; see Lovejoy and Schertzer
(1991) and Molchan (1997). Here the parameterizing ratio �2=2 ln b is taken to be
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.1 as suggested by Anselmet et al. This gives �b(h) = :1h2 � 1:1h + 1, H+
c =

p
10,

and �0b(1) = �:9.

Figure 1. Graph of the linearly corrected lognormal structure function with the
Anselmet turbulence data superimposed. Here H+

c =
p
10.

Largely prompted by discrepancies between the observed data and the quadratic
structure function as illustrated in Figure 1, various adhoc alternatives to the lognor-
mal hypothesis have been considered in the physics literature; see Frisch (Figure 8.8,
p.132;1995). The log Poisson distribution surfaced as an alternate hypothesis as a
somewhat indirect consequence of an analysis by She and L�evêsque (1994), Dubrulle
(1994), and She and Waymire (1994,1995). Speci�cally, She and L�evêsque (1994)
obtain the following second order, linear, nonhomogeneous di�erence equation for
the scaling exponents �(h) = ��b(h)� (h� 1):

�(h + 2)� (1 + �)�(h+ 1) + ��(h) +
2

3
(1� �) = 0; (4.4)

where � = 2
3
; and �(0) = �(1) = 0 as a consequence of the following log-convexity

hypothesis on the structure of the size-biased moments �
(h)
l := E�h+1l =E�hl of energy

dissipation:
�
(h+1)
l = Ah(�

(h)
l )�(�

(1)
l )1��; 0 < � < 1: (4.5)

According to She (personal communication) this hypothesis was formulated in re-
sponse to observations made in numerical simulations of Navier-Stokes equations. It
is straightforward to check that the structure function speci�ed above corresponds
to one deriving from a log Poisson generator. That is, distributionally W = b2=3�Y ;
with Y being a Poisson r.v. with parameter 2 ln b=3(1� �) > 0. This gives

�b(h) = (2�h � (1� �)h+ 1� 3�)=3(1� �): (4.6)

It is interesting to note that for � = 2=3 as speci�ed above, �0b(1) = �:874. This
gives a value for the support dimension that is quite close that given by Kolmogorov's
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lognormal model. A comparison of the Anselmet data to the She and L�evêsque log
Possion structure function with and without the linear correction is given in Figure
2.

Figure 2. Graph of the linearly corrected log Poisson structure function of She and
L�evêsque with the Anselmet turbulence data superimposed. Here H+

c � 4:14.

The approach of She and L�evêsque has been generalized by others. For example
Chen and Cao (1995) describe a family of models with structure functions of the
form �(h) = (�h � �)=(1 � �) for 0 < � < 1. This family of structure functions
again corresponds to log Poisson generators. In particular Chen and Cao suggest
taking � = 7=9, leading to �0(1) = �:8796: A comparison of the Anselmet data to
the Chen and Cao structure function with and without the linear correction is given
in Figure 3.

Figure 3. Graph of the linearly corrected log Poisson structure function of Chen
and Cao with the Anselmet turbulence data superimposed. Here H+

c � 3:87.
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Obviously if the b�n(h)'s as observed by Anselmet et al. gave consistent estimates
of the structure function �b(h) for all values of h, then the need for extensive statis-
tical theory to test distributional hypotheses concerning cascade generators would
hardly be justi�ed. However, the problem of distinguishing between the proposed
models based on an understanding of the convergence properties of b�n(h) as illus-
trated in Figures 1 through 3 requires an understanding of the error distributions of
the observed statistics. It should be noted that in the literature the reported data
is often that of velocity exponents �(h) de�ned by E(u1(x + �) � u1(x))

h � ��(h)

from which �(h); de�ned by E�h(dx) � (dx)�(h); is obtained by the assumed re-
lationship based on dimensional arguments that �(h) = h

3
+ �(h

3
): Distinguishing

between proposed models will entail an analysis relying on more detailed tabulation
of measurements of the dissipation rates at small length scales.

5 Cascade Models and Temporal Rainfall

Although the standard canonical cascade model described above captures the qual-
itative structure of rainfall intensity over space at a �xed point in time (c.f. Gupta
and Waymire (1993)), there are some well-known inconsistencies that become mani-
fest when using it as a model of rainfall intensity over time at a �xed point in space.
These are illustrated in Olsson (1998), Menabde and Sivapalan (2000), and Rupp et
al. (2001). In particular, it seems that in order to adequately �t a multiplicative-
type model to measurements of rainfall over time, the distribution of the cascade
generators Wtjn must be allowed to depend on the length of the time interval �n.
This is seen by looking at ratios of rainfall measurement of nested pixels at adja-
cent time scales b�(n�1) and b�n. Assuming a multiplicative cascade structure, these
ratios can be simpli�ed as follows:

�1(�n(t))

�1(�n�1(t))
=

b�n
Qn

j=1Wtjj � Z1(tjn)
b�(n�1)

Qn�1
j=1 Wtjj � Z1(tj(n� 1))

=
WtjnZ1(tjn)
bZ1(tj(n� 1))

: (5.1)

Under the standard canonial cascade model, these ratios should have the same
distribution at each scale of resolution. However, histograms of these ratios in
Olsson, Menabde and Sivapalan, and Rupp et al. all show that the distributions of
these ratios change systematically as the time scale changes. In particular, in both
Olsson and Rupp et al. it appears that the distribution of the ratios becomes more
concentrated about the �xed value b�1 as the scale of resolution decreases to 0. This
is illustrated in Figure 4, which presents histograms from Rupp et al. of the ratios
of rainfall measurements at di�erent sites close to Corvallis, Oregon.

This indicates that the splitting of rainfall between adjacent pixels is on aver-
age more uniform at �ne scales of resolution compared to that at coarse scales and
reects a process which is locally smoother and more correlated than a canonical
multiplicative cascade. It should be added that in the data generating Figure 4, the
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Figure 4. Relative frequency histograms of the cascade splitting ratio (5.1) at
di�erent cascade levels. (Data Sources; a-e, g: Johnson Creek tipping bucket; f:
Corvallis hourly; h-i: Corvallis daily.)

seasonal periodicity of rainfall is handled via a statistical homogenization technique;
a Fourier series representation of mean rainfall is used to normalize time, having the
e�ect of expanding time during the rainy season and contracting time during the
dry season so that the expected re-scaled rate of rainfall is constant. The ratios
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presented in Figure 4 were originally calculated both with and without the time
homogenization. The same local smoothing appeared in both cases. This prelimi-
nary work can be found in Rupp et al. (2001), where a scale-dependent version of
the canonical cascade model is developed in order to better �t and simulate rainfall
data.

The above considerations illustrate a long-standing need for realistic stochastic
models of space-time precipitation �elds. Promising attempts toward extending the
spatial models to the space-time setting can be traced to the pioneering e�orts of
LeCam (1961) which are widely utilized in hydrologic applications for rain on large
scales of bands and frontal systems. Temporal extensions of cascades initiated by
Gupta and Over(1996) demonstrate this to be a promising research direction in
contending with the high intensity �ne scale structure in space and time. Others
who have recently worked in this vein include Jothityangkoon et al. (2000) and
Deidda (2000).
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PARTIAL DIFFERENTIAL EQUATIONS AND
MULTIPLICATIVE PROCESSES

ENRIQUE THOMANN
Oregon State University

1 Introduction

In this paper a survey of recently developed methods for representing solutions of lin-
ear, semilinear and quasilinear parabolic di�erential equations as an expected value
of a random variable de�ned on a branching process that incorporates the nonlin-
earities of the equation under consideration is presented. The solution representa-
tion is obtained by considering the Fourier transform of the equations and using its
parabolic character to introduce a natural clock that controls the branching process.
The approach is general enough to be applied to equations that have a polynomial
nonlinearity. Examples include the Kolmogorov, Petrovskii and Piskunov equa-
tion (KPP), Burgers equation and the incompressible Navier-Stokes equations. The
method developed here is an extension of a branching process developed in LeJan-
Sznitman [10] to study the Navier Stokes equations. Further relations of this ap-
proach with McKean [11] branching Brownian motion developed for the KPP equa-
tions and Kato [9] abstract Picard iteration for the Navier-Stokes equations are also
presented in detail. Finally, the use of the this branching process to obtain existence,
uniqueness and regularity properties of solutions of these nonlinear equations is de-
veloped. The results presented in this paper are joint work with R. Bhattacharya,
L. Chen, S. Dobson, J. C. Orum, M. Ossiander and E. Waymire (see Bhattacharya
et al. [2]).

The organization of this paper is as follows. In Section 2 linear equations are con-
sidered and a branching processes is used to provide an alternative to the Feynman-
Kac formula. In Section 3, solutions of the Navier-Stokes equations are represented
as expected values of a functional de�ned along an appropriate branching process.
This constitute the major motivation for the methods developed in this paper. A
detailed construction of the branching process is also included in this section. In
Section 4, the properties and examples of majorazing kernels introduced in section
3 are presented. In Section 5, the representation of solutions of the Navier-Stokes
equations obtained in section 4 is related to the abstract Picard iteration scheme
developed by Kato [9]. Also, a similar relation is established for the KPP equa-
tion relating the methods presented in this paper with the more classical branching
process introduced by McKean [11] (see also Bramson [3] and Friedlin [7].) Further
conclusion and remarks are made in the section 6.
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2 Linear equations: Feynman-Kac Formula

A simple example that illustrates the use of branching processes in the study of solu-
tions of linear parabolic di�erential equations is given by considering the initial value
problem of the heat equation on the real line with a scalar potential whose Fourier
transform is a complex measure. This provides an alternative to the Feynman-Kac
formula. To make the presentation simple, consider the initial value problem with
a cos(x) potential written as

@u

@t
= a

@2u

@x2
+ (cos(x) +

1

2
)u� 1

2
u; u(x; 0) = u0(x) (2.1)

where a is a positive real number.
As usual, de�ne the Fourier transform of an integral function in Rd by

f̂(�) =
1

(2�)d=2

Z
Rd
e�ix�f(x)dx: (2.2)

A simple calculation gives

û(�; t) = û0(�)e
��(�)t

+(2�)d=2
Z t

0

e��(�)s
�
1

2
û(� + 1; t� s) + 1

2
û(� � 1; t� s) + 1

2
û(�; t� s)

�
ds; (2.3)

where �(�) = aj�j2 + 1=2:
Consider now random trees �� rooted at a vertex � of type � which after an

exponential length of time S� with parameter �(��) is replaced by a vertex of type
�<1> chosen with distribution

P�(�<1> = � + 1) = P�(�<1> = �) = P�(�<1> = � � 1) =
1

3
:

De�ne the recursive functional

ih(��(�; t)) =
�

û0(�) if S� � t
m(�)ih(�<1>(�<1>; t� S�)) if S� < t

(2.4)

where �<1> denotes the random tree re-rooted at �<1> and

m(�) =
3(2�)d=2

2�(�)
:

Thus, using the strong Markov property of the branching process it follows that

v(�; t) = E� (ih(��(�; t)))
satis�es (2.3) provided the expected value is �nite.

In general, Ito [8] showed that the Feynman-Kac formula applies to scalar po-
tential c(x) the Fourier transform of which is a complex measure. In this context, a
similar result can be obtained using a branching process analogue to (2.4) to obtain
(see [5] for details)
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Proposition 2.1 Assume ĉ(�) is a complex measure and u0 2 L1(R) . The Fourier
transform of the solution of the IVP

@u

@t
= a

@2u

@x2
+ c(x)u; t > 0; u(x; 0) = u0(x)

is given by
û(�; t) = E [ih(��(�; t))]

where ih is the recursive functional de�ned by (2.4) for which the distribution of types
is determined by ĉ(�):

3 Nonlinear equations: Navier-Stokes

The study of existence, uniqueness and regularity of solutions to 3d incompress-
ible Navier-Stokes (NS) equations remains one of the outstanding open problems in
applied mathematics (see e.g. Fe�erman [6]). Following LeJan and Sznitman [10]
work, it is possible to obtain a representation of solutions of the Navier-Stokes equa-
tions using a branching process and use this representation to study properties of
the solutions. In this section, the construction of the branching process is presented
in detail providing a motivation for the introduction of majorizing kernels as a tool
for establising properties of solutions of the Navier Stokes equations. It should be
remarked that the branching process is not intrinsically de�ned by the Navier Stokes
equations in contrast with the case of the linear problem presented in the previous
section (cf Proposition 2.1.) Instead, the majorizing kernels introduced in this sec-
tion serve the dual purpose of determining the distribution of types in the branching
process and providing the means for establishing the existence of solutions to the
Navier Stokes equations (cf. Proposition 3.1 and Theorem 3.1.)

Recall that the Navier- Stokes equations in R3 are given by

@u

@t
= ��u�r � (u
 u) + g(x; t)�rp:

r � u = 0

where u is the velocity of the uid, � denotes the 3d (componentwise) Laplacian, � >
0 is the viscosity, p the pressure and g represents known external forces. Also, u
u
denotes the matrix with entries uiuj and r � (u
 u) is the vector with componentsP

j @ujui=@xj : In terms of the Fourier transform of the unknown velocity û, the
equations can be written as

û(�; t) = e��tj�j
2

û0(�) +

Z t

0

e��j�j
2s
�j�j(2�)� 3

2Z
R3

û(�; t� s)�� û(� � �; t� s)d� + ĝ(�; t� s)	ds; (FNS)
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where for complex vectors w; z

w �� z = �i(e� � z)��?w; e� =
�

j�j ; (3.1)

and ��?w = I � e� 
 e� is the projection of w orthogonal to � which eliminates the
unknown pressure.

For � 6= 0; LeJan and Sznitman [10] rescale the equation (FNS) to normalize the
integrating factor e��j�j

2s to the exponential probability density �j�j2e��j�j2s: The
resulting equation is precisely the form for a branching random walk recursion for
û(�;t)
�j�j2 resulting in the representation of the solution of the (FNS) equation as an

expected value. Furthermore, if jĝ(�; t)j � �2(2�3)�1=2 and jû0(�)j � �(2=�3)1=2j�j�2
they show global existence and uniqueness of the solution to the (FNS) equation
with jû(�; t)j � �(2=�3)1=2j�j�2; 0 � t � T; � 6= 0.

To extend this approach, introduce non-negative measurable functions h such
that

h � h(�) � Bj�jh(�); � 6= 0; B > 0: (3.2)

Refer to such a function h as an FNS-admissible4 majorizing kernel, or simply as
a majorizing kernel. Note that if h is a majorizing kernel with constant B then h

B

is a majorizing kernel with unit constant. Also, if h(�) is a majorizing kernel then
so is cea��h(�) for arbitrary �xed vector a and positive scalar c: To avoid unnec-
essary technicalities regarding their supports, this section is restricted to positive
majorizing kernels h(�) de�ned for � 6= 0: However, examples of majorizing kernels
with support Wh a proper subset of R

3 � f0g are given in the next section and the
construction of the branching process given below can be extended to cover this case
as well. Formulated in this way, the results of LeJan and Sznitman [10] show that

h0(�) =
1

j�j2 andh1(�) =
e�j�j

j�j (3.3)

are fully supporter majorizing kernels satisfying equality in (3.2).

Given a majorizing kernel consider the Fourier transformed equation (FNS)
rescaled by factors of the form 1

h(�)
; for � 6= 0: Namely, consider

�(�; t) = e��tj�j
2

�0(�) +

Z t

0

�j�j2e��j�j2s (FNS)h

f1
2
m(�)

Z
R3

�(�; t� s)�� �(� � �; t� s) h(�)h(� � �)
h � h(�) d� +

1

2
'(�; t� s)gds;

4The method is more generally applicable to kernels that are de�ned on other subsets of R3;

and other equations having nonlinearities reected in a multilinear form. This is currently being
developed by the authors in a more comprehensive monograph.
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where

m(�) =
2h � h(�)

�(2�)
3
2 j�jh(�); �(�; t) =

û(�; t)

h(�)
; '(�; t) =

2ĝ(�; t)

�j�j2h(�) :

Notice that for each �xed � with h � h(�) 6= 0; the convolution h � h(�) simply
normalizes the product h(�1)h(�2) to be a probability kernel on the set �1 + �2 = �:
It is then possible to show the existence of globally de�ned solutions of the (FNS)
equations, the regularity of which depends on the particular majorizing kernel.

A stochastic model consistent with (FNS)h is obtained by consideration of a
multitype branching random walk of nonzero Fourier wavenumbers �; thought of
as particle types, as follows: A particle of type � 6= 0 initially at the root � holds
for an exponentially distributed length of time S� with holding time parameter
�(�) = �j�j2; i.e. ES� = 1

�j�j2 : When this exponential clock rings, a coin �� is tossed

and either with probability 1
2
the event [�� = 0] occurs and the particle is terminated,

or with probability 1
2
; [�� = 1] and the particle is replaced by two o�spring particles

of types �1; �2 selected from the set �1 + �2 = � according to the probability kernel

K�(�1; �2) =
h(�1)h(�2)

h � h(�) ; �1 + �2 = �: (3.5)

This process is repeated independently for each of the particle types �1; �2 rooted at
the vertices < 1 >;< 2 >; respectively.

In order to complete the interpretation of (FNS)h as an expected value, denote
by V the vertex set of a complete binary tree rooted at �

V = [1j=0f1; 2gj = f�; < 1 >;< 2 >;< 11 >; : : : g; (3.6)

where f1; 2g0 = f�g: Also let @V =
Q1

j=0f1; 2g = f1; 2gN:
For v = (v1; v2; : : : ; vk) 2 V; let jvj = k; j�j = 0: For v = (v1; v2; : : : ) 2 @V; and

j = 0; 1; 2 : : : ; let vjj = (v1; : : : ; vj); vj0 = �: That is, � = vj0;vj1;vj2; : : : may be
viewed as a path through vertices of the tree determined by the vertex path v 2 @V:
For a �xed but arbitrary initial particle type (wavenumber) �� = � 6= 0 of the root
vertex �; and time t > 0; de�ne a random tree

��(�; t) = fv 2 V :

jvjX
j=0

Svjj � t;

jvj�1Y
j=0

�vjj = 1; �v = 0g

[fv 2 V :

jvj�1X
j=0

Svjj � t <

jvjX
j=0

Svjj;
jvj�1Y
j=0

�vjj = 1g:

At a clock ring de�ned by
Pjvj�1

j=0 Svjj; the vertex v is born and is replaced by either

0 or 2 new particles at time
Pjvj

j=0 Svjj: Now, recalling (3.4), for given initial data
and forcings �0(�) and '(�; t); � 6= 0; t � 0, de�ne a functional ih(�0; '; ��(�; t)) by
the following stochastic recursion:



132 E.Thomann

ih(�0; '; ��(�; t))

=

8<:
�0(�); if S� � t
'(t� S�; �); if S� < t; �� = 0;
m(��)ih(�0; '; �<1>(�1; t� S�))��� ih(�0; '; �<2>(�2; t� S�)) else

where �1 + �2 = �� are distributed according to K��(d�1; d�2) and �<1>; �<2> are
the trees de�ned by re-rooting at the vertices < 1 >;< 2 > of new types �1; �2;
respectively. Standard results on critical branching show that this recursion will
terminate in �nite time with probability one. In particular there can be no explosion
of the branching random walk in �nite time. Thus ih(�0; '; ��(�; t)) is a �nite random
variable for each time t and wavenumber � obtained as a product of m's, �0's,
and ''s evaluated at the nodes of a multitype branching random walk. Moreover,
decomposing the functional ih in terms of the events [S� � t]; [S� < t; �� = 0] and
[S� < t; �� = 1]; one may check the following consequence of the strong Markov
property.

Proposition 3.1 If Ejih(�0; '; ��(�; t))j <1; for each � 6= 0; then

�(�; t) = Eih(�0; '; ��(�; t))
solves (FNS)h.

If m(�) � 1, j'(�; t)j � 1 and j�0(�)j � 1, then the �nite number of factors
appearing in the product functional jih(�0; '; ��(�; t))j are bounded by 1, and conse-
quently j�(�; t)j � 1 for all � and t. With this a motivation, de�ne a Banach space
with a norm that depends on a (fully supported) majorizing kernel h(�) by

Fh;T = fv 2 S 0 : jjvjjh;T = sup
� 6=0;0�t�T

jv̂(�; t)j
h(�)

<1g: (3.7)

In the case h(�) = j�j�2 this is the Besov type space introduced by Cannone and
Planchon [4]. Also, the result of LeJan and Sznitman [10] is obtained as a conse-
quence of the following general theorem considering the same majorizing kernel.

Theorem 3.1 Let h(�) be a majorizing kernel with constant B = �
2
(2�)

3
2 : Fix T >

0: Suppose that jû0(�)j � h(�); jĝ(�; t)j � �
2
(2�)

3
2 j�j2h(�); � 6= 0; 0 � t � T: Then

(FNS) has a unique solution in the unit ball centered at 0 in the space Fh;T : obtained

4 NS-Majorizing Kernels

As illustrated by Theorem 3.1, a particular role of majorizing kernels is to construct
various suÆcient bounds on moduli of Fourier transforms of forcings and/or ini-
tial data to obtain global existence, uniqueness and regularity of solutions to the
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Navier-Stokes equations. Thus the theory utilizes majorizing kernels of two types.
\Large majorizing kernels" are used to identify existence and uniqueness conditions
for mild global solutions, while \small majorizing kernels" may be used to track
regularity of the global solution. A second role is in the construction of probabilistic
representations. In this section, further examples of majorizing kernels in R3 are
presented as well as examples of initial data and forcings that satisfy the bounds
required for global existence of solutions.

The problem of identifying majorizing kernels is intimately tied to dimension-
ality. While the majorizing kernel need not be integrable, it is required that the
convolution h � h(�) be �nite for each � 2 R3nf0g: The following Propositions
4.1-4.3 provide further examples that extend those already identi�ed in (3.3) of ma-
jorizing kernels which are accordingly smaller or larger than these. Proofs and more
extensive treatment of the majorizing problem will be given in Bhattacharya et al.
[2]

Proposition 4.1 Each of the following de�nes a fully supported majorizing kernel:

h
(�)
� (�) =

e��j�j
�

j�j2�� ; � 6= 0; 0 � � � 1; � > 0:

Furthermore, if u 2 Fh is a solution of the Navier-Stokes equation, then u is C1 in
the space variables.

Using results of Aronszajn and Smith [1] one may also show that certain Bessel
kernels and similar transforms provide further interesting majorizing kernels as in
the following proposition.

Proposition 4.2 Each of the following functions de�nes a radially symmetric ma-
jorizing kernel in R3.
(a) For 1 � � � 2;

h(�) =

Z 1

0

1

t
3
2

e�
j�j2

t t
��2
2 e�tdt

(b) For 0 � � � 1;

h(�) =

Z 1

0

1

t
3
2

e�
j�j2

t e�t
�

t
��1
2 dt:

Examples of non-radial majorizing kernels may be obtained as follows.

Proposition 4.3 Each of the following de�nes a majorizing kernel h in R3:
(a) For dimensions n � 3 and � 2 f� 2 Rn :

Pn
j=1 Æ�j ;0 <

n+1
2
g;

h(�) =

Z 1

0

tnQn
j=1(t

2 + �2j )
dt:
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(b) Suppose that k1; : : : ; km is a partition of n � 1; and hj is a non-negative function
on Rkj such that

hj � hj(�j) � j�jj�jhj(�j); �j 2 Rkjnf0g;
where �j > 0;

P
j �j = 1: Then de�ne

h(�) =
mY
j=1

hj(�j); � = (�1; �2; : : : ; �m); �j 2 Rkjnf0g:

In view of the role of majorizing kernels in providing bounds on the Fourier
transformed forcings and/or initial data, the theory contains a dual problem which
is to identify classes of divergence free vector �elds in physical space which are so
dominated.

Proposition 4.4 Let M denote the space of �nite signed measures on R3 with
total variation norm jj jj: Let 0 < � � 1 and denote the \Fourier transformed Bessel

kernel" of order � by G�(x) = (1 + jxj2)� 1+�
2 : Then for each g = G� � �; � 2 M;

one has for any � > 0;

jĝ(�)j � C
(�)
� h

(�)
� (�)jj�jj; � 6= 0;

for a constant C
(�)
� > 0 such that C

(�)
� = C

(1)
� ; for 0 < � < 1; � > 0: In particular,

if v 2 L1 is a divergence free vector �eld then g = G� � v is also a divergence free

vector �eld whose Fourier transform is dominated by h
(�)
� :

The following are further classes of vector �elds whose Fourier transform is dom-
inated by h

(�)
� :

Proposition 4.5 Let j(t); t > 0; j = 1; 2; 3; be measurable functions such thatR1
0
e�jxj

2tjj(t)jdt < 1; x 2 R3; j = 1; 2; 3: De�ne a radially symmetric vector �eld
with components vj; j = 1; 2; 3; by

vj(x) =

Z 1

0

e�jxj
2tj(t)dt; x 2 R3:

Let u be the divergence free projection of v: Then,
(a) If j(t)j � ct�

1
2 then jûj(�)j � c0h0(�) for some c0 > 0; j = 1; 2; 3:

(b) If j(t)j � ce��t then jûj(�)j � c0h(�)1 (�) for some c0 > 0; j = 1; 2; 3:
(c) For arbitrary � > 0 there is a smooth probability density function R� supported
on [��; �]3 such that

jR̂�(�)j � c(�) expf�j�j�g; � 2 R3; c(�)0:

Let v be any divergence-free integrable vector �eld such that jv̂(�)j � ch0(�); � 6= 0:
Then the componentwise perturbation

u = R� � v
is a divergence-free in�nitely di�erentiable vector �eld such that jûj(�)j � c0h(�)� (�);

for � = �� and some c0 > 0; j = 1; 2; 3:
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5 Successive Iterations of a Contraction Map

A standard method for establishing solutions of nonlinear partial di�erential equa-
tions is furnished by a Picard iteration in which at each stage a linear problem is
solved and a contraction map argument is used to obtain convergence of the se-
quence so obtained. For example, in the context of Navier Stokes, Kato [9] succeded
in establishing existence of solutions for initial data u0 2 L3(R3). In this section, the
representation of the Fourier transform of the solution in the form of an expected
value obtained in the previous sections is shown to correspond to the Fourier trans-
form of the iterates obtained using a Picard iteration scheme. A similar result holds
for the representation of the solutions of the KPP equation obtained by McKean
[11].

First consider the following iteration scheme (Kato [9]) applied to the Navier
Stokes equations. Write (FNS) as

û(�; t) = e��j�j
2tû0(�) + B̂(û; û)(�; t)

+

Z t

0

e��j�j
2sĝ(�; t� s)ds := Q[û; û0; ĝ](�; t) (5.1)

where

B̂(û; v̂)(�; t) :=

Z t

0

e��j�j
2sj�j(2�)� 3

2Z �1
2
û(� � �; t� s)�� v̂(�; t� s) +

1

2
v̂(� � �; t� s)�� û(�; t� s)

	
d�ds(5.2)

De�ne

ûn+1(�; t) = Q[ûn; û0; ĝ](�; t); (5.3)

where û1(�; t) = Q[u(0); û0; ĝ](�; t); for u
(0)(�; t) = e��j�j

2tû0(�):

The relation between the iteration scheme and the expected value representation
of the solution obtained in Section 3 is established in the following proposition.
De�ne the replacement time of a vertex v by

Rv =

jvjX
k=0

Svjk

Introduce

An(�; t) = f��(�; t) : jvj � n 8 v 2 � and Rv � t 8 v 2 �; jvj = ng

and let 1[n; �; t] the indicator of the event An(�; t):
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Proposition 5.1 Let

vk(�; t) = h(�)�k(�; t)

= h(�)E(�;t)f1[k; �; t]ih(û0; ĝ; ��(�; t))g:

Then vk(�; t) = ûk(�; t):

A consequence of the proposition is that the convergence of the iteration scheme
(5.3) and the existence of the expected value in Proposition 3.1 are essentially equiv-
alent. Speci�cally, from Theorem 3.1 it follows that if jm(�)j � 1, j'(�; t)j � 1 and
j�0(�)j � 1 in (3.4), then j�(�; t)j � 1 for all � and t. A direct proof of the con-
vergence of the iteration scheme based on contraction properties of the nonlinear
operator Q evidently requires that these inequalities be strict. Nonetheless, replac-
ing the unit ball by a ball of radius 0 < � < 1 in the statement of Theorem 3.1, then
the iteration scheme (5.3) converges in the indicated norm. Speci�cally, one has the
following theorem.

Theorem 5.1 Let h be a fully supported majorizing kernel. Assume that there exists
r; � > 0 such that for all � 6= 0; t � 0; jû0(�)j � �h(�); h � h(�) � r �

2
(2�)

3
2 j�jh(�);

and jĝ(�; t)j � ��
2
j�j2h(�): If r� < 1, then Q is a strict contraction on the ball of

radius � in Fh;T .

Scaling the majorizing constant to B = r�
2
(2�)

3
2 in Theorem 3.1, one sees that the

case r� = 1 is covered there.
Similar considerations apply to the KPP equations given by

@u

@t
= a

@2u

@x2
+ u2 � u; u(x; 0) = u0(x):

Indeed, following McKean [11] the solution of this initial value problem is given by

u(x; t) = Ex

hY
[u0(Bv(t))]

i
(5.4)

where Bv(t) is the location of a branching Brownian motion de�ned recursively
as follows. Start a standard Brownian path, X�(t), and let T� be an exponential
random variable with parameter 1 independent of this Brownian motion. If T� � t,
set B�(t) = x+X�(t): Else, start two independent Brownian paths X<1> and X<2>

each with its own independent exponential time T<1> and T<2> respectively and
iterate on this process. Let

�(x; t) = fv 2 V : Rv =

jvj�1X
j=0

Tvjj < t �
jvjX
j=0

Tvjjg
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Then for v 2 �(x; t),

Bv(t) = x +

jvj�1X
j=0

Xvjj(Tvjj) +Xv(t�Rv):

Finally, let M(�(x; t)) = maxfjvj : v 2 �g and let 1[k; x; t] the indicator of the
event [M(�(�; t)) � k].

Let
uk(x; t) = Ex

hY
[u0(Bv(t))] 1[k : x; t]

i
: (5.5)

It follows that
u(x; t) = lim

k!1
uk(x; t)

On the other hand, consideration of the Fourier transform of the KPP equation
leads after a simple integration to the integral equation

û(�; t) = e��(�)tû0(�) +
Z t

0

e��(�)s
Z
û(�; t� s)û(� � �; t� s)d�ds (5.6)

where
�(�) = 1 + aj�j2:

Proceeding as done with the Navier Stokes equations, scale (5.6) by 1=h(�) to
obtain

�(�; t) = e��(�)t�0(�) +
Z t

0

e��(�)s�(�)m(�) (5.7)Z
�(�; t� s)�(� � �; t� s)h(�)h(� � �)

h � h(�) d�ds:

where

m(�) =
(h � h)(�)
h(�)�(�)

; �(�; t) =
û(�; t)

h(�)
:

De�ne the recursive functional

ih(��(�; t)) =
8<:

�0(�); if S� � t
'(�; t� S�); if S� < t; �� = 0;
m(��)ih(�<1>(�<1>; t� S�))ih(�<2>(�<2>; t� S�)) else

where ��(�; t) denotes the random tree de�ned in section 3, �<1>; �<2> are re-rooted
trees at vertices of types �<1>; �<2> respectively and the distribution of types is given
on �1 + �2 = �� by

K�(�1; �2) =
h(�1)h(�2)

h � h(�) ; �1 + �2 = �:
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Note that the only di�erence with the recursive functional corresponding to the
Navier-Stokes equations is the node operation which for the KPP equations is stan-
dard multiplication.

Using the strong Markov property it follows that the solution of (5.6) is given by

û(�; t) = h(�)E [ih(��(�; t))] :
provided the expected value is �nite. The analogue of a majorizing kernel for the
KPP equation is given by

(h � h)(�) � B(1 + aj�j2)h(�):
It is simple to check that Cauchy distributions,

h(�) =
�

�

1

�2 + �2

are majorizing kernels.
Finally, the relation with the McKean [11] representation of the solutions is

furnished by the following proposition which is identical to proposition 5.1. Recall
that An(�; t) de�ned above Proposition 5.1 denotes the event that all vertex on a
tree rooted at � are of length less than or equal to n and those vertex of exactly
lenght n are replaced after time t. As in that proposition, let 1[k; �; t] denote the
indicator of Ak(�; t).

Proposition 5.2 Let ûk(�; t) denote the Fourier transform of the function uk(x; t)
de�ned in (5.5) and let

vk(�; t) = h(�)�k(�; t)

= h(�)E(�;t)f1[k; �; t]ih(û0; ĝ; ��(�; t))g:
Then vk(�; t) = ûk(�; t):

6 Conclusions and Remarks

The introduction and identi�cation of majorizing kernels provides a way in which one
may obtain existence and uniqueness of mild solutions of Navier-Stokes equations
and track regularity of initial data to solutions.

The same methods may be applied to the Fourier coeÆcients in the case of
periodic initial data and forcings. In fact the identi�cation of majorizing kernels
is somewhat simpler here due to the fact that on the integer lattice the origin
need not be a singularity of the majorizing kernel. One may use a lattice version of
Proposition 4.3 to construct fully supported majorizing kernels on the integer lattice
in all dimensions n � 2: In the case n = 1 one also obtains cascade representations of
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solutions to Burger's equation by these techniques. In this case, majorizing kernels
supported on the positive half-line, h(�) = 1[� > 0]; also appear naturally and yield
an existence/uniqueness theory for complex-valued solutions in Hardy spaces Hp:

The majorization may be augmented by introducing linear perturbations of the
form �Æu; Æ > 0; into the equations to obtain a cascade representation with non-
stationary branching random walk and multiplication factors. More generally, the
same iterative arguments may be applied with time-dependent majorizing kernels
h(�; t) with the rather obvious changes in the de�nitions. This may permit a way to
develop a local existence and uniqueness theory. For an application of this approach
see the paper of J. C. Orum [12] in this volume.

The notion of majorizing kernel as described in this announcement exploits sim-
ple contractive rates and/or suÆcient bounds on the stochastic times functional
ih(��(�; t)): In fact, the essential property of the majorizing kernel is the �niteness
of the convolution h � h(�): In particular, it may be possible to obtain signi�cantly
sharper results by more detailed analysis of the branching random walk product.
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RIVER FLOWMASS EXPONENTSWITH FRAC-
TAL CHANNEL NETWORKS AND RAINFALL

BRENT M. TROUTMAN
U.S. Geological Survey, Denver, CO 80225

A classic problem in hydrologic science is prediction of river ow properties given
knowledge of rainfall and drainage basin properties. Although many approaches have
been used for ow prediction, recent signi�cant advances have been made using the
framework of scaling invariance. It is by now well known that both river networks,
representing the primary mechanism for transport of water over the surface of large
basins, and rainfall exhibit certain forms of scaling invariance (see, e.g., Rodriguez-
Iturbe and Rinaldo (1997), Gupta and Waymire (1990), Over and Gupta (1994),
and the papers in Barndor�-Nielsen et al.(1998)) . Given that both rainfall and
the network obey certain scaling laws, an important ongoing research problem is
to understand what type of structure this induces on the resulting ow through
the network, both spatially and in time. We shall describe the properties of the
network, of the rainfall, and of the resulting ow by mass exponents, or R�enyi
exponents, which characterize the power-law behavior of moments as a function of
scale. One result to be discussed in this talk is an expression relating the temporal
ow mass exponent for the instantaneous response function of a basin to a spatial
mass exponent for rainfall and a mass exponent describing network branching. This
result reveals that in some cases ow reects the network scaling, and in other cases
ow reects the rainfall scaling, with degree of spatial rainfall variability determining
which of the two constituent processes dominates ow.

Drainage basins are modeled here by recursive replacement trees, which are a
special case of iterated function systems, and which have received much attention
recently as a model which reproduces self-similar branching behavior seen in actual
river networks (Tokunaga (1966), Newman et al. (1997), Peckham (1995), Veitzer
(1999), Veitzer and Gupta (2000)). In modeling channel networks, a distinction has
usually been made between "interior" and "exterior" edges in the drainage tree, as
these tend to have di�erent geometric and physical properties in actual basins. We
therefore in what follows use the recursive replacement algorithm as developed by
Veitzer (1999) which maintains this distinction. We begin by de�ning two rooted
labelled trees the interior generator and the exterior generator. One distinguished
node in each generator is labelled the root, and in the interior generator there is also a
second distinguished node. Denote by c the distance (i.e., number of edges) between
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the two distinguished nodes in the interior generator, and we assume throughout
that c � 2. The edges of these generators are labeled exterior if adjacent to a node of
degree one other than one of the distinguished nodes, and edges are labeled interior
otherwise. We then de�ne the sequence of recursive replacement trees as follows. We
begin with the rooted labelled tree t0 consisting of two nodes connected by an edge
which is taken to be either "interior" or "exterior." The sequence of trees obtained
by the recursive replacement process will be conditioned on this initial designation.
For n � 0, let tree tn be given, with each edge being either interior or exterior.
Each interior edge in tn is replaced by the interior generator after identifying the
downstream node with the root and the upstream node with the second distinguished
node. Similarly, each exterior edge is replaced by the exterior generator, with the
downstream node being identi�ed with the root. Tree tn+1 is tree tn with all edges
so replaced, and the designation of edges in tn+1 as either interior or exterior is
identical to the designation in the corresponding replacement generators.

Let n(�0; �); �0; � 2 fI; Eg, where I stands for "interior" and E stands for "exte-
rior," be the number of type � edges in the type �0 generator, and we can label the
edges in the generators with an index taking values in the set f1; 2; � � � ; n(�0; �)g.
We shall take �0 to be the type designation given to the initial edge in tree t0. Edges
in the nth generation tree tn may be labelled with a length 2n sequence of elements
(�1; �1; � � � ; �n; �n), with the �i 2 fI; Eg designating the sequence of edge types
in the recursive replacement process, and with �i 2 f1; 2; � � � ; n(�i�1; �i)g; i � 1
identifying edges . We shall denote by � the "drainage basin" resulting from carry-
ing out the replacement process inde�nitely. Speci�cally, � is de�ned to be the set
of in�nite paths  = (1; 2; � � � ) where i = (�i; �i). Equivalently the set � may
be identi�ed with the "boundary" of the in�nite tree obtained by the replacement
process. We shall denote the curtailment of the in�nite sequence  (i.e., the edges
in tn) by (jn) = (1; � � � ; n), and we shall denote the subset of � for which the
�rst n elements of the path  are �xed and equal to (jn) by �jn. The branching
number b of the in�nite tree is de�ned to be the maximum eigenvalue of the 2 x 2
matrix fn(�0; �)g.

For �xed distance j, the width of the rooted tree tn is the number of edges
with downstream node at distance j from the root. Considered as a function of
j, the width function is proportional to the probability mass function of distance
from the root of a randomly chosen edge. Let dn;�0(jn) denote the distance of
edge (jn) from the outlet in tree tn and de�ne distance to the outlet in � as
d�0() = limn!1 c�ndn;�0(jn). The subset of � := [0;1) representing possible ow
distances, i.e. d�0(�), is a �nite interval [0; ��0 ]. Consider sequences of non-negative
integers Æ = fÆ0; Æ1; � � � g, with Æi 2 f0; 1; � � � ; c� 1g; i � 1 and Æ0 2 f0; 1 � � � ; c�� 1g
where c� � c is 1 plus the greatest integer less than max(��0). For given curtailment
(Æjm) = (Æ0; Æ1; Æ2; � � � ; Æm) we de�ne �Æjm to be the subset of � for which the �rst
m + 1 elements in the path Æ are (Æ0; Æ1; Æ2; � � � ; Æm). Let the probability measure
��0 on (Borel) subsets of the real line be de�ned such that ��0 [0; x) is the limiting
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fraction of edges (jn) in tree tn for which c
�ndn;�0(jn) < x. Also, let �net(h), the

mass exponent for the width function, be the limit

log
P

Æjm �
h
�0
(�Æjm)

m log c
! �net(h); m!1:

It is shown by Troutman and Over (2001) that, for positive integers h, this limit is
given by

�net(h) =
log!(h)� h log b

log c
:

where !(h) is the maximum eigenvalue of a matrix A(h) that may be expressed in
terms of elementary generator characteristics.

We assume that we are interested in modeling ow response to an instantaneous
burst of rainfall over the basin, so that only spatial (not temporal) characteristics
of rainfall are of interest. Spatial variability of rainfall is modeled by a multi-
plicative random cascade (e.g., Kahane and Peyriere (1976), Holley and Waymire
(1992), Waymire and Williams (1996), Troutman and Vecchia (1999), Ossiander and
Waymire (2000)). Rainfall has been widely modeled with multifractals in a variety
of applications in recent years (e.g., Gupta and Waymire (1990, 1993), Over (1995),
Over and Gupta (1994), Lovejoy and Schertzer (1990), Olsson (1995), Menabde et
al. (1997), Deidda (1999), and Carsteanu et al. (1999)). We begin by making the
drainage basin � a metric space by de�ning the metric D(; 0) = exp(�j ^ 0j)
where j ^ 0j denotes the number of edges the two paths  and 0 have in common.
With each �nite sequence (jn) we associate a nonnegative random variable Wjn
de�ned on a probability space (
;F ; P ); these random variables constitute the cas-
cade generator process. We shall make the assumption throughout that the fWjng
are independent and identically distributed with mean one. De�ne

�n;�0(B) =

Z
B

nY
i=1

[
X
ji

WjiI�ji()]��0(d);

where B is a (Borel) subset of �, and ��0 , representing the rainfall measure for
spatially uniform rainfall, is de�ned on subsets �jn by

��0(�jn) =
nY
i=1

�(�i�1; �i);

where �(�0; �) is the limiting fraction of points in a tree with initial generator type
�0 that drain into a type � edge of this initial tree. Troutman and Over (2001) give
an expression for � in terms of fn(�0; �)g. Using martingale theory, it may be shown
(e.g., Waymire andWilliams (1996)) that this sequence of measures converges almost
surely to a random measure ��0 . Denote the limiting total mass by Z1;�0 = ��0(�).



144 B.M.Troutman

For the special case for which the number of edges in interior and exterior gener-
ators is identical, the common value is b and the drainage basin � may be taken to
be a b-ary tree. The resulting model is the usual Mandelbrot cascade, and properties
(nondegeneracy and moment existence) of the limiting total mass for this special
case were given by Kahane and Peyriere (1976). The model we are considering,
with di�erent interior and exterior generators, is somewhat more complicated, but
it is straightforward to show that the theory for the Mandelbrot cascade generalizes
readily, and that many of the same results carry through. First, EZ1;�0 > 0 if and
only if �0rain(1�) < 0, where

�rain(h) = logbEW
h � (h� 1):

Also, Z1;�0 has a �nite moment of order h > 1 if and only if

h < hc = supfh � 1 : �rain(h) < 0g:
Note that hc does not depend on �0. Also, we de�ne the mass exponent, when it
exists, as the limit

�rain(h) := lim
n!1

log
P

jn �
h
�0
(�jn)

n log b
:

A generalization of a result for the Mandelbrot cascade given in Holley and Waymire
(1992) is as follows: If 2h < hc and EW

2h=(EW h)2 < b, then with probability one
this limit exists and is given by �rain(h) = �rain(h).

The temporal ow measure at the outlet of � with initial generator �0 is de�ned
by ��0 = ��0d

�1
�0
. The assumption here is thus that ow of water, which has been

deposited instantaneously as rainfall over the basin with no losses, to the outlet
occurs at constant velocity of unity, allowing distance to the outlet to be used as a
surrogate for time. Let h be a positive integer, r = log b

log c
, and de�ne

�flow(h) = max[�net(h); r�rain(h)]:

It is proven in Troutman and Over (2001) that if 2h < hc and r�rain(2h) < 2�flow(h)
then with probability one

�flow(h) := lim
m!1

log
P

Æjm �
h
�0(�Æjm)

m log c
= �flow(h):

The key element in this theorem is the de�nition of the ow mass exponent �flow(h).
It is the maximum of two terms, the network mass exponent and the rainfall mass
exponent (scaled by r), indicating that for a given order h, the ow moment scaling
will reect only the more dominant, as measured by magnitude of the mass exponent,
of the two constituent processes.

We illustrate this result assuming that rainfall is modeled as a beta-lognormal
cascade (Over (1995)). The distribution of the rainfall cascade generator W is given
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by P [W = 0] = 1 � b�� and P [W = W+] = b�� where 0 � � < 1 and W+, the
positive part of W , is a log-normal random variable with variance �2. The �gure
shows which term in the de�nition of �flow(h) is the maximum for various values
of the parameters �2 and � in the beta-lognormal model and for a Peano network.
Spatial variability of rainfall increases as �2 increases and as � increases, with the
limiting case �2 = � = 0 yielding spatially uniform rainfall. One can see in the �gure
the increasing tendency for ow to reect rainfall scaling as �2 and � increase. The
blank regions in the �gure indicate values of h for which h > hc.

An important special case of the beta-lognormal rainfall model is the so-called
beta model, for which �2 = 0; for this model, the positive part of the cascade
generator W is degenerate at b� and �rain(h) = (� � 1)(h � 1). It may be shown
that for a certain class of networks and beta rainfall there exists a critical value
�c of the parameter �, given by �c = log ~nmax= log b where ~nmax is the maximum
generator width function, such that

�flow(h) =

�
�net(h) if � < �c, h suÆciently large
r�rain(h) if � > �c

:

� is an intermittency parameter, and this result shows how the magnitude of this
parameter determines the relative inuence of rainfall and network properties on
ow. This extends a result of Gupta et al. (1996).

Figure 1: Plots showing maximal term (network or rainfall) in determination of ow
exponent for selected values of h and beta-lognormal rainfall parameters.
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GRADIENT-DIRECTED DIFFUSIONS AND
RIVER NETWORK MODELS

DEE WINN
Oregon State University

Empirical scaling and self-similarity laws that describe statistical and geometric
features of river basins have been known for most of the century due to pioneering
work of Hack [1], Horton [2], and others; e.g. see Jarvis and Waldenberg [3],
Rinaldo and Rodriguez-Iturbe [4], Gupta and Waymire [5] for more comprehensive
discussions in the context of river basin hydrology. While these geomorphologic
relations do not explain the physical mechanisms that form river networks, they
do provide dominant regularities which serve to guide the search for such physical
laws. In this direction a number of river network models have been formulated on
a discrete lattice in an e�ort to quantify, simulate and gain insight into the precise
nature of these empirical observations. Some basic examples which motivated the
theory presented below originated from Scheidegger [6], Leheney and Nagel [7],
Pastor-Satorras and Rothman [8], and Troutman and Karlinger [9].

The most basic physical notion in river formation is that gravity drives water
ow downhill toward an outlet to the ocean. In this paper we consider a general class
of stochastic-dynamic network models based on this fundamental principal which we
refer to as gradient-directed di�usions. Two points of view are possible in this regard.
First, one may attempt to model the high degree of variability in the landscape as
a random surface and then view the ow of water as a deterministic evolution due
to gravity, erosion, and centrifugal forces. Most models based on Digital Elevation
Maps (DEM's) employ this convention. The theoretical framework for such models
is that of walks on random environments as investigated by Solomon [10], Hughes
[11], Pemantle [12], and others. Such an approach in this context puts the focus
on adequately representing detailed uctuations in the basin surface. Alternatively,
one may view the paths taken by water as randomly uctuating curves on a mean
�eld (deterministic) picture of the landscape surface in which gravity and the hill
gradient impose a mean drift on the direction of ow. This latter point of view
appears to be more readily amenable to data types furnished by remote sensing and
DEMs since one may construct an average surface from the given data and then
focus on modelling the statistics of the ow paths. We show that this framework
includes various lattice models previously considered in the literature.

The essential idea behind gradient-directed di�usion models is that water ows
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downhill in the direction of steepest descent with random uctuation due to physical
factors. Fluctuations in ow due to geomorphological surface e�ects will be viewed
as random perturbations of ow on this smooth surface. We view the average surface
as a C1 surface and model the ow of water both as discreet processes on lattices and
as stochastic di�usions. Transitions occur only in downhill directions with steepest
paths having the greatest probability. In the discreet case, we see many models
currently in the literature may be viewed as gradient models on a special surface.
Further, the di�usive models are obtained as weak limits of appropriately scaled
discreet gradient processes. Interestingly, as with Pastor-Satorras and Rothman
[8], we see separate scalings in the downhill and tangential directions.

We will view H as a C1 function. Fluctuations in ow due to geomorphological
surface e�ects will be viewed as random perturbations of ow on this smooth surface.
We wish to trace the ow path of water that begins at the point (x; H(x)). To do
this, we will begin at the point x = (x1; x2)

T that is not a local maximum point on the
surface, and construct a random graph inR2, beginning at x; which is the projection
of the surface ow path. Using ideas similar to Pastor-Satorras and Rothmanin a
small time interval h the water will ow Æ==(h) units from a location x in the direction
of the downward surface gradient D==(x) := �rH(x), with a random uctuation
in the tangential direction at most Æ?(h) units. The tangential direction is with
respect to the level curve at x that gives a right-hand orientation when rotated
into D==(x). Thus, the tangent vector is D?(x) = (�@2H(x); @1H(x))T , where @i is
the corresponding partial derivative @ =@xi. All height gradients in this paper are
evaluated at x, so the dependence will often be omitted. As with Pastor-Satorras
and Rothman we will observe separate scalings of displacement in the two directions.

We allow transitions along a semi-ellipse centered at x whose vertical axis is in
the direction of D== and whose horizontal axis is parallel to D?. This ensures that
in�nitesimally water ows only in the downhill direction. To be explicit, for a �xed
time step h > 0, transitions occur by

x �! x + T (�; h) � (�rH)

where � = �(x) is a random variable with distribution Fh(d�) � Fh(x; d�) on [0; �]
and

T (�; h) =

�
Æ==(h) sin � Æ?(h) cos �
�Æ?(h) cos � Æ==(h) sin �

�
:

Here Æ? and Æ== are the lengths of the axes on the ellipse, such that k(Æ?; Æ==)Tk =
o(1) as h! 0. For symmetric � this makes the proper scaling, as h! 0, di�usive in
the tangent direction and deterministic in the downward gradient direction. More
precisely, denote the h time scale drift bh(x) and di�usion coeÆcient ah(x). Assume
that � is symmetric with respect to �=2. This ensures that

R
[0;�]

cos � Fh(d�) = 0
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and
R
[0;�]

sin � cos � Fh(d�) = 0. Then

h � bh(x) =

Z
[0;�]

�
Æ==(h) sin � Æ?(h) cos �
�Æ?(h) cos � Æ==(h) sin �

�
(�rH(x))Fh(d�)

= Æ==

Z
[0;�]

sin � Fh(d�) � (�rH):

Then, for Æ== � h as h! 0,

b(x) = lim
h&0

bh(x)=h =

�
lim
h&0

Z
[0;�]

sin � Fh(d�)

�
� �rH:

Likewise, for the di�usion coeÆcient,

h � ah(x)
=

Z
[0;�]

T (�; h) � � �@1H==� @2H � � � �@1H �@2H
� � (T (�; h))T Fh(d�)

=

Z �

0

�
Æ2?(@2H)2 cos2 � + o(h) Æ2?(@1H)(@2H) cos2 � + o(h)

Æ2?(@1H)(@2H) cos2 � + o(h) Æ2?(@1H)2 cos2 � + o(h)

�
Fh(d�)

by the symmetry of Fh. Hence, getting a non-trivial limit requires Æ? �
p
h. In this

case, letting F (d�) � F (x; d�) denote the weak limit of Fh(x; d�) as h! 0;

a(x) = lim
h&0

ah(x)=h =

R �
0
cos2 � F (d�)

krHk �
�

(@2H)2 �@1H@2H
�@1H@2H (@1H)2

�
:

Without the integral stretch factor, a is idempotent which makes the dispersion
matrix easily computable. De�ning

�(x) =

Z
[0;�]

sin � F (d�); �(x) =

sZ �

0

cos2 � F (d�);

the ow paths may then be modeled as a di�usionX(t) inR2 satisfying the stochastic
di�erential equation

dX = b(X(t)) dt+
p
a(X(t)) dB(t)

where B(t) is standard two-dimensional Brownian motion and

b(x) = ��rH;
p
a(x) =

�

krHk �
�

(@2H)2 �@1H@2H
�@1H@2H (@1H)2

�
:

One may note that the eigenvalues of a(x) are 0 and krHk with correspond-
ing eigenvectors D== and D?. That is, the di�usion acts deterministically downhill
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(it is singular in that direction), with di�usive uctuations in the tangent direc-
tions �D?(x). Since erosion reinforces ow paths, we anticipate the singularity of
the matrix to begin dominating the ow paths in temporal models. However such
considerations will be postponed to future work.

Let us now consider various models for ow paths on lattices from this point of
view. We are given a lattice that is a subset of �,

L = f(x1; x2) 2 � : (x1; x2) = (mi; mj); i; j 2 Zg

and the coordinates are oriented so that the landscape is tilted toward the x-axis,
D
==
2 < 0. Assume Æ?(1) and Æ==(1) = 1, and that for each h � 1, Fh is an atomic

measure on the re�ned lattice

L(h) = �(x1; x2) 2 � : (x1; x2) = (Æ?mi; Æ==mj); i; j 2 Z
	
:

Fh(x; d�) will be concentrated on angles that allow transitions to the set of neigh-
boring lattice sites, N(x). We would like Fh(x; d�) to be a function of the derivative
of the hillslope in the direction �. That is, for y = x+T (h;�) �D==, the probability
that x ows to y is given by

1(H(y)�H(x) � 0) � exp(H(y)�H(x))P
z2N(x) 1(H(z)�H(x) � 0) � exp(H(z)�H(x))

:

For now the symmetry assumption in the di�usion computation rules out a general
surface gradient.

The Scheidegger model arises easily in this context. Here one considers the
triangular lattice de�ned by

Tm = f(x1; x2) 2 � : (x1; x2) = (mi;mj); i; j 2 Z and i + j is eveng :

If the surface is an inclined plane, H(x) = Ix2 where I > 0, then the resulting
probabilities for site-to-site ow are simply Bernoulli trials. Thus, the Scheidegger
model may be viewed as a special case of the gradient model where the surface is
featureless. To compute area statistics, Nguyen [13] constructs boundary networks
on the dual lattice

T �m = f(x1; x2) 2 � : (x1; x2) = (mi;mj); i; j 2 Z and i + j is odd g :

In this framework the ow paths converge to a two-dimensional process (W (t);�t),
which is the graph of one-dimensional Brownian motion rotated �=2. There is a one-
to-one correspondence between sites and bonds on T and T �, so that the boundary
processes converge to (B(t); t). With this device Nguyen [13] is able to compute basin
area as the area contained between two independent Brownian motions conditioned
to coalesce at a given \time", where here the time is actually the length of the longest
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channel in the basin. As a result of the di�usive width scaling by t
1
2 ; for the channel

length t the area under the curve is of the order t
1
2 t = t

3
2 : This a Hack law scaling

with exponent 2
3
; see Troutman and Karlinger [14], Ossiander, Waymire, and Zhang

[15] for some related calculations on the width of the network in this context.
In summary, we have obtained a new river network model as a coalescing network

of ow paths de�ned by gradient-directed di�usions. The idea is to in�nitesimally
trace the path that water takes when placed at a point on a given surface. Due to
gravity and �ne scale surface irregularities the path is assumed to follow the downhill
gradient with random uctuation in the tangential direction. We have shown that
for such models, the ow paths may be viewed as di�usions that drift in the downhill
direction with tangential random uctuations. The second major physical dynamic
is that of erosion, which may be accommodated in this framework as a reinforcement
mechanism in the ow paths along the lines of Pastor-Satorras and Rothman [8].
We plan to pursue these temporal e�ects in future work.
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