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Learning, undigested by thought, is labour lost.

Thinking, unassisted by learning, is perilous.

K'ung-tsze,

\Lun Yu"
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Preface

These notes were compiled for a Concentrated Advanced Course at the University

of Copenhagen in the framework of the MaPhySto program. Part of the material was

also used for advanced courses at the Technical University of Berlin. These lectures

were designed to introduce advanced students with a good background in probability

theory but not necessarily in physics to problems in disordered systems of statistical

mechanics. This is a diÆcult, but in my opinion, important task in many respects.

Statistical mechanics is a now more than hundred years old branch of physics that

has been remarkably successful. As a subject of mathematics, or more particularly

a \branch of probability theory", it is much younger. After early work in the 50's

by Kac, Lee and Yang, and Montroll, it essentially started to exist with the early

works of Dobrushin in '62 and a �rst textbook manifestation is the by now classi-

cal monograph of Ruelle [Ru1]. This book provides an axiomatic formulation of a

subject called the theory of lattice gases or equivalently lattice spin systems. Fur-

ther and partly more complete textbooks dealing with the fundamental theory are

two books by Preston's [Pr1,Pr2] and Ruelle's monograph in the Encyclopedia of

Mathematics [Ru2]. Over the last 30 years this subject has been blooming and there

is an enormously rich literature compiled. Nonetheless, considered as a mathemat-

ical subject, it is still far from a satisfactory state. Apart from the basic Gibbsian

framework in the axiomatic formulation of Dobrushin, Lanford and Ruelle, it consists

by and large of a number of techniques (correlation inequalities, cluster expansion-

s, Pirogov-Sinai theory, Dobrushin uniqueness, FK-representations, renormalization

group, etc.) that work for some models and some sets of parameters. Many of the

physically most interesting phenomena (critical exponents, etc.) are well beyond the

reach of todays mathematics. The reason for this situation is rather simple: the

models people in statistical mechanics are interested in come from physics, and they

tend to be extremely varied and hard to analyse. Unlike classical probability theory

that by and large evolved around the concept of independent random variables and

enriched its scope by slowly adding more complexity, the interesting models in sta-

tistical mechanics involve extremely complex random �elds and their analysis has to
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go frequently in a case by case fashion. For this reason, there is not, and maybe can-

not be, a reasonable comprehensive textbook that would acquaint the student with

the whole of mathematical statistical mechanics. There are some modern texts that

cover some of the area. Georgii's text [Ge1] is a comprehensive introduction to the

general theory of Gibbs measures; however nothing of the heavy machinery needed

to investigate speci�c models like expansions, Pirogov-Sinai theory, et. is covered.

Simon's book [Sim] also emphasizes the more basic aspects of the theory, contains

however an introduction to expansion methods. Another useful introductory text

is Sinai's small book [Sin], which is quite complementary to the other two with an

emphasis on expansions and Pirogov-Sinai theory.

If the situation concerning statistical mechanics is not satisfactory, it is dramati-

cally worse in the now growing �eld of disordered systems, or random spin systems,

to be more speci�c. An attempt to cover the state of the art in 1984 was made in J.

Fr�ohlich's Les Houches lecture notes [F]. They still can be read with pro�t today, and,

one is afraid to say that many of the most important issues mentioned there remain

wide open today. Still, 15 years have passed, and some very important steps have

been taken in the meantime. A more recent text is the slim book by Ch. Newman,

covering his ETH course [N]. It focuses on two items: percolation methods, and the

spin glass problem. It is a very useful book, but neither comprehensive, nor really

introductory. A collection of partly review papers is the volume issued by the author

and P. Picco in 1998 [BP].

In these notes I try to �ll some of these gaps, albeit again from a biased point of

view. I will give an introduction to the statistical mechanics of disordered systems

that essentially assumes no prior knowledge of statistical mechanics. To that end, the

�rst part of these notes gives a self-contained introduction to the Gibbsian formalism.

It emphasizes, as do these notes in general, the fundamental question of in�nite

volume Gibbs measures and the associated existence and (non)-uniqueness problems.

Thus I will present the two basic tools for tackling this problem: the Dobrushin

uniqueness condition, and the Peierls argument. This leaves out, regrettably, high

and low temperature expansions, and the Pirogov-Sinai theory, but their inclusion
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would have largely exceeded the scope of these notes. Moreover, I felt that in such

an introductory course it might be better to avoid methods that are considered

technically very diÆcult.

The second part of the notes deals with disordered spin systems on the lattice

with short range interactions. It begins with a comprehensive introduction to the

formalism of random Gibbs measures and metastates. Then I discuss the extensions

and limitations of the two methods introduced in the �rst section. The bulk of this

part is devoted to the random �eld Ising model and the question how uniqueness

and non-uniqueness can be analysed in this case. Again, I will fall short of providing

the full renormalization proof of non-uniqueness in three dimensions, since it relies

heavily on expansions. I hope to give rather convincing, though incomplete arguments

based on concentration of measure ideas. On the other hand, I will give a full

proof of uniqueness in d = 2 due to Aizenman and Wehr. In the process, we are

introduced to applications of correlation inequalities, notably the FKG-inequalities.

This covers most of the interesting results in the �eld, with the notable exception

of long-range spin glasses which again would require technically heavy expansions

techniques. Another, per se interesting subject I decided to leave out are results on

short-range spin glasses. The reason is two-fold: �rst, there are no solid genuinely low-

temperature results available, with the sole exception of some very general results on

basic properties of Gibbs measures that follow essentially from ergodic considerations.

In that sense they are somewhat orthogonal to the more constructive spirit of these

notes. But most importantly, they are rather easily accessible in Newman's ETH-

lectures [N].

Thus genuine spin glass models are treated only in the context of mean �eld

theory, and this makes up the rest of these notes. I will basically treat two classes

of models: Gaussian processes on the hypercube, and models of the Hop�eld type. I

will go to great length to explain in all detail the case of the random energy model

(REM) which will give us an idea how a complete solution of such models could

look like. Much less space will be devoted to the Sherrington-Kirkpatrick model and

its p-spin counterparts, �rst since an exposition by M. Talagrand [T2000] is now
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available, and second because the state of our knowledge is both limited and under

active development. Finally I turn to non-Gaussian models, and notably the Hop�eld

model. Although there exists a rather extensive account in [BP] covering the state of

the art in 1997, I will try to give a more accessible account that takes into account

some of the more recent developments.
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1. A survey of the Gibbsian formalism for lattice spin systems

We begin this lecture with a brief survey of the basic formalism of the statistical

mechanics of lattice spin systems, or lattice gases. The literature on this subject

is well developed and the interested student can �nd in depth material for further

reading in [Ge1,Sim,Sin,Pr1,Pr2,] and the classical monographs by Ruelle [Ru1,Ru2].

A nice short introduction with a somewhat particular aim in view is also given in the

�rst sections of the paper [vEFS]. Here we will be rather sketchy, but try to emphasize

some issues and concepts that will become particularly relevant a) for the discussion

of disordered systems and b) for the discussion of mean �eld models (which do not

exactly fall into the general framework we develop here).

1.1. Spin systems and Gibbs measures.

The idea of the spin system was born at about 1920 in an attempt to understand

the phenomenon of ferromagnetism3. At that time it was understood that ferromag-

netism should be due to the alignment of the elementary magnetic moments (\spins")

of the (iron) atoms that persists even after an external �eld is turned o�. The phe-

nomenon is temperature dependent: if one heats the material, the coherent alignment

is lost. It was understood that the magnetic moments should exert an \attractive"

(\ferromagnetic") interaction among each others which however is rather short range.

The question was then how such a short range interaction could sustain the observed

very long range coherent behaviour of the material, and why such an e�ect should

depend on the temperature. In this situation, Lenz had an extraordinarily conse-

quential idea: to invent a model that would simplify the ferromagnetic system to its

most rudimentary features and to apply the formalism of statistical mechanics to it.

The idea behind this was that the particular phenomenon that was not understood

should have to do with the collective behaviour of the many microscopic elements

in the system and should be independent of the precise details of these and their

3To be historically correct, we should mention that the idea of a spin model goes back to Weiss
[We] in 1907 following P. Curie's discovery of the critical Tempeature (Curie temperature) for
ferromagnetic order in 1895. This gave rise to what is now called the Curie{Weiss, or \mean-�eld",
model for ferromagnetism. Although this model also had a considerable impact (see Section 3 of
these note!), it is deemed more a mathematical toy model compared to the \realistic" Ising spin
system.
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interaction. Lenz gave the analysis of this model as a subject of a Ph.D. thesis to his

student Ernst Ising4 (1900-1998) who published his �ndings on the one-dimensional

model in 1923 [Is]. Nonwithstanding the fact that he found (correctly) no sign of

ferromagnetism and conjectured (wrongly5) that the same was true in higher dimen-

sions and that therefore the model could not explain the phenomenon, the model

invented by Lenz was destined to become, under the name of \Ising's model" one of

the most investigated and successful models in the history of statistical mechanics,

and more general to what is now know as the theory of lattice spin systems.

The simpli�cations proposed by Lenz were dramatic: He assumed the atoms placed

on the sites of a regular lattice Zd and represented by the simplest possible spin

variables taking only the two values �1. Spins would interact only if they were at

neighbouring sites on the lattice, and this interaction would favour such spins to take

on the same values. In addition, there can be an external magnetic �eld h favouring

globally either the plus or the minus-sign. This interaction can be introduced via a

Hamiltonian function H that assigns to a spin-con�guration � � f�igi2Zd the energy

H(�) � �
X
i;j2Zd

ki�jk1=1

�i�j � h
X
i2Zd

�i (1:1)

Of course this formula makes no sense, as the sums do not converge, and should

be given a sensible interpretation. One would immediately like to argue that this

problem results from the fact that we are looking at a spin-con�guration on an in�nite

lattice, and that since in nature all magnets consist of a �nite, albeit very large,

number of atoms, we should always consider �nite sets � � Zd and spin con�gurations

�� � f�igi2� and compute the energy of such a con�guration by restricting the sums

in (1.1) to run over the set � only. This touches on an important fundamental issue

of statistical mechanics that we will have occasion to discuss repeatedly in these

lectures. It is tempting to formulate this as an (informal) axiom of the approach of

statistical mechanics:

4An account of the life of Ising can be found in [Ko] and is de�nitely worth reading.
5Ising's assertion that his one-dimensional result would hold true equally in higher dimension

should serve as a warning against hasty generalizations. In statistical mechanics, new phenomena
tend to appear where one would not always expect them.
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A system composed of a very large number of degrees of freedom can be well ap-

proximated by an in�nite system.

We will have to see how to interpret this statement and what its limitations are

later. I would ask you to accept this for the moment and take it as an excuse for the

otherwise seemingly unreasonable struggle we will enter to describe in�nite systems.

We will return to this shortly.

The basic axiom of statistical mechanics is now that the (equilibrium) properties

of a system shall be described by specifying a probability measure on the space

of con�gurations, in our case f�1;+1gZd. The particular choice of the probability

measure to choose is the subject of the foundations of statistical mechanics and this

text is not the place to elaborate on this6. We will therefore accept as another axiom

that the proper measure to choose is the Gibbs measure which formally is given by

��(d�) =
1

Z�
e��H(�)�(d�) (1:2)

where Z� is a normalizing constant and � is the uniform measure on the con�guration

space. Again this expression makes no sense as it is written for the in�nite system,

but would make perfect sense if we replaced Zd by a �nite set � everywhere7

We will now see how to obtain a sensible version of (1.2) in the in�nite-volume

setting. We start with the \a priori" measure � that is supposed to describe the

non-interacting system. In �nite volumes, the uniform measure on the �nite space

f�1;+1g� can be seen alternatively as the product Bernoulli measure

��(�� = sL) =
Y
i2�

�i(�i = si) (1:3)

6An philosophical discussion on the conceptual basis of the probabilistic foundations of statistical
mechanics can be found in the recent book [Gu].

7Here we are touching a crucial point. The problem with a �nite-volume description is that it
appears to be unable to re
ect the very phenomenon we want to describe, namely the existence of
several phases, i.e. the persistence of magnetized states after the magnetic �eld has been turned
o�. The argument was brought forward that a single formula could not possibly describe di�erent
physical states at the same time. The question is indeed quite intricate and a full understanding will
require to consider the dynamical aspects of the problem. On the level of the equilibrium theory, the
issue is however, as we will see, solved precisely and elegantly by the adoption of the in�nite-volume
axiom.
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where �i(�i = +1) = �i(�i = �1) = 1=2. Now it is of course a standard construction

to extend this to in�nite-volume. First we make f�1;+1gZd into a measure space by
equipping it with the product topology of the discrete topology on f�1;+1g. The

corresponding sigma-algebra F is then just the product sigma-algebra. The measure

� is then de�ned by specifying that for all cylinder events A� (i.e. events that for

some �nite set � � Zd depend only on the values of the variables �i with i 2 �,

�(A�) = ��(A�) (1:4)

with �� de�ned in (1.3). With this we have set up an a-priori probability space

(S;F ; �) describing a system of non-interacting spins. It is worth noting that this

set-up is not totally innocent and re
ects a certain physical attitude towards our

problem. Namely, the choice to consider the system as truly in�nite and to use

the product topology implies that we consider the individual degrees of freedom,

or �nite collections of them, as the main physical observables whose behaviour is

to be measured. While this is rather natural, it should not be forgotten that this

has important implications in the interpretation of the in�nite-volume results as

asymptotic results for large systems that may not in all cases be the most desirable

ones8.

To continue the interpretation of (1.2), one might now be tempted to specify again

the measure �� by prescribing the �nite dimensional marginals, e.g. by specifying

that ��;�(d��) = Z�1�;� exp(��H�(��))��(d��), with H�(��) the restriction of (1.1)

to the �nite volume �. The problem with this, however, are the compatibility con-

ditions that are required for such a set measures to specify a measure on (S;F);
Kolmogorov's theorem would require that for � � �0, ��;�(A�) = ��;�0(A�). While

in the case of the non-interacting system, this is trivially checked, this will not hold in

the interacting case (Exercise 1.1: Check explicitly that the compatibility conditions

do not hold in the case where �,�0 consist of 1 resp. 2 points!). Since there appears

no other feasible way how one could specify marginal measures, we need some better

8For instance, it might be that one is interested in collections of variables that are composed
of enormously many local variables. It may then be that an appropriate description requires inter-
mediate divergent (\mesoscopic") scales in between the \macroscopic" volume and the microscopic
degrees of freedom. This would require a slightly di�erent approach to the problem.
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idea. Actually, there is not so much choice: if we cannot �x marginals, we should

�x conditional distributions. This now seems quite natural from the point of view

of the theory of Markov processes, but was only realized in 1968-69 by Roland L.

Dobrushin [D1] (and shortly after that by O. Lanford and D. Ruelle [LR]), and is now

seen as one the cornerstones of the foundation of modern mathematical statistical

mechanics. To understand this construction, we have to return to (1.1) and give an

new interpretation to this formal expression. The Hamiltonian should measure the

energy of a con�guration; this makes no sense in in�nite-volume, but what we could

ask, is what is the energy of an in�nite-volume con�guration within a �nite-volume

�. A natural de�nition of this quantity is

H�(�) � �
X
i_j2�

ki�jk1=1

�i�j � h
X
i2�

�i (1:5)

This di�ers from the simple restriction of (1.1) to � by a term 2
P

i2�;j 62�
ki�jk1=1

�i�j

which represents the interaction of the spins in � with those outside of it; as we see,

it actually involves only spins at the boundary of �. The notion of �nite-volume

restriction given by (1.5) has the nice feature that it is compatible under iteration:

if �0 � �, then

(H�0)� (�) = H�(�) (1:6)

(1.5) will furnish our standard interpretation of a Hamiltonian function H; we

will always consider it as a function from the pairs consisting of �nite subsets of Zd

and con�gurations in S to the real numbers that maps (�; �)! H�(�). This allows

to de�ne, for any �xed con�guration of spins � 2 S and �nite subset � � Zd, a

probability measure

���(d��) =
1

Z�
�;�

e��H�((��;��c ))��(d��) (1:7)

(Note: We will change our point of view slightly a bit later on when we formalize

this discussion. At the moment it is convenient to consider (1.7) as specifying �nite-

volume measures).

(1.7) de�nes a much richer class of measures than just the marginals. The idea

now is that these should be the family of conditional probabilities of some measures
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�� de�ned on the in�nite-volume space. The point is that they satisfy automatically

the compatibility conditions required for conditional probabilities (see below), and

so have a chance to be conditional probabilities of some in�nite-volume measure.

Dobrushin's idea was to start from this observation to de�ne the notion of the in�nite-

volume Gibbs measure, i.e. as the proper de�nition for the formal expression (1.2):

A probability measure �� on (S;F) is a Gibbs measure for the Hamiltonian H

and inverse temperature �, if and only if its conditional distributions (conditioned on

con�gurations in the complement of any �nite set �) are given by (1.7).

Two immediate questions pose themselves:

(i) Does such a measure exist?

(ii) If it exist, is it uniquely speci�ed?

We will see soon that there is a large class of systems for which existence of such

a measure can be shown. That means that Dobrushin's formalism is meaningful

and de�nes a rich theory. The second question makes all the charm of the Gibbsian

formalism: There are situations when the in�nite-volume measure is not uniquely

speci�ed and when several in�nite-volume measures exist for the same Hamiltonian

and the same temperature9. This observation will furnish the explanation for strik-

ingly di�erent behaviour of the ferromagnet at high and low temperatures: if d � 2,

the temperature is low, and h = 0, there will be measures describing a state with

positive magnetization and one with negative magnetization, and the system will

have to be in either of them.

Before we continue the investigation of these two questions in the Ising model, we

will provide a more general and more formal set up of the preceding discussion.

9This could be phrased as saying that the one (meaningless) formula (1.2) de�nes several (mean-
ingful) Gibbs measures. This resolves the (serious) dispute in the �rst half of the 20th century on
the question whether statistical mechanics could possibly account for phase transitions. See the
very amusing citations in the prologue of a recent Thesis [Ue1]
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1.2 Regular interactions.

1.2.1. Some topological background.

We will now describe the general framework of spin systems with regular interac-

tions. Our setting will always be lattice systems and our lattice will always be Zd.

� will always denote a �nite subset of Zd. Spins will take values in a set S0 which

will always be a complete separable metric space. One could develop the theory in

this generality, but to avoid discussions that are not the main concern of the present

lectures, I will assume almost always that S0 is a �nite set. We equip S0 with its

sigma-algebra generated by the open sets in the metric topology (resp. the discrete

topology in the �nite case), F0, to obtain a measure space (S0;F0). To complete the

description of the single-spin space, we add a probability measure �0, the so-called

a-priori distribution of the spin. This gives a single-site probability space (S0;F0; �0).

As discussed in the previous paragraph, we �rst want to furnish the setting for

in�nitely many non-interacting spins. To do this we consider the in�nite-product

space

S � SZd0 (1:8)

which we turn into a complete separable space by equipping it with the product

topology. This is done by saying that the open sets are generated by the balls B�;�(�)

de�ned as

B�;�(�) �
�
�0 2 Sjmax

i2�
j�i � �0ij < �

�
(1:9)

where � 2 S, � � Zd, and � 2 R+ . The product topology of a metric space is

metrizable, and S is a complete separable metric space if S0 is. The Borel sigma-

algebra of S, F , is the product sigma-algebra

F = FZd

0 (1:10)

An important fact is Tychonov's theorem:

Theorem 1.1: If S0 is a compact then the space S equipped with the product

topology is compact.
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We will use the notation S� � S�0 and F� = F�
0 for �nite-volume con�guration

space and the sigma-algebra of local events. Note that we identify F� � F with the

sub-sigma-algebra of events depending only on the co-ordinates �i; i 2 �. We will

call an event that is measurable with respect to F� for some �nite � a local event, or

a cylinder event. A sequence of volumes �1 � �2 � � � � � �n � � � � � Zd of volumes

with the property that for any �nite �0 � Zd, there exists n such that �0 � �n will

be called an increasing and absorbing sequence. The corresponding family of sigma-

algebras F�n then forms a �ltration of the sigma-algebra F . Similarly, S�c � SZ
dn�

0

and F�c � FZdn�
0 . A special rôle will be played later by the so-called \tail sigma-

algebra" F t � \��ZdF�c . The events in F t will be called tail-events or non-local

events.

We will refer to various spaces of (real valued) functions on S in the sequel. In the

physical terminology, such functions are sometimes referred to as observables. The

largest space one usually considers is B(S;F), the space of bounded, measurable

functions. (Recall that a function f from a measure space S into the real numbers

is called measurable, if for any Borel set B � B(R), the set A � f� : f(�) 2 Bg is
contained in F).

Correspondingly, we write B(S;F�) for bounded functions measurable with re-

spect to F�, i.e. depending only on the values of the spins in �. Functions that are

in some B(S;F�) are called local or cylinder functions; we denote their space by

Bloc(S) � [��ZdB(S;F�) (1:11)

A slight enlargement of the space of local functions are the so-called quasi-local func-

tions, Bql(S); this is the closure of the set of local functions under uniform conver-

gence. Quasi-local functions are characterized by the property that

lim
�"Zd

sup
�;�02S
��=�0

�

jf(�)� f(�0)j = 0 (1:12)

In the same way one introduces the spaces of continuous, local continuous and

quasi-local continuous functions, C(S), Cloc(S), and Cql(S).
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The reader should be warned that in general (i.e. under the hypothesis that S0
is just a complete separable metric space), neither are all quasi-local functions con-

tinuous nor all continuous functions quasi-local (see e.g. [vEFS] for nice examples).

However, under stronger hypothesis on S0, the di�erent spaces acquire relations:

Lemma 1.2:

(i) If S0 is compact, then C(S) = Cql(S) � Bql(S).

(ii) If S0 is discrete , then Bql(S) = Cql(S) � C(S).

(iii) If S0 is �nite, then C(S) = Bql(S) = Cql(S).

Proof. Left as Exercise 2. }

Remark. Since we are mostly interested in �nite-spin spaces, quasi-locality will be

the essential aspect of continuity in the product topology.

We can now turn to the space M1(S;F) of probability measures on (S;F) and
its topological structure. There are several possibilities to equip this space with a

topology. The most convenient and commonly used one is that of weak convergence

with respect to continuous functions. This topology is generated by the open balls

Bf;�(�) �
�
�0 2 M1(S;F)

��j�(f)� �(f 0)j < �
	

(1:13)

where f 2 C (S); � 2 R+ ; � 2 M1(S;F). The main advantage of this topology is

that it turns M1(S;F) into a complete separable metric space, and moreover, if

S0 is compact, then M1(S;F) is compact. (Exercise: Prove this using Tychonov's

theorem.)

1.2.2. Interactions, local speci�cations, Gibbs measures.

We can now de�ne a very large class of Hamiltonians for which the Gibbsian theory

can be set up. We begin by de�ning the concept of an interaction.

De�nition 1.3: An interaction is a family � � f�AgA�Zd where �A 2 B(S;FA).
If all �A 2 C(S;FA), the interaction is called continuous.
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An interaction is called regular, if for all x 2 Zd, there exists a constant c, such

that X
A3x

k�Ak1 � c <1 (1:14)

Remark. What we call `regular' interaction is called `absolutely summable' interac-

tion in Georgii's book [Ge1]. In most of the standard literature one �nds the stronger

condition that

kj�jk � sup
x2Zd

X
A3x

k�Ak1 <1 (1:15)

With this de�nition the set of all regular interactions equipped with the norm kj � jk
forms a Banach space, B0, while the weaker condition we use makes the set of regular

interactions only into a Fr�echet space [Ge1]. In the case of translation invariant

interactions, both conditions coincide. However, in the case of random systems the

stronger condition (1.15) would introduce some unnatural restrictions on the class of

admissible interactions.

Remark. Unbounded interactions occur naturally in two settings: in the case of

non-compact state space (e.g. \Gaussian models") or as so called \hard-core" exclu-

sions to describe models in which certain con�gurations are forbidden (e.g. so called

\subshifts of �nite type"). While some of such models can be treated quite well, they

require special work and we will not discuss them here.

From a regular interaction one now constructs a Hamiltonian by setting, for all

�nite volumes � � Zd,

H�(�) � �
X

A\�6=;
�A(�) (1:16)

If � is in B0, H� is even guaranteed to satisfy the bound

kH�k1 � Cj�j (1:17)

for some C <1. Moreover, it is easy to check that H� is a quasi-local function, and

if � is continuous, even a continuous quasi-local function, for any �nite �.
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The Hamiltonians de�ned in this way have all the nice properties of the Ising

Hamiltonian de�ned in Section 1.1, and we can proceed to use them to construct

Gibbs measures. We begin with the de�nition of what we will now call local speci�-

cations:

De�nition 1.4: A local speci�cation for � is a family of probability kernelsn
�
(�)
�;�

o
��Zd

such that

(i) for all � and all A 2 F , �(�)�;�(A) is a F�c-measurable function.

(ii) For any � 2 S, ���;� is a probability measure on (S;F).

(iii) For any pair of volumes �;�0 with � � �0 and any measurable function fZ
���0;�(d�

0)�
(��0c ;�

0
�0 )

�;� (d�)f((��; ��0n�; ��0c)) =
Z
���0;�(d�

0)f((��0; ��0c))

(1:18)

The most important point is that local speci�cations satisfy compatibility condi-

tions analogous to conditional expectations. Given a regular interaction, we can now

construct local speci�cations for the Gibbs measures to come.

Lemma 1.5: If � is a regular interaction, then the formulaZ
���;�(d�)f(�) �

Z
��(d��)

e��H�((��;��c ))

Z�
�;�

f((��; ��c)) (1:19)

de�nes a local speci�cation, called the Gibbs speci�cation for the interaction � at

inverse temperature �.

Proof. Left as an exercise. The crucial point is that we have (1.6).}

We will use a shorthand notation for relations like (1.18) and symbolize this equa-

tion by

�
(�)
�0;��

(�)
�;� = �

(�)
�0;� (1:20)

Lemma 1.5 shows that local speci�cations are \conditional expectations waiting

for a measure"; thus nothing is more natural than to de�ne in�nite-volume Gibbs

measures as follows:
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De�nition 1.6: Let
n
�
(�)
�;�

o
be a local speci�cation. A measure �� is called

compatible with this local speci�cation, if and only if, for all � � Zd and all A 2 F ,

��
�A��F�c

�
= �

(�)
�;�(A); �� � a:s: (1:21)

A measure �� that is compatible with the local speci�cation for the regular interac-

tion � and a priori measure � at inverse temperature � is called a Gibbs measure

corresponding to � and � at inverse temperature �.

Remark. Note that by construction Gibbs measure inherit a remarkable property:

their conditional distributions given F�c exist for all �, and not only for �-almost all �,

as is usually required of conditional distributions. On the other hand, this observation

also hints towards possible generalizations of the constructions beyond the context

of regular interactions by weakening the requirement that local speci�cations be

de�ned for all � 2 S. The associated concepts of weaker notions of Gibbs measures

are currently under active debate, see e.g. [MMR,DS].

Theorem 1.7: A probability measure �� is a Gibbs measure for �; �; �, if and

only if, for all � � Zd,

���
(�)
�;� = �� (1:22)

Proof. Obviously, (1.22) holds if �
(�)
�;� is the conditional probability for �� . We only

have to show the converse. But for any �, and any A 2 F ,

��(A) = E�� ��
�A��F�c

�
(1:23)

Inserting this in the right hand side of (1.22) and comparing with the left hand side

yields

�
(�)
�;�(A) = ��

�A��F�c
�
; �� � a.s. (1:24)

This proves the theorem.}

Eq. (1.22) are called the DLR equations after Dobrushin, Lanford and Ruelle, to

whom this construction is due. We have now achieved a rigorous de�nition of what
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the symbolic expression (1.2) is supposed to mean. Of course this should be completed

by an observation saying that such Gibbs measures exist in typical situations. This

will turn out to be rather easy.

Theorem 1.8: Let � be a continuous regular interaction and �
(�)
�;� be a correspond-

ing local speci�cation. Let �n be and increasing and absorbing sequence of �nite

volumes. If for some � 2 S, the sequence ���n;� of measures converges weakly to

some probability measure �, then � is a Gibbs measure w.r.t. to �; �; �.

Proof. Let f be a continuous function. By hypothesis, we have that

���n;�(f)! �(f); as n " 1 (1:25)

On the other hand, for all �n � �,

���n;��
(�)
�;�(f) = ���n;�(f) (1:26)

We would like to assert that ���n;��
(�)
�;�(f) converges to ��

(�)
�;�(f), since this would

immediately imply that � satis�es the DLR equations (1.22) and hence is a Gibbs

measure. To be able to make this assertion, we would need to know that �
(�)
�;�(f) is

a continuous function. The property of a speci�cation to map continuous functions

to continuous functions is called the Feller property.

Lemma 1.9: The local speci�cations of a continuous regular interaction have the

Feller property.

Proof. We must show that if �n ! �, then ��n�;�(f) ! ���;�(f). A rather simple

consideration shows that since f is continuous, this property follows if

H�(��; �n;�c)! H�(��; ��c) (1:27)

But H� is by assumption a uniformly convergent sum of continuous functions, so it

is itself continuous. Then (1.27) is immediate. }

The proof of Theorem 1.8 is now obvious.}

Remark. Local speci�cations have even nicer properties than Feller. In particular,

they are \quasi-local", in the sense that they map local functions into quasi-local
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functions. This is expanded on in [vEFS]. Exercise: Prove the quasi-locality of local

speci�cations. This gives also occasion to �ll in the details in the proof of Lemma

1.9.

The constructive criterion of Theorem 1.8 gives us now a cheap existence result:

Corollary 1.10: Assume that S0 is compact and � is regular and continuous.

Then there exists at least one Gibbs measure for any 0 � � <1.

Proof. By Tychonov's theorem S is compact. The set of probability measures on

a compact space is compact with respect to the weak topology, and so any sequence

���n;� must have convergent subsequences. Any one of them provides a Gibbs measure

by Theorem 1.8. }

Remark. There are models with non-compact state space for which no Gibbs mea-

sure exists.

Theorem 1.8 is of absolutely central importance in the theory of Gibbs measures, s-

ince it gives a way how to construct in�nite-volume Gibbs measures. Physicists would

view this even as the de�nition of in�nite-volume Gibbs measures (and we will have

to return to this attitude later when we discuss mean �eld models). The procedure

of taking increasing sequences of �nite-volume measures is called the passing to the

\thermodynamic limit". It is instructive to compare the physical \approximation"

statement contained in the DLR equations and in the weak limit construction. The

DLR equations can be interpreted in the sense that if we consider a physical �nite

system, when we apply \boundary conditions10 and weigh these with the in�nite-

volume measure �� , then the �nite-volume measure within � will look exactly like

the in�nite-volume measure ��;�. On the other hand, the constructive criterion of

Theorem 1.7 means that there are suitable con�gurations � and suitable volumes �,

such that if we �x boundary conditions �, the �nite-volume measure looks, for large

�, very much like a in�nite-volume Gibbs state �. Now it is experimentally not very

10In the formal discussion we �xed con�gurations in the entire complement of �. Of course for
models with short range interactions, like the Ising model, the inside of a volume � depends only
on the con�guration on a layer of width one around �. Thus it is physically feasible to emulate the
e�ect of the exterior of � by just boundary conditions.
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feasible to apply boundary conditions weighted according to some Gibbs measure,

while the second alternative seems a bit more realistic. But here diÆculties will arise

if the dependence on the boundary conditions and on the volumes is too dramatic.

There will be no serious problems in simple systems, but we will have occasion to

discuss to what extent the Gibbs measures as de�ned above are the suitable objects

to approximately describe real physical situations.

Let us note that there is a di�erent approach that characterizes Gibbs measures in

terms of a variational principle. Such characterizations always carry a philosophical

appeal as they appear to justify the particular choice of Gibbs measures as principle

objects of interest. Excellent references are again [Ge1] or [Sim], but also [Isr], and the

recent lecture notes by Ch. P�ster [Pf]. Although several important notions linking

statistical mechanics, thermodynamics and the theory of large deviations arise in this

context, I will not pursue this theme here.

1.3. Structure of Gibbs measures; phase transitions.

In the previous section we have established the concept of in�nite-volume Gibbs

measures and established the existence of such measures for a large class of systems.

The next natural question is to understand the circumstances under which for a

given interaction and a given temperature there exists a unique Gibbs measure, and

when this is not the case. We have already seen that the possibility that the local

speci�cations might be compatible with several Gibbs measures is precisely providing

for the possibility to describe phase transitions in this framework, and therefore this

will be the case that we shall be most interested in. Nonetheless, it is important to

understand under what conditions one must expect uniqueness. For this reason we

start our discussion with some results on uniqueness conditions.

1.3.1. High temperatures. The Dobrushin uniqueness criterion.

In a certain sense one should expect that as a rule a local speci�cation is com-

patible only with one Gibbs measure. But there are speci�c interactions (or speci�c

values of the parameters of an interaction) where this rule is violated. However,

there are general conditions that preclude this degenerate situation; vaguely, these
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conditions say that �H is \small"; in this case one can see the Gibbs measure as a

weak perturbation of the a priori measure �. There are several ways of establishing

such conditions. Possibly the most elegant one is due to Dobrushin, and we will not

resist the temptation to present it here. Our treatment follows closely that given in

Simon's book [Si] where the interested reader may �nd more material.

Let us introduce the total variation distance of two measures �; � by

k� � �k � 2 sup
A2F

j�(A)� �(A)j (1:28)

Theorem 1.11: Let �
(�)
�;� be a local speci�cation. Set, for x; y 2 Zd,

�x;y � 1

2
sup
�;�0

8z 6=x�z=�0z




��y;� � ��0y;�


 (1:29)

If supy2Zd
P

x2Zd �x;y < 1, then the local speci�cation is compatible with at most one

Gibbs measure.

Proof. For a continuous function f we de�ne its variation at x

Æx(f) = sup
�;�0

8z 6=x�z=�0z

jf(�)� f(�0)j (1:30)

and the total variation

�(f) �
X
x2Zd

Æx(f) (1:31)

We de�ne the set of functions of �nite total variation T � ff 2 C(S)j�(f) <1g. It
is easy to check that this set is a dense subset of C(S). The idea of the proof is

i) Show that � is a semi-norm and �(f) = 0) f = const:.

ii) Construct a contraction T with respect to � so that any solution of the DLR

equations is T-invariant.

Then, it holds that for any solution of the DLR equations, �(f) = �(Tf) =

�(Tnf) ! c(f), independent of which one we choose. But the value on continuous

functions determines �, so all solutions of the DLR equations are identical.
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To simplify notation we drop the reference to � in the course of the proof. Let us

�rst establish (ii). We construct the map T. Let x1; x2; : : : ; xn; : : : be an enumeration

of all points in Zd (this implies that xn must disappear to in�nity as n " 1). Set

Tf � lim
n"1

�(�)x1 : : : �
(�)
xn(f) (1:32)

For any continuous function, the limit in (1.32) exists in norm. (Exercise! Hint:

Check the convergence �rst on loal functions!). This implies that T maps continuous

functions to continuous functions, which is a crucial property we will use.

It is obvious by construction that if � satis�es the DLR-equation w.r.t. the speci-

�cation �
(�)
� , then

�(Tf) = �(f) (1:33)

It remains to show that T is a contraction w.r.t. �, if supy2Zd
P

x2Zd �x;y � � < 1.

In fact we will show that under this hypothesis, �(Tf) � ��(f), for any continuous

function f . We look at Æx(�y(f)). Obviously, Æx(�x(f)) = 0. Now let x 6= y. Then

Æx(�y(f)) � sup
�;�0

8z 6=x�z=�0z

�����y(f)� ��
0
y (f)

���
= sup

�;�0
8z 6=x�z=�0z

���Z f(�y; �yc)�
�
y(d�y)�

Z
f(�y; �

0
yc)�

�
y(d�y)

+

Z
f(�y; �

0
yc)
�
��y(d�y)� ��

0
y (d�y)

����
� Æx(f) + sup

�;�0
8z 6=y�z=�0z

jf(�)� f(�0)j sup
�;�0

8z 6=x�z=�0z

sup
A2F

�����y(A)� ��0y (A)���
= Æx(f) +

1

2




��y � ��
0
y




 Æy(f)
= Æx(f) + �x;yÆy(f)

(1:34)

Lemma 1.12: Under the hypothesis supy2ZD
P

x2Zd �x;y � �, for all n 2 N,

�(�(�)x1 : : : �
(�)
xn
f) � �

nX
i=1

Æxi(f) +
X

j�n+1

Æxj (f) (1:35)
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Proof. By induction. For n = 0 (1.35) is just the de�nition of �. Assume that

(1.34) holds for n. Then from (1.33)

�(�(�)x1 : : : �
(�)
xn�

(�)
xn+1

f) � �
nX
i=1

Æxi(�
(�)
xn+1

f) +
X

j�n+1

Æxj (�
(�)
xn+1

f)

� �
nX
i=1

�
Æxi(f) + �xi;xn+1

Æxn+1
(f)
�

+
X

j�n+2

�
Æxj (f) + �xj;xn+1

Æxn+1(f)
�

= �
nX
i=1

Æxi(f) +
1X
i=1

�xi;xn+1
Æxn+1

(f) +
X

j�n+2

Æxj (f)

� �
n+1X
i=1

Æxi(f) +
X

j�n+2

Æxj (f)

(1:36)

so that (1.34) holds for n+ 1. This proves the Lemma.}

Passing to the limit n " 1 yields the desired estimate

�(Tf) � ��(f) (1:37)

It remains to be proven that �(f) = 0 implies that f = const:. In fact we will

show that �(f) � sup(f) � inf(f). Now, since f is continuous, for any � > 0 there

exists a �nite � and a con�gurations !+; !� with !+�c = !��c such that

sup(f) � f(!+) + �;

inf(f) � f(!�)� �
(1:38)

But, using a simple telescopic expansion,

f(!+)� f(!�) �
X
x2�

Æx(f) � �(f) (1:39)

Thus, sup(f)� inf(f) � �(f) + 2�, for all � which implies the claimed bound. This

concludes the proof of the theorem. }}



Disordered Systems 27

For Gibbs speci�cations with respect to regular interactions, the uniqueness crite-

rion in Dobrushin's theorem becomes

sup
x2Zd

X
A3x

(jAj � 1)k�A(�)k1 < ��1 (1:40)

Thus it always applies if the temperature ��1 is suÆciently \high".

Exercise: Compute the bound on the temperature for which Dobrushin's criterion

applies in the Ising model (1.1).

The techniques of the Dobrushin uniqueness theorem can be pushed farther to get

more information about the unique Gibbs measure; in particular it allows to prove

decay of correlations. Since this is not of immediate concern for us, we will not go

into this. The interested reader is referred to the very clear exposition in Simon's

book [Si].

1.3.2. Low temperatures. The Peierls argument.

Having established a condition for uniqueness, it is natural to seek for situations

where uniqueness does not hold. As we mentioned earlier, this possibility was dis-

believed for a long time and the solid establishment of the fact that such situations

occur in reasonable models like the Ising model was one of the triumphs of statistical

mechanics.

Contrary to the very general uniqueness criterion, situations with coexisting Gibbs

measures are much more evasive and require a case by case study of the respective

interactions. There exist a number of tools to investigate this problem in many

situations, the most powerful being what is called the Pirogov{Sinai theory, but

even in its most recent developments it is far from being able to give a reasonably

complete answer for a class of interactions as large as, e.g. the regular interactions11.

An exposition of this theory in any detail goes beyond the scope of these notes.

The basis of most methods to prove the existence of multiple Gibbs states is the

Peierls argument. We will explain this in the context it was originally derived, the

Ising model, and discuss extensions later.

11Of course it would be unreasonable to expect such a theory in any general form to exist.
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The basic intuition for the large � (low temperature) behaviour of the Ising model

is that the Gibbs measure should in this case strongly favour con�gurations with

minimal H. If h 6= 0, one sees that there is a unique such con�guration, �i = sign (h),

whereas for h = 0 there are two degenerate minima, �i � +1 and �i � �1. It is

a natural idea to characterize a con�guration by its deviation from such an optimal

one. This leads to the concept of the contour. We denote by < i; j > an edge of the

lattice Zd and by < ij >� the corresponding dual plaquette, i.e. the unique d � 1

dimensional facet that cuts the edge in the middle. We set

�(�) � �< ij >�
���i�j = �1	 (1:41)

�(�) forms a surface in Rd . The following properties are immediate from the de�ni-

tion:

Lemma 1.13: Let � be the surface de�ned above, and let @� denote its d � 2-

dimensional boundary.

(i) @�(�) = ; for all � 2 S. Note that �(�) may have unbounded connected compo-

nents.

(ii) Let � be a surface in the dual lattice such that @� = ;. Then there are exactly two

con�gurations, � and ��, such that �(�) = �(��) = �.

Any G can be decomposed into its connected components 
i. A connected com-

ponent 
i is called a contour. For any �, any contour 
i satis�es @
i(�) = ;. That
is, each contour is either a closed or unbounded surface.

The following theorem goes back to Peierls [Pei]. Its rigorous version is due to

Dobrushin [D2] and GriÆths [Gri].

Theorem 1.14: Let �� be a Gibbs measure for the Ising model (1.1) with h = 0

and � the symmetric product measure de�ned in (1.3). Assume that d � 2. Then

there is �d <1 such that � > �d

��
�9
2�(�):02int
� < 1

2
(1:42)

(we write 
 2 � for \
 is a connected component of �".)
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The proof of this theorem is almost immediate from the following

Lemma 1.15: Let �� be a Gibbs measure for the Ising model (1.1) with h = 0.

Let 
 be a �nite contour. Then

�� [
 2 �(�)] � e�2�j
j (1:43)

Proof. We present the proof again as an application of the DLR construction. Recall

that 
 is �nite and thus closed. We will denote by 
in and 
out the layer of sites in

Zd adjacent to 
 to the interior of 
 and the exterior of 
 (the interiour and exteriour

boundary of the contour).

plus region

A contour (solid line) and its interiour (red dots) 
and exteriour (blue dots) boundary

minus
region

Apparently we have

�� [
 � �(�)] � ��
�
�
out = +1; �
in = �1�+ ��

�
�
out = �1; �
in = +1

�
(1:44)

Now the DLR-equations give

��
�
�
out = +1; �
in = �1� = �� [�
out = +1]�+1

int 
;�[�
in = �1] (1:45)



30 Section 1

But
�+1
int 
;� [�
in = �1]

=
E�int (
)n
in �(�
in = �1)e��Hint (
)(�int (
)n
in ;�1
in ;+1
out )

E�
in E�int (
)n
in e
��Hint (
)(�int (
)n
in ;�
in ;+1
out )

=
e��j
jZ(�1)

int (
)n
in�(�
in = �1)
E�
in e

�
P

i2
in;j2
out �jZ
�
in

int (
)n
in

� e�2�j
j
Z
(�1)
int (
)n
in

Z
(+1)
int (
)n
in

= e�2�j
j

(1:46)

Note that in the last line we used the symmetry of H� under the global change

�i ! ��i to replace the ratio of the two partition functions with spin-
ip related

boundary conditions by one. In the presence of h 6= 0, this would not have been

possible. The second term in (1.44) is treated in the same way. Thus (1.43) follows.

}

Proof of Theorem 1.14 . The proof of the Theorem now follows just by the

trivial estimate

��
�9
2�(�):02int 
� � X


2�(�):02int 

��[
 2 �(�)] (1:47)

and by (roughly) counting the number of contours of area k that enclose the origin:

#f
 : 0 2 int
; j
j = kg � Ck
d k

d=(d�1) (1:48)

where Cd is some dimension dependent constant (e.g. it is immediate to see that

C2 � 3).Thus

��
�9
2�(�):02int
� � 1X

k=2d

kd=(d�1)e�k(2��lnCd) (1:49)

so choosing � a little larger than 1
2 lnCd we get the claimed estimate. }

Theorem 1.14 brings us very close to showing the existence of at least two Gibbs

states. Intuitively, it implies that, with probability greater than 1=2, the spin at the

origin has the same sign as \the spins at in�nity" which in turn could be plus one or
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minus one. Most importantly, the spin in the origin is correlated to those at in�nity,

establishing the existence of long-rang correlation. Making these somewhat vague

statements precise will give occasion to learn a little more about properties of Gibbs

states.

Notice �rst that Theorem 1.14 does not imply that there are no in�nite contours

with positive probability. We will show, however, that �� can be decomposed into

Gibbs measures containing in�nite contours with probability zero and one, respec-

tively.

This leads us to the de�nition of the important concept of extremal Gibbs measures

or \pure states".

By the characterization of Gibbs measures through the DLR-equations it is obvious

that with any two Gibbs measures �� ; �
0
� for the same local speci�cation, their convex

combinations p�� + (1 � p)�0� , p 2 [0; 1], are also Gibbs measures. Thus the set of

Gibbs measures for a local speci�cation forms a closed convex set. One calls the

extremal points of this set extremal Gibbs measures or pure states12

The following gives an important characterization of extremal Gibbs measures.

Proposition 1.16: A Gibbs measure �� is extremal if and only if it is trivial on

the tail sigma-�eld F t, i.e. if for all A 2 F t, ��(A) 2 f0; 1g.

To prove this lemma, we need two important observations:

The �rst says that a Gibbs measure for a given speci�cation is characterized by

its value on the tail sigma-�eld.

Proposition 1.17: Let �� and �� be two Gibbs measures for the same speci�cation.

If for all A 2 F t, ��(A) = ��(A), then �� = ��.

Proof. Again we use the DLR equations. Let f be any local function. Since for any

12The name pure state is sometimes reserved to translation invariant extremal Gibbs measures.
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�,

��(f) = ��

�
�
(�)
�;�(f)

�
��(f) = ��

�
�
(�)
�;�(f)

� (1:50)

the lemma follows if lim�"Zd �
(�)
�;�(f) is measurable with respect to F t. But by de�ni-

tion, �
(�)
�;�(f) is measurable with respect to F�c , and so lim�"Zd �

(�)
�;�(f) is measurable

with respect to \�"ZdF�c , i.e. F t. }

The second observation is

Lemma 1.18: Let � be a Gibbs measure, and A 2 F t with �(A) > 0. Then the

conditioned measure �(�jA) is also a Gibbs measure for the same speci�cation.

Proof. We again consider a local function f . Then

�(f jA) � �(f1IA)
�(A)

=
��

(�)
� (f1IA)
�(A) =

�1IA�
(�)
� (f)

�(A)
= �(�

(�)
� (f)jA)

(1:51)

for any �, so �(�jA) satis�es the DLR-equations.}

Now we can prove proposition 1.16: Assume that � is trivial on the tail �eld and

� = p�0 + (1� p)�00, for p 2 (0; 1). Then for any A 2 F t, by Lemma 1.17,

p�0(A) + (1� p)�00(A) 2 f0; 1g (1:52)

But this can only hold if �0(A) = �00(A) 2 f0; 1g, so, in particular, � = �.

To prove the converse, assume that � is not trivial on the tail �eld. Then then

there exists A 2 F t with �(A) = p 2 (0; 1). So, by Lemma 1.18

� = p�(�jA) + (1� p)�(�jAc) (1:53)

and, by Lemma 1.18, �(�jA) and �(�jAc) are Gibbs measures, so � is not extremal.

This concludes the proof of the proposition.}
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Tail �eld triviality is equivalent to a certain uniform decay of correlations which

is a common alternative characterization of extremal Gibbs measures:

Corollary 1.19: A Gibbs measure � is trivial on the tail sigma-�eld if and only

if, for all A 2 F ,
lim
�"Zd

sup
B2F�c

j�(A[ B)� �(A)�(B)j = 0 (1:54)

We can now return to the investigation of the phase structure of the Ising model.

We de�ne the event U � f�(�) contains no in�nite contourg. Clearly this is a tail

event. Therefore, by Lemma 1.18, if � is any Gibbs measure, then �(�jU) is also a

Gibbs measure, provided �(U) > 0. But it is easy to see that such � exist: Take the

local speci�cations with boundary conditions either � � +1 or � � �1. They are

supported on U , and so any weak limit �� of these sequences satis�es ��(U) = 1.

Theorem 1.20: Consider the Ising model for parameters where the conclusion of

Theorem 1.14 hold. Then there exist (at least) two extremal Gibbs measures �+� and

��� satisfying �+(�0) = ���(�0) > 0.

Proof. We know that there exists a Gibbs measure with ��(U) = 1. Now on U ,
the set of points x 2 Zd that is not surrounded by a contour (the exterior of the

contour) is connected and the spin con�guration on this set is constant either +1

or �1. Clearly the value of the spin on the exterior is a function of the tail sigma-

algebra, so if �� is extremal it takes either one or the other value with probability

one. Let us denote these measures by ��� . Then

�+� (�0 = �1) = �+�
�9
2�(�) : 0 2 int 


�
<

1

2
(1:55)

which implies the theorem.}

On a qualitative level we have now solved Ising's problem: The Ising model in

dimension two and more has a unique Gibbs state with decaying correlations at

high temperatures, while at low temperature there are at least two extremal one

that exhibit spontaneous magnetization. Thus the observed phenomenon of a phase
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transition in ferromagnets is reproduced by this simple system with short range

interaction.

I have said earlier that the Peierls argument is the basis of most proofs of the exis-

tence of multiple Gibbs states. This is true in the sense that whenever one will prove

such a fact, one will want to introduce some notion of contours that characterizes

a locally unlikely con�guration; one will then want to conclude that \typical" con-

�gurations do no contain large regions where con�gurations are atypical, and �nally

one will want to use that there are several choices for con�gurations not containing

large undesirable regions. What is lacking then is an argument showing that these

\good" regions are equally likely; on a more technical level, this corresponds to being

able to pass from the one-but-last line in (1.46) to the last one. In the Ising model

we were helped by the spin 
ip symmetry of the problem. This should be consid-

ered accidental, as should be the fact that the ratio of the two partition function

appearing in (1.45) equals one. In fact, they equal one because the parameter h was

chosen equal to zero. In a situation without symmetry one should expect that there

will be some value of h (or other parameters of the model) for which the ratio of the

partition function is close enough to one for all 
. This is a subtle issue and at the

heart of what is called the Pirogov{Sinai theory [PS,Z1,Z2] which in rather general

situations allows to establish criteria for the existence of phase-coexistence in lattice

spin models. I will not be able to cover this theory in these lectures.
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2. Disordered Systems. Generalities and Lattice models.

We will now begin our discussion of disordered systems. In this �rst part, we will

mainly concentrate on disordered systems that are in some sense perturbations of

translation invariant systems. From a physical point of view, it is obviously essential

to understand the e�ect of such perturbations, since the hypothesis of perfect lat-

tice symmetry can hardly be expected to be veri�ed in a system consisting of 1023

constituents. Impurities and imperfections are omnipresent, and for the results of

statistical mechanics to be applicable, they must show some robustness against per-

turbations. The basic questions are thus: what properties of the translation invariant

system are only mildly a�ected by what types of weak perturbations?

The perturbations we will study here are to model \impurities" and other poorly

controlled e�ects. We will assume them to be \spatially random". In most cases,

very simple assumptions on the type of randomness are made, and as these introduce

already serious diÆculties, no attempts towards great generality are at present rea-

sonable. In fact, the status of the �eld is that of a few, not overly well understood,

simple examples. Nonetheless, it has emerged that a proper probabilistic setup is

useful, and we will to some degree insist on this point.

2.1.Random Gibbs measures and metastates.

We will now give a general de�nition of disordered lattice spin systems. This will

not be as general as possible, as we allow disorder only in the interactions, but not

in the lattice structure or the spin spaces. Thus as in Section I we consider a lattice

Zd, a single site spin space (S0;F0; �0) and the corresponding a priori product space

(S;F ; �). As a new ingredient, we add a (rich enough) probability space (
;B;P)
where 
 will always be assumed to be a Polish space. On this probability space we

construct a random interaction as follows:

De�nition 2.1: A random interaction � is a family f�AgA�Zd of random variables

on (
;B;P) taking values in B(S;FA), i.e. measurable maps �A : 
 3 ! ! �A[!] 2
B(S;FA). A random interaction is called regular, if, for P-almost all !, for any
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x 2 Zd, there exists a �nite constant c[!], such thatX
A3x

k�A[!]k1 � c[!] <1 (2:1)

A regular random interaction is called continuous if for each A � �, �A is jointly

continuous in the variables � and !.

In the present section we discuss only regular random interactions. Some of the

most interesting physical systems do correspond to irregular random interactions. In

particular, many real spin glasses have a non-absolutely summable interaction, called

the RKKY-interaction. See [FZ1-2,Z] for some rigorous results.

Remark. In most examples of interest one assumes that the random interaction has

the property that �A and �B are independent, if A \ B = ;.

Given a random interaction, it is straightforward to de�ne random �nite-volume

Hamiltonians H�[!], as in the deterministic case. Note that for regular random

interactions, H� is a random variable taking values in the space Bql(S), i.e. the

mapping ! ! H�[!] is measurable. If moreover the �A are continuous functions of

!, then the local Hamiltonians are also continuous functions of !.

Random local speci�cations �
(�)
�;�[!] are again de�ned in complete analogy to the

deterministic case, i.e.

�
(�)
�;�[!](d�) �

1

Z�
�;�[!]

e��H�[!](��;��c )��(d��)Æ��c (d��c) (2:2)

The important point is that the maps ! ! �
(�)
�;�[!] are again measurable in all

appropriate senses. In particular:

Lemma 2.2: Let � be a regular random interaction. Then

(i) for all � � Zd and A 2 F , �(�)�;�(A) is measurable function w.r.t. the product

sigma-algebra F�c � B.

(ii) For P-almost all !, for all � 2 S, �(�)�;�[!](d�) is a probability measure on S.

(iii) For almost all !, the family
n
�
(�)
�;�[!]

o
��Zd

is a local speci�cation for the interac-

tion �[!] and inverse temperature �.
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(iv) If � is a continuous regular random interactions, then for any �nite �, ���;�[!] is

jointly continuous in � and !.

We now feel ready to de�ne random in�nite-volume Gibbs measures. The following

is surely reasonable:

De�nition 2.3: A measurable map �� : 
 ! M1(S;F) is called a random

Gibbs measure for the regular random interaction � at inverse temperature �, if, for

almost all !, ��[!] is compatible with the local speci�cation
n
�
(�)
�;�[!]

o
��Zd

for this

interaction.

The natural question concerns the existence of such random Gibbs measures. One

would expect that again for compact state space, the same argument as in the de-

terministic situation should work. Now it is indeed obvious that for almost all !,

any sequence ���;�n [!] taken along an increasing and absorbing sequence of volumes

possesses limit points, and therefore, there exist convergent subsequences �n[!] such

that ���;�n[!][!] converges and the limit is a Gibbs measure for the interaction �[!].

The non-trivial issue provoked by the fact that the subsequence �n[!] must in general

depend on the realization of the disorder is, whether the measures obtained by this

construction depend on ! in a measurable way?

This question may �rst sound like some irrelevant mathematical sophistication,

and indeed this problem was mostly disregarded in the literature. To my knowledge

this problem was �rst discussed in a paper by van Enter and GriÆths [vEG] and

studied in more detail by Aizenman and Wehr [AW1], but it is the merit of Ch.

Newman and D. Stein [NS1,NS2,N] to have brought the intrinsic physical relevance of

this issue to light. Needless to say the issue arises only when limits along deterministic

subsequences cannot be constructed, and this could be feared mainly in very strongly

disordered systems such as spin-glasses that we will discuss in later sections.

In more pragmatic terms, the construction of in�nite-volume Gibbs measures via

limits along random subsequences can be criticised by its lack of actual approximative

power. An in�nite-volume Gibbs measure is supposed to approximate reasonably a

very large system under controlled conditions. If however this approximation is only
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valid for certain very special �nite volumes that depend on the speci�c realization

of the disorder, while for other volumes the system is described by other measures,

knowledge of just what are the in�nite-volume measures is surely not enough, if

nothing is known about the relevant subsequences.

As far as proving the existence of random Gibbs measures is concerned, there is a

rather simple way out of the random subsequence problem. This goes by extending

the local speci�cations to probability measures K�
�;� on 
�S in such a way that the

marginal distribution of K�
�;� on 
 is simply P, while the conditional distribution,

given B, is �(�)�;�[!].

Theorem 2.4: Let � be a continuous regular random interaction. Let K
(�)
�;� be

the corresponding measure de�ned as above. Then

(i) If for some increasing and absorbing sequence, �n, and some � 2 S the weak limit

limn"1K�
�;�n

� K�
� exists, then its conditional distribution K�

�(�jB � S) given B
is a random Gibbs measure for the interaction �.

(ii) If S is compact, then there exist increasing and absorbing sequences �n such that

the hypothesis of (i) is satis�ed.

Proof. The proof of this theorem is rather instructive. Let f 2 C(S;F) be a

continuous function. We must show that

K�
�(f jB � S)[!] = K�

�(�
(�)
�;�[!](f)jB � S)[!] (2:3)

Let Bk, k 2 N be a �ltration of the sigma-algebra B where Bk is generated by

the interaction potentials �A with A � �k with �k some increasing and absorbing

sequence of volumes. Note that

K�
�(f jB � S)[!] � lim

k"1
lim
n"1

K�
�;�n

(f jBk � S)[!] (2:4)

Let us denote by Bk[!] the set of all !0 2 
 that have the same projection to Bk as

!, more formally

Bk[!] �
�
!0 2 


��8A2Bk:!2A : !0 2 A	 (2:5)
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But for any �xed � and n large enough,Z
Bk[!]

P[d!0]�(�)�;�n
[!0](f) =

Z
Bk[!]

P[d!0]�(�)�;�n
[!0]

�
�
(�)
�;�[!

0](f)
�

=

Z
Bk[!]

P[d!0]�(�)�;�n
[!0]

�
�
(�)
�;�[!](f)

�
+

Z
Bk[!]

P[d!0]�(�)�;�n
[!0]

�
�
(�)
�;�[!

0](f)� �
(�)
�;�[!](f)

� (2:6)

The �rst term in the last expression converges to K�
�(�

(�)
�;�[!](f)jB � S)[!], while

for the last we observe that due to the continuity of the local speci�cations in !,

uniformly in n, �����
Z
Bk[!]

P[d!0]�(�)�;�n
[!0]

�
�
(�)
�;�[!

0](f)� �(�)�;�[!](f)
������

� sup
!02Bk[!]

sup
�2S

����(�)�;�[!
0](f)� �

(�)
�;�[!](f)

��� # 0; (2:7)

as k " 1. This proves the Theorem.}

Theorem 2.4 appears to solve our problems concerning the proper Gibbsian set-up

for random systems. We understand what a random in�nite-volume Gibbs measure

is and we can prove their existence in reasonable generality. Moreover, there is a

constructive procedure that allows us to obtain such measures through a procedure

of taking in�nite-volume limits. However, upon closer inspection, the construction is

not quite as satisfactory as it seems. The unsatisfactory point lies actually hidden in

equation (2.4) that tells us what conditioning on B actually amounts to. In all the

examples of interest, the space 
 will itself be some in�nite product space 
 = 
Z
d

0 ,

and will be equipped with the product topology. The �ltration Bk will then consist

of the Borel-�eld of 
�k
0 for some increasing and absorbing sequence of �nite volumes

�k. That is, the measures K
�
�(�jBk�S) are actually averages of Gibbs measures over

the values of the random interactions outside a �nite region �k, and so their limit

still contains an averaging over the realization of the disorder \at in�nity". This

manifests itself in the fact that the measures K�
�(�jB �S) will often be mixed states.

In particular, this state will not actually describe the result of the observations of

one sample of the material at given conditions, but rather the average over many
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samples that have been prepared to look alike locally. This is clearly not a very

physical situation.

While we have come to understand that it may not be realistic to construct a

state that predicts the outcome of observations on a single (in�nite) sample, it would

already be more satisfactory to obtain a probability distribution for these predic-

tions (i.e. a random probability measure) rather than just a mean prediction (and

average over probability measures). This led Aizenman and Wehr [AW1] and more

emphatically Newman and Stein [NS1] to an extension of the preceding construction

to a measure-valued setting. That is, rather than to consider measures on the space


 � S, they introduced measures K�
�;� on the space 
 �M1(S), de�ned in such a

way that the marginal distribution of K�
�;� on 
 is again P, while the conditional dis-

tribution, given B, is Æ
�
(�)

�;�
[!]
, the Dirac-measure concentrated on the corresponding

local speci�cation. We will introduce the symbolic notation

K�
�;� � P � Æ

�
(�)

�;�
[!]

(2:8)

One has the following analogue of Theorem 2.4:

Theorem 2.5: Let � be a continuous regular random interaction. Let K
(�)
�;� be

the corresponding measure de�ned as above. Then

(i) If for some increasing and absorbing sequence, �n, and some � 2 S the weak limit

limn"1K�
�;�n

� K�
� exists, then its conditional distribution K�

�(�jB � S) given B
is a probability distribution on M1(S) that, for almost all !, gives full measure to

the set of in�nite-volume Gibbs measures corresponding to the interaction �[!] at

inverse temperature �. Moreover,

K�
�(�jB � S) = K�

�(�jB � S) (2:9)

(ii) If S is compact, then there exist increasing and absorbing sequences �n such that

the hypothesis of (i) is satis�ed for any �.

Remark. The conditional measure

��� � K�
�(�jB � S) (2:10)
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is called the Aizenman-Wehr metastate (following the suggestion of Newman and

Stein [NS1]).

Proof. A proof of this theorem can be found in [N]. Here I will give a simple proof

following [AW1]. Note that the assertion (i) will follow if for any bounded continuous

function f : S ! R, and any �nite � � Zd, we can show that

E

Z
K�
�(d�jB � S)(!)

����(f)� �
�
�
(�)
�;�[!](f)

���� = 0 (2:11)

But the left hand side clearly equalsZ
K�
�(d�; d!)

����(f)� �����;�[!](f)���� (2:12)

Now �(g) is trivially a continuous function of � if g is continuous. By Lemma

1.9, ���;�[!](f) is continuous in f whenever �[!] is regular and continuous, i.e. for

almost all !. Thus, both �(f) and �
�
���;�[!](f)

�
are continuous in �, and hence

the integrand in (2.11) is a bounded continuous function of � and !. But then, by

de�nition, the left-hand side of (2.12) is given by the limit

lim
n"1

Z
K�
�;�n

(d�; d!)
����(f)� �

�
���;�[!](f)

����
= lim

n"1
E

������;�n[!](f)� ���;�n [!]
�
���;�[!](f)

���� (2:13)

But the �rst term in the last line is equal to zero as soon as n is so large that � � �n

which implies that (2.11) holds. Assertion (ii) follows by compactness. }

At this stage the reader may rightly hold his breath and ask the question whether

all this abstract formalism is really necessary, or whether in reasonable situations,

we will not get away without all of this? To answer this question, we need to look at

speci�c results, and above all, at examples.

2.2. Remarks on uniqueness conditions.

As in the case of deterministic interactions, having established existence of Gibbs

states, the next basic question is that of uniqueness. As in the deterministic case,

uniqueness conditions can be formulated in a rather general setting that amounts to
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say that the interaction is \weak" enough. Indeed, Theorem 1.10 can of course be ap-

plied directly for any given realization of the disorder. However, a simple application

of such a criterion will not capture any of the particularities of a disordered system,

and will therefore give no or just bad answers in most interesting examples. The

simple reason for this lies in the fact that the criterion of Theorem 1.10 is formulated

in terms of a supremum over y 2 Zd; in a translation invariant situation, this is not

bothersome. However, in a random system, we will often �nd that while for most

points y the condition will be satis�ed, there may exist rare random points where it

is false. Extensions of Dobrushin's criteria have been developed by van den Berg and

Maes [vdBM] and are further developed by Gielis [Gi]. I will not pursue them here.

Uniqueness for weak interactions in the class of regular interactions can be proven

with the help of cluster expansion techniques rather easily. The best results in this

direction are due to A. Klein and Masooman [KM], although the basic ideas go back

to Berretti [Be].

It should be pointed out that the really interesting problems in high-temperature

disordered systems concern the case on non-regular interactions. The most interesting

work here is that of Fr�ohlich and Zegarlinski [FZ1,FZ2] who prove uniqueness (in a

weak sense) for mean zero square integrable interactions in the Ising case.

2.3. Phase transitions.

Of course, the most interesting questions in disordered systems concern again the

case of non-uniqueness of Gibbs measures, i.e. phase transitions. Already in the

case of deterministic models we have seen that there is no real general theory for

the classi�cation of the extremal Gibbs states in the low-temperature regime; in the

case of disordered systems the situation is considerably worse. Basically, one should

distinguish between two situations:

(1) Random perturbations of a deterministic model (whose phase structure is known).

(2) Fully disordered models.

Of course, this distinction is a bit vague. Nonetheless, we say that we are in
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situation (1) if we can represent the Hamiltonian in the form

H[!](�) = H(0)(�) + �H(1)[!](�) (2:14)

where H(0) is a non-random Hamiltonian (corresponding to a regular interaction)

and H(1) is a random Hamiltonian corresponding to a regular random interaction. �

plays the rôle of a small parameter. The main question is then whether the phase

diagram of H is a continuous deformation of that of H(0) or not. In particular, if

H(0) has a �rst order phase transition in some parameter, will the same be true for

H if � is small enough?

There are situations when this question can be answered rather easily; they occur

when the di�erent extremal states of H(0) are related by a symmetry group and

if for any realisation of the disorder, this symmetry is respected by the random

perturbation H(1)[!]. The classical example of this situation is the

Dilute Ising Model: The Hamiltonian of this model is given by

H[!](�) = �
X

ji�jj=1

Jij [!]�i�j (2:15)

where Jij are i.i.d. random variables taking the values13 0 and 1 with probability �

and 1 � �, respectively. It is very easy to see that the Peierls argument (Theorem

1.14) applies with just minor modi�cations, as was observed in [ARS].

Theorem 2.6: Let �� be a Gibbs measure for the dilute Ising model de�ned by

(2.15) and assume that d � 2. Then there exists �0 > 0, such that for all � � �0,

there exists � = �(�) <1, such that for � � �(�),

P

�
�� [!]

�9
2�(�):02int
� < 1

2

�
> 0 (2:16)

Proof. De�ne the random contour energy E(
) by

E(
) �
X

<ij>�2

Jij (2:17)

13The precise distribution of the Jij plays of course no rôle for the arguments that follow; it is

enough to have EJij = J0 > 0, and var(Jij)� J0.
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Repeating the proof of Lemma 1.15 mutatis mutandis, one gets immediately the

analog

Lemma 2.7: Let �� be a Gibbs measure for the dilute Ising model de�ned by

(2.15). Let 
 be a �nite contour. Then

�� [!] [
 2 �(�)] � e�2�E[!](
) (2:18)

But by the law of large numbers, for large 
, E(
) will tend to be proportional to

j
j; indeed we have that

P [E(
) = xj
j] =
� j
j
xj
j

�
(1� �)xj
j�(1�x)j
j (2:19)

(for xj
j integer). Now de�ne the event

A � �9
:02int
 : E(
) < j
j=2	 (2:20)

Then by (2.19), it is an easy exercise to show that

P [A] �
X


:02int

P [E(
) < j
j=2]

�
X


:02int

e�j
j(

1
2 ln 1

2�� 1
2 ln 2)

�
1X

k=2d

Ck
d e
�k( 12 ln 1

2�� 1
2 ln 2)

� Cd�
d

(2:21)

if � is suÆciently small so that the sum converges. But if ! 2 Ac,

��[9
2�(�):02int
 ] �
X


:02int

�� [!] [
 2 �(�)] �

X

:02int


e��j
j (2:22)

which is smaller than 1=2 if � is large enough. Thus for such �, the event considered

in (2.16) holds with probability at least 1�Cd�d. Of course the 1=2 in the de�nition

of A can be replaced by an �-dependent value to improve on the admissible values of

�. This proves the theorem. }
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From Theorem 2.6 one can now deduce the existence of at least two distinct random

Gibbs states in the dilute Ising model with weak dilution.

Corollary 2.8: In the dilute Ising model, for any d � 2, there exists �0 > 0, such

that for all � � �0, there exists �(�) > 0, such that for all � � �(�), with probability

one, there exist at least two extremal random Gibbs states.

Proof. Theorem 2.6 implies, by the arguments put forward in Section 1.3.2, that

there exists at least two extremal Gibbs states with positive probability. However, the

number of extremal Gibbs measures for a given random interaction (with suÆcient

ergodic properties which are trivially satis�ed here) is an almost sure constant([N],

Proposition 4.4.).}

Of course the Peierls approach indicated here is not giving optimal results (but has

the advantage of clarity and robustness). It is known that the maximal � for which

�(�) is �nite is the critical percolation probability for bond percolation. This has

been proven �rst by Georgii [Ge1] in d = 2 and in more generality in [ACCN]. The

latter paper also obtains precise results on the dependence of �(�) on �. These results

are all based on some profound facts from percolation theory which is a subject we

will not exploit in these notes.

The situation when the random perturbation respects the symmetries of the unper-

turbed interaction for any realization of the disorder must be considered exceptional.

In general, the perturbation H(1)[!] will break all symmetries of the model for typical

! and thus will render the Peierls argument useless. The simplest example of such

models is the random �eld Ising model, whose Hamiltonian is

H[!](�) � �
X

ji�jj=1

�i�j � �
X
i

hi[!]�i (2:23)

with hi a family of i.i.d. random variables (say of mean zero and variance one). In the

1980's the question of in which dimensions this model would or would not exhibit a

�rst order phase transition was among the most vividly discussed issues in the theory

of disordered systems, both on the level of theoretical and experimental physics. The

problem was solved at the end of the decade in two rigorous papers by Bricmont and
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Kupiainen [BK] (who proved the existence of a phase transition in d � 3 for small �)

and Aizenman and Wehr [AW1] (who showed the uniqueness of the Gibbs state in

d = 2 for all temperatures).

Most of the heat of the debate arose from the fact that two competing heuristic

theories making di�erent predictions on the critical value of the dimension for which

a phase transition would occur co-existed. There appeared to be no other way but a

rigorous mathematical proof to allow people to chose between the di�erent heuristic

considerations14. This little piece of history is rather instructive and should warn

people against too �rm trust in speculative heuristic theories. Disordered systems,

more than others, tend to elude common intuition.

The issue of the RFIM being one of the �rst occurrences where profound prob-

abilistic thinking has entered the �eld, I will devote the following section to the

analysis of this model (although we will fall short from giving the full proof of the

results in [BK]).

2.4. The random �eld Ising model.

2.4.1. The Imry{Ma argument.

The earliest attempt to address the question of the phase transition in the RFIM

goes back to Imry and Ma [IM] and is nothing but an attempt to extend the beautiful

and simple Peierls argument to a situation with symmetry breaking randomness. Let

us recall that the Peierls argument in its essence relies on the observation that in order

to deform one ground state (+) in the interior of a contour 
 to another ground state

(-) costs a \surface energy" 2j
j, while by symmetry, the \bulk energies" of the two

ground states are the same. Since the number of contours of a given length L is only

of order CL, the Boltzmann-factors e�2�L suppress such deformations suÆciently

to make their existence unlikely, if � is large enough. What goes wrong with the

argument in the RFIM is the fact that the bulk energies of the two ground states are

14It is interesting to recall that three previous papers [Ch,FFS,I] that reached the same conclu-
sions as [BK] but failed to give fully rigorous proofs ([Ch] and [FFS] considered a somewhat arti�cial
modi�ed model and the proof in [I] worked only a zero temperature) were not considered suÆciently
convincing evidence to close the debate.
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no longer the same. Indeed, if all �i in int 
 take the value +1, then the random �eld

term gives a contribution

Ebulk(
) = +�
X

i2int 

hi[!] (2:24)

while it is equal to minus the same quantity if all �i equal �1. Thus deforming the

plus state to the minus state within 
 produces, in addition to the surface energy

term a bulk term of order 2�
P

i2int 
 hi[!] which can take on any sign. Note that

even when the random �elds hi are uniformly bounded, this contribution is bounded

uniformly only by 2�jint 
j in absolute value and thus can be considerably bigger in

modulus than the surface term, no matter how small � is, if j
j is suÆciently large.

Now Imry and Ma argued that the uniform bound on Ebulk(
) should not be the

relevant quantity to consider. Rather, they argued, the \typical" value of Ebulk(
)

would be much smaller, namely, by the central limit theorem,

Ebulk(
) � ��
p
jint 
j (2:25)

Since by the classical isoperimetric inequalities jint 
j � cj
j d
d�1 , this means that

the typical value of the bulk energy is only Ebulk(
) � ��j
j d
2(d�1) , which is small

compared to j
j if d > 2, while otherwise it is comparable or even larger. This very

simple consideration led Imry and Ma to the (correct!!) prediction that the RFIM

undergoes a phase transition in d � 3 and does not in d � 2.

Admittedly, that was a rather sketchy argument, and anyone would be excused for

not trusting it. We will thus distance us a bit from Imry and Ma and try to repeat

their reasoning in a somewhat more precise way. What we would obviously want to

do is to reprove something like Theorem 2.6. When trying to re-run the proof of

Lemma 1.15, all works as before until the last line of (1.46). One obtains instead the

two bounds

�+1
int 
;�

�
�
in = �1� � e�2�j
j

Z�1int 
n
in;�
Z+1
int 
n
in;�

��1int 
;�

�
�
in = +1

� � e�2�j
j
Z+1
int 
n
in;�

Z�1int 
n
in;�

(2:26)
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whence the analogue of Lemma 1.15 becomes

Lemma 2.9: In random �eld Ising model, for any Gibbs state ��,

�� [
 2 �(�)] � exp
�
�2�j
j+

���lnZ+1
int 
n
in;� � lnZ�1

int 
n
in;�

���� (2:27)

Arrived at this point, one may be tempted to loose all hope when facing the

di�erence of the logarithm of the two partition functions, and one may not even see

any good reason how to arrive at Imry and Ma's assertion on the \typical value" of

this bulk term15 However, the situation is much better than could be feared. We will

see that it is indeed easy to prove the following Lemma:

Lemma 2.10: Assume that the random �elds have a symmetric distribution16

and are bounded17 (i.e. jhij � 1). Then there is a constant C <1 such that for any

z � 0,

P
h���lnZ+1

int 
n
in;� � lnZ�1int 
n
in;�

��� > z
i
� C exp

�
� z2

�2�2Cjint 
j
�

(2:28)

Proof. The key to the proof are what are called concentration of measure inequali-

ties. Note that by symmetry of the distribution of h, the two partition functions we

consider have, as random variables, the same distribution. In particular,

E ln Z+1
int 
n
in;� = E ln Z�1int 
n
in;� (2:29)

15Historically, this has indeed been considered to be the truly diÆcult part of the problem. [Ch]
and [FFS] gave a solution of the problem where this di�erence was ad hoc replaced by the sum
over the random �elds within int 
. As we will see, the real diÆculty of the problem lies, however,
elsewhere.

16This assumption appears necessary even for the result; otherwise the phase coexistence point
could be shifted to some �nite value of the external magnetic �eld.

17We make this assumption for convenience; as a matter of fact essentially the same result holds
if we only assume that the hi have �nite exponential moments.
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Therefore,

P
h���lnZ+1

int 
n
in;� � lnZ�1
int 
n
in;�

��� > z
i

� P
h���lnZ+1

int 
n
in;� � E ln Z+1
int 
n
in;�

���+ ���E ln Z�1int 
n
in;� � lnZ�1int 
n
in;�

��� > z
i

� 2P
h���lnZ+1

int 
n
in;� � E ln Z+1
int 
n
in;�

��� > z=2
i

(2:30)

The point is now that lnZ+1
int 
n
in;� is a function of the independent random vari-

ables hi, with i 2 int 
n
in; there exists an extensive theory about the 
uctuation

properties of such functions that has been developed over the last three decades,

with important culminating results produced in the last few years by M. Talagrand.

Very roughly, these theorems imply that in many situations, a Lipshitz continuous

function of i.i.d. random variables has 
uctuations that are not bigger than those

of a corresponding linear function. We will use the following Theorem, due to M.

Talagrand, whose proof can be found in [T1]:

Theorem 2.11: Let f : [�1; 1]N ! R be a function whose level sets are convex.

Assume that f is Lipshitz with uniform constant CLip, i.e. for any X;Y 2 [�1; 1]N ,

jf(X)� f(Y )j � CLipkX � Y k2 (2:31)

Then, if X1; : : :XN are i.i.d. random variables taking values in [�1; 1],
and Z = f(X1; : : : ; XN), if M Z is a median18 of Z

P [jZ � M Z j � z] � 4 exp

 
� z2

16C2
Lip

!
(2:32)

Remark. In most applications, and in particular when CLip is small compared

to z2, one can replace the median in (2.32) by the expectation EZ without harm

(Exercise!).

Remark. The theme of concentration of measure will recur in these notes. Physical

quantities satisfying such inequalities are often also called \self-averaging".

18A median of a random variable Z is any number such that P[Z � M Z ] � 1=2 and P[Z �
M Z ] � 1=2.
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Now it is quite an easy matter to verify that lnZ is always a Lipshitz continuous

function. In fact,���lnZ+1
int 
n
in;�[!]� lnZ+1

int 
n
in;�[!
0]
���

� sup
!00

������
X

i2int 
n
in
(hi[!]� hi[!

0])
@ lnZ+1

int 
n
in;�
@hi

[!00]

������
� �� sup

i2int 
n
in
j�int 
n
in;�(�i)j

X
i2int 
n
in

jhi[!]� hi[!
0]j

� ��
p
jint 
jkhint 
 [!]� hint 
 [!0]k2

(2:33)

where we used in the last step that the expectation of �i is of course bounded by

one together with the Cauchy{Schwarz inequality. Since moreover lnZ is a convex

function of h, one can apply now Theorem 2.11 to arrive at (2.28).

Lemma 2.10 implies indeed that for typical 
,

�� [
 2 �(�)] � e�2�j
j+��
p
jint 
j (2:34)

However, the immediate attempt to prove the analog of Theorem 2.6 fails, since the

typical 
 are not what really matters. Namely, to conclude such a result, we would

have to show that

P
h
9
:int 
30

���lnZ+1
int 
n
in;� � lnZ�1int 
n
in;�

��� > �j
j
i

is small (for small �). Now

P
h
9
:int 
30

���lnZ+1
int 
n
in;� � lnZ�1int 
n
in;�

��� > �j
j
i

�
X


:int 
30
P
h���lnZ+1

int 
n
in;� � lnZ�1int 
n
in;�

��� > �j
j
i

�
X


:int 
30
e
� j
j2
C�2jint 
j

(2:35)

But j
j2
jint 
j can be as small (and is for many 
) as j
j(d�2)=(d�1), and since the number

of 
's of given length is of order Cj
j, the last sum in (2.35) diverges.
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Some re
ection shows that it is the �rst inequality in (2.35) that spoiled the

estimates. This step would be reasonable if the partition functions for di�erent 


were more or less independent. However, if 
 and 
0 are very similar, it is clear that

this is not the case. A more careful analysis should exploit this fact and hopefully

lead to a better bound. Such situations are quite common in probability theory, and

in principle there are well-known techniques that go under the name of chaining to

systematically improve estimates like (2.35). This was done in the papers [Ch] and

[FFS], however in a model where lnZ+1
int 
n
in;� � lnZ�1int 
n
in;� is ad hoc replaced

by �
P

i2int 
n
in hi (the so-called \no contours within contours" approximation). In

fact, they prove the following:

Theorem 2.12: [FFS]Assume in the RFIM that there is a �nite positive constant

C such that for all �;�0 � Zd

P
h���lnZ+1

�;� � lnZ+1
�0;� � E [ln Z+1

�;� � lnZ+1
�0;�]

��� � z
i
� exp

�
� z2

C�2�2j���0j
�

(2:36)

where ���0 denotes the symmetric di�erence of the two sets � and �0. Then, if

d � 3, there exists �0 > 0, �0 <1, such that for all � � �0 and � � �0, for P almost

all ! 2 
, there exist at least two extremal in�nite-volume Gibbs states �+� , and �
�
� .

Remark. There are good reasons to believe that (2.36) holds, but in spite of multiple

e�orts, I have not been able to �nd an easy proof. On a somewhat heuristic level,

the argument is that the di�erence appearing in (2.36) should depend very little on

the random variables that appear in the intersection of � and �0. More precisely,

when computing the Lipshitz norm we get instead of (2.33)

���lnZ+1
�;�[!]� lnZ+1

�;�[!
0]� lnZ+1

�0;� [!] + lnZ+1
�0;� [!

0]
���
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!00

������
X

i2�n(�\�0)
(hi[!]� hi[!

0])
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�;�

@hi
[!00]

������
+

������
X

i2�0n(�\�0)
(hi[!]� hi[!0])

@ lnZ+1
�0;�

@hi
[!00]

������+
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+
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������

� ��
p
j���0jkh���0 [!]� h���0 [!
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(2:37)

It is natural to expect that the expectation of �i with respect to the two measures will

be essentially the same for i well in the intersection of � and �0, so that it should be

possible to bound the coeÆcient in the last line by
pj���0j. But to do this requires

estimates that we currently do not dispose of. The reader should realize that this

argument is more convincing and robust than the one given in [FFS]; they argue that

(2.36) will hold if the �+�;�[!](�i) depend `weakly' on ! which is essentially what

we are out to prove anyway. On the other hand, smallness of (2.37) can even be

expected to hold if the expectation of �i depends strongly on the disorder.

Even though we still do not know how to prove that the hypothesis of Theorem

2.12 is satis�ed, I �nd it instructive to give some details of the proof.

Proof. To simplify notation, let us set

F
 � lnZ+1
int 
n
in;� � E ln Z+1

int 
n
in;�� (2:38)

The idea behind chaining arguments is to de�ne a sequence of sets �k, � 2 N of

`coarse grained' contours and maps 
k : �0 ! �k, for k > 0 where �0 is the original

set of contours Now write for k to be chosen

F
 = F
k(
)+(F
k�1(
)�F
k(
))+ (F
k�2(
)�F
k�1(
))+ � � �+(F
 �F
1(
)) (2:39)
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Then we can write

P

"
sup


:j
j=n
F
 > z

#
�

k(n)X
`=1

P

"
sup


:j
j=n
F
`(
) � F
`�1(
) > z`

#

+ P

"
sup


:j
j=n
F
k(
) > zk+1

# (2:40)

for any choice of k = k(n) and sequences z` with
Pk+1

`=1 z` � z. Now to estimate the

individual probabilities, we just need to count the number A`;n of image points in �`

that are reached when mapping all the 
 occurring in the sup (i.e. those of length n

and encircling the origin) and use the assumption to get the obvious estimate

P

"
sup


:j
j=n
F
 > z

#
�

k(n)X
`=1

A`�1;nA`;n exp

�
� z2`
C�2�2 inf
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`(
)�int 
`�1(
)j

�

+ Ak;n exp

�
� z2k+1

C�2�2 inf
 jint 
k(
)j
�

(2:41)

We must now make a choice for the sets �k. For this we cover the lattice Zd with

squares of side-length 2k centered at the coarser lattice (2kZ)d. The set �k will then

be nothing but collections of such squares. Next we need to de�ne the maps 
k. This

is done as follows: Let Vk(
) be the set of all cubes, c, of side-length 2k from the

covering introduced above such that

jc \ int 
j � 1

2
2dk (2:42)

Then let 
k(
) � @Vk(
) be the set of boundary cubes of Vk(
). Note that the images


k(
) are in general not connected, but one veri�es that the number of connected

components cannot exceed const:j
j2�(d�1)(k�1), and the maximal distance between

any of the connected components is less than j
j. This leads easily to the estimate

that

A`;n � exp

�
C`n

2(d�1)`

�
(2:43)

On the other hand, one readily sees that

jint 
`(
)�int 
`�1(
)j � j
j2` (2:44)
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for whatever 
. Finally, one chooses k(n) so that for any 
 of length n that encircles

the origin, the image 
k(n) is empty (i.e. k(n) � lnn). Inserting these estimates into

(2.42), one concludes that for small enough � the sum in (2.42) is bounded by

k(n)X
`=1

exp

�
� z2`
C�2�22`n

+
C(`� 1)n

2(d�1)(`�1)
+

C(`)n

2(d�1)(`)

�
(2:45)

This allows us to choose for instance z` = c��n`�2 to get an overall bound of order

P

"
sup


:j
j=n
F
 > c��n

#
� e�cn (2:46)

and hence

P

�
sup


:int 
30
F
 > c��j
j

�
� e�c (2:47)

But from here follows the conclusion of Theorem 2.6 and hence the existence of two

Gibbs states. }}

The only existing full proof of the existence of a phase transition in the RFIM is due

to Bricmont and Kupiainen [BK] and requires much harder work. In that approach

a detailed analysis of the Gibbs measure for a given realization of the disorder is

performed using what is called a real space renormalization group method. In this

approach a sequence of image measures of the Gibbs measure under a map that maps

spin con�gurations to local averages on blocks (not unlike the blocks considered in

the preceding proof) is analyzed, and the properties of this sequence of measures are

used to deduce the desired information about the Gibbs measures. In this procedure,

the detailed properties of the random �elds con�gurations are analyzed carefully

on a sequence of length scales. Technically, this method relies on very carefully

performed (partial) cluster expansions, which makes its implementation very diÆcult

and involved. For this reason I cannot present any details in these notes. There is no

really good pedagogical exposition of this work, and the reading of the original paper

[BK] is a rather demanding task. For readers that are not frightened by a little more

complication in the model, I recommend to look at the paper [BoKu1] by myself and

Ch. K�ulske, where the same method is applied in the more complicated random solid-

on-solid (SOS) model. In that paper an attempt towards a pedagogical presentation
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was made, albeit with only partial success. An exposition of the renormalization

group method without cluster expansions is given in [BoKu2,BoKu3] in the context

of hierarchical SOS models.

2.4.2. Absence of phase transitions: The Aizenman{Wehr method.

We have seen that in d � 3 the random energy that can be gained by 
ipping

spins locally cannot compensate, if the disorder is weak and the temperature low,

the surface energy produced in doing so. On the other hand, in dimension d � 2, the

Imry{Ma argument predicts that the random bulk energies outweigh surface terms,

and this should imply that the particular realization of the random �elds determine

locally the orientation of the spins, and the e�ects of boundary conditions are not felt

in the interior of the system, implying a unique (random) Gibbs state. This argument

was made rigorous by Aizenman and Wehr [AW1,AW2] and this required a number of

clever and interesting ideas. Roughly, the proof is based on the following reasoning:

Consider a volume � and two boundary conditions, say all spins plus and all spins

minus. Then the di�erence between the corresponding free energies f�;�� � lnZ��;�
must always be bounded by const:j@�j (just introduce a contour right next to the

boundary and proceed as in the Peierls argument). Now get a lower bound on the

random 
uctuations of that free energy; from the upper bound (2.28) one might guess

that these can be of order C(�)
pj�j. If this is so, there is a dilemma: by symmetry,

the di�erence between the two free energies must be as big as the random part, and

this implies that C(�)
pj�j � const:j@�j. In d � 2, this implies that C(�) = 0. But

C(�) will be seen to be linked to an order parameter, here the magnetization, and

its vanishing will imply the uniqueness of Gibbs state. To make this rough argument

precise requires, however, a rather delicate procedure. In what follows I will give the

proof of Aizenman and Wehr only for the special case of the RFIM (in fact for any

system where FKG inequalities hold).

A key technical idea in [AW1] is to carry out the sketch of the argument above

in such a way that it gives directly information about in�nite-volume states. This

will allow the use of ergodicity arguments and this in turn will force us to investigate

some covariance properties of random Gibbs measures.
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To do this, we will equip our probability space (
;F ;P) with some extra structure.
First, we de�ne the action T of the translation group Zd on 
. We will assume that P

is invariant under this action and that the dynamical system (
;F ;P; T ) is stationary
and ergodic. In the random �eld case, we have of course that (hx1 [Ty!]; : : : ; hxn [Ty!]) �
(hx1+y[!]; : : : ; hxn+y[!]), and the assumptions of stationarity and ergodicity are triv-

ially satis�ed if the hi are i.i.d..

Next we will assume that 
 is equipped with an aÆne structure, i.e. we will

set (hx1 [! + !0]; : : : ; hxn [! + !0]) � (hx1 [!] + hx1 [!
0]; : : : ; hxn [!] + hxn [!

0]). We will

introduce a subset 
0 � 
 of random �elds that di�er from zero only in some �nite

set19, i.e.


0 �
�
Æ! 2 
 : 9� � Zd; �nite; 8y 62 �; hy[Æ!] = 0

	
(2:48)

We will use the convention to denote elements of 
0 by Æ!.

De�nition 2.13: A random Gibbs measure �� is called covariant if

(i) For all x 2 Zd, and any continuous function f ,

��[!](T�xf) = �� [Tx!](f); a.s. (2:49)

and

(ii) for all Æ! 2 
0, for almost all ! and all bounded, continuous f ,

�� [! + Æ!](f) =
�� [!]

�
fe��(H[!+Æ!]�H[!])

�
�� [!]

�
e��(H[!+Æ!]�H[!])

� (2:50)

(Note that H[! + Æ!] � H[!] is a �nite sum, i.e. if Æ! is supported on �, then

H[! + Æ!](!)�H[!](�) =
P

x2� �xhx[Æ!]).

The properties of covariant random Gibbs measures look rather natural, but their

veri�cation is in general elusive (recall that even the construction of random Gibb-

s measures was problematic). Essentially, one can verify the hypothesis for Gibbs

measures constructed as limits over arbitrary sequences of volumes of local speci�-

cations with translation invariant boundary conditions. It is a priori far from clear

19Never mind that this set will usually have measure zero.



Disordered Systems 57

that this is possible. The only cases occur if convergence can be assured by strong

monotonicity arguments. Since this is a frequently occuring topic, we will devote a

short excursion to it.

2.4.2.1. The FKG inequalities and monotonicity.

A large number of results in statistical mechanics are based on so-called correlation

inequalities. They re
ect certain structural properties of the interactions, and most

useful equalities are proven for ferromagnetic interactions. The FKG-inequalities,

named after Fortuin, Kasteleyn, and Ginibre [FKG] are amongst the most useful

ones.

De�nition 2.14: Let the single-spin space S be a linearly ordered set. We say

that a probability measure � on S� for a �nite � � Zd satis�es the FKG inequalities

or is positively correlated, if for all bounded F�-measurable functions f; g that are

non-decreasing with respect to the partial order on S� induced by the ordering of S,
it holds that

�(fg) � �(f)�(g) (2:51)

Theorem 2.15: [FKG]Assume that the cardinality of S0 is 2, and the interaction

is nearest neighbour and attractive. Then any �nite-volume Gibbs measure for this

interaction satis�es the FKG inequalities.

Proof. A survey of various proofs can be found in [dHK].}

We will now show how the FKG inequalities can be used to prove useful facts

about the Gibbs measures.

Lemma 2.16: Let ���;� local speci�cations for Gibbs measure that satis�es the

FKG inequalities. Denote by + the spin con�guration �i = +1; 8i2Zd. Then

(i) For any � � Zd and any � 2 S, and any increasing function f : S� ! R,

�+�;�(f) � ���;�(f) (2:52)
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(ii) For any �2 � �1, and any increasing function f : S�1
! R,

�+�;�2
(f) � �+�;�1

(f) (2:53)

Proof. For the proof we only consider the case where S0 = f�1; 1g. We �rst prove

(i). Let i 2 �c, and consider �i as an element of [�1; 1]. We will show that ���;�(f)

is increasing in �i. If this is true, (2.52) is immediate. Now compute

@

@�i
���;�(f) =

X
j2�

�Jij
�
���;�(�jf)� ���;�(�j)�

�
�;�(f)

�
(2:54)

Now since all Jij are positive, and since �j is an increasing function, by the FKG

inequalities, the right hand side of (2.54) is non-negative and (i) is proven.

To prove (ii), consider �+�;�2
(1I+1�2n�1

f). By FKG,

�+�;�2
(1I+1�2n�1

f) � �+�;�2
(1I+1�2n�1 )

�+�;�2
(f)

= exp

0BB@� X
i;j2�c

1
i_i2�2n�1

Jij � ��
X

i2�2n�1

hi

1CCA Z+
�;�1

Z+
�;�2

�+�;�2
(f)

(2:55)

where the second equality uses the DLR equations. On the other hand, applying the

DLR equations directly on the left hand side of (2.55), we get

�+�;�2
(1I+1�2n�1

f) = �+�;�1
(f) exp

0BB@� X
i;j2�c

1
i_i2�2n�1

Jij � ��
X

i2�2n�1

hi

1CCA Z+
�;�1

Z+
�;�2

(2:56)

and combining both observations we have (ii).}

An immediate corollary of this theorem is

Corollary 2.17: Under the hypothesis of 2.16,

(i) For any sequence of increasing and absorbing sequence of volumes �n � Zd, the

limit

lim
n"1

�+�;�n � �+� (2:57)
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exists and is independent of the particular sequence. Moreover,

(ii) The Gibbs measure �+� is extremal.

(iii) Similarly, the limit

lim
n"1

���;�n � ��� (2:58)

also exists, is independent of the sequence �n and is an extremal Gibbs measure.

Moreover,

(iv) for all Gibbs measures for the same interaction and temperature, and any increas-

ing bounded continuous function f ,

��� (f) � ��(f) � �+� (f) (2:59)

Proof. Note that compactness and monotonicity (2.53) implies that for all in-

creasing bounded continuous functions, for any sequence �n of increasing absorbing

sequences the limit �+�;�n(f) exists. Now let �n, �
0
n be two such sequences. Since

both sequences are absorbing, it follows that there exist in�nite sequences nk and n
0
k

such that for all k 2 N , �nk � �0n0
k
� �nk+1

. But this implies that

lim
n"1

�+�;�n(f) = lim
k"1

�+�;�nk
(f) � lim

k"1
�+�;�0nk

(f) = lim
n"1

�+�;�0n(f) (2:60)

and

lim
n"1

�+�;�n(f) = lim
k"1

�+�;�nk+1
(f) � lim

k"1
�+�;�0nk

(f) = lim
n"1

�+�;�0n(f) (2:61)

and so

lim
n"1

�+�;�n(f) = lim
n"1

�+�;�0n(f) (2:62)

Thus all possible limit points of �+�;� coincide on the set of increasing bounded contin-

uous functions. But then by standard approximation arguments, the limits coincide

on all bounded continuous functions implying that in fact the limiting measures exist

and are independent of the subsequences chosen. This proves (i). Assume now that
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�+� was not extremal. Then there exist two distinct Gibbs measures � and � such

that �+� = ��� + (1� �)�� with � > 0. In particular, for f increasing,

�+� (f) = ���(f) + (1� �)��(f) (2:63)

Now by (2.52) and the DLR-equations, for any local increasing function f , for all �

large enough so that f is F�-measurable, for any Gibbs measure ��

��(f) = ��
�
���;�(f)

� � �+�;�(f) (2:64)

Since �+�;� converges to �+� , this implies that

��(f) � �+� (f) (2:65)

Thus (2.63) can only hold if both ��(f) and ��(f) are equal to �+� (f). But then,

by the same argument as before, we conclude �� = �� = �+� , contradicting the

assumption that �� and �� are di�erent. This proves (ii). (iii) is obvious by repeating

all arguments with decreasing functions which also yields the complementing version

of (2.65) which implies (iv). }

We can now apply these results to the random �eld Ising model.

Theorem 2.18: Consider the random �eld Ising model (2.25) with hi a stationary

and ergodic random �eld. Then there exist two covariant random Gibbs measures �+�

and ��� that satisfy

(i) For almost all !,

��� [!] = lim
�"Zd

���;�[!] (2:66)

(ii) Suppose that for some �, �+� = ��� . Then for this value of �, the Gibbs measure

for the RFIM model is unique for almost all !.

Proof. We observe �rst that due to Corollary 2.17, the functions ! ! ��� are

measurable, since they are limits of measurable functions. It remains to check the

covariance properties. Property (ii) follows immediately from the fact that ��� can

be represented as a limit of local speci�cations, and that the formula (2.51) holds
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trivially for local speci�cations with � large enough to contain the support of Æ!.

Property (i) on the contrary requires the independence of the limit from the chosen

sequence �n. Indeed we have

�+�;�[!](T�xf) = �+�;�+x[Tx!](f) (2:67)

which implies by Corollary 2.17 that �+� [!](T�xf) = �+� [Tx!](f) almost surely, as

desired. The second assertion of the theorem follows directly from (iv) of Corollary

2.17. }

Remark. It is remarkably hard to prove the translation covariance property in the

absence of strong result like the FKG inequalities. In fact there are two diÆculties.

The �rst is that of the measurability of the limits which we have already discussed

above. This can be resolved by the introduction of metastates, and it was precisely

in this context that Aizenman and Wehr �rst applied this idea. The second problem

is that without comparison results between local speci�cations in di�erent volumes,

the relative shift between the function and the volume implicit in (2.67) cannot be

removed. The general way out of this problem is to construct Gibbs states with

periodic boundary conditions (i.e. one chooses instead of � a torus, i.e. (Zmodn)d).

In that case, one may recover the translation covariance of the limit from translation

covariance of the �nite-volume measures under the automorphisms of the torus. From

the point of view of the general theory as we have presented it so far, this is of course

somewhat unsatisfactory. For this reason we have prefered to restrict our exposition

of the Aizenman{Wehr method to a smaller class of models and refer the reader to

the original articles for the more general results.

2.4.2.2. Order parameters and generating functions.

We can conclude from the preceding subsection that (due to FKG) we will have

a unique Gibbs state for almost all !, provided we have a unique covariant random

Gibbs state. Moreover, it is easy to see that uniqueness will follow from the vanishing

of a so-called order parameter which in the present case is nothing but the total

magnetization. If � is a Gibbs measure, we set

m�[!] � lim
�"1

1

j�j
X
i2�

�[!](�i) (2:68)
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provided the limit exists. We will also use the abusive notations m�
� = m��

� .

Some simple facts follow from covariance and FKG:

Lemma 2.19: Suppose that � is a covariant Gibbs state. Then the total magneti-

zation m�[!] exists for almost all ! and is almost surely independent of !.

Proof. By the covariance of �,

m�[!] = lim
�"1

1

j�j
X
i2�

�[T�i!](�0) (2:69)

But �� [!](�0) is a bounded measurable function of !. Since we assumed that

(
;F ;P; T ) is stationary and ergodic, it follows from the ergodic theorem (see e.g.

Appendix A3 of [Ge1] for a good exposition and proofs) that the limit exists almost

surely and is given by

m� = E �(�0) (2:70)

Lemma 2.20: In the random �eld Ising model,

m+ �m� = 0, �+� = ��� (2:71)

Proof. (2.70) implies that almost surely

0 = m+ �m� = E (�+� (�i)� ��� (�i)) (2:72)

and so, since �+� (�i)���� (�i) � 0, and there are only countably many sites i, almost

surely for all i 2 Zd, �+� (�i)� ��� (�i) = 0.

Interestingly enough, in the presence of FKG inequalities, this fact implies that

the two measures �+� and ��� coincide. This result is due to Lebowitz and Martin-L�of

[LML] and Ruelle [Ru3]. We give a proof in the Ising case following Preston [Pr1].

It is based on the following simple lemma:

Lemma 2.21: Consider a model with Ising spins for which the FKG inequalities

hold. Then for any �nite sets A;B � �,

�+� (�A[B = +1)� ��� (�A[B = +1)

� �+� (�A = +1)� ��� (�A = +1) + �+� (�B = +1)� ��� (�B = +1)
(2:73)
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(where �A = +1 is shorthand for 8i2A�i = +1).

Proof. Notice the set-equality

1I�A=+1^�B=+1 = 1I�A=+1 + 1I�B=+1 � 1I�A=+1_�B=+1 (2:74)

This implies that

�+� (�A[B = +1)� ��� (�A[B = +1) = �+� (�A = +1)� ��� (�A = +1)

+ �+� (�B = +1)� ��� (�B = +1) + ��� (�A = +1 _ �B = +1)� �+� (�A = +1 _ �B = +1)

(2:75)

But f�A = +1 _ �B = +1g is an increasing event, and so by (2.59),

��� (�A = +1 _ �B = +1)� �+� (�A = +1 _ �B = +1) � 0 (2:76)

This implies the assertion of the lemma.}

Now in the Ising model, all local functions can expressed in terms of the indicator

functions 1I�A=+1, for �nite A � �. But by repeated application of Lemma 2.21, we

get

0 � �+� (�A = +1)� ��� (�A = +1) �
X
i2A

�+� (�i = +1)� ��� (�i = +1) (2:77)

Therefore, if for all i, �+� (�i = +1) = ��� (�i = +1), it follows indeed that �+� = ��� .

This concludes the proof of Lemma 2.20.}

The (macroscopic) functions m� are called order parameters because their values

allow to decide (in this model) on the uniqueness respectively co-existence of phases.

One can generalize this notion to other models, and one may set up a general theory

that is able to produce rather interesting abstract results (see [Ge1]). Recall that

after all, extremal Gibbs measures are characterized by their values on the tail-sigma-

�eld, i.e. by their values on macroscopic functions. The general philosophy would

thus be to identify a (hopefully) �nite set of macroscopic functions whose values

suÆce to characterize all possible Gibbs states of the system. We will not enter this

subject here, but will have occasion to return to the notion of order parameters quite

extensively in our discussion of mean �eld models.
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The order parameters introduced above can be computed as derivatives of certain

generating functions. We set

G�
� �

1

�
ln�

�
e
�
P

i2� hi�i
�

(2:78)

Note that if � is a covariant Gibbs state, then

G
�[!]
� = � 1

�
ln�[! � !�]

�
e
��
P

i2� hi�i
�

(2:79)

Here !� 2 
0 is such that hi[!�] = hi[!], if i 2 �, and hi[!�] = 0, if i 62 �. Therefore,

for i 2 �,

@

@hi
G
�[!]
� =

�[! � !�]
�
�ie

��
P

i2� hi�i
�

�[! � !�]
�
e
��
P

i2� hi�i
� = �[!](�i) (2:80)

where the �rst equality follows from the fact that �[! � !�] is F�c -measurable and

the second follows using (2.50). In particular, we get that

E
@

@hi
G��

� = m� (2:81)

Let us now introduce the function

F�;� � E
h
G�+

� �G��

�

��F�

i
(2:82)

Clearly E @
@h0

F� = m+ � m�, and our purpose will be to prove that this quantity

must be zero. The important point is the following a-priori upper bound:

Lemma 2.22: For any temperature and any volume �,

jF�j � 2j@�j (2:83)

Proof. The �rst step in the proof makes use of (2.79) to express F� in terms of

measures that do not depend on the disorder within � anymore. Namely,

F� =��1E

24ln �+� [!]
�
e
�
P

i2� hi�i
�

��� [!]
�
e
�
P

i2� hi�i
���B�

35

= E

24ln ��� [! � !�]
�
e
��
P

i2� hi�i
�

�+� [! � !�]
�
e
��
P

i2� hi�i
���B�

35
(2:84)
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Next we use the spin-
ip symmetry which assures that �+� [!] = ��� [�!] together
with the fact that the distribution of the hi is symmetric:

E

24ln ��� [! � !�]
�
e
��
P

i2� hi�i
�

�+� [! � !�]
�
e
��
P

i2� hi�i
���B�

35

= E

24ln �+� [�(! � !�)]
�
e
+�
P

i2� hi�i
�

�+� [! � !�]
�
e
��
P

i2� hi�i
� ��B�

35

= E

24ln �+� [! � !�]
�
e
+�
P

i2� hi�i
�

�+� [! � !�]
�
e
��
P

i2� hi�i
���B�

35
(2:85)

We are left with the ratio of two expectations with respect to the same measure.

Here we use the DLR equations to compare them:

�+� [! � !�]
�
e
+�
P

i2� hi�i
�
=
X
��c

�+� [! � !�](��c)�
��c
�;�

�
e
�
P

i2� hi�i
�
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X
��c
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1

Z��c
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X
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e
�
P
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e
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i2� hi�i
�
e2�j@�j

(2:86)

Inserting this bound into (2.85) gives the desired estimate immediately.}

Next we proof a lower bound on the 
uctuations of F�, or more precisely on its

Laplace transform. Namely:

Lemma 2.23: Assume that for some � > 0, the distribution of the random �elds h

satis�es E jhj2+� <1. Then, for any t 2 R, we have that

lim inf
�=[�L;L]d;L"1

EetF�=
p
j�j � e

t2b2

2 (2:87)



66 Section 2

where

b2 � E
h
E [F�jB0]2

i
(2:88)

Remark. It is easy to see that Lemmata 2.22 and 2.23 contradict each other in

d � 2 unless b = 0. On the other hand we will see that b = 0 implies m+ = m� and

thus uniqueness of the Gibbs state.

Proof. The proof of this lemma uses a decomposition of F� as a martingale-di�erence

sequence. That is, we order all the points i 2 � and denote by B�;i the sigma-algebra
generated by the variables fhjgj2�:j�i. Then we have trivially that

F� =

j�jX
i=1

(E [F�jB�;i]� E [F�jB�;i�1]) �
j�jX
i=1

Yi (2:89)

(note that EF� = 0!). Using this, we can represent the generating function as

EetF� = E

j�jY
i=1

etYi

= E
�
E
�
: : :E

�
E
�
etYj�j jB�;j�j�1

�
etYj�j�1 jB�;j�j�2

�
: : : etY2 jB�;1

�
etY1

� (2:90)

We want to work up the conditional expectation from the inside out. For this we

need a bound from below for any of the terms E
�
etYi jB�;i�1

�
. To do this we will use

the elementary observation (to be found in [AW1], Lemma A.2.2) that there exists

a continuous functions g(a) with g(a) # 0 as a # 0, such that for all real and all

x and a � 0, ex � 1 + x + 1
2 (1 � g(a))x21Ijxj�a. Since moreover for all jxj � a,

ex
2e�a

2

� 1 + x2, it follows that if EX = 0, then for f(a) = 1� (1� g(a))e�a2 ,

EeX � e
1
2 (1�f(a))E[X21IjXj�a] (2:91)

Using this estimate we see that

E
�
etYi jB�;i�1

� � exp

�
t2

2
(1� f(a))E

�
Y 2
i 1ItjYij�ajB�;i�1

��
(2:92)

But this implies that (we switch to the desired normalization)

1 � Ee
tF�=

p
�� t2

2j�j (1�f(a))
Pj�j

i=1
E

h
Y 2
i 1ItjYij�a

p
j�jjB�;i�1

i
(2:93)
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Now by the H�older inequality, for any p; q with 1=p+ 1=q = 1,

1 �
�
EeqtF�=

p
�
�1=q 

Ee
�p t2

2j�j (1�f(a))
Pj�j

i=1
E

h
Y 2
i 1ItjYij�a

p
j�jjB�;i�1

i!1=p

(2:94)

Now if the term

V�(a) � j�j�1
j�jX
i=1

E
h
Y 2
i 1ItjYij�a

p
j�jjB�;i�1

i
(2:95)

in the exponent in the last factor converges to a constant C, independent of a > 0,

in probability (as j�j " 1), then for all a > 0,

lim sup
�"Zd

 
Ee

�p t2

2j�j (1�f(a))
Pj�j

i=1
E

h
Y 2
i 1ItjYij�a

p
j�jjB�;i�1

i!1=p

� e�C(1�f(a))t2 (2:96)

independent of p and therefore, using �rst (2.94) and letting �nally q go to one and

a to zero,

EetF�=
p
� � et

2C (2:97)

Thus we are left with controlling and identifying the limit of V�(a). This will be done

by a clever use of the ergodic theorem. Note that the summands in (2.95) depend on

�

For this we introduce new sigma-algebras B�i , generated by the random variables

hj with j � i, where � refers to the lexicographical ordering. De�ne

Wi � E
h
G�+

� �G��

� jB�i
i
� E

h
G�+

� �G��

� jB�i�1
i

(2:98)

Using (2.80) one may indeed show that for all i in �, Wi is independent of � (the

proof goes by using (2.80) to represent G�
� in terms of integrals over �(�i), which is

independent of �). On the other hand, we have the obvious relation that

Yi = E [WijB�] (2:99)

We use this �rst to show that the indicator function in the conditional expectation

can be removed, i.e. for all � > 0,

lim
�"1

P

24j�j�1 j�jX
i=1

E
h
Y 2
i 1ItjYij>a

p
j�jjB�;i�1

i
> �

35 = 0 (2:100)
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To see this, compute the expectation of the left-hand side in the probability, and use

the H�older inequality to get

E j�j�1
j�jX
i=1

E
h
Y 2
i 1ItjYij>a

p
j�jjB�;i�1

i
= j�j�1

j�jX
i=1

E
h
Y 2
i 1ItjYij>a

p
j�j

i

� j�j�1
j�jX
i=1

�
EY 2q

i

�1=q �
P
h
jYij > a

p
j�j=t

i�1=p (2:101)

with 1=p+1=q = 1. Now using Jensen's inequality and (2.99), we see that for any q >

1 EY 2q
i � EW 2q

0 However, using e.g. (2.80), it is easy to see that jW0j � Cjh0j, so that
if the 2q-th moment of h is �nite, then EW 2q

0 <1. Using the Chebyshev inequality

and the same argument as before, we also conclude that P
h
jYij > a

pj�j=ti � t2EW 2
0

a2j�j
which tends to zero as � " 1. We see that (2.101) tends to zero whenever p < 1,

for any a > 0. By Chebyshev's inequality, this allows in turn to conclude (2.100)20.

Next observe that Wi is shift covariant, i.e.

Wi[!] = W0[T�i!] (2:102)

Therefore, by the ergodic theorem, we can conclude that

lim
�"Zd

j�j�1
X
i2�

E
h
W 2

i jB�i�1
i
= EW 2

0 ; in Prob. (2:103)

Now we will be done if we can show that

E
�
Y 2
i jB�;i

�� E
h
W 2

i jB�i
i

(2:104)

goes to zero as � goes to in�nity, in probability. This follows by estimating the ex-

pectation of the square of (2.104), some simple estimates using the Cauchy-Schwartz

inequality and the fact that for any square integrable function f , E [(f � E [f jB� ])2]
tends to zero as � approaches Zd.

To arrive at the �nal conclusion, note that

EW 2
0 � E [(E [W0 jB0])2] (2:105)

20In [AW1], only two moments are required for h. However, the proof given there is in error as
it pretends that the function x21Ijxj>a is convex which is manifestly not the case.
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(where B0 is the sigma-algebra generated by the single variable h0), and E [W0 jB0] =
E [F� jB0]. }

Finally we observe that by (2.80),

@

@h0
E [F� jB0] = E

h
(�+� (�0)� ��� (�0))jB0

i
(2:106)

Let us denote by f(h) = E [F� jB0] (where h = h0[!]). Since 1 � f 0(h) � 0 for all

h, Ef2 = 0 implies that f(h) = 0 (for P-almost all points) on the support of the

distribution of h. But then f 0(h) must also vanish on the convex hull of the support

of the distribution of h (except of course if the distribution is concentrated on a single

point). Therefore, barring that case E [F� jB0] = 0) m+ �m� = 0.

Collecting our results we can now prove the following

Theorem 2.24: [AW1] In the random �eld Ising model with i.i.d. random �elds

whose distribution is not concentrated on a single point and possesses at least 2 + �

�nite moments, for some � > 0, if d � 2, there exists a unique in�nite-volume Gibbs

state.

Proof. Lemma 2.22 implies that for any �, EetF�;� � etj@�j. Combining this with

Lemma 2.23, we deduce that if d � 2, necessarily b = 0. But from what was just

shown, this implies m+ = m�, which in turn implies uniqueness of the Gibbs state.}

With this result we conclude our discussion of the random �eld Ising model. We

may stress that Theorem 2.24 is in some sense a soft result that gives uniqueness

without saying anything more precise about the properties of the Gibbs state. Clearly,

there are many interesting questions that could still be asked. How does the Gibbs

state at high temperatures distinguish itself from the one at low temperatures, or

how does the low temperature Gibbs state look like in dependence on the strength

of the random �elds? It is clear that for very low temperatures and very large �,

the Gibbs state will be concentrated near con�gurations �i = sign hi. For small �,

on the contrary, a more complicated behaviour is expected. Results of this type are

available in d = 1 [BRZ], but much less is known in d = 2 [AW2].

The natural continuation of this section would be to start to discuss models with
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bond disorder in situations where the simple Peierls argument (Theorem 2.6) does not

apply. This is the case in the so-called Edwards{Anderson model, whose Hamiltonian

is identical to that of the dilute Ising model (2.15), except that the random bond

variables Jij take both positive and negative values with roughly the same probability;

e.g. one may chose them to be symmetric Rademacher variables (i.e. taking values

�1 with equal probability), or centered Gaussian random variables. Such models are

called spin glasses and are expected to exhibit most remarkable properties. However,

exceedingly little is known about their low temperature phases, and even in the

physics literature various speculative theories compete. I will therefor approach the

subject of spin glasses only via so-called mean-�eld models, which will be the subject

of the rest of these notes. Readers interested to learn more about the Edwards{

Anderson model should turn to Newman's book [N] or the review papers [NS1,NS2]

by Newman and Stein.
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3. Mean-�eld models 1: Gaussian processes.

In the previous chapters we have seen that with considerable work it is possible to

study some simple aspects of random perturbations of the Ising model. On the other

hand, models that are genuinely random and promise to bring some new features to

light are at the moment not seriously accessible to rigorous analysis. Therefore we

now turn our attention to simpli�ed models that promise more explicit solutions. A

class of such models is generally called \mean-�eld models".

3.1. What are disordered mean-�eld models?

The common feature of mean-�eld models is that the spatial structure of the

lattice Zd is abandoned in favour of a simpler setting where sites are indexed by the

natural numbers and all spins are supposed to interact with each other irrespective

of their `distance'. The prototype of all such models is the Curie{Weiss model of

ferromagnetism which is nothing but the mean-�eld trivialization of the Ising model.

Let us brie
y describe this model: We consider the single-site state space S0 =

f�1;+1g. Let �N � f1; 2; : : : ; Ng � N , and de�ne the state spaces SN � S�N
and S = SN0 . We would like to de�ne a ferromagnetic interaction of equal strength

between all sites i; j. Of course this is not possible within the context of regular

interactions. Thus, we will have to leave the Gibbsian setting introduced in Section

1 and return to a more naive description of �nite volume systems. De�ne

HN;h(�) � � 1

2N

X
i;j2�N��N

�i�j �
X
i2�N

h�i (3:1)

Note that there are no terms in (3.1) that correspond to an interaction with the

complement of �N , and it is easy to see that as long as we maintain the decision

to ignore distance between sites, there is no reasonable way of writing such an in-

teraction (we will understand later that the magnetic �eld term in the Hamiltonian

will take over this role to some extent). Note also that the Hamiltonian contains

an explicit coeÆcient 1=(2N) that depends on the volume. In particular, there is

no way of thinking of HN as the restriction of some in�nite-volume Hamiltonian to

�nite volume; the alert reader will immediately worry that this will also prevent us

from constructing in�nite-volume Gibbs measures by prescribing local speci�cations.



72 Section 3

While from a formal point of view all this looks very worrying, there are good

reasons not to worry and to continue in a naive way. Namely, we can de�ne (�nite-

volume) measures

�N;�;h(f) �
Z
��N (d��N )�

h0(d��c
N
)
e��HN;h(�)

ZN;�;h
f(�) (3:2)

where �h is the product measure with marginal �(�i = �1) = e��h
2 cosh(�h) , and the

choice h0 = h +m�(�; h), where m�(�; h) solves m = tanh�(h +m) looks particu-

larly attractive21. Of course these measures are not local speci�cations, but we may

nonetheless look for limit points, or even limits, as N " 1. Such objects may be

interpreted in good faith as \in�nite-volume Gibbs measures", even though they lack

some of the nice properties of genuine Gibbs measures. In compensation, we will

see that we are rewarded { at least in many cases { by the possibility to actually

compute things explicitly, that is to compute the actual limit measures in a more or

less explicit form.

We have seen that in lattice systems `boundary conditions' played an important

rôle in the construction of Gibbs states. In particular, the use of suitable boundary

conditions does allow, often even in disordered models (see e.g. the RFIM), to con-

struct sequences of �nite-volume measures that converge to a given extremal Gibbs

state. In mean-�eld models, such a construction is not immediately available. How-

ever, there is an often used alternative that is some way emulates the e�ect of an

external con�gurations, namely an external �eld. This just means that one constructs

for a given Hamiltonian Gibbs measures �N;�;fhg depending on an entire family of

parameters fhigNi=1 that are thought of as external �elds acting on the spin �i. One

may then consider the set of Gibbs measures as the set of limit points of all these

sequences when �rst N tends to in�nity and then all hi tend to zero22.

We will at this point not linger much around deterministic mean-�eld models such

as the Curie{Weiss model and its generalizations. The method of choice for their

21The de�nition given here is however not the only possible one. It is in fact irrelevant which
measure is put outside �N .

22One can, and sometimes does, apply this procedure also in the case of lattice models. It o�ers
the possibility to construct �nite-volume measures on tori, thus allowing to obtain �nite-volume
measures with explicit translation in- or covariance. See for instance [AW].
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analysis is the method of large deviations, and an excellent exposition of this method

together with applications to mean-�eld models of this type may be found in the

textbook by Ellis [E].

What should be the natural class of disordered mean-�eld models to study? This

question requires some discussion and we will see that there are at least two natural

classes that propose themselves. To understand this point, we must consider a second

form of writing the Hamiltonian of the Curie{Weiss model. Namely, note that

HN;h(�) =� N

2

 
1

N

X
i2�N

�i

!2

� hN
1

N

X
i2�N

�i

= �N
�
(mN (�))

2

2
+ hmN (�)

� (3:3)

where

mN (�) � 1

N

X
i2�N

�i (3:4)

is the empirical magnetisation. Thus, the Hamiltonian of the Curie{Weiss model is a

function of a macroscopic variable. This fact is indeed instrumental for the treatment

of the model with large deviation methods, and, more generally, is responsible for

the fact that it is rather easily solvable. One may thus consider as proper mean-�eld

models only models that share this property, i.e. whose Hamiltonian is a function of

macroscopic variables23. One can then seek to introduce macroscopic variables that

are in turn dependent on some quenched disorder. The simplest natural example of

this kind would be the random �eld Curie{Weiss model. Its Hamiltonian is

HN [!](�) �� 1

2N

X
i;j2�N��N

�i�j �
X
i2�N

hi[!]�i

� N

2
(mN (�))

2 �NnN [!](�)
(3:5)

where

nN [!](�) � � 1

N

X
i2�N

hi[!]�i (3:6)

23It is in fact natural from the point of view of large deviations to extend this notion slight-
ly and to consider as macroscopic variables also measure valued functions, such as the empirical
distribution. This is of relevance when richer single-spin spaces than f�1;+1g are considered.
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is a second, random, macroscopic variable. We will discuss more complicated and

more interesting generalizations along this line in the context of the so-called Hop�eld

models in Part 4 of these lectures.

While the mean-�eld analogue of the random �eld model �ts naturally in this

class, models with random pair interactions are less naturally incorporated. In fact,

the naive analog of the Curie{Weiss Hamiltonian with random couplings would be

HN [!](�) = � 1

2N

X
i;j2�N��N

Jij [!]�i�j (3:7)

for, say, Jij some family of i.i.d. random variables. This Hamiltonian cannot be

written as a function of some macroscopic variables. The properties of this model

depend strongly on the choice of random variables Jij . The main interest in this

model concerns the case when the random couplings have mean zero. In this case, we

will see shortly that the normalization factor N�1 is actually inappropriate and must

be replaced by N�1=2 to obtain an interesting model. This is easily understood by

the following argument. We certainly want the energy to be an extensive quantity,

i.e. to be of the order of the volume of the system. This means that for typical

realisations of the disorder, at least for some spin con�gurations, we must demand

that HN (�) = CN , for some C > 0. Thus we want to estimate P[max�HN (�) �
CN ]. But the most simple estimate shows that, with the Hamiltonian de�ned as in

(3.7),

P[max
�

HN (�) � CN ] �
X
�2SN

P[HN (�) � CN ]

=
X
�2SN

inf
t�0

e�tCNEe
t 1
2N

P
i;j2�N��N

Jij [!]�i�j

=
X
�2SN

inf
t�0

e�tCN
Y

i;j2�N��N
Eet

1
2N Jij [!]�i�j

(3:8)

where we assumed that the exponential moments of Jij exist. A standard estimate

then shows that for some constant c, Eet
1
2N Jij [!]�i�j � ec

t2

2N2 , and so

P[max
�

HN (�) � CN ] � 2N inf
t�0

e�tCNect
2=2 � 2Ne�

C2N2

2c (3:9)
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which tends to zero with N . Thus, our Hamiltonian is never of order N , but at best

of order
p
N . The proper Hamiltonian for what is called the Sherrington{Kirkpatrick

model (or short SK-model), is thus

HSK
N � � 1p

2N

X
i;j2�N��N

Jij�i�j (3:10)

where the random variables Jij = Jji are i.i.d. for i � j with mean zero (or at

most J0N
�1=2) and variance normalized to one for i 6= j and to two for i = j24.

In its original, and mostly considered form, the distribution is moreover taken to be

Gaussian. Note that
P

ij jN�1=2Jij�i�j j � N3=2, and that thus competing signs play

a major role.

This model was introduced by Sherrington and Kirkpatrick in 1976 [SK] as an

attempt to furnish a simple, solvable mean-�eld model for the then rather newly

discovered class of materials called spin-glasses. However, it turned out that the

innocent looking modi�cations made to create a spin glass model that looks similar

to the Curie{Weiss model had rather thoroughly destroyed the simplifying proper-

ties that made the latter so easily solvable, and that a model with an enormously

complex structure, which on a mathematically rigorous level remains today largely

un-understood, had been invented. Using highly innovative ideas based on ad hoc

mathematical structures, Parisi (see [MPV]) produced in the mid-eighties a heuristic

framework that explained the properties of the model. Only the simplest predictions

of this theory have been established with considerable e�ort, on a rigorous basis over

the last years.

We will introduce a somewhat di�erent point of view on the SK-model that allows

us to put it in a wider context where simpler models can be found, and some of the

reasons for its complexity are more easily understood. This point of view consists in

regarding the Hamiltonian (3.10) as a Gaussian random process indexed by the set

SN , i.e. by the N -dimensional hypercube. We will restrict our attention to the case

when the Jij are centered Gaussian random variables. In this case, HN (�) is in fact

24This choice is for notational convenience. Of course the self-couplings Jii have no physical
relevance whatsoever.
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a centered Gaussian random process which is fully characterized by its covariance

function

rN (�; �
0) �cov(HN (�); HN(�

0)) =
1

2N

X
1�i;j;l;k�N

EJijJkl�i�j�
0
k�

0
l

=
1

N

X
1�i;j�N

�i�
0
i�j�

0
j = N

 
N�1X

i=1

�i�
0
i

!2

= NRN (�; �
0)2

(3:11)

where RN (�; �
0) is usually called the overlap between the two con�gurations � and

�0. It is useful to recall that the overlap is closely related to the Hamming distance

dHAM (�; �0) � #(i � N : �i 6= �0i), namely RN (�; �
0) = (1� 2N�1dHAM (�; �0)).

Seen this way, the SK model is a particular example of a class of models whose

Hamiltonian are centered Gaussian random process on the hypercube with covariance

depending only on RN (�; �
0),

cov(HN (�); HN(�
0)) = Nf(RN (�; �

0)) (3:12)

normalized such that f(1) = 1. A class of particular examples considered in the

literature are the so-called p-spin SK models, which are obtained by choosing f(x) =

jxjp. They enjoy the property that they may be represented in a form similar to the

SK Hamiltonian, except that the two-spin interaction must be replaced by a p-spin

one:

Hp�SK
N (�) =

�1p
Np�1

X
1�i1;:::;ip�N

Ji1:::ip�i1 : : : �ip (3:13)

with Ji1;:::;ip i.i.d. standard normal random variables25. We will see that the faster

decay of the covariance with p > 2 entails considerable simpli�cations, but as yet is

not enough to get fully to grips with the model. As we will see later, the diÆculties

in studying the statistical mechanics of these models is closely linked to the under-

standing of the extremal properties of the corresponding random process. While

Gaussian processes have been heavily analyzed in the mathematical literature (see

25Sometimes the terms there some indices in the sum (3.13) coincide are ommitted. Although
this has an e�ect for instance on the 
uctuations of the free energy (see [BKL]), for our present
purposes this is not relevant and we choose the form with the simplest expression for the covariance.
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e.g. [LT,A]), it turns out that still not quite enough is known. On the other hand,

the heuristic results obtained in the physics literature suggest facts about extremes

that go far beyond the existing mathematical results in the �eld. This is one reason

why this particular �eld of mean-�eld spin-glass models has considerable intrinsic

interest for mathematics.

The class of Gaussian models we have just introduced has, fortunately, an extreme

member that turns out to be so simple that full answers can be provided with full

rigour. It corresponds to the case when the Gaussian process is just an i.i.d. �eld.

The corresponding model is known as the random energy model or REM and we

present a full analysis in the next section.

3.2. The REM.

The random energy model, introduced by Derrida [D1,D2] can be considered as

the ultimate toy model of a disordered system. In this model, rather little is left of

the structure of interacting spins, but we will still be able to gain a lot of insight into

the peculiarities of disordered systems by studying this simple system. For earlier

rigorous results on the REM see e.g. [Ei,OP,GMP,DW].

The REM is a model with state space SN = f�1;+1gN . For �xed N , the Hamil-

tonian is given by

HN (�) = �
p
NX� (3:14)

where X�, is a family of 2N i.i.d. centered random variables. In its original form,

these variables are taken to be standard normal random variables, but in this case

generalizations pose no problems. We will, however, only consider the Gaussian case

here.

3.2.1. The free energy.

Before turning to the question of Gibbs measures, we turn to the simpler ques-

tion of analysing in some detail the partition function. In this model, the partition
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function is of course just the sum of i.i.d. random variables, i.e.

Z�;N � 2�N
X
�2SN

e�
p
NX� (3:15)

One usually asks �rst for the exponential asymptotics of this quantity, i.e. one

introduces the free energy,

F�;N � � 1

N
lnZ�;N (3:16)

and tries to �nd its limit as N " 1. A remark is in place here. While in lattice

models with regular interactions the almost sure existence of a non-random limit

follows from general principles (e.g. sub-additivity arguments), in mean-�eld models

this is in general not the case. For example, it is unknown whether in the SK model

such a limit always exists.

In our simple model we expect of course to be able to compute this limit exactly.

In fact, the �rst guess would be that a law of large numbers might hold, implying

that Z�;N � EZ�;N , and hence

lim
N"1

F�;N = lim
N"1

� 1

N
ln EZ�;N = ��

2

2
; a.s. (3:17)

It turns out that this is indeed true, but only for small enough values of �, and

this can be linked precisely to a critical value for the breakdown of the law of large

numbers. The analysis of this problem will allow us to compute the free energy

exactly.

Theorem 3.1: In the REM,

lim
N"1

EF�;N =

(
��2

2 ; for � � �c

��2c
2 � (� � �c)�c; for � � �c

(3:18)

where �c =
p
2 ln 2.

Proof. We will not give the most eÆcient proof of this result, but one that introduces

useful ideas that can be applied to other models. It uses what we call the method of

truncated second moments which was introduced by M. Talagrand [T0,T2,T3]. The

REM furnishes a particularly simple setting to explain how this works.
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We will �rst derive a lower bound for EF�;N . Note �rst that by Jensen's inequality,

E ln Z � ln EZ, and thus

EF�;N � ��
2

2
(3:19)

On the other hand we have that

�E d

d�
F�;N = N�1=2E

E �X�e
�
p
NX�

Z�;N
� N�1=2E max

�2SN
X� � �

p
2 ln 2(1 + C=N)

(3:20)

for some constant C. (Exercise: Prove the last inequality!). Moreover, since d2

d�2
F�;N �

0 (Exercise!), we may combine (3.19) and (3.20) to deduce that

EF�;N � sup
�0�0

(
��2

2 ; for � � �0

��20
2 � (� � �0)

p
2 ln 2(1 + C=N); for � � �0

(3:21)

It is easy to see that the supremum is realized (ignore the C=N correction) for �0 =p
2 ln 2. This shows that the right hand side of (3.18) is a lower bound.

It remains to show the corresponding upper bound. The basic idea behind this

approach is to obtain a variance estimate on the partition function26 . Naively, one

would compute

EZ2
�;N = E�E�0 Ee

�
p
N(X�+X�0 )

= 2�2N

0@X
� 6=�0

eN�2 +
X
�

e2N�2

1A
= eN�2

h
(1� 2�N ) + 2�NeN�2

i (3:22)

where all we used is that for � 6= �0 X� and X�0 are independent. Now we see that

the second term in the square brackets is exponentially small if and only if �2 < ln 2.

26This idea can be traced to Aizenman, Lebowitz, and Ruelle [ALR], and later Comets and
Neveu [CN] who used it in the proofs of a central limit theorem for the free energy.
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For such values of � we have that

P

�����ln Z�;N
EZ�;N

���� > �N

�
= P

�
Z�;N
EZ�;N

< e��N or
Z�;N
EZ�;N

> e�N
�

� P

"�
Z�;N
EZ�;N

� 1

�2

>
�
1� e��N �2#

� EZ2
�;N =(EZ�;N )2 � 1

(1� e��N )2

� 2�N + 2�NeN�2

(1� e��N )2

(3:23)

which is more than enough to get (3.17). But of course this does not correspond

to the critical value of � claimed in the proposition! Some re
ection shows that the

point here is that when computing Ee�
p
N2X� , the dominant contribution comes from

the part of the distribution of X� where X� � 2�
p
N , whereas in the evaluation of

EZ�;N the values of X� where X� � �
p
N give the dominant contribution. Thus one

is led to the realization that it is not the second moment of Z one should control,

but rather that of a truncated version of Z, namely, for c � 0,

eZ�;N (c) � E� e
�
p
NX�1IX�<c

p
N (3:24)

An elementary computation using the standard bound, for u > 0,

1p
2�u

e�u
2=2
�
1� 2u�2

� � 1p
2�

Z 1

u

e�x
2=2dx � 1p

2�u
e�u

2=2 (3:25)

shows that

E eZ�;N (c) =

8<: e�
2N
�
1� e�N(��)2=2p

2�N(c��) (1 +O(1=N)
�
; if � < c

1+O(1=N)p
2�N(��c)e

N�c�Nc2

2 ; if � > c
(3:26)

Note that (3.26) shows that this truncation essentially does not in
uence the mean

partition function, if � < c.

But now compute the mean of the square of the truncated partition function:

E eZ2
�;N (c) = (1� 2�N )[E eZ�;N (c)]2 + 2�NEe�

p
N2X�1IX�<c

p
N (3:27))



Disordered Systems 81

where the second term satis�es (we do not mention the irrelevant O(1=N) error term

anymore)

2�NE e2�
p
NX�1IX�<c

p
N �

8<: 2�Ne2�
2N ; if 2� < c

2�N e2c�N�
c2N
2

(2��c)p2�N
; otherwise;

(3:28)

Combined with (3.26) this implies

2�NE e2�
p
NX�1IX�<c

p
N�

E eZN;��2 �

8>>><>>>:
e�N(ln 2��2); if � < c

2 ;

e�N(c��)2�N(ln 2� c2

2
)

(2��c)pN ; if c
2 < � < c;

e(c
2=2�ln 2)Np2�N (��c)2

2��c ; if � > c

(3:29)

Therefore, for all c <
p
2 ln 2, and all � 6= c,

E

" eZ�;N (c)� E eZ�;N (c)

E eZ�;N (c)

#2
� e�Ng(c;�) (3:30)

with g(c; �) > 0. Thus Chebyshev's inequality implies that

P
h
j eZ�;N (c)� E eZ�;N (c)j > ÆE eZ�;N (c)i � Æ�2e�Ng(c;�) (3:31)

which implies in particular that

lim
N"1

1

N
E ln eZ�;N (c) = lim

N"1
1

N
ln E eZ�;N (c) (3:32)

for all c <
p
2 ln 2 = �c. But this implies that for all c < �c

lim
N"1

1

N
ln EZ�;N � lim

N"1
1

N
ln E eZ�;N (c) =

(
�2

2 ; for � < c

c2

2 + c(� � c); for � > c
(3:33)

which converges to minus the right hand side of (3.18) as c " �c. This proves the

theorem.}
3.2.2. Fluctuations and limit theorems.

In the previous section we went to some length in computing the limit of the

free energy. However, computing the free energy is not quite enough to get a full
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understanding of a model, and in particular the Gibbs states. The REM o�ers the

advantage that we can go much further, as we will see now. The limit of the free

energy has been seen to be a non-random quantity. A question of central importance

for further progress is to understand on what level and how the randomness shows

up in the corrections to the limiting behaviour. This is the subject of the present

section. We will see later that the knowledge gained here is then suÆcient to derive

all information about the Gibbs measures we would want. The results of this section

were obtained in [BKL]. For earlier rigorous results see also [Ei,OP,GMP].

Let us �rst state the results:

Theorem 3.2: The partition function of the REM has the following 
uctuations:

(i) If � <
p
ln 2=2, then

e
N
2 (ln 2��2) ln

Z�;N
EZ�;N

D! N (0; 1): (3:34)

(ii) If � =
p
ln 2=2, then

p
2e

N
2 (ln 2��2) ln

Z�;N
EZ�;N

D!N (0; 1): (3:35)

(iii) Let � � �=
p
2 ln 2. If

p
ln 2=2 < � <

p
2 ln 2, then

e
N
2 (
p
2 ln 2��)2+�

2 [ln(N ln 2)+ln 4�] ln
Z�;N
EZ�;N

D!
Z 1

�1
e�z(P(dz)� e�zdz); (3:36)

where P denotes the Poisson point process27 on R with intensity measure e�xdx.

(iv) If � =
p
2 ln 2, then

e
1
2 [ln(N ln 2)+ln 4�]

� Z�;N
EZ�;N

�1

2
+
ln(N ln 2) + ln 4�

4
p
�N ln 2

� D!
Z 0

�1
ez(P(dz)�e�zdz)+

1Z
0

ezP(dz):

(3:37)

27For a thorough exposition on point processes and their connection to extreme value theory,
see in particular [Re].
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(v) If � >
p
2 ln 2, then

e�N [�
p
2 ln 2�ln 2]+�

2 [ln(N ln 2)+ln 4�]Z�;N
D!

1Z
�1

e�zP(dz) (3:38)

and

lnZ�;N � E ln Z�;N
D! ln

1Z
�1

e�zP(dz)� E ln

1Z
�1

e�zP(dz): (3:39)

Remark. Note that expressions like
R 0
�1 ez(P(dz)� e�zdz) are always understood

as limy#�1
R 0
y
ez(P(dz)� e�zdz): We will see that all the functionals of the Poisson

point process appearing are almost surely �nite random variables.

We will now prove these results step by step. The �rst thing one might guess

about 
uctuations in the REM is that they should stem from a central limit theorem

for the partition function, that is, after all, a sum of i.i.d. random variables. The

theorem shows that this can be true only for quite small values of �, much smaller

even than the critical value.

Proof. We �rst prove (i). Here the result follows from the standard CLT for trian-

gular arrays. Let us �rst write

ln
Z�;N
EZ�;N

= ln
�
1 +

Z�;N � EZ�;N
EZ�;N

�
: (3:40)

We will show that the second term in the logarithm properly normalized will converge

to a normal random variable. To see this, write

Z�;N � EZ�;N
EZ�;N

=
X
�2SN

e�N(ln 2+�2=2)
�
e�
p
NX� � eN�2=2

�
�
X
�2SN

YN (�): (3:41)

Note that EYN (�) = 0 and EY2
N (�) = e�N(2 ln 2��2)[1� e�N�2 ] and thus

E
�Z�;N � EZ�;N

EZ�;N

�2
= e�N(ln 2��2)[1� e�N�2 ]: (3:42)

Therefore we can write

Z�;N � EZ�;N
EZ�;N

= e�
N
2 (ln 2��2)

p
1� e�N�2

1

2N=2

X
�2SN

eYN (�); (3:43)
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where eYN (�) = e
N
2 (2 ln 2��2)[1� e�N�2 ]�1=2YN (�) has mean zero and variance one.

By the CLT for triangular arrays (see [Shi]), it follows readily that

1

2N=2

X
�2SN

eYN (�) D!N (0; 1) (3:44)

if the Lindeberg condition holds, that is, if for any � > 0,

lim
N"1

E eY2
N (�)1IfjeYN(�)j��2N=2g = 0: (3:45)

But

E eY2
N (�)1IfjeYN (�)j��2N=2g =

1p
2�(1� e�N�2)

e�2N�2
1Z

p
N( ln 2

2� +�)+ ln �p
N�

+o( 1p
N
)

e2
p
N�z� z2

2 dz + o(1)

=
1p

2�(1� e�N�2)

1Z
p
N( ln 22� ��)+ ln �p

N�
+o( 1p

N
)

e�
z2

2 dz + o(1):

(3:46)

It is easy to check that the latter integral converges to zero if and only if �2 < ln 2=2.

Using now the fact that ex = 1 + x + o(x) as x ! 0, it is now a trivial matter to

deduce the assertion of the proposition. }

Since the Lindeberg condition clearly fails for 2�2 � ln 2, it is clear that we

cannot expect a simple CLT beyond this regime. Such a failure of a CLT is always

a problem related to \heavy tails", and results from the fact that extremal events

begin to in
uence the 
uctuations of the sum. It appears therefore reasonable to

separate from the sum the terms where X� is anomalously large. For Gaussian r.v.'s

it is well known that the right scale of separation is given by uN (x) de�ned by

2N
1Z

uN (x)

dzp
2�
e�z

2=2 = e�x (3:47)

which (for x > � lnN= ln 2) is equal to (see e.g. [LLR])

uN (x) =
p
2N ln 2 +

xp
2N ln 2

� ln(N ln 2) + ln 4�

2
p
2N ln 2

+ o(1=
p
N); (3:48)
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x 2 R is a parameter. The key to most of what follows relies on the famous result

on the convergence of the extreme value process to a Poisson point process. Let us

now introduce the point process on R given by

PN �
X
�2SN

Æu�1
N

(X�)
: (3:49)

A classical result from the theory of extreme order statistics (see e.g. [LLR]) asserts

that Theorem 3.3: The point process PN converges weakly to a Poisson point

process on R with intensity measure e�xdx.

Let us now de�ne

Zx
N;� � E�e

�
p
NX�1IfX��uN (x)g: (3:50)

We may write

Z�;N
EZ�;N

= 1 +
Zx�;N � EZx

�;N

EZ�;N
+
Z�;N � Zx

�;N � E (Z�;N � Zx
�;N )

EZ�;N
(3:51)

Let us �rst consider the last summand. We introduce the random variable

WN (x) =
Z�;N � Zx

�;N

EZ�;N
= e�N(ln 2+�2=2)

X
�2SN

e�
p
NX�1IfX�>uN (x)g (3:52)

It will be convenient to rewrite this as (we ignore the sub-leading corrections to uN (x)

and only keep the explicit representation (3.48))

WN (x) = e�N(ln 2+�2=2)
X
�2SN

e�
p
NuN (u�1

N
(X�))1Ifu�1

N
(X�)>xg

= e�N(ln 2+�2=2)e
�N

p
2 ln 2�� ln(N ln 2)+ln 4�

2
p
2 ln 2

X
�2SN

e
�p
2 ln 2

u�1
N

(X�)1Ifu�1
N

(X�)>xg:

(3:53)

Clearly, the weak convergence of PN to P implies convergence in law of the right

hand side of (3.53), provided that e�x is integrable on [x;1) w.r.t. the Poisson

process with intensity e�x. This is, in fact, never a problem: the Poisson point

process has almost surely support on a �nite set, and therefore e�x is always a.s.

integrable. Note, however, that for � � p
2 ln 2 the mean of the integral is in�nite,

indicating the passage to the low temperature regime. Note also that the variance
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of the integral is �nite exactly if � < 1=2, i.e. �2 < ln 2=2, i.e. when the CLT holds.

On the other hand, the mean of the integral diverges if x # 1; note that at minus

in�nity the points of the Poisson point process accumulate, and there is no �nite

support argument as before that would assure the existence of the integral if x is

taken to �1. The following lemma provides the �rst step in the proof of part (iii)

of Theorem 3.2:

Lemma 3.4: Let WN (x); � be de�ned as above, and let P be the Poisson point

process with intensity measure e�zdz. Then

e
N
2 (
p
2 ln 2��)2+�

2 [ln(N ln 2)+ln 4�]WN (x)
D!

1Z
x

e�zP(dz): (3:54)

Remark. Note that the mean of the right hand side is �nite if and only if � <
p
2 ln 2.

Thus only in that case does this lemma also allows us to deal with the centered

variable appearing in (3.51).

We now need to turn to the remaining term,

Zx
�;N � EZx

�;N

EZ�;N
=
VN (x)
EZ�;N

; (3:55)

where

VN (x) � Zx
�;N � EZx

�;N : (3:56)

One might �rst hope that this term upon proper scaling would converge to a Gaussian;

however, one can easily check that this is not the case (the Lindeberg condition will

not be veri�ed). However, it will not be hard to compute all moments of this term:

Lemma 3.5: Let VN (x) be de�ned by (3.56). Then for � > 1=2 and any integer

k � 2

lim
N"+1

E [VN (x)]kh
2�NeN�

p
2 ln 2��

2 [ln(N ln 2)+ln 4�]
ik

=
kX
i=1

1

i!

X
`1�2;:::;`i�2P

j
`j=k

k!

`1! : : : `i!

e(k��i)x

(`1�� 1) : : : (`i�� 1)

(3:57)
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For � = 1=2, we have for k even

lim
N"+1

E [VN (x)]kh
2�NeN�

p
2 ln 2

ik =
k!

(k=2)! 2k
=

(k � 1)!!

2k=2 (3:58)

and for k odd

lim
N"+1

E [VN (x)]kh
2�NeN�

p
2 ln 2

ik = 0 (3:59)

(which are the moments of the normal distribution with variance 1=2).

Proof. This is a pure computation. Set TN (�) � e�
p
NX�1IfX��uN (x)g. Note that

for � <
p
2 ln 2

ETN (�) =

uN (x)Z
�1

dzp
2�
e�

z2

2 +�
p
Nz = eN�2=2

�
1�

1Z
uN (x)��pN

dzp
2�
e�

z2

2

�
� e�

2N=2:

(3:60)

while for � >
p
2 ln 2 and all k � 1, and for � >

p
ln 2=2 and for k � 2,

E [TN (�)]k =

uN (x)Z
�1

dzp
2�
e�

z2

2 +k�
p
Nz = eNk2�2=2

uN (x)�k�pNZ
�1

dzp
2�
e�

z2

2

� eNk2�2=2 e�(uN (x)�k�pN)2=2

p
2�(k�

p
N � uN (x))

� 2�Ne�x

k�� 1
ek[�

p
2 ln 2N+�x��

2 [ln(N ln 2)+ln 4�]]:

(3:61)

Formula (3.61) is also valid for � =
p
2 ln 2 with k > 1 and for � =

p
ln 2=2 with

k > 2. It is easy to see from the computations above that for � =
p
2 ln 2 with k = 1

and also for � =
p
ln 2=2 with k = 2 we have

E [TN (�)]k � ek
2�2N=2

2
=

2�Ne�x

2
ek[�

p
2 ln 2N+�x]: (3:62)

We set eTN (�) � 2�NTN (�); by (3.61) we get for � >
p
ln 2=2 with k � 2 and also

for � >
p
2 ln 2 with k � 1

E [ eTN (�)]k =
2�Ne�x

k�� 1
ek[�

p
2 ln 2N�ln 2+�x��

2 [ln(N ln 2)+ln 4�]]: (3:63)
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This formula is also true for � =
p
ln 2=2, k > 2 and � =

p
2 ln 2, k > 1. For

� =
p
2 ln 2 and k = 1 and also for � =

p
ln 2=2 and k = 2 by (3.62)

E [ eTN (�)]k =
2�Ne�x

2
ek[�

p
2 ln 2N�ln 2+�x]: (3:64)

Now

E [VN (x)]k = E
� X
�2SN

[eTN (�)� E eTN (�)]
�k

=
X

�1;:::;�k2SN
E

kY
i=1

� eTN (�i)� E eTN (�i)
�

=
kX
i=1

X
`1;:::;`i�2P

j
`j=k

k!

`1! : : : `i!

�
2N

i

�
E [ eTN (�)� E eTN (�)]`1 : : :E [ eTN (�)� E eTN (�)]`i :

(3:65)

Note �nally that for l � 2 and � �pln 2=2

E
� eTN (�)� E eTN (�)

�`
=
X̀
j=1

(�1)j
�
`

j

�
E eTN (�)`�j[E eTN (�)]j � E eTN (�)`: (3:66)

In fact, if
p
ln 2=2 � � <

p
2 ln 2, l � 2, j � 1, j 6= l� 1; l, then by (3.60) and (3.63),

(3.64)

E [T l�jN (�)][ETN (�)]j

E [T lN (�)]
= eNj(�2=2��p2 ln 2)O

�
N�j=2

�
(3:67)

is exponentially small. For l � 2, j = l � 1; l

E [T l�jN (�)][ETN (�)]j

E [T lN (�)]
= eNl(�2=2��p2 ln 2)+N ln 2O

�
N�l=2

�
� e�N ln 2O

�
N l�=2

�
(3:68)

For � � p2 ln 2, l � 2 and j � 1 by (3.63) and (3.64)

E [T l�jN (�)][ETN (�)]j

E [T lN (�)]
= O(2�Nj): (3:69)

Thus for l � 2 and � >
p
ln 2=2 and also for l � 3 and � =

p
ln 2=2

E
� eTN (�)� E eTN (�)

�` � 2�Ne�x

k�� 1

�
2�NeN�

p
2 ln 2e�xe�

�
2 [ln(N ln 2)+ln 4�]

�`
: (3:70)
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Inserting this result into (3.65) gives the assertion of the lemma (3.57).

For � =
p
ln 2=2 and l = 2 by (3.64) we have

E
� eTN (�)� E eTN (�)

�2 � 2�Ne�x

2

�
2�NeN�

p
2 ln 2e�x

�2
: (3:71)

Inserting this formula into (3.65) we see, that the term with l1; : : : ; li = 2, i = k=2

brings the main contribution to the sum, and all others are of smaller order, because

of the polynomial terms e�l
�
2 ln(N ln 2) in (3.70). This implies (3.58) and (3.59) and

the lemma is proved. }

Remark. One sees that if we let x # �1, and rescale properly, the corresponding

moments converge to that of a centered Gaussian r.v. This could alternatively be seen

by checking that the Lindeberg condition holds for the truncated variables provided

x � �2 ln ln 2N .

A standard consequence of Lemma 3.5 is the weak convergence of the normalized

version of VN (x):

Corollary 3.6: For
p
ln 2=2 < �,

e
N
2 (
p
2 ln 2��)2+�

2 [ln(N ln 2)+ln 4�] VN (x)
EZ�;N

D! V(x; �); (3:72)

where V(x; �) is the random variable with mean zero and kth moments given by the

right hand side of (3.57). For � =
p
ln 2=2

p
2e

N
2 (
p
2 ln 2��)2 VN (x)

EZ�;N

D! N (0; 1): (3:73)

Equation (3.73) together with Lemma 3.4 imply that (ii) of Theorem 3.2 holds.

The next proposition will imply (iii) of Theorem 3.2.

Proposition 3.7:Let
p
ln 2=2 < � <

p
2 ln 2. Then for x 2 R chosen arbitrarily,

e
N
2 (
p
2 ln 2��)2+�

2 [ln(N ln 2)+ln 4�] ln
Z�;N
EZ�;N

D! V(x; �) +
1Z
x

e�zP(dz)�
1Z
x

e�ze�zdz;

(3:74)
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where V(x; �) and P are independent random variables.

Proof. (3.74) would be immediate from Lemma 3.4 and Corollary 3.6, if WN (x)

and VN (x) were independent. However, while this is not true, they are not far

from independent. To see this, note that if we condition on the number of variables

X�, nN (x), that exceed uN (x), the decomposition in (3.51) is independent. On the

other hand, one readily veri�es that Corollary 3.6 also holds under the conditional

law P[�jnN (x) = n], for any �nite n, with the same right hand side V(x; �). But

this implies that the limit can be written as the sum of two independent random

variables, as desired. }

Since for �2 > ln 2=2, � > 1=2, one sees that EV(x; �)2 = ex(2��1)=(2�� 1) tends

to zero as x # �1. Therefore we see that

V(x; �) D= lim
y"+1

xZ
�y

e�zP(dz)�
xZ

�y
e�ze�zdz (3:75)

which means that we can give sense to the Poisson integral
R1
�1 e�z(P(dz)� e�zdz)

From here we get (iii) of Theorem 3.2.

We now turn to the proof of parts (iv) an (v) of Theorem 3.2. We will see that

the computations above almost suÆce to conclude the low temperature case as well.

With the notations from above, we write

Z�;N = Zx
�;N + (Z�;N � Zx

�;N ) (3:76)

Clearly for � � p2 ln 2

Z�;N � Zx
�;N = eN[�

p
2 ln 2�ln 2]��

2 [ln(N ln 2)+ln 4�]
X
�2SN

1Ifu�1
N

(�)>xge
�u�1

N
(X�) (3:77)

so that for any x 2 R,

(Z�;N � Zx
�;N )e

�N[�
p
2 ln 2�ln 2]+�

2 [ln(N ln 2)+ln 4�] D!
1Z
x

e�zP(dz): (3:78)

Now write

Zx
�;N = EZx

�;N

�
1 +

Zx
�;N � EZx

�;N

EZx
�;N

�
: (3:79)
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Let us �rst treat the case � >
p
2 ln 2. By (3.61) we have

EZx
�;N � 2�Ne�x

�� 1
e�
p
2 ln 2N+�x��

2 [ln(N ln 2)+ln 4�]: (3:80)

Thus

e�N[�
p
2 ln 2�ln 2]+�

2 [ln(N ln 2)+ln 4�]Zx
�;N =

ex(��1)

�� 1

�
1 +

Zx
�;N � EZx

�;N

EZx
�;N

�
(1 + o(1)):

(3:81)

Using Lemma 3.5 we see that now
Zx�;N�EZx�;N

EZx
�;N

ex(��1)

��1 converges in distribution to a

random variable with moments given by the right hand side of (3.57). Moreover, as

x # �1, this variable converges to zero in probability. Since the same is true for the

prefactor, the assertion of the theorem is now immediate.

Let us consider now the case � =
p
2 ln 2. Proceeding as in (3.61),

EZ0
�;N =

2Np
2�

uN (0)�
p
2N ln 2Z

�1
e�z

2=2dz = 2N
�1
2
� ln(N ln 2) + ln 4�

4
p
N� ln 2

+O
� (lnN)2

N

��
:

(3:82)

We use the decomposition

Z�;N = Z�;N � Z0
�;N + EZ0

�;N + (Z0
�;N � EZ0

�;N ): (3:83)

By (3.82), EZ0
�;N =EZ�;N � 1=2. By (3.53), we see easily that

Z�;N � Z0
�;N

EZ�;N
=WN (x)! 0 a.s. (3:84)

even though EWN (0) = 1=2! Thus the more precise statement consists in saying that

e
1
2 [ln(N ln 2)+ln 4�]WN (0)

D!
1Z
0

ezP(dz): (3:85)

Note that of course the limiting variable has in�nite mean, but is a.s. �nite. Finally,

by Corollary 3.6,

e
1
2 [ln(N ln 2)+ln 4�]

Z0
�;N � EZ0

�;N

EZ�;N

D! V(0; 1) (3:86)
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The same arguments as those given after Proposition 3.7 allow us to identify V(0; 1)
with the centered Poisson integral

R 0
�1 ez (P(dz)� e�zdz) : This implies (3.38). (3.39)

is an immediate corollary. This concludes the proof of Theorem 3.2.}}

3.2.3. The Gibbs measure.

With our preparation on the 
uctuations of the free energy, we have accumulated

enough understanding about the partition function that we can deal with the Gibbs

measures. Clearly, there are a number of ways of trying to describe the asymptotics

of the Gibbs measures. Recalling the general discussion on random Gibbs measures

from Part 2, it should be clear that we are seeking a result on the convergence

in distribution of random measures. To be able to state such a results, we have to

introduce a topology on the spin con�guration state that makes it uniformly compact.

The usual topology we used to do this was the product topology, and this clearly

would be an option here. However, given what we already know about the partition

function, this topology does not appear ideally adapted to give adequate information.

Recall that at low temperatures, the partition function was dominated by a 'few' spin

con�gurations with exceptionally large energy. This is a feature that should remain

visible in a limit theorem. A nice way to do this consists in mapping the hypercube

to the interval [�1; 1] via

SN 3 � ! rN (�) �
NX
i=1

�i2
�i 2 [�1; 1] (3:87)

De�ne the pure point measure ~��;N on [�1; 1] by

~��;N �
X
�2SN

ÆrN (�)��;N (�) (3:88)

Our results will be expressed in terms of the convergence of these measures. It will

be understood in the sequal that the space of measures on [�1; 1] is equipped with

the topology of weak convergence, and all convergence results hold with respect to

this topology.

As the diligent reader will have expected, in the high temperature phase the limit

is the same as for � = 0, namely
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Theorem 3.8: If � � p2 ln 2, then

~��;N ! 1

2
�; a.s. (3:89)

where � denotes the Lebesgue measure on [�1; 1].

Proof. Note that we have to prove that for any �nite collection of intervals I1; : : : ; Ik �
[�1; 1], the family of random variables f~��;N (I1); : : : ; ~��;N (Ik) converges jointly al-

most surely to 1
2
jI1j; : : : ; 12 jIkj. But by construction these random vectors are in-

dependent, so that this will follow automatically, if we can prove the result in the

case k = 1. Our strategy is to get �rst very sharp estimates for a family of special

intervals.

In the sequel we will always assume that N � n. We will denote by �n the

canonical projection from SN to Sn. To simplify notation, we will often write �n �
�n� when no confusion can arise. For � 2 SN , set

an(�) � rn(�n�) (3:90)

and

In(�) � [an(�)� 2�n; an(�) + 2�n) (3:91)

Note that the union of all these intervals forms a disjoint covering of [�1; 1). Obvi-
ously, these intervals are constructed in such a way that

~��;N (In(�)) = ��;N (f�0 2 SN : �n(�
0) = �n(�)g) (3:92)

The �rst step in the proof consists in showing that the masses of all the intervals

In(�) are remarkably well approximated by their uniform mass.

Lemma 3.9: Set �0 �
q

N
N�n�. For any � 2 Sn,

(i) If �0 �
q

ln 2
2 ,

j~��;N(In(�))� 2�nj � 2�ne�(N�n)(ln 2��
02)YN�n (3:93)

where YN has bounded variance, as N " 1.
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(ii) If
q

ln 2
2 < �0 <

p
2 ln 2,

j~��;N (In(�))� 2�nj � 2�ne�(N�n)(
p
2 ln 2��0)2=2�� ln(N�n)=2YN�n (3:94)

where YN is a random variable with bounded mean modulus.

(iii) If � =
p
2 ln 2, then, for any n �xed,

j~��;N(In(�))� 2�nj ! 0 in probability (3:95)

Remark. Note that in the sub-critical case, the results imply convergence to the

uniform product mesure on S in a very strong sense. In particular, the base-size of

the cylinders considered (i.e. n) can grow proportionally to N , even if almost sure

convergence uniformly for all cylinders is required! This is unusually good. However,

one should not be deceived by this fact: even though seen from the cylinder masses

the Gibbs measures look like the uniform measure, seen from the point of view of

individual spin con�gurations the picture is quite di�erent. In fact, the measure

concentrates on an exponentially small fraction of the full hypercube, namely those

O(exp(N(ln 2��2=2))) vertices that have energy � �N (Exercise!). It is just the fact

that this set is still exponentially large, as long as � <
p
2 ln 2, and is very uniformly

dispersed over SN , that produces this somewhat paradoxical e�ect. The rather weak
result in the critical case is not arti�cial. In fact it is not true that almost sure

convergence will hold. This follows e.g. from Theorem 1 in [GMP]. One should of

course anticipate some signature of the phase transition at the critical point.

Proof. The proof of this lemma is a simple application of the �rst three points in

Theorem 3.2. Just note that the partial partition functions

Z�;N (�n) � E�0 e
�
p
NX�01I�n(�0)=�n (3:96)

are independent and have the same distribution as 2�nZ�0;N�n. But

~��;N (In(�n)) =
Z�;N (�n)

[Z�;N � Z�;N (�n)] + Z�;N (�n)
(3:97)
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Note that Z�;N (�n) and [Z�;N�Z�;N (�n)] are independent. It should now be obvious

how to conclude the proof with the help of Theorem 3.2. }

Once we have the excellent approximation of the measure on all of the intervals

In(�), almost sure convergence of the measure in the weak topology is a simple

consequence. Of course, this is just a coarse version of the �ner results we have, and

much more precise information on the quality of approximation can be inferred from

Lemma 3.9. But since the high-temperature phase is not our prime concern, we will

not go further in this direction.

Somehow much more interesting is the behaviour of the measure at low tempera-

tures that we will discuss now. Let us introduce the Poisson point process R on the

strip [�1; 1]� R with intensity measure 1
2dy � e�xdx. If (Yk; Xk) denote the atoms

of this process, de�ne a new point process W� on [�1; 1] � (0; 1] whose atoms are

(Yk; wk), where

wk � e�XkR R(dy; dx)e�x (3:98)

for � > 1. With this notation we have that

Theorem 3.10: If � >
p
2 ln 2, with � = �=

p
2 ln 2,

~��;N
D! ~�� �

Z
[�1;1]�(0;1]

W�(dy; dw)Æyw (3:99)

Proof. With uN (x) de�ned in (3.48), we de�ne the point process RN on [�1; 1]�R

by

RN �
X
�2SN

Æ(rN (�);u�1
N

(X�))
(3:100)

A standard result of extreme value theory (see [LLR], Theorem 5.7.2) is easily adapted

to yield that

RN
D!R; as N " 1 (3:101)

where the convergence is in the sense of weak convergence on the space of sigma-�nite

measures endowed with the (metrizable) topology of vague convergence. Note that

��;N (�) =
e�u

�1
N

(X�)P
� e

�u�1
N

(X�)
=

e�u
�1
N

(X�)R RN (dy; dx)e�x
(3:102)
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Since
R RN (dy; dx)e

�x <1 a.s., we can de�ne the point process

WN �
X
�2SN

Æ�
rN (�);

exp(�u
�1
N

(X�))R
RN (dy;dx) exp(�x)

� (3:103)

on [�1; 1]� (0; 1]. Then

~��;N =

Z
WN (dy; dw)Æyw (3:104)

The only non-trivial point in the convergence proof is to show that the the contri-

bution to the partition functions in the denominator from atoms with uN (X�) < x

vanishes as x # �1. But this is precisely what we have shown to be the case in

the proof of part (v) of Theorem 3.2. Standard arguments then imply that �rst

WN
D!W, and consequently, (3.99). }

Remark. Note that Theorem 3.10 contains in particular the convergence of the

Gibbs measure in the product topology on SN , since cylinders correspond to certain

subintervals of [�1; 1]. On the other hand, it implies that the point process of weightsP
�2SN Æ��;N (�) converges in law to the marginal ofWN on (0; 1] which is the process

introduced by Ruelle [Ru4]. The formulation of Theorem 3.10 is moreover very much

in the spirit of the metastate approach to random Gibbs measures. The limiting

measure is a measure on a continuous space, and each point measure on this set may

appear as \pure state". The \metastate", i.e. the law of the random measure ~�� is a

probability distribution concentrated on the countable convex combinations of pure

states randomly chosen by a Poisson point process from an uncountable collection,

while the coeÆcients of the convex combination are again random and selected via

another point process. The only aspect of metastates that is missing here is that

we have not \conditioned on the disorder". The point is, however, that there is no

natural �ltration of the disorder space compatible with, say, the product topology,

and thus in this model we have no natural urge to \�x the disorder locally"; note

that it is possible to represent the i.i.d. family X� as a sum of \local" couplings, i.e.

let JI , for any I � N be i.i.d. standard normal variables. Then we can represent

X� = 2�N=2
P

I�f1;:::;Ng �IJJ ; obviously these variables become independent of any

of the JI , with I �xed, so that conditioning on them would not change the metastate.



Disordered Systems 97

Let us discuss the properties of the limiting process ~�� . It is not hard to see that

with probability one, the support of ~�� is the entire interval [�1; 1]. On the other

hand, its mass is concentrated on a countable set, i.e. the measure is pure point.

To see this, consider the rectangle A� � (ln �;1) � [�1; 1]. Clearly, the process R
restricted to this set has �nite total intensity given by ��1. i.e. the number total

number of atoms in that set is a Poissonian random variable with parameter ��1.

Now if we remove the projection of these �nitely many random points from [�1; 1],
we will show that the total mass that remains goes to zero with �. Clearly, the

remaining mass is given byZ
[�1;1]�(�1;ln �)

R(dy; dx) e�xR P(dx0)e�x0 =
Z ln �

�1
P(dx) e�xR P(dx0)e�x0 (3:105)

We want to get a lower bound in probability on the denominator. The simplest possi-

ble bound is obtained by estimating the probability of the integral by the contribution

of the largest atom which of course follows the double-exponential distribution. Thus

P

�Z
P(dx)e�x � Z

�
� e�e

� lnZ=�

= e�Z
� 1
� (3:106)

Setting 
Z � fP :
R P(dx)e�x � Zg, we conclude that, for � > 1,

P

"Z ln �

�1
P(dx) e�xR P(dx0)e�x0 > 


#
� P

"Z ln �

�1
P(dx) e�xR P(dx0)e�x0 > 
; 
c

Z

#
+ P[
Z ]

� P

"Z ln �

�1
P(dx)e�x > 
Z; 
c

Z

#
+ P[
Z ]

� P

"Z ln �

�1
P(dx)e�x > 
Z

#
+ P[
Z ]

� E
R ln �

�1 P(dx)e�x



+ P[
Z ]

� ���1

(�� 1)
Z
+ e�Z

� 1
�

(3:107)

Obviously, for any positive 
 it is possible to choose Z as a function of � in such a

way that the right hand side tends to zero. But this implies that with probability
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one, all of the mass of the measure ~�� is carried by a countable set, implying that

~�� is pure point.

So we see that the phase transition in the REM expresses itself via a change of

the properties of the in�nite volume Gibbs measure mapped to the interval from

Lebesgue measure at high temperatures to a random dense pure pure point measure

at low temperatures.

3.2.4. The replica overlap.

While the random measure description of the phase transition in the REM yields,

in our view, the most complete and elegant description of the thermodynamic limit

of this model, it is common in the physics literature on spin glasses to look at coarser

indicators of a phase transition that are reminiscent of the \order parameters" we

have discussed before. In a situation where no particular reference con�guration ex-

ists, a natural possibility is to compare two independent copies of spin con�gurations

drawn from the same Gibbs distribution to each other. To make this precise, recall

the function RN : SN � SN ! [�1; 1] de�ned in 3.1. We are interested in the prob-

ability distribution of RN (�; �
0) under the product measure ��;N 
 ��;N , i.e. de�ne

a probability measure, f�;N , on [�1; 1] by

f�;N [!](dz) � ��;N [!]
 ��;N [!] (RN (�; �
0) 2 dz) (3:108)

As we will see later, the analysis of the replica overlap will become a crucial tool for

studying the Gibbs measures of more complicated models. The following exposition

is intended to give a �rst introduction to this approach.

Theorem 3.11:

(i) For all � <
p
2 ln 2

lim
N"1

f�;N = Æ0; a.s. (3:109)

(ii) For all � >
p
2 ln 2

f�;N
D! Æ0

�
1�

Z
W(dy; dw)w2

�
+ Æ1

Z
W(dy; dw)w2 (3:110)
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Proof. We will write for any I � [�1; 1]

f�;N (I) = Z�2�;NE�E�0
X
t2I

RN (�;�0)=t

e�
p
N(X�+X�0 )

(3:111)

First of all, the denominator is bounded from below by [ eZ�;N(c)]2, and by (3.31), with
probability of order Æ�2 exp(�Ng(c; �)), this in turn is larger than (1�Æ)2[E eZ�;N (c)]2.

Now let �rst � <
p
2 ln 2. Assume �rst that I � (0; 1) [ [�1; 0). We conclude that

Ef�;N (I) � 1

(1� Æ)2
E�E�0

X
t2I

RN (�;�0)=t

1 + Æ�2e�g(c;�)N

=
1p
2�N

1

(1� Æ)2

X
t2I

2e�N�(t)

1� t2
+ Æ�2e�g(c;�)N

(3:112)

for any � < c <
p
2 ln 2, where � : [�1; 1]! R denotes the Cram�er entropy function

�(t) =
(1 + t)

2
ln(1 + t) +

(1� t)

2
ln(1� t) (3:113)

Here we used of course that, �rstly, if (1� t)N = 2`, ` = 0; : : : ; N , then

E�E�0 1IRN (�;�0)=t = 2�N
�
N

`

�
(3:114)

and, secondly, Stirling's approximation which implies that

�
N

`

�
=

1p
2�

s
N

`(N � `)

NN

``(N � `)N�`
(1 + o(1)) (3:115)

valid if ` � xN with x 2 (0; 1). Under our assumptions on I, we see immediately

from this representation that the right hand side of (3.112) is clearly exponentially

small in N . If 1 2 I, the additional term coming from t = 1 is precisely the term

that we have estimated in (3.29), so that again this gives an exponentially small

contribution. This shows that the measure f�;N concentrates asymptotically on the

point 0. This proves (3.109).
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Now let � >
p
2 ln 2. Here we use the sharper truncations introduced in 3.2.2.

Note �rst that for any interval I�������f�;N (I)� Z�2�;NE�E�0
X
t2I

RN (�;�0)=t

1IX�;X�0�uN (x)e
�
p
N(X�+X�0 )

������� �
2Zx

�;N

Z�;N
(3:116)

We have already seen in the proof of Theorem 3.2 (see (3.81)) that the right hand

side of (3.116) tends zero in probability as �rst N " 1 and then x # �1. On the

other hand, for t 6= 1

P
�9�;�;:RN (�;�0)=tX� > uN (x) ^X 0

� > uN (x)
�

� E�1IRN (�;�0)=t 2
�2NP [X� > uN (x)]

2
=

2p
2�N

p
1� t2 e

��(t)N e2x
(3:117)

by the de�nition of uN (x) (see (3.47)). This implies again that any interval I �
(0; 1) [ [�1; 0) will have zero mass. To conclude the proof it will be enough to

compute f�;N (1). Clearly

f�;N(1) =
2�NZ2�;N

Z2
�;N

(3:118)

By Theorem 3.2, (v), one sees easily that

f�;N (1)
D!

R
e2�zP(dz)�R
e�zP(dz)�2 (3:119)

Expressing the left hand side of (3.119) in terms of the point process W� de�ned in

(3.98) yields the expression for the mass of the atom at 1; since the only other atom

is at zero the full results follows from the fact that f�;N is a probability measure.

This concludes the proof. }
3.2.5. Multi-overlaps and Ghirlanda{Guerra identities.

The distribution of the replica overlap apparently does not contain all the infor-

mation on the Gibbs state we have acquired so far. It will be instructive to look

at the joint distribution of k independent copies of the spin variables. Interestingly,

there are some very strong general principles that allow to relate all multiple overlaps

in terms of the two-spin overlaps. These are to some extent rather general in the
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context of Gaussian processes and it will be instructive to look at them in this simple

context. These identities have been known in the physics literature and a more rig-

orous analysis is given in a paper by Girlanda and Guerra [GG], even though some

of the claims in that paper are at best confusing. Equivalent relations were in fact

derived somewha earlier by Aizenman and Contucci [AC].The importance of these

relations has been underlined by Talagrand [T4]. Let us begin with the simplest

instance of these relations.

Proposition 3.12:For any value of �,

E
d

d�
F�;N = ��(1� Ef�;N (1)) (3:120)

Proof. Obviously,

E
d

d�
F�;N = �N�1E

E �
p
NX�e

�
p
NX�

E� e�
p
NX�

(3:121)

Now if X is standard normal variable, and g any function of at most polynomial

growth, then

E [Xg(X)] = Eg0(X) (3:122)

Using this identity in the right hand side of (3.121) with respect to the average over

X�, we get immediately that

E
E �
p
NX�e

�
p
NX�

E� e�
p
NX�

= N�E

 
1� 2�NE� e2�

p
NX�

(E� e�
p
NX� )2

!
= N�E

�
1� �
2�;N (1I�1=�2)

� (3:123)

which is obviously the claim of the lemma.}

In exactly the same way one can prove the following generalisation:

Lemma 3.13: Let h : SnN ! R be any bounded function of n spins. Then

1p
N
E�
n�;N

�
X�kh(�

1; : : : ; �n)
�

= �E�
n+1
�;N

 
h(�1; : : : ; �n)

 
nX
l=1

1I�k=�l � n1I�k=�n+1

!! (3:124)
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Proof. Left as an exercise.}

The strength of Lemma 3.13 comes out when combined with a factorization result

that in turn is a consequence of self-averaging.

Lemma 3.14: Let h be as in the previous lemma. For all but possibly a countable

number of values of �,

lim
N"1

1p
N

���E�
n�;N �X�kh(�
1; : : : ; �n)

�� E��;N (X�k) E�

n
�;N

�
h(�1; : : : ; �n)

���� = 0

(3:125)

Proof. Let us write�
E�
n�;N

�
X�kh(�

1; : : : ; �n)
�� E��;N (X�k) E�


n
�;N

�
h(�1; : : : ; �n)

��2
=
�
E�
n�;N

��
X�k � E�
n�;NX�k

�
h(�1; : : : ; �n)

��2
� E�
n�;N

�
X�k � E�
n�;NX�k

�2
E�
n�;N

�
h(�1; : : : ; �n)

�2
(3:126)

where the last inequality is the Cauchy{Schwarz inequality applied to the joint ex-

pectation with respect to the Gibbs measure and the disorder. Obviously the �rst

factor in the last line is equal to

E
�
��;N (X

2
�)� [��;N(X�)]

2
�
+ E (��;N (X�)� E��;N (X�))

2

= ���2E d2

d�2
F�;N +N��2E

�
d

d�
F�;N � E

d

d�
F�;N

�2 (3:127)

We know that F�;N converges as N " 1 and that the limit is in�nitely di�erentiable

for all � � 0, except at � =
p
2 ln 2; moreover, �F�;N is convex in �. Then standard

results of convex analysis imply that

lim sup
N"1

(�E d2

d�2
F�;N ) = � d2

d�2
lim
N"1

EF�;N (3:128)

which is �nite for all � 6= p
2 ln 2. Thus, the �rst term in (3.127) will vanish when

divided by N . To see that the coeÆcient of N of the second term gives a vanishing
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contribution, we use the general fact that if the variance of family of a convex (or

concave) functions tends to zero, then the same is true for its derivative, except

possibly on a countable set of values of their argument. In Theorem 3.2 we have

more than established that the variance of F�;N tends to zero, and hence the result

of the Lemma is proven. }

If we combine Proposition 3.12, Lemma 3.13, and Lemma 3.14 we arrive immedi-

ately at

Proposition 3.15:For all but a countable set of values �, for any bounded function

h : SnN ! R,

lim
N"1

�����E�
n+1
�;N

�
h(�1; : : : ; �n)1I�k=�n+1

�
� 1

n
E�
n+1

�;N

0@h(�1; : : : ; �n)
0@ nX

l6=k
1I�l=�k + E�
2�;N (1I�1=�2)

1A1A����� = 0

(3:129)

Together with the fact that the product Gibbs measures are concentrated only

on the sets where the overlaps take values 0 and 1, (3.129) permits to compute the

distribution of all higher overlaps in terms of the two-replica overlap. E.g., if we put

An � lim
N"1

E�
n�;N (1I�1=�2=���=�n) (3:130)

then (3.129) with h = 1I�1=�2=���=�n provides the recursion

An+1 =
n� 1

n
An +

1

n
AnA2 = An

�
1� 1�A2

n

�
=

nY
k=2

�
1� 1�A2

k

�
A2

=
�(n+ A2)

�(n+ 1)�(A2)

(3:131)

Note that we can use alternatively Theorem 3.8 to compute, for the non-trivial case

� >
p
2 ln 2,

lim
N"1

�
2�;N (1I�1=�2=���=�n) =
Z
W(dy; dw)wn (3:132)
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so that (3.131) implies a formula for the mean of the n-th moments of W,

E

Z
W(dy; dw)wn =

�(n+A2)

�(n+ 1)�(A2)
(3:133)

where A2 = E
R W(dy; dw)w2. This result has been obtained by a direct computation

by Ruelle ([Ru], Corollary 2.2), but its derivation via the Ghirlanda{Guerra identities

shows a way to approach this problem in a di�erent manner that has the potential

to give results in more complicated situations.28

3.2.6. Final remarks.

We have seen that the random energy model, although rather trivial and arti�-

cial looking when considered as a model of interacting spins, exhibits a rather rich

and interesting structure which shows by explicit computation characteristic features

of a strongly disordered model. In particular, in contrast to the models we have

discussed before, we have seen the appearance of a truely random limiting Gibbs

measure, showing that the concept of the metastate introduced in Section 2 is actu-

ally meaningful, and unavoidable if the full asymptotic properties of the Gibbs states

are to be described adequately. In the remainder of these notes we will have this

picture in mind when studying more complicated models.

3.3. Correlated Gaussian processes: p-spin models.

Having seen how much can be found out about the i.i.d. case, we will now return

to the more general setting of correlated Gaussian processes introduced in Section

3.1. Physicists have studied such model as early as the REM [D1], and soon a full

solution of the p-spin model with p � 3 based on the heuristic \replica-method" was

given in [GM]. In the context of this method it was found that some considerable

simpli�cations take place once p > 2, in particular if the temperature is not too

small. In 1998, M. Talagrand discovered that these simpli�cations also allow to

obtain substantial rigorous results on the low-temperature phase of the model which

28More generally, one may dervive recursion formulas for more general moments of Ruelle's
process that show that the identies (3.129) determine completely the process of Ruelle in terms of
the two-overlap distribution function.
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are as yet unavailable in the case p = 2. While I will not review all of Talagrand's

results here (many are not even published at the time these notes are written), I will

show that using some rather simple estimates it is possible to gain substantial insight

in the structure of the Gibbs states of this model. Further material can be found in

Talagrand's lecture notes [T4].

Why should there be such a remarkable di�erence between the case p = 2 and the

cases p � 3? We will see that this can be understood as the result of a competition

between correlation and entropy. If we consider the number of con�gurations �0 at

Hamming distance r from a given con�guration, then clearly this number increas-

es like exp (N(ln 2� �(1� r))) (where � is the Cram�er entropy de�ned in (3.113))

which, for r � 1 behaves like exp(N(ln 2� (1� r)2). On the other hand, the correla-

tion between two such spin-con�gurations behaves like (1� r)p. It will turn out that

this will imply that for p = 2 correlations over the entire hypercube are important,

whereas for larger p, spin-con�gurations that are at distances close to 1 from each

other can be regarded as essentially uncorrelated. This will mean that in the latter

case, on the large scale the system behaves much more like the REM, even though

this is far from trivial to prove.

In the REM we have seen that essentially all the results can be derived rather eas-

ily from the basic Theorem 3.3 which is a classical result from extreme value theory.

Naively, one would expect that there should be comparable results covering the cor-

related case. As it turns out, this is not the case. Even though we are in the relatively

convenient and widely investigated setting of Gaussian processes, classical results and

methods fall short from giving anything like Theorem 3.3. The main obstacle is that

one is unable to determine the precise value of limN"1N�1 sup�2SN HN (�), worse,

one is not even able to prove the existence of this limit! Before entering into the

\statistical mechanics" approach, it will be rather instructive to learn to appreciate

this point by trying out what standard methods could reveal about this problem.
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3.3.1. Classical estimates on extremes.

We consider the Hamiltonians de�ned in (3.13). To work with normalized Gaussian

processes and to emphasise the analogy with the REM, we introduce

H� � � 1p
N
Hp�SK
N (�) (3:134)

Classical tools for estimating maxima of Gaussian processes are comparisons with

simpler processes for which such estimates are more readily available. The most

basic of these comparison methods rely on Slepian's lemma:

Lemma 3.16: [Sl]Let X�; Y� are standardized Gaussian processes on some set SN .
Assume that for any �; � 2 SN ,

EX�X� � EY�Y� (3:135)

Then, for any x 2 R,

P

�
sup
�2SN

X� > x

�
� P

�
sup
�2SN

Y� > x

�
(3:136)

In particular,

E sup
�2SN

X� � E sup
�2SN

Y� (3:137)

An immediate and otherwise trivial consequence of Slepian's Lemma is the fact

that the ground state energies of the p-spin models are monotone in p and dominated

by that of the REM. Naturally one would like to get a lower bound.

Proposition 3.17: With probability one, for all but �nitely many N ,

lim
N"1

sup
�

jHp�SK
N (�)j
N

�
p
2 ln 2(1� cp) (3:138)

where for large p, cp � p2�p.

Proof. We will now give a proof based on a standard Gaussian comparison lem-

ma, originally due to Slepian [Sl] that can be found e.g. in [LLR] (Theorem 4.2.1.).
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The idea is to see to what extent the independent r.v. X� of the REM are reason-

able approximations of the dependent H� of the SK models, in the sense that their

extremes are comparable. To this end one would like to compare the probabilities

P [8�;H� � uN ] and P [8�;X� � uN ] = �(uN )
2N . The Normal Comparison Lemma

states the following:

Lemma 3.18: [LLR] Let Zi be a family of standard normal variables with covariance

matrix R. Then for any real u,

jP [Z1 � u; : : : ; Zn � u]� �(u)nj � 1

2�

X
1�i<j�n

jRij j
1� R2

ij

exp

�
� u2

1 + jRij j
�

(3:139)

Applied to our problem, a �rst attempt would yield the bound (due to the sym-

metry, we identify � and ��)���P [8�;H� � u]� �(u)2
N
��� � 1

2�

X
� 6=�0

jR(�; �0)pj
1�R(�; �0)2p exp

�
� u2

1 + jR(�; �0)jp
�

=
1

2�

X
m2MNnf�1;1g

X
� 6=�0

1IfR(�;�0)=mg
jmjp

1�m2p
e�

u2

1+jmjp

=
1

2�

X
m2MNnf�1;1g

jmjp
1�m2p

e�
u2

1+jmjp 22N
2e�N�(m)p
2�N(1�m2)

(3:140)

where

MN � f�1;�1 + 2=N; : : : ; 1� 2=N; 1g (3:141)

is the set of possible values the \overlap" R(�; �0) can take on. Now we would need

to have the right-hand side tend to zero for values of u at which the maximum of 2N

standard Gaussians is taken, i.e. where �(u)2
N

is between zero and one. Now it is a

well-known fact that this means that u has to be very close to uN � pN2 ln 2. With

this value inserted, (3.141) yields indeed���P [8�;H� � uN ]� �(uN )
2N
���

� 1

2�

X
m2MNnf�1;1g

2p
2�N(1�m2)

jmjp
1�m2p

e
�N
�
�(m)�mp2 ln 2

1+jmjp
� (3:142)
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One now sees immediately the crucial di�erence between the cases p = 2 and p > 2.

In the former, due to the fact that �(m) � m2=2 for small m, spin-con�gurations

with overlap close to zero give a large contribution to this sum. On the other hand, if

p > 3, the contribution from a neighbourhood ofm = 0 is of the order N�(p�1)=2 only.

One might at �rst hope that the larger values of m also give no large contribution,

but closer inspection shows that this is not the case. Indeed, for all p, there is a

(shrinking with N) region near jmj = 1 which gives a non-vanishing contribution to

the sum, and thus it will not be true that the left hand side of (3.142) will be small

for any p. This is in fact very reasonable, since it is clear that there should be some

e�ect coming from the strong correlation of spin-con�gurations that are very similar.

In the sequel we need the following properties of the functions �(m)� mp2 ln 2
1+jmjp

Lemma 3.19: For any p � 3, there exist mp > 0, such that for all m < mp,

 p(m) � �(m)� mp2 ln 2

1 + jmjp > 0 (3:143)

Moreover, mp can be chosen in such a way that mp " 1 as p " 1. For p large,

mp = 1� 2�p.
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Based on this lemma, our strategy is now simple: Find a set Kp � f�1; 1gN of

cardinality Kp as large as possible such that for any �; �0 2 Kp, jR(�; �0)j � mp.

Suppose we can �nd such a set with Kp = 2N(1�
p). Then on the one hand

sup
�2f�1;1gN

H� � sup
�2Kp

H� (3:144)

while if the H� with � 2 Kp behaved like independent Gaussians, their maximum

would be around
p
N2(1� 
p) ln 2. The Normal Comparison Lemma applied to

these variables on this level then yields�����P
�
8� 2 Kp;H� �

q
N2(1� 
p) ln 2

�
� �

�q
N2(1� 
p) ln 2

�2N(1�
p) �����
� 1

2�

X
� 6=�02Kp

jR(�; �0)pj
1� R(�; �0)2p

exp

�
�N(1� 
p)2 ln 2
1 + jR(�; �0)jp

�

=

mpX
m=�mp

1

2�

X
� 6=�02Kp

1IfR(�;�0)=mg
jmjp

1�m2p
e�

N(1�
p)2 ln 2

1+jmjp

(3:145)

Assuming a homogeneous distribution of the set Kp, one can reasonably assume thatX
� 6=�02Kp

1IfR(�;�0)=mg � 22N(1�
p) 2

2�N(1�m2)
e�N�(m) (3:146)
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in which case the right-hand side of (3.145) would simplify to

1

2�

mpX
m=�mp

mp

1�m2p
e
�N
�
�(m)� (1�
p)2 ln 2jmjp

1+jmjp

�

� CpN
�p=2

(3:147)

and this would prove that the maximum of the H� is indeed of the order ofp
N2(1� 
p) ln 2.

It remains to establish that we can �nd sets Kp with the desired properties. The

following construction may look quite ridiculous and is possibly too complicated,

but due to the author's lack of insight into the geometry of the hypercube in high

dimensions, it is the only one he can provide.

Consider K i.i.d. random elements �1; �2; : : : ; �K in f�1; 1gN , distributed accord-

ing to the uniform distribution on f�1; 1gN . We want to estimate the size of the

largest subset eK � f1; : : : ; Kg with the property that for all �; �0 2 eK, R(�; �0) < mp.

Lemma 3.20: Let �1; �2; : : : ; �K be random variables as described above. Then

E j eKj � K(1�K exp(�N�(mp))) (3:148)

Moreover,

P
h
j eKj � K

�
1� 2K exp(�N�(mp))

�i � 1

4
(3:149)

Proof. Note that

K � j eKj � ���i 2 1; : : : ; K
��9j 6= i s.t.jR(�i; �j)j � mp

	��
�

KX
i=1

X
j 6=i

1IfjR(�i;�j)j�mpg
(3:150)

Now

E�

KX
i=1

X
j 6=i

1IfjR(�i;�j)j�mpg = K2P� [jR(�i; �j)j � mp] � K2e�N�(mp) (3:151)
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and from this (3.148) is follows. Similarly, one veri�es easily that

E�

0@ KX
i=1

X
j 6=1

1IfjR(�i;�j)j�mpg

1A2

� K4e�2N�(mp) + 6K3e�2N�(mp) + 2K2e�N�(mp)

(3:152)

From this one deduces (3.149) via the Paley-Zygmund inequality, which states that

for any positive random variable X and 0 � q � 1,

P[X � qEX] � (1� q)2 EX2

(EX)2
(3:153)

}

Lemma 3.19 tells us that if we choose K such that K exp(�N�(mp)) is small, then

almost all � drawn will be isolated from the others as desired. Since �(m) converges

to ln 2 as m tends to one, it is clear that we can �nd 
p tending to zero as p tends

to in�nity such that this holds with K = 2N(1�
p). An asymptotic analysis of the

function  (x) for large p yields the estimates claimed in the theorem. }}

Having seen how we can prove a lower bound on the ground state energy and thus

the free energy of our model, it is tempting to also get an upper bound that improves

on the trivial REM bound.

Proposition 3.21:In the p-spin SK model, there exists cp > 0 such that almost

surely for all but �nitely many values of N ,

sup
�2SN

Hp�SK
N (�)

N
�
p
2 ln 2(1� cp) (3:154)

Moreover, for p large,

cp � 2��
2
pp

p

(2� �)2
(3:155)

with �p = 1 + 1
p ln 2 +

q
1 + 1

(p ln 2)2 tending to 2 as p " 1.

We will set in this section EH�H�0 = f(R(�; �0)) where in the application to the

p-spin SK model, f will be the p-th power. We will assume that f is an increasing

function.
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First we establish the existence of a �-covering of the set SN = f�1; 1gN .

Lemma 3.22: Let 1 > � > 0. Then there exists a set KN (�) � SN with the

following properties:

(i) For any � 2 SN , dist(�;KN(�)) � �.

(ii) N�1 ln jKN (�)j � �(1� �) + o(1).

Proof. Again we will establish the existence of such sets by showing that a random

set of the cardinality given in (ii) will have property (i) with probability close to 1.

Thus let K = fk1; : : : ; kjKjg be a set of i.i.d. random variables taking values in SN
drawn from the uniform distribution on SN . Let P denote their law. Then

P [9�2SN dist(�;K) > �] � 2NP [ dist(�;K) > �]

� 2NP [8k2K dist(�; k) > �]

� 2N (P [ dist(�; k) > �])jKj

� 2N (1� P [ dist(�; k) � �])jKj

� 2Ne�jKjP[dist(�;k)��]

(3:156)

This probability is exponentially small, as soon as for some � > 0,

jKj � ln 2N(1 + �)

P [ dist(�; k) � �]
(3:157)

Since P [ dist(�; k) � �] � e�N�(1��), the claimed result follows.}

Let now a set KN (�) be given. We introduce the map k : SN ! KN (�) that maps

any con�guration � to the point k(�) 2 KN (�) that is closest to �. We will use the

following obvious relation, valid for all 1 > � > 0 and all x:

P

�
sup
�2SN

H� > x

�
�

X
k2KN (�)

P

"
sup

�2SN ;k(�)=k
H� > x

#
(3:158)

Now

P

"
sup

�2SN ;k(�)=k
H� > x

#
=

1X
`=�1

P

"
Hk 2 [`; `+ 1); sup

�2SN ;k(�)=k
H� > x

#
(3:159)
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Moreover, it is clearly true that

P

"
Hk 2 [`; `+ 1); sup

�2SN ;k(�)=k
H� > x

#

� min

0@P [Hk 2 [`; `+ 1)] ;
X

�:k(�)=k

P [Hk 2 [`; `+ 1);H� > x]

1A (3:160)

The idea is now that for ` \large" the maximum of the process H� can be bounded

by the �rst term, while for ` too small, the joint probability is reduced due to the

strong correlation between H� and Hk. Indeed we have for ` � 0

P [Hk 2 [`; `+ 1)] � 2e�`
2=2 (3:161)

while

P [Hk 2 [`; `+ 1);H� > x]

=
1

2�

1p
1� (f(R(�; k)))2

Z `+1

`

dy

Z 1

x

dze
� y2+z2�2f(R(�;k))zy

2(1�(f(R(�;k)))2)
(3:162)

Now

y2 + z2 � 2f(R(�; k))zy

1� (f(R(�; k)))2
= z2 +

z2(f(R(�; k)))2 + y2 � 2f(R(�; k))xy

(1� (f(R(�; k)))2)

z2 +
(zf(R(�; k))� y)2
(1� (f(R(�; k)))2)

(3:163)

Now note that by construction, if k(�) = k, then f(R(�; k)) � f(1 � �). It is clear

that the second argument in the minimum in (3.160) has a chance to realize the

minimum only if x is substantially larger than `. In fact we will bound this minimum

by its second argument only if f(1 � �)x � (` + 1) � Æ` � 0. In that case, on the

domain of integration in (3.162), the exponent in the integrand is bounded by

1

2

�
x2 +

Æ2`
1� (f(1� �))2

�
(in fact the integral is bounded by replacing the f(R(�; k)) by f(1� �) everywhere)
and so

P [Hk 2 [`; `+ 1);H� > x] � Ce
� 1

2

�
x2+

Æ2
`

1�(f(1��))2

�
(3:164)
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Thus for any `0 s.t. `0 < xf(1� �), we can obtain the bound

X
K2KN (P )

1X
`=�1

P

"
Hk 2 [`; `+ 1); sup

�2SN ;k(�)=k
H� > x

#

�
X
`�`0

2NCe
� 1

2

�
x2+

(xf(1��)�`+1)2

1�(f(R(1��)))2

�
+
X
`>`0

jKN(�)j2e�`2=2

=
X
`�`0

2NCe
� 1

2

�
x2+

(xf(1I��)�`0+`0�`)2
1�(f(R(1��)))2

�
+
X
`>`0

jKN(�)j2e�
(`0+`�`0)2

2

(3:165)

Clearly, the last expression is bounded by

NC

 
2Ne

� 1
2

�
x2+

(xf(1��)�`0)2
1�(f(R(1��)))2

�
+ jKN (�)j2e�

`2
0
2

!
(3:166)

Now set `0 = xf(1� �)Æ, 0 � Æ � 1. Then (3.166) reads

NC

 
e
N ln 2� x2

2

�
1+

(1�Æ)2f2(1��)
1�(f(R(1��)))2

�
+ eN�(1��)� x2

2 Æ2f2(1��)
!

(3:167)

The optimal choice for Æ is obtained by equating the exponents in both summands.

This yields (set f2 � f2(1� �))

0 = N(ln 2� �(1� �))� x2

2

�
1 +

(1� Æ)2f2

1� f2
� Æ2f2

�
(3:168)

or
2N(ln 2� �(1� �))(1� f2)

x2
= (1� f2Æ)2 (3:169)

leading to

Æ =
1

f2

 
1�

r
2N(ln 2� �(1� �))(1� f2)

x2

!
(3:170)

Inserting this into (3.167) we see that our probability is bounded by

exp

�
N�(1� �)� 1

2f2

�
x�

p
2N(ln 2� �(1� �))(1� f2)

�2�
(3:171)

For this to be exponentially small, we must have that x > xc where

xc =f
p
2N�(1� �) +

p
2N(ln 2� �(1� �))(1� f2)

=
p
2N ln 2

�
f
p
�(1� �)= ln 2 +

p
(1� �(1� �)= ln 2)(1� f2)

� (3:172)
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The �nal result is now obtained by minimizing this expression with respect to �.

While the exact computation of the minimizer is rather cumbersome, in case f(y) =

yp, using the leading asymptotics in �, i.e.

1� f2 = 2p�+O(�2)

and

�(1� �) = ln 2 +
�

2
ln �� �

ln 2 + 1

2
+O(�2)

we get up to terms of order �2j ln �j2,

xc =
p
2N ln 2

 r
2p�2

j ln �j+ ln 2 + 1

2 ln 2
+

r
1� �(j ln �j+ ln 2 + 1)

2 ln 2
(1� p�)

!

=
p
2N ln 2

 
1� �

 
j ln �j+ ln 2 + 1

4 ln 2
+ p�

r
p(
j ln �j+ ln 2 + 1

ln 2
)

!!
(3:173)

Setting � = 2��
2p, we get

xc =
p
2N ln 2

 
1� 2��

2p

 
�2p

4
+

ln 2 + 1

4 ln 2
+ p�

s
p

�
p�2 +

ln 2 + 1

ln 2

�!!
(3:174)

For large p we can neglect the term of order � in the expansion of �(1 � �), which

leads to the approximate formula

xc �
p
2N ln 2

�
1� 2��

2pp

�
�2

4
+ 1� �

��
x
p
2N ln 2

�
1� 2��

2pp (�� 2)2
� (3:175)

Now the coeÆcient of � in this expression should be positive if we stand to gain over

the trivial bound
p
2N ln 2, which is the case provided �2 6= 4. However, we must also

make sure that Æ < 1. Going back to (3.170) and making the same approximations

as before, this yields the condition

1 >
1�pp�2j ln �j

1� 2p�
=

1� �p�

1� 2p�
(3:176)
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which is satis�ed for �2 > 4. In fact, we can optimize over � in the expression (3.174)

with the (unique admissible) solution

�p = 1 +
1

p ln 2
+

s
1 +

1

(p ln 2)2
(3:177)

This concludes the proof.}

Remark. In the case p = 2, i.e. the SK model proper, our bound (evaluated without

approximations using MATHEMATICA), yields sup 1
N
H(�) � p

2 ln 2 � 0:999832

which is considerably worse than the spherical bound of Comets [C1]. More generally,

we see that the improvement in the upper bound over the trivial REM bound is rather

marginal. While it may be possible with more work or some more clever tricks to

sharpen this bound a bit, it is an unfortunate fact that no known methods will allow

to completely close the gap between upper and lower bounds.

3.3.2. Truncated partition functions and overlaps.

We will now present Talagrand's approach to the p-spin model. As explained in

the REM, this is based on the analysis of second moments of truncated partition

functions.

The �rst result is the analogue to Proposition 3.1 in the REM.

Theorem 3.23: In the p-spin SK model, (3.17) holds for all � � �p where

�2p � �̂2p � inf
t2[0;1]

�
�(t)

1 + tp

tp

�
(3:178)

Moreover,
p
2 ln 2(1� 2�p�1

ln 2
) � �p �

p
2 ln 2(1� cp) (3:179)

where cp is the constant from Proposition 3.21.

Proof. We use the same de�nitions as in Section 3.2.1. Note that the estimate (3.26)

carries over unaltered. A di�erence occurs only when computing the mean square

of the partition function. Namely, while in the REM only the two cases � = �0 and

� 6= �0 had to be distinguished, here we have to distinguish all di�erent values for
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the overlap RN (�; �
0). We can use the convenient fact that H� +H�0 has the same

distribution as
p
2 + 2RN (�; �0)H�. This gives

E eZ�;p;N (c)2 =E�E�0 1X
t=�1

1IR(�;�0)=tEe
�
p
N(H�+H�0 )1IH�<c

p
N;H0�<c

p
N

�
1X

t=�1
Ee�

p
N
p
2+2tpH�1IH�<2c

p
N=

p
2+2tpE�E�0 1IR(�;�0)=t

(3:180)

where the sums over t are understood to be over the possible values of RN . Up to

sub-leading corrections,

Ee�
p
N
p
2+2tpH�1IH�<2c

p
N=(2+2tp)

=

8<:
p
1+tpp

2�N(�(1+tp)�c)e
N
�
2�c� c2

1+tp

�
; if 1 + tp > c=�

e�
2N(1+tp); if 1 + tp � c=�

(3:181)

Therefore, using Stirling's approximation for the binomial coeÆcients (3.115) we get:

(i) If � < c:

E eZ2
�;p;N (c) � e�

2N

p
2�N

 X
t:1+tp<c=�

2e�N�(t)+N�2tp

p
1� t2

+
X

t:1+tp>c=�

2
p
1 + tpe�N�(t)+N c2tp

1+tp
�N(c��)2p

(1� t2)(�(1 + tp)� c)

! (3:182)

and

(ii) If � > c,

E eZ2
�;p;N (c) � eN(2�c�c2)

2�N

1X
t=�1

2
p
1 + tpp

1� t2(�(1 + tp)� c)
e�N�(t)+N c2tp

1+tp (3:183)

We see that the expectation of the square of the truncated partition function is

essentially equal to the square of the expectation, provided that c is chosen such that

inf
t
[��(t) + c2tp

1 + tp
] � 0 (3:184)
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Since we must choose c > � if we want that that EZ�;N = E eZ�;N (c), we see that

we can meet both conditions only if � � �̂p as de�ned in (3.178). More precisely,

analyzing the function in the exponent near t = 0, one �nds:

Lemma 3.24: For all p � 3, we have

(i) If � < c and c satis�es (3.184), then

E eZ2
�;N (c)� [E eZ�;N (c)]2

[E eZ�;N (c)]2
�
�
CpN

�p=2+1; for p even,

CpN
�p+2; for p odd,

(3:185)

(ii) If � � c and c satis�es (3.184), then

E eZ2
�;N (c)

[E eZ�;N (c)]2 � CpN
+1=2 (3:186)

Proof. Part (ii) is obvious and we leave the details as an exercise. To prove the

more subtle result (i), note that up to an exponentially small correction,

[E eZ�;N (c)]2 =
1X

t=�1
e�

2NE�E�01IR(�;�0)=t (3:187)

Therefore,

E eZ2
�;N (c)� [E eZ�;N (c)]2

�
1X

t=�1

�
Ee�

p
N
p
2+2tpH�1IH�<2c

p
N=(2+2tp)

� e�
2N
�
E�E�01IR(�;�0)=t

� e�
2N

p
2�N

 X
t:1+tp<c=�

2e�N�(t)
�
e+N�2tp � 1

�
p
1� t2

+
X

t:1+tp>c=�

2e�N�(t)+N c2tp

1+tp
�N(c��)2

p
1� t2

!
(3:188)

By (3.184) the second sum is exponentially small in N ; for the �rst case, if p is even,

use that on the domain of summation,������
2e�N�(t)

�
e+N�2tp � 1

�
p
1� t2

������ � 2p
1� (c=� � 1)2=p

N�2tpe�N(�(t)��
2t2(c=��1)(p�2)=p)

(3:189)
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The bound (3.185) is now obtained using that �(t) � t2=2 for small t, comparing the

sum in (3.188) to an integral and performing a simple change of variables. In the odd

case, we expand the exponential to second order, and use that the �rst order term

gives no contribution by symmetry. This yields the sharper result in that case.}

Remark. The bound (3.185) is the analogue of the exponential bound (3.42) valid

in the REM. In [BKL] it has been shown that this variance estimate goes together

with a central limit theorem for the free energy, analogous to parts (i) and (ii) of

Theorem 3.2.

While (3.185) is weaker than its analog in the REM, it is still more than suÆcient

to prove (3.32). From here the �rst assertion of the theorem follows just like in the

REM.

The lower bound on �p follows from the analysis of the right-hand side of (3.178).

The upper bound in (3.179) is a consequence of Proposition 3.21. Namely, if limN"1 EF�;N =

��2=2 for all � � �p. Then for such �,

� =� d

d�
lim
N"1

EF�;N = � lim
N"1

d

d�
EF�;N = lim

N"1
N�1=2��;N (H�)

� lim sup
N"1

N�1=2 sup
�2SN

H� �
p
2 ln 2(1� cp)

(3:190)

This concludes the proof of the theorem in the case p � 3.

We cannot, however, resist the temptation to present an alternative proof that (a)

does not need the sharp estimate of Lemma 3.24, and that also works in the case

p = 2 (for � < 1). This clever trick was introduced by Talagrand already in [T1].

The argument uses an exponential estimate on the 
uctuations of the free energy,

which follows from a classical concentration of measure inequality for functions of

i.i.d. Gaussian random variables, to be found e.g. in [LT], page 23:

Theorem 3.25: Let X1; : : : ; XM be independent standard normal random variables,

and let f : RM ! R be Lipshitz continuous with Lipshitz constant kfkLip. Set

g � f(X1; : : : ; XM ). Then

P [jg � Egj > x] � 2 exp

 
� x2

2kfk2Lip

!
(3:191)
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Corollary 3.26: For any value of � and for any p,

P [jF�;N � EF�;N j > x] � 2 exp

�
�Nx

2

2�2

�
(3:192)

Proof. Just check that as a function of the Np independent variables Ji1;:::;ip the

free energy is Lipshitz with Lipshitz constant �N�1=2. (Exercise!!). }

Remark. Exponential estimates of this type have played a major rôle in the devel-

opment of the theory in the last years. The observation that free energies tend to

satisfy such estimates appeared �rst, independently, in [BGP2] and [T1].

The crucial observation, �rst made in [T1], is that (3.192) and (3.185) are in

contradiction, unless (3.17) holds. To see this, use the Paley-Zygmund inequality

(3.153), which implies that, under our assumption,

C

4
� P

h eZ�;N (c) � qE eZ�;N (c)
i
� P

�
Z�;N � 1

2
E eZ�;N (c)�

= P

�
�F�;N + EF�;N � 1

N
ln E eZ�;N (c) + EF�;N �N�1 ln 2

�
� 2 exp

 
�N

�
1

N
ln E eZ�;N (c) + EF�;N �N�1 ln 2

�2

=2

! (3:193)

provided 1
N
ln E eZ�;N (c) + EF�;N � N�1 ln 2 � 0; if this condition fails, by Jensen's

inequality 0 � EF�;N + �2=2 � N�1 ln 2, otherwise, (3.193) implies that jEF�;N �
�2=2j � CN�1=2. Thus the �rst assertion of the theorem is proven. }

Remark. The argument yielding the upper bound on �p can be inverted to show

that �̂p is a upper bound for the ground state energy density,

� lim infN"1N�1 sup�2SN (�Hp�SK
N (�)). Namely, since

�E d

d�
F�;N � N�1=2E sup

�2SN
H� (3:194)

for all �, and for all � < �c, it is true that E
d
d�
F�;N = ��, it follows that

N�1E sup
�2SN

�Hp�SK
N (�) � �c (3:195)
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This gives a much simpler proof with an improved estimate of Proposition 3.17. Thus,

we have already proven the existence of a phase transition, and we have estimates for

the critical temperature which become sharp in the limit p " 1, and, not surprisingly,

the limiting value is the same as in the REM. In fact, a simple argument which we

leave as an exercise shows that the free energy converges, as p " 1, to that of the

REM! However, it is far more interesting to understand what happens to the Gibbs

measure at the phase transition for �xed p. The key tool remains the analysis of the

square of the truncated partition function. We have seen in the computation of the

mean of eZ2
�;N (c) that in the case p > 2, practically all the contribution came from

the pairs of spin-con�gurations with overlap close to zero, and, possibly, �1. One

clearly gets the feeling that that this computation must have some more profound

meaning, and that this should tell us something about the replica overlap distribution.

Unfortunately, this is not totally trivial, the main obstacle being that, unlike in the

REM, we do not know the precise value of sup�H�. We will now show how to

overcome, at least partly, this diÆculty.

Theorem 3.27: For any � > 0 there exists p0 <1 such that for all p � p0, and for

all 0 � � <1
lim
N"1

E�
2N;� (jRN(�; �
0)j 2 [�; 1� �]) = 0 (3:196)

If, moreover, � < �̂p, then for any � > 0 there exists p0 <1 such that for all p � p0,

such that for some Æ > 0, for all large enough N ,

E�
2N;� (jRN(�; �
0)j 2 [�; 1]) � e�ÆN (3:197)

Remark. Note that we prove this result without any restriction on the temperature,

while Talagrand requires some upper bound on � both in [T4] and (largely improved)

in the announcement [T5].

Proof. Let us �rst consider the high-temperature region. In view of the fact that

we know how to compute the mean of the square of the truncated partition function

and that this would give the desired result, we only need to (i) justify the truncation
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and (ii) show that the partition functions in the denominator can be replaced by a

constant without harm. But (ii) follows from Lemma 3.24: by Chebyshev's inequality,

it implies that for � < c < �̂p,

P[Z�;N < (1� Æ)E eZ�;N (c)] � P[ eZ�;N (c) < (1� Æ)E eZ�;N (c)]

� P
h
j eZ�;N (c)� E eZ�;N (c)j � ÆE eZ�;N (c)

i
� Æ�2N1�p=2

(3:198)

To justify point (i), we use (3.198) to show that

E �
2�;N
�
fH� > c

p
Ng [ fH�0 > c

p
Ng
�
� 2E��;N

�
fH� > c

p
Ng
�

= 2E
E � e

�H�)1IH�>c
p
N

Z�;N

� 2
EE � e

�H�1IH�>c
p
N

(1� Æ)E eZ�;N (c)
+ P[Z�;N < (1� Æ)E eZ�;N (c)]

� 2
e�N(c��)2=2

(1� Æ)
p
N(c� �) + Æ�2N1�p=2

(3:199)

Now we can conclude readily that

E �
2N (jRN(�; �
0)j 2 [�; 1]) �

EE �;�01IH�<c
p
N;H�0<c

p
N1IRN (�;�0)2[�;1]e�

p
N(H�+H�0)

(1� Æ)[E eZ�;N (c)]2
+ 2

e�N(c��)2=2

(1� Æ)
p
N(c� �)

+ 2Æ�2N1�p=2

(3:200)

Using the representation (3.182), we see that the principal term in (3.200) satis�es

EE �;�01IH�<c
p
N;H�0<c

p
N1IRN (�;�0)2[�;1]e�

p
N(H�+H�0)

(1� Æ)[E eZ�;N (c)]2
� C exp(�Nc�2) (3:201)

with constants of order unity. This means that � can even be chosen as � � N�1=2 lnN ,

showing that the measure at high temperatures concentrates as sharply on zero over-

lap as the uniform measure.

Let us now turn to the more intricate and more delicate low temperature case.

Again we have to justify truncation, and we need a uniform lower bound on the
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partition functions in the denominator. But �rst we must decide how to truncate.

Note that so far we used truncation only for high temperatures and in such a way

that the truncations did not alter the mean partition function. At low temperatures

this will not do, and we must dare truncation with c < �. In the REM we have

actually seen a much �ner truncation at work that isolated the main contributions to

the Gibbs measures coming from the extremal order statistics. This suggest that we

should try to truncate at the ground state energy. Unfortunately, we do not know its

limiting value, and we do not even know that it has a limit. Fortunately, however,

we are able to show that its random 
uctuations are quite small. This will give us

an opportunity to actually use Theorem 3.25 in a situation where all else would fail.

Lemma 3.28: For any � > 0, and for all N large enough,

P

���sup
�
H� � E sup

�
H�

�� > x
p
N

�
� exp

�
�N x2

2

�
(3:202)

Proof. This is in fact a simple corollary of Theorem 3.25. All we have to show is to

compute the Lipshitz norm of sup�H�. But

����sup
�
H�[!]� sup

�
H�[!

0]
���� � sup

�
jH�[!]�H�[!

0]j

= N�p=2 sup
�

������
X

i1;:::;ip

(Ji1;:::;ip [!]� Ji1;:::;ip [!
0])�i1 : : : �ip

������
� N�p=2kJ [!]� J [!0]k2Np=2 = kJ [!]� J [!0]k2

(3:203)

which means that the Lipshitz norm of sup�(H�)) is equal to one. }

As a consequence, we can introduce without harm the indicator function of the

event that sup�H� � E sup�H�+cN , where cN � C lnN . On the other hand, we can

bound the partition functions in the denominator by 2�N exp
�
�
p
N(E sup�(H�)� cN )

�
,
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since clearly

P

�
Z�;N < 2�N exp

�
�
p
N(E sup

�
H�)� cN )

��
� P

�
2�N sup

�
e�
pH� < 2�N exp
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�
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N(E sup

�
H�)� cN

��
= P

�
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�
HN (�) < E sup

�
(H�)� cN

�
� exp

�
�c

2
N

2

� (3:204)

Now let I � (�1; 1). Set EN � N�1=2E sup�H�. Then

E�
2N (RN (�; �
0) 2 I) = E1Isup�H��

p
NEN+cN

E�;�0 e
�
p
N(H�+H�0 )1IRN (�;�0)2I

2�2Ne2�N(EN�cN=
p
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+ 2 exp

�
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2
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EE �;�0 e

�
p
N(H�+H�0)1IH�+H�0�2
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NEN+2cN )1IRN (�;�0)2I

2�2Ne2�N(EN�cN=
p
N)

+ 2 exp

�
�c

2
N
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�
(3:205)

Now assume that � > EN + cN=
p
N . Then, as in (3.183),

EE �;�0 e
�
p
N(H�+H�0)1IH�+H�0�2(

p
NEN+cN )1IRN (�;�0)2I

2�2Ne2�N(EN�cN=
p
N)

�e
N(2 ln 2�(EN+cN=

p
N)2+4�N�1=2cN)

2�N

X
t2I

2
p
1 + tpe�N�(t)+N

(EN+cNN�1=2)2tp

1+tp

(1� t2)(�(1 + tp)�EN �N�1=2cN )

(3:206)

The pleasant aspect of this expression is that it is essentially independent of �, since

cN goes to zero with N . Moreover, we know that
p
2 ln 2 > EN � p

2 ln 2(1 � cp),

with cp = 2�p= ln 2. Thus, any interval I on which

�(t)�N 2 ln 2tp

1 + tp
> cp � 2�p (3:207)

gives only an exponentially small contribution. This applies to all intervals except

(�2�p=2; 2�p=2) and [1� 2�p; 1]. This proves the theorem. }

Of course we would like to know more precisely how the the overlap is distributed

on the remaining two little intervals. In particular it seems more than reasonable



126 Section 3

that the phase transition is accompanied, as in the REM, by a charging of mass to the

neighbourhood of the value one, which would imply a \lumping phenomenon" of the

Gibbs measure. But it looks at the moment rather hopeless to get such information

from a computation like the preceding one; in particular, as long as we do not know

the precise value of EN (remember how sharply we had to estimate in the REM to

get such information out!). Thus to get more information, one has to use some more

subtle tricks. We have already seen in the REM, that integration by parts provides

rather powerful insights. In fact, most of Section 3.2.5. can be carried over to the

p-spin model with some changes.

3.3.3 Ghirlanda{Guerra identities and lump masses.

All we want to do now is to use the Gaussian integration by parts formula (3.122)

for the p-spin model. Of course the i.i.d. Gaussians to use for that are no longer the

Hamiltonian, but the independent couplings Ji1;:::;ip . The analogue of Lemma 3.12

is

Lemma 3.29: For any value of �, in the p-spin model,

E
d

d�
F�;N = ��

�
1� E�
2�;N (Rp

N (�; �
0))
�

(3:208)

Proof. We just repeat the steps of the proof of Proposition 3.12 with the obvious

modi�cations. Namely

�E d

d�
F�;N = N�1=2E

E �H�e
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p
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E� e�
p
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X
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p
NH�

E� e�
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H�
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� �N�(p�1)=2 E�E�0�i1 ; : : : �ip�
0
i1
; : : : �0ipe

�
p
N(H�+H�0 )

E�E�0 e�
p
N(H�+H�0 )

!

= � � �E
E �E�0

�
N�1PN

i=1 �i�
0
i

�p
e�
p
N(H�+H�0 )

E�E�0 e�
p
N(H�+H�0 )

(3:209)

This is (3.208).}

As �rst observed by Talagrand, the equality (3.208) implies that the replica over-

lap cannot remain concentrated on the value zero for all values of �. Namely, assume

that for all values of � 2 [0; b], limN"1 E�
2�;N (Rp
N (�; �

0)) = 0. Then it is plain from

(3.208) that, in this interval, limN"1 EFN;� = ��2=2. Thus the replica overlap can-

not remain zero beyond the critical value. This actually suggests that for all values

� > �p, lim infN"1 E�
2�;N (Rp
N (�; �

0)) > 0, but there is unfortunately no monotonic-

ity argument available to prove this29. However, the estimate on the ground state

energy from Proposition 3.21 implies strict positivity at least soon after the critical

point. In fact,

Proposition 3.30: For all � >
p
2 ln 2(1� cp), with cp as in Proposition 3.21,

lim inf
N"1

E�
2�;N (Rp
N (�; �

0)) > 0 (3:210)

Proof. Just note that by the �rst line of (3.209) the left-hand side of (3.208) is

equal to N�1 times the average of the Hamiltonian, which in turn is bounded by N�1

times the mean of the supremum of the Hamiltonian. The estimates from the proof

of Proposition 3.21 then suÆce that this is less than
p
2 ln 2(1 � cp), contradicting

(3.208) unless (3.210) holds. }

If we combine Proposition 3.30 with Theorem 3.27, we see that above the critical

value of �, the overlap has a non-trivial distribution supported on the neighbourhoods

of zero, and �1, while intermediate values are excluded. As Talagrand observed in

[T3], this fact alone allows to draw rather stringent conclusions about the Gibbs

29That is to say, it is in principle possible that the overlap would exhibit a very erratic oscillating
behaviour just above the critical value of �!



128 Section 3

measures. Roughly speaking, and maybe not too surprisingly, they amount to saying

that the Gibbs measure look like some softened up version of that of the REM. More

precisely, one can conclude that asymptotically, as N " 1, the Gibbs measure will

be concentrated on a small subset of the hypercube that consists of of even smaller

disjoint components that Talagrand called \lumps". Each lump is of size no bigger

than O(2�p), while the distance between any two lumps is at least 1 � O(2�p=2).

More precisely, is possible to decompose the state space SN into a collection of

disjoint subsets Ck such that

(i)

lim
N"1

E�
2�;N
��
(�; �0)j jRN(�; �

0)j > �
	n [k Ck � Ck� = 0 (3:211)

(where the Ck depend both on N and on the random parameter!), and

(ii) If �; �0 2 Ck, then RN (�; �
0) � 1� �.

Lumps surrounded by empty regions

These facts follow from quite simple geometric considerations that we invite the

reader to work out for herself or to look up in [T3].
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The most important contribution of Proposition 3.30 to this picture is that it

implies that at least one of these lumps has positive mass. Of course one would ex-

pect that the distribution of the masses of the individual lumps should be somewhat

similar to the situation in the REM as well, i.e. the total mass should be distribut-

ed according to some law on a countable set of lumps. In the REM this was the

consequence of a fundamental theorem on the Poisson convergence of the extreme

order statistics of an i.i.d. family of random variables. There seems no immediate

way to obtain a similar prove in the p-spin case. On the other hand, we have seen

that substantial information on the lump distribution could also be obtained via the

Ghirlanda{Guerra identities. Talagrand has announced that this path is feasible also

in the p-spin case, and we will follow him at least some steps along this road.

Theorem 3.31: Assume that � > �p. Let Ck be ordered such that for all k,

�N;�(Ck) � �N;�(Ck+1). Then for all k 2 N, there exists pk < 1 such that for all

p � pk,

lim
N"1

E�N;�
�[kl=1Cl

�
< 1 (3:212)

except possibly for an exceptional set of �'s of zero Lebesgue measure. Moreover, for

k large, pk � 2
3
ln k
ln 2 .

Proof. In fact, just as we could prove an analogue of Lemma 3.12 for the p-spin

model, we can also generalize, virtually without changing the proof, Proposition 3.15.

This reads

Proposition 3.32:In the p-spin model, for all but a countable set of values �, for

any bounded function h : SnN ! R,

lim
N"1

�����E�
n+1
�;N

�
h(�1; : : : ; �n)Rp

N (�
k; �n+1)

�
� 1

n
E�
n+1

�;N

0@h(�1; : : : ; �n)
0@ nX

l6=k
Rp
N (�

l; �k) + E�
2�;N (Rp
N (�1; �2))

1A1A����� = 0

(3:213)

Proof. We leave the proof, which follows that of Proposition 3.15 in detail, as an
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exercise. See also [L] for a good and general exposition.

Choosing h to be the indicator function

h(�1; : : : ; �n) = 1I8k 6=lRN (�k;�l)=qkl (3:214)

we get that (for almost all �)

lim
N"1

E�
n+1
N;�

�
Rp
N (�

k; �n+1)
��8k 6=lRN (�

k; �l) = qkl
�

=
1

n

nX
l6=k

qpkl +
1

n
lim
N"1

E�
2N;�
�
Rp
N (�

1; �2)
� (3:215)

which is the relation (17) of [GG].

Assume that the assertion of Theorem 3.31 fails. Then there exists a �rst instance

k� such that

lim
N"1

E�N

�
[k�l=1Cl

�
= 1 (3:216)

Now de�ne events Q(n)
�0 2 Bn by

Q(n)
�0

�
n
R 2 [�1; 1]n(n�1)=2j81�l<k�njRlkj � �0

o
(3:217)

The important observation is that, if fRN (�l; �k)g1�l<k�k� 2 Q(k�)
�0 , then there exists

some permutation � 2 Sk� such that, with probability one �k 2 C�(k) for all k � k�.

In particular

lim
N"1

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1IfRN (�l;�m)g1�l<�k�2Q(k�)

�0

i
= lim

N"1
E�
k

�+1
N;�

h
Rp
N (�

k; �k
�+1)1I9�8k�l=1

�l2C�(l)

i (3:218)
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But

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1I9�8k�l=1

�l2C�(l)

i
=
X
�2Sk�

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1I8k�

l=1
�l2C�(l)

i

=
X
�2Sk�

k�X
j=1

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1I�k�+12C�(j)1I8k�

l=1
�l2C�(l)

i

=
X
�2Sk�

k�X
j 6=k

E�
k
�+1

N;�

h
Rp
N (�

k; �j)1I�k�+12C�(j)1I8k�
l=1

�l2C�(l)

i
+
X
�2Sk�

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1I�k�+12C�(k)1I8k�

l=1
�l2C�(l)

i

(3:219)

where we used the symmetry between replicas in the terms j 6= k to exchange �k
�+1

with �j. Note that for the �rst term we have the obvious (though not very good)

bound

0 �
X
�2Sk�

k�X
j 6=k

E�
k
�+1

N;�

h
Rp
N (�

k; �j)1I�k�+12C�(j)1I8k�
l=1

�l2C�(l)

i
� �p0E�


k�
N;�

h
1I8k�

l=1
�l2C�(l)

i
= �p0E�


k�
N;�

h
Qk�
�

i
(3:220)

while the second term satis�esX
�2Sk�

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1I�k�+12C�(k)1I8k�

l=1
�l2C�(l)

i
� (1� �)p

X
�2Sk�

E�
k
�+1

N;�

h
1I�k�+12C�(k)1I8k�

l=1
�l2C�(l)

i
=

1

k�
(1� �1)pE�
k

�+1
N;�

h
1I8k�

l=1
�l2C�(l)

i
=

1

k�
(1� �1)pE�
k

�
N;�

h
Qk�
�0

i
(3:221)

where we used the obvious permutation symmetry among the �rst k� replicas. Let us

now use (3.213) with f chosen as the indicator function of the event Q(k�)
�0 . Clearly
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we get

lim
N"1

E�
k
�+1

N;�

h
Rp
N (�

k; �k
�+1)1IfRN (�l;�m)g1�l<�k�2Q(k�)

�0

i
� 1

k�
lim
N"1

E�
k
�+1

N;�

h
1IfRN (�l;�m)g1�l<�k�2Q(k�)

�0

i �
(k� � 1)�p0 + E�
2N;�R

p(�; �0)
�

(3:222)

Comparing (3.220), (3.221) to (3.222) we see that

(1� �1)
p � (k� � 1)�p0 + lim

N"1
E�
2N;�R

p(�; �0) � (k� � 1 + p0)�
p + p1 (3:223)

This implies the lower bound

k� � (1� �1)
p � p1

�p0
(3:224)

Quantitatively, this estimate can be re�ned to

k� � C�123p=2((1� C2�p)p � p1) = 2pp0(1� O(2�2p)) (3:225)

This proves the theorem. }

Remark. It is actually possible to prove, under the additional assumption that �

is not too large, that for large enough p, (3.212) holds for all k, i.e. the number

of lumps with positive mass is unbounded. This follows from an improved estimate

on the lower bound of the interval of excluded replicas under such conditions that is

given by Theorem 1.5 from [T3],resp. in improved form Theorem 8.8 of [T4].

Theorem 3.33: [T3] There exists p0 <1 such that if p � p0 and � < 2p=2�6, then

for any � > 0,

lim
N"1

E�
2�;N
�jRN (�; �

0)j 2 [�; 1� 2�p]
�
= 0 (3:226)

I will not give the proof of this theorem, which is technically rather involved. Also,

the condition that � should not be too large appears unnatural. Let me just mention

that it makes use of the so-called cavity method, or induction over the volume. We

will introduce this important method in the �nal part of these notes in the context

of the Hop�eld model only.
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4. Mean-�eld models 2: Hop�eld models

In this section we turn our attention to the second line of generalizations of the

Curie-Weiss model we mentioned at the beginning of Section 3. That is we will study

models that share with the Curie-Weiss model the feature that their Hamiltonian is

expressed as a function of so-called \overlap parameters" or \macroscopic functions".

The model we will focus on here is the so-called \Hop�eld model" [Ho]. In this case,

the macroscopic functions are just the \overlaps" with a random set of a-priori chosen

spin con�gurations, typically denote by �1; : : : ; �M 2 SN and called \patterns". We

set

m�(�) � RN (�; �
�) (4:1)

If the �� are chosen at random, these quantities become random functions on the

space of spin con�gurations, and a random Hamiltonian is de�ned e.g. via

HN (�) � �N
MX
�=1

m2
�(�) (4:2)

This choice yields the famous Hop�eld Hamiltonian.

4.1. Origins of the model.

The story of the Hop�eld model is quite interesting and worth to be detailed. The

name goes back to John Hop�eld, a physicist at Caltech interested in modelling the

behaviour of networks of neurons (for a more general survey, see [A], and from a

more mathematical perspective [P]), such as the human brain. Now the brain is a

really messy system, composed of a giant mesh of roughly 1010 cells, called neurons.

These neurons are all linked up via so-called dendrites, essentially long organic wires

that are capable of transmitting electric impulses from one neuron to another. What

these neurons do basically is to send out and receive sequences of such electric pulses

at various frequencies. The important thing is that the frequency (or �ring rate in

the jargon) at which a neuron sends out its pulses depends (among other things) in

a rather complicated manner on the signals coming in from all the other neurons

it is connected with. That is to say, each neuron is a small device that processes

incoming information and transmits the result to other neurons. Apparently, the
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way these things are hooked up, this produces a device that can perform rather

amazing computational tasks (like reading these pages and possibly making some

sense out of them...). How can one possibly understand how such a system works?

Clearly, already a single neuron is a rather complicated system whose dynamics is

far from easy to analyse; trying to analyse the joint behaviour of billions of them

looks thus hopeless. In such a situation physicists like to simplify the models, and

to abstract from details while keeping what are believed to be the essential features.

The �rst step in this simpli�cation goes the same way as our old friend Ising: simplify

the \state space" of a single neuron to the simplest possible one, f�1; 1g, suggesting
that the neuron �res \rapidly" or \slowly". This idea goes back at least to McCulloch

and Pitts [MP] in 1943. Now it was known that a neuron changes its state at a rate

depending on the compound, but weighted, e�ect of all its input signals, that are

functions of the states of those neurons that are connected to it30. We can think of

this e�ective input signal as some �eld

hi = fi
�f�jgj2N(i)

�
(4:3)

where N(i) denotes the set of all neurons \�ring" into the neuron i. The way the

network processes information then depends on the structure of these neighbourhoods

(the \graph" of connections), and the properties of the functions fi. Setting these

up corresponds in a way to programming the system. Clearly the simplest choice for

a function fi is a linear one, that is

fi
�f�jgj2N(i)

�
=

X
j2N(i)

Jij�j (4:4)

It is known that the e�ects of a signal on a neuron can go both ways, inducing it to

�re or to stop �ring. Thus the coeÆcients Jij should have the possibility of taking

both signs, and di�erent strengths. Thus we see that this �eld looks like the local

�eld acting on site i in a spin glass model. Of course, contrary to a spin glass, the

coupling should not be arbitrary, but be programmed to ensure a particular task.

But how can such programming happen? As early as 1949, D. Hebb [He] suggested

30Connections in real neural networks are directed and not reciprocal, a fact that we shall
ignore....
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a sort of progressive self-programming of such a network that should give rise to

a network functioning as a memory. The idea is that the connection between two

neurons should be altered in a direction to \favour" the current states present, i.e.

one should add a term proportional to �i�j. In this way, if the network over time

has passed through a number M of di�erent \states", denoted by �1; : : : ; �M , the

couplings would take the form

Jij =
MX
�=1

��i �
�
j (4:5)

This form of the coupling is called Hebb's rule. While it is a bit diÆcult to believe

that things should be that simple, this rule has been a rather widely accepted one,

and in any case is interesting enough for us to start investigating the ensuing model.

Of course, if this idea was to be taken seriously, the couplings should evolve in

time; we will, however, assume that the couplings have reached a state of saturation

where they do not change anymore, and what we are interested in should be the

evolution of the state of the network from some initial state �(0) with �xed couplings

of the form (4.5). We still have to de�ne the dynamics: Here Hop�eld proposed in

[Ho] a Markov chain where at independent exponentially distributed random times

a clock rings at site i and the neuron changes its state �i(t) to a new value �1 with
rates proportional to exp(��hi). Hop�eld's key observation was that (in the case of

symmetric connections), such a Markov chain would have as its invariant measure a

Gibbs measure corresponding to the Hamiltonian

HN (�) = �
X

i;j:j2N(i)

Jij�i�j (4:6)

with J given by (4.5). Finally, simplifying the model further by assuming that

any neuron is connected to any other, and normalizing properly, one arrives at the

Hamiltonian

HN (�) = � 1

N

MX
�=1

NX
i;j=1

��i �
�
j �i�j (4:7)

which one sees easily to be equal to the expression given in (4.2). This is, in brief,

the reasoning that led Hop�eld to derive what could be called the \Ising model" of
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neural networks. The formal resemblance to spin glass models then of course sparked

immediate interest among physicists who saw their chance to bring their expertise to

bear in an entirely new context.

Interestingly enough, though, the Hamiltonian (4.7) was introduced already 6

years before Hop�eld, in three papers by Figotin and Pastur [FP1-3] which had

apparently received very little attention31. Not surprisingly, they were advocated as

simple, exactly solvable models of spin glasses! Figotin and Pastur more or less gave

a complete solution which, however, failed to exhibit the key features expected of spin

glasses but revealed that the model behaves very much like the ordinary Curie{Weiss

ferromagnet, except that the number of stable magnetized states was equal to 2M

instead of 2. In a way, from this point of view the model was about as disappointing

as the model introduced earlier on by Mattis [Ma] that corresponded to the case

M = 1 and was seen to be totally equivalent to the Curie{Weiss model.

Fortunately, Hop�eld did not repeat the analysis of Figotin and Pastur (this was

done a few years later by various people), but performed numerical experiments32.

Moreover, in these experiments he had an objective that was motivated by the inter-

pretation of the model as a memory. This meant that, starting from an initial con-

�guration somewhat close to one of the \patterns" ��, the system should approach

�� and stay close to it for a long time, if not forever. Now Hop�eld observed that

this was indeed true (in a sense), but only if M was not too big: in fact the allowed

value of M depended on the size N of the network and was roughly M� = 0:14N .

So something interesting happened, but only if M was taken as a function of N !

Naturally, this fact had eluded Figotin and Pastur who studied the thermodynamic

limit N " 1 with M �xed!

The seemingly small modi�cation brought to the model by considering M as a

function M(N) of the system size N thus actually turns what otherwise would be

a rather simple mean-�eld model into something much more interesting and also

31This fact had been brought to my attention only in 1993 by L. Pastur; it seems that these
papers were almost never cited before in the entire literature on Hop�eld's model.

32This is not to discourage people from doing analytic work. However, the example shows that
interesting facts are often found by experimenting with things one does not understand.
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much more complicated to analyse. In [BG2] we have called such models generalized

random mean-�eld models. I will not discuss here the more general setting introduced

there but stay with the single example of the standard Hop�eld model.

While Hop�eld's results suggested that this model is much more interesting than

was �rst thought, the choice of the function M(N) provides a parameter that could

make a rigorous analysis possible at least under certain conditions on the growth

rate of this function. Indeed, at least the rigorous study of the model can be seen

as a constant struggle to push our understanding to larger and larger growth rates,

ranging from Figotin and Pastur's constantM through logarithmic [KP,vEvH,Ga] via

sub-linear growth [BGP1] to what we can control today, linear growth M(N) = �N

with suÆciently small � [BGP2,BG1,BG2, T2,T5]. I will in the sequel explain the

most signi�cant steps in this development.

4.2. Basic ideas: Finite M .

To get a feeling for the model, it will be worthwhile to discuss the case when M

is �nite �rst. Doing this, we face a small dilemma: there are two basic methods

that can be used and have been used to study the model. One is based on the large

deviation theory. This approach looks a priori more rational and has the advantage

that it can be applied to a very general class of (generalized) mean-�eld models. Its

strategy is to study �rst the distribution of the macroscopic order parameters mN (�)

under the Gibbs measure, i.e. the measures QN s.t.

Q�;N (m 2 A) � ��;N (mN (�) 2 A) (4:8)

for any Borel set in RM . Now it is fairly straightforward to see that the family of

measures Q�;N satis�es a large deviation principle, i.e.

sup
m2AO

	�(m) = lim inf
N"1

� 1

N
lnQ�;N (A)

� lim sup� 1

N
lnQ�;N (A) = sup

m2 �A
	�(m)

(4:9)

with probability one, and for a rate function 	� that is independent of the realization

of the random variables �. This observation goes back to van Hemmen and co-

workers [vH1,vH2,vEvH,vHGHK,vHvEC,] and, in greater generality, Comets [Co].
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The computation of the rate function is greatly simpli�ed by the fact that HN is just

a function of themN . In fact, �nding the rate function is reduced to the combinatorial

problem of counting the number of spin con�gurations � that gives rise to the same

value mN . This problem is in principle elementary, even though the �nal expression

is rather involved.

The second approach, based on what is frequently called the Hubbard{Stratonovich

(H-S) transformation [Hu,St] looks a bit arti�cial, and works well only in cases

where the Hamiltonian is a quadratic function of the order parameters. When it

works, however, it is much simpler, and some of the latest results have only been

obtained with this method (even though in the past it has always been possible to

reproduce all results with both tools). Since the large deviation approach has been

explained extensively in [BG3], I decided that in these notes I will stick with the

Hubbard{Stratonovich approach. This approach was incidentally also the one used

in [FP1,FP2]. One way to see the HS transformation is to say that it consists in

constructing the convolution of the induced measure Q�;N with a Gaussian measure

of mean zero and variance 1=�N ,

Q�;N � Q�;N ?N (0; 1=�N) (4:10)

The amazing fact is that this measure can be written down in a very explicit form

(much more explicit than the measure Q�;N , due to the simple identity

e
1
2x

2

=
1p
2�

Z 1

�1
dze�

1
2 z

2+xz (4:11)

applied to the Boltzmann factor:

e
� 1

2N
PM

�=1
(mN (�)�)2

=
1

(2�)M=2

Z 1

�1
dz1 : : : dzMe

� 1
2

P
�
z2�+N

�1=2
PN

i=1
�i
�P

�
��
i
z�
�

(4:12)

The key point is that the exponent in this expression is now linear in the variables

�i. It follows immediately, after a convenient change of variables, that

Z�;N =
1

(2��N)M=2

Z 1

�1
dz1 : : : dzMe

�N�
�
1
2

P
�
z2�� 1

�N

PN

i=1
ln cosh

�
�
P

�
��
i
z�
��
(4:13)



Disordered Systems 139

and

Q�;N (dz) =
exp (�N���;N (z))

Z�;N
dz (4:14)

with

��;N (z) � 1

2

X
�

z2� �
1

�N

NX
i=1

ln cosh

 
�
X
�

��i z�

!
(4:15)

This function will play a central rôle in the remainder of this section. In the context of

the HS approach, it replaces the rate function in the large deviation approach; the big

advantage of the HS method is that it can be written down explicitly for any values

of N and M and looks thus much more suitable in the cases when M depends on N .

Moreover, the rate function 	 and the function � are quite intimately connected, as

is explained at length in [BG2].

Looking at the function ��;N , we see that the second part of it is an empirical

mean over the sample of N random vectors �i. Thus we may expect that in the limit

N " 1, this function will converge to a deterministic one, namely

��(z) � 1

2
kzk22 � ��1E ln cosh (�(�1; z)) (4:16)
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The function �2(z) for M = 2

This follows e.g. in the topology of uniform convergence on compact sets from

the law of large numbers in Banach spaces (see e.g. [LT]). Since I will later show a

related result in the case when M depends on N , I will not discuss this any further
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at this point. In any case, it is clear that the �rst thing to do is to understand how

this function looks like if we want to understand the properties of the measure Q�;N

for large N .

The �rst observation, due to Figotin and Pastur, is that

Lemma 4.1: For any M 2 N, if ��1 are i.i.d. Rademacher random variables taking

the values �1 with equal probability, then the function �� takes its minimal values

��(m
�) = 1

2 (m
�)2���1 ln cosh(�m�), where m� is the largest solution of the equation

x = tanh(�x) (4:17)

on the set M�;M given by

M�;M �
[

�;�2f1;:::;Mg
f�m�e�g (4:18);

where e� denotes the �-th unit vector in RM . Note that m� = 0, whence jM�;M j = 1

if and only if � � 1.

We even have more:

Lemma 4.2: Under the assumptions of the preceding lemma, for all � 6= 1 there

exists c(�) > 0 such that for all M 2 N,

��(z)� ��(m�) � c(�) min
y2M�;M

kz � yk22 (4:19)

Proof. I will only give a short proof of Lemma 4.1. Note that

kzk22 = E ((�1; z))
2

(4:20)

so that

�� = E�� ((�1; z)) (4:21)

where �� is the Curie{Weiss function de�ned above. This function attains its minima

at the points �m�. Thus it is clear that if z is such that the random variable (�1; z) is
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supported on the set f�m�;m�g, then �� attains its absolute minimum at this point;

moreover, if such a value exists, then the absolute minimum is attained precisely on

the set of values z for which this is true. Now if ��i are Rademacher, then any z of

the form z = �m�e� has this property. Moreover, it is very easy to see that these

are the only possible candidates. Namely, our condition is

MX
�=1

��1 z� = �m�; 8�i 2 f�1; 1gM (4:22)

Without loss of generality we can assume �11 = 1. Then (4.22) implies that

z1 + b = �m� and

z1 � b = �m� (4:23)

Quite obviously this can only be true if either z1 = �m� and b = 0, or z1 = 0, and

b = �m�. In the second case we are done if M = 2, and we can proceed inductively

otherwise. In the �rst case we argue that b = 0 implies that all z�, � > 1 must be

zero. This is trivial in the case M = 2, while for M > 2 we can split b again into

two pieces that would need to satisfy z2 + b2 = 0 and z2 � b2 = 0, which is obviously

only possible if both z2 = 0 and b2 = 0. This proves Lemma 4.1. }

Noting the elementary fact that ��(x) � ��(m
�) � a(�)(jxj � m�)2, it is quite

obvious that Lemma 4.2 holds with some constant c(�). The proof given in [BG3]

yields a numerical estimate on the constant, but I am not terribly happy with either

the proof (that is rather cumbersome) or the estimate (that is rather poor). Thus I

encourage the reader to do better by herself!

In the case of �nite M , it follows readily from these observations that any �-neigh-

bourhood of the setM�;M carries all but an exponentially small fraction of the total

mass of the measures Q�;N , with probability that tends to one very rapidly. In

particular, it is very easy to see that the measure conditioned on, say, any ball33 of

radius r < m� centered at m�e� converges, as N " 1, to the Dirac measure on the

point m�e�, almost surely. The same is then true, naturally, for the measures Q�;N .

33Or, for that matter, any closed set containing the single point m�e� fromM�;M .
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We see that the vicinities of the points �m�e� play here the same rôle as the

\lumps" in the REM or the p-spin SK model, with the di�erence that they are not

randomly placed but deterministically put in by the construction of the model. A

natural question is then whether we can control in this model the respective \lump-

masses", that is whether we can control the behaviour of the unconditioned Gibbs

measures. This problem was considered only rather late as an illustration of the

concept of \metastates" in two papers by K�ulske [Ku1,Ku2]. It is clear that this

requires a much more precise analysis of the function ��;N than what we have given

so far. How can this be obtained?

The �rst idea should be to use the functional central limit theorem (see e.g. [LT])

to extract the sub-leading corrections. Indeed the following holds:

p
N (��;N (z)� ��(z))

D! g�(z) (4:24)

where g� is a Gaussian process on RM with covariance

C�(z; z
0) = E ln cosh(�(�1; z)) ln cosh(�(�1; z

0))�E ln cosh(�(�1; z))E ln cosh(�(�1; z0))
(4:25)

At �rst glance this would suggest that the 
uctuations of ��;N are of order 1=
p
N ,

and thus the relative weights of the di�erent \lumps" should di�er by factors of

order exp(�
p
N). However, a closer inspection shows that this is not true. Namely,

note that we are interested in the process g� essentially only very near the points

z = �m�e�. But at these points, the variance turns out to be zero, as better be

the case, since at these points ��;N is non-random! Note that this relies crucially

on the fact that the random variables ��i take only the values �1, and as soon other

distributions are considered, this will change dramatically34. In any case, we see that

the precision of the CLT is not enough to solve our problem, and we have to look

for the next order corrections. In fact, given that the 
uctuations are strictly zero

at the points �m�e�, one might �rst suspect that maybe the weights could be all

equal. However, the random e�ects will induce small shifts of the position of the

34A particularly interesting situation arises if the distribution of the � is taken to be Gaussian,
see [BvEN].
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minima of ��;N away from these points, and we will have to control these shifts and

the values of the function at these real minima to solve our problem. Since we expect

these shifts to be very small (tending to zero with N , a natural approach is to use

Taylor expansions. Let us consider the minimum near the point m�e�. Its location

z(�) must satisfy the equations

z(�)� =
1

N

X
i

��i tanh(�(�i; z
(�)) (4:26)

Now write z(�) = m�e� + Æ. Then Æ satis�es

Æ� =
1

N

X
i

��i tanh(�(m
���i + (Æ; �i)))�m�

Æ� =
1

N

X
i

��i tanh(�(m
���i + (Æ; �i))); � 6= �

(4:27)

Taylor expanding, and using that m� = tanh(�m�), we get

Æ� = � cosh�2(m��)
1

N

X
i

��i (Æ; �i) + O(kÆk22)

= � cosh�2(m��)Æ� + � cosh�2(m��)
1

N

X
� 6=�

X
i

��i �
�
i Æ� + O(kÆk22)

Æ� =
1

N

X
i

��i �
�
i tanh(�m

�) +
�

N

X
i

��i cosh
�2(�m�)(Æ; �i) + O(kÆk22); � 6= �

= � cosh�2(m��)Æ� + tanh(�m�)
1

N

X
i

��i �
�
i

+ � cosh�2(m��)
1

N

X
�0 6=�

X
i

��i �
�0
i Æ�0 +O(kÆk22); � 6= �

(4:28)

Since 1
N

P
i �

�
i �

�
i = O(N�1=2), one checks readily that to leading order the solution

of these equations is

Æ� = 0 + O(1=N)

Æ� =
tanh(�m�)

1� � cosh�2(�m�)
1

N

X
i

��i �
�
i + O(1=N)

(4:29)
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It follows that

��;N (z
(�))� ��(m�) =

X
�

Æ2�(1� � cosh�2(�m�)) + o(1=N)

=
1

N

(m�)2

1� �(1� (m�)2)

X
� 6=�

 
N�1=2X

i

��i �
�
i

!2

+ o(1=N)

(4:30)

where we used that cosh�2(x) = 1� tanh2(x). As a consequence, the measure Q�;N

has a decomposition

Q�;N �
MX
�=1

p�;N (�) (Q�;N (�jB�(m
�e�)) +Q�;N (�jB�(�m�e�)) (4:31)

where the conditional measures converge almost surely to Dirac measures, and

p�;N (�) =
e
�

(m�)2
1��(1�(m�)2)

P
� 6=�(N

�1=2
P

i
��i �

�
i )

2

PM
�=1 e

�
(m�)2

1��(1�(m�)2)
P

� 6=�(N
�1=2

P
i
��
i
��
i )

2
(4:32)

We see that these weights are, as random variables, functions of the M(M � 1) sums

of i.i.d. random variables

b��N � N�1=2X
i

��i �
�
i (4:33)

Since for � < �, these variables are uncorrelated (check!), it follows again by the

central limit theorem, that this family of variables converges weakly to independent

normal variables. This permits to formulate a convergence result in the spirit of the

metastate formalism.

Theorem 4.3: [Ku1]Assume that � > 1 and M <1. Then

Q�;N
D!Q� (4:34)

where Q� is the random measure on RM given by

Q� �
MX
�=1

p��(Æm�e� + Æ�m�e�) (4:35)
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where

p�� �
e
�

(m�)2
1��(1�(m�)2)

P
� 6=� g

2
��PM

�=1 e
�

(m�)2
1��(1�(m�)2)

P
� 6=� g

2
��

(4:36)

and, for � < �, the family fg��g are independent standard Gaussian random vari-

ables.

Remark. The same result holds of course also with Q replaced by Q .

It is clear that we could �x (condition on) a �nite number of the components of

�� without a�ecting at all the result. Thu the rôle of conditioning on the disorder

that was emphasized in the construction of the metastates does not really come to

bear in this setting. In that respect it will be more instructive to look at the Gibbs

measures as measures on the original spin space. Since as usual we are interested in

the convergence of �nite-volume measures in the product topology, it will be enough

to consider probabilities

��;N (�I = sI) (4:37)

for any �nite I � N and sI 2 f�1; 1gI , and to prove joint convergence of arbitrary

�nite collections of such probabilities. A rather simple computation shows that these

can be represented as follows:

��;N (�I = sI) =

R
dze��N��0;N0 (z)

Q
i2I e

�si(�i;z)R
dze��N��0;N0 (z)

Q
i2I 2 cosh(�(�i; z))

(4:38)

where N 0 = N � jIj, �0 = �N=N 0. Note that of course the di�erence between N

and N 0 and � and �0 is negligible in the limit N " 1. It is clear that Theorem

4.3 implies that ��;N converges in distribution to the random measure �� whose

�nite-dimensional marginals are given by

��;N (�I = sI) =

Z
Q�(dz)

Y
i2I

e�si(�i;z)

2 cosh(�(�i; z))
(4:39)

where ��i are i.i.d. symmetric Rademacher r.v.'s and Q� is the random measure from

Theorem 4.3. We see that when looking at convergence in distribution, we loose the

information on our patterns: the ��i appearing in (4.39) have the same distribution
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as the patterns that we used to construct the Hamiltonian, but they are not the same

random variables. But clearly we can do better. Namely, conditioning on the ��i for

all i 2 J , for an arbitrarily large �nite set J � N does not change anything concerning

the convergence of the measures Q�;N (since these �nitely many variables give no

contribution to the limits of the variables b��N !), however, they do appear in (4.39).

Therefore, the Aizenman-Wehr metastate will be the same random measure as �� ,

except that now the ��i appearing on the right are precisely the original patterns

from the de�nition of the Hamiltonian. Combining these observations, we can state

the following theorem:

Theorem 4.4: [Ku1]Assume that � > 1 and M <1. Then, given �,

��;N [�]
D!

MX
�=1

p��

�
�+;�� [�] + ��;�� [�]

�
(4:40)

where p�� are de�ned in (4.36) and ��;�� [�] are product measures on f�1; 1gN with

marginals

��;�� [�](�i = si) � e��m
���i si

2 cosh(�m�)
(4:41)

Remark. The product measures ��;�� [�] can be naturally seen as the pure states for

this model. Theorem 4.4 then says that themetastate is a random convex combination

of these extremal states, in accordance with Theorem 2.5. One can easily construct

sequences of measures converging almost surely to one of these extremal measures

by adding an external �eld term

�h
NX
i=1

��i �i (4:42)

to the Hamiltonian, and taking the limit N " 1 �rst and h # 0 after this (Exercise!).
This is in fact much simpler than to prove Theorems 4.3 and 4.4 and requires much

less information about the 
uctuations of the process ��;N (z). It is also much more

robust and can be proven even when M grows with N , as long as limN"1M=N = 0

[BGP1].
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Since all of these results follow just from the explicit representation of the lump-

weights as functions of sums of i.i.d. r.v.'s, one can obtain further asymptotic results

from the properties of this sum. In particular, from the invariance principle one

can construct the so-called superstate (proposed in [BG3]), i.e. the measure-valued

stochastic process constructed as the (conditioned) distributional limit of the process

f��;[tN ]gt2(0;1] and which is obtained from the expression for �� by just replacing

the Gaussian r.v.'s g�� by independent standard Brownian motions b��(t). This and

further results relating the di�erent notions of metastates can be found in [Ku1,Ku2].

4.3 Growing M .

The �niteM model is, as we have seen, readily solvable using just standard results

from probability theory: the law of large numbers, central limit theorems, and the

Laplace method. As soon asM turns into a function of N , these results are no longer

immediately applicable and require substantial modi�cations. Before discussing the

results obtained in this direction, let me identify the main steps in the analysis of

the �nite M case that need to be reconsidered.

(i) The �rst diÆculty is the fact that the law of large numbers no longer provides the

convergence of the function ��;N to its deterministic limit. Indeed, since these

functions are now de�ned on RM(N) , with M(N) growing to in�nity, we would

not even know what we should mean by such a convergence.

(ii) Even if we control ��;N , the Laplace method will have to be adapted to a situation

when the integral is over a space whose dimension grows together with the large

parameter. This is, however, a rather minor diÆculty.

(iii) A precise analysis of the local properties of the minima of ��;N can no longer rely

on simple Taylor expansions as used in the derivation of Theorem 4.3. The main

point is that we have used that by the Schwartz inequality, j(�i; Æ)j �
p
MkÆk2.

If M is �nite, this implies that if Æ is small in norm, then all the shifts in the

arguments of the functions appearing are also small; if M grows with N , this is

no longer the case.
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All these diÆculties are getting the more serious, the faster M is allowed to grow.

As a consequence, the history of the mathematical analysis of the Hop�eld model

is marked by a sequence of steps reaching larger and larger rates of growth: First

results (using combinatorial large deviation methods) by Koch and Piasko [KP] and

van Enter and van Hemmen [vEvH] reached logarithmic growth M(N)� lnN . The

next stage reached sub-linear growth (M(N)=N # 0). After the �rst computation

of the free energy (Koch [Ko] and Shcherbina and Tirozzi [ST]), the extremal Gibbs

measures were constructed in a collaboration with Gayrard and Picco [BGP1], a large

deviation principle was proven with Gayrard [BG5] (see also [CD] for an interesting

variant), and �nally a central limit theorem was proven in the same collaboration

[BG5] (�rst results on the CLT, under stronger growth conditions, are due to Gentz

[G1,G2]. An interesting result on a non-central limit theorem at the critical tem-

perature was found mor recently by Gentz and L�owe [GL1,GL2]). The only result

missing in this regime is the analogue of Theorem 4.3, which we have obtained only

under more stringent growth conditions (namely M(N) � p
N) in a collaboration

with D. Mason [BM]. I will not go into the details of these results, but pass to the

next step, the case when M(N) = �N with � > 0, but small. Here I will distinguish

two steps of progress: �rst, a priori estimates on the support of the Gibbs measures,

and exponential estimates on the respective weights [BGP2,BG1], and second, the

analysis of the conditional measures corresponding to one pattern, and the justi�ca-

tion of the replica symmetric solution [T2,T5,BG2,BG3]. Let me mention that there

is another line of research that relates solely to the analysis of local minima of the

Hamiltonian of the model and that principally investigates the question of how large

� can be chosen if one wants to guarantee the existence of local minima of HN \near"

the stored patterns (the so-called problem of the storage capacity) and that I will not

discuss in these notes. Key references are [N2,KoPa,Lou,T2].

4.3.1. Fluctuations of �.

In some way one can say that the key to analyzing the Hop�eld model with growing

M is to understand how to use � =M=N as a small parameter instead of 1=N . This

means in particular that we would like to say that ��;N is still close to its mean as
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long as � is small.

Our aim is to show that for small �, the minima of the function ��;N are reasonably

close to �m�e�, and that beyond a small neighbourhood of these points, the function

grows somehow like E��;N . Clearly this requires an estimate on ��;N(z)�E��;N (z)

that may get worse as z is farther away from the minima of E��;N . On the other

hand, we need estimates that are uniform in z. That is to say, a desirable estimate

will be of the form:

Proposition 4.5: Let M(N) = �N . Then there exists a constant C <1, such that

for all � > 1,

P

�
8z: dist(z;M�;M(N))>C

p
�=m�

�
��;N (z) � 1

2
E��;N (z)

��
� 1� e�M(N)=C (4:43)

Proof. Our problem is to control the 
uctuations of a stochastic process de�ned on

a space of dimension M(N). In principle this is a classical problem in the theory

of stochastic processes and there are well-developed tools available that we will not

fail to employ: exponential estimates and chaining (see in particular [LT]). Let me

brie
y explain the ideas behind this. The probably most elementary estimate used

in probability is that P[maxi2I Xi > xi] �
P

i2I P[Xi > xi]. This estimate tends

to be good, if the variables Xi are independent. Clearly in our situation this is not

directly applicable, since we are considering suprema over uncountable sets. The

standard remedy is to consider a grid, and to group the points close to a grid-point

together, hoping that they will not vary too much from the value on the grid-point,

while bounding the maximum over the grid by the sum. Note that we have already

used a similar procedure in the proof of Proposition 3.21.

Let us �rst look at an exponential estimate for the deviation at a �xed point.

��;N (z)� E��;N (z) =
1

N�

NX
i=1

(ln cosh(�(�i; z))� E ln cosh(�(�i; z))) (4:44)

and so, as we have already seen above, this di�erence vanishes strictly whenever z

has a single non-vanishing component. It will be crucial to exploit this and to get a
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bound that shows that the 
uctuations decrease as we approach one of the minima

of E��;N . Thus we exploit that with z� being any of the values �m�e�, we have that

ln cosh(�(�i; z))� E ln cosh(�(�i; z))

= ln cosh(�(�i; z))� ln cosh(�(�i; z
�))� E (ln cosh(�(�i; z))� ln cosh(�(�i; z

�)))

� �[fi(z; z
�)� Efi(z; z

�)]
(4:45)

Next we use Taylor's formula to bound

jfi(x; y)j � j(�i; (x� y))jj tanh(�(�i; �z))j � j(�i; (x� y))j (4:46)

We will want to use use Chebyshev's inequality to estimate

P

"
1

N

NX
i=1

(fi(x; y)� Efi(x; y)) � Æ

#
� inf

t�0
e�tÆN

NY
i=1

Eet(fi (x;y)�Efi (x;y)) (4:47)

Thus we must estimate the Laplace transforms of fi. Using the standard and trivial

second order bound on the exponential function, ex � 1 + x+ 1
2x

2ejxj together with

(4.46), we get

E et(fi(x;y)�Efi (x;y)) � 1 +
t2

2
E (fi(x; y)� Efi(x; y))

2 etjfi(x;y)�Efi (x;y)j

� 1 +
t2

2

h
E (fi(x; y)� Efi(x; y))

4
Ee2tjfi (x;y)�Efi (x;y)j

i1=2 (4:48)

where we have used the Cauchy{Schwarz inequality to separate the expectation of

the polynomial and exponential terms for convenience. Now clearly,

Ee2tjfi (x;y)�Efi (x;y)j � Ee4tjfi(x;y)j � Ee4tj(�i ;(x�y))j (4:49)

and

E (fi(x; y)� Efi(x; y))
4 � 7EE (fi(x; y))

4 � 7E (�i ; (x� y))4 (4:50)

Now we can use the Marcinkiewicz-Zygmund inequalities (see e.g. [CT], pp.366 �.),

in particular E (z; �i)
k � kkkzk2k2 , and Eesj(z;�i )j � 2es

2kzk22=2. This yields

Eet(fi (x;y)�Efi (x;y)) � 1 + t232kx� yk22e4t
2kx�yk22 � exp

�
32t2kx� yk22e4t

2kx�yk22
�

(4:51)
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We now get

Lemma 4.6: Let z� be any of the points �m�e�, and set R � R(z) � kz � z�k2.
Then, for all Æ � 1

P [j��;N(z)� E��;N (z)j � ÆR] � 2e�
1�e1=256=2

64 NÆ2 � 2e�
1

150NÆ2 (4:52)

Proof. Insert (4.51) into (4.46) and choose t = Æ=(64R). This gives the bound for

the upper deviation. For the lower deviation, the analogue procedure gives the same

bound, and this implies (4.52). }

Lemma 4.6 shows that typical deviations at a given point z are of order R=
p
N ,

where R is the distance of z from the nearest coordinate axis. But this does not yet

tell us anything about maximal 
uctuations. The �rst idea would be to introduce a

suitable latticeW in RM , to use Lemma 4.6 to bound the maximal 
uctuations on the

lattice (as a function of R), and to prove some uniform bound on ��;N (x)���;N (y)

that can then be used to control the deviations from the nearest lattice point. Using

again (4.46), and the Cauchy{Schwarz inequality, we get easily

j��;N (x)� ��;N (y)j

�
vuut 1

N

NX
i=1

(x� y; �i)2

vuut 1

N

NX
i=1

tanh2(�(�z; �i)) �
vuut 1

N

NX
i=1

(x� y; �i)2
(4:53)

Even though this bound will not be suÆcient to get optimal results (bounding tanh by

1 everywhere is exaggerated when � is close to one), it presents us with the occasion

to consider an important object, namely theM�M random matrix A with elements

A�� � 1

N

NX
i=1

��i �
�
i (4:54)

In terms of this matrix we can of course write

1

N

NX
i=1

(z; �i)
2 = (z; Az) (4:55)
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and thus obtain from (4.53) the bound

j��;N (x)� ��;N (y)j � kx� yk2kAk1=2 (4:56)

where kAk is the operator norm of the matrix A in `2(R
M ).

Random matrices of this form belong to one of the classical ensembles of random

matrix theory, the so-called Marchenko-Pastur matrices [MP]. They are also well-

known in statistics where they appear as sample covariance matrices. As a result,

their spectral properties, and in particular their norm (coinciding with the maximal

eigenvalue), have been widely investigated (a certainly incomplete selection of ref-

erences is [Ge,Gi,YBK,Si]; some results have been rediscovered or even improved in

the course of the investigation of the Hop�eld model in [Ko,ST,BGP1,BG3,Nie]). In

particular it is known that

Theorem 4.7: [YBK] Let A be the M �M random matrix de�ned in (4.54) with

��i i.i.d. random variables with mean zero, variance one, and E (��i )
4 < 1. Assume

that limN"1 M
N = � <1. Then,

lim
N"1

kAk = (1 +
p
�)2 a.s. (4:57)

In fact, much more precise results are available, but they will not be relevant to us

for the moment. In fact, in the remainder of these notes we will simply pretend that

A has always norm bounded by (1+
p
�)2, e�ectively placing ourselves on a subspace

of full measure where this is true (for large enough N). It should be noted that the

observation that this matrix and the bound on its norm are important goes back to

two papers by Shcherbina and Tirozzi [ST] and Koch [Ko] and triggered much of the

later progress.

Exercise: Use Lemma 4.6 and (4.56) with kAk � (1+
p
�)2 to show that the assertion

of Proposition 4.5 holds with the supremum taken over z : dist(z;M�;M(N)) >

C
p
�j ln�j for any �xed � � �0 > 1.

Since this one-step approach does not yield a result we deem sharp enough, we must

use a re�ned approach known as chaining that consists of introducing a hierarchy of
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lattices. Let us denote by WM;r � (rM�1=2Z)M the hyper-cubic lattice of spacing

rM�1=2 in RM . Note that no point in RM is farther away from WM;r than r=2. It is

not diÆcult to see that if BR(0) denotes the ball of radius R centered at the origin,

then the number of lattice points in this ball satis�es the bound, for R > r,

jW�;r \BR(0)j � eM [ln(R=r)+2] (4:58)

Now choose a sequence of spacings rn = e�nR and set W(n) � WM;rn \ Brn�1
.

For x 2 RM , let kn(x) 2 WM;rn be the (in case of non-uniqueness, one of the)

closest point(s) to x in WM;rn . Note that by construction kkn(x)� xk2 � rn=2 and

kn(x)� kn�1(x) 2 W(n). Clearly we have the telescopic expansion

��;N (z)� E��;N (z) = ��;N (z)� E��;N (z)� (��;N (z
�)� E��;N (z�))

=��;N (k0(z))� E��;N (k0(z))� (��;N (z
�)� E��;N (z�))

+ ��;N(k1(z))� E��;N (k1(z))� (��;N (k0(z))� E��;N (k0(z)))

+ ��;N(k2(z))� E��;N (k2(z))� (��;N (k1(z))� E��;N (k1(z)))

+ : : : : : :

+ : : : : : :

+ ��;N(kn(z))� E��;N (kn(z))� (��;N (kn�1(z))� E��;N (kn�1(z)))

+ ��;N(z)� E��;N (z)� (��;N(kn(z))� E��;N (kn(z)))
(4:59)

Now let Æ` > 0, ` = 0; : : : ; n, be a sequence of numbers such that
Pn

`=0 Æ` = Æ. Then

the event that ��;N (z)� E��;N (z) � Æ occurs only if, at least for one 1 � ` � n� 1,

��;N(k`(z))� E��;N (k`(z))� (��;N (k`�1(z))� E��;N (k`�1(z))) � Æ`; (4:60)

��;N (k0(z))� E��;N (k0(z))� (��;N (z
�)� E��;N (z�)) � Æ0; (4:61)

or

��;N (z)� E��;N (z)� (��;N(kn(z))� E��;N (kn(z))) � Æn (4:62)

and consequently, the probability of the event in question is smaller than the sum of

the probabilities of these n+1 events. The probability of the event (4.61) is bounded

by Lemma 4.6. Using the uniform bound (4.56), if we choose Æn > e�nR(1 +
p
�),
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the event (4.62) is excluded. By (4.44) the probabilities of the events (4.60) can be

estimated using (4.47) and the arguments leading to Lemma 4.6. This gives

P [j��;N (k`(z))� E��;N (k`(z))� (��;N(k`�1(z))� E��;N (k`�1(z)))j � Æ`]

� 2 exp

�
�N 1

150

Æ2`
r2`�1

�
= 2 exp

�
�N 1

y
150

e2(`�1)Æ2`
R2

� (4:63)

On the other hand, when z varies over BR(z
�), the pairs (k`(z); k`�1(z)) take only a

rather small number of values, since their di�erence lies in W(`). This yields that

Card f(k`(z); k`�1(z))jx 2 BR(z
�)g � jWM;r`�1

\BR(z
�)jjW(`)j � eM [ln(R=r`�1)+5]

(4:64)

Putting these observations together we get that

P

"
sup

z2BR(z�)
j��;N (z)� E��;N (z)j �

n�1X
`=0

e�nR(1 +
p
�) + Re�n

#

� 2eM [lnR=r0+2] exp

�
�N 1

150

Æ20
R2

�
+

n�1X
`=1

eM [ln(R=r`�1)+5]2 exp

�
�N 1

150

e2(`�1)Æ2`
R2

� (4:65)

If we chose Æ` = C
p
�e�`

p
` for some C large enough, then there is a constant c > 0,

depending only on the choice of C, but not on � or R, such that

P

"
sup

z2BR(z�)
j��;N(z)� E��;N (z)j � p�(1 +p�)RC

n�1X
`=0

e�``1=2 +Re�n
#

� 2ne�cM
(4:66)

We see that it suÆces to chose n = � 1
2 ln� to achieve that

p
�(1 +

p
�)RC

n�1X
`=0

e�``1=2 + Re�n � C 0R
p
� (4:67)

with C 0 � C independent of � and R. One can easily see that (4.67) can be improved

to show that for C large enough, there exists c > 0, s.t. for, say all R � 1

P

"
sup

z2BR(z�)
j��;N (z)� E��;N (z)j � p�CR(z)

#
� 2ne�cM (4:68)
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and using very similar arguments,

P

"
sup

z: dist(z;M�;M(N))�1
j��;N (z)� E��;N (z)j � p�CR(z)

#
� 2ne�cM (4:69)

We leave it to the reader to check that this implies the assertion of the Proposition

for all � s.t. m�(�) � m > 0; however, so far we have no uniform control on the

constants when m�(�) tends to 0 (which happens as � # 1). Inspection of our proof

shows that the only place where we have exaggerated is when in (4.53) we estimated

tanh2(�(�z; �i)) � 1. This estimate becomes poor when k�zk2 tends to zero which

precisely becomes relevant when � # 1. In this case we have to use tanh2 x � x2 and

replace (4.53) by

j��;N(x)� ��;N (y)j �
vuut 1

N

NX
i=1

(x� y; �i)2

vuut�2
1

N

NX
i=1

(�z; �i)2

� �kAkkx� yk2max(kxk2; kyk2)
(4:70)

We leave it to the reader to �ll in the details showing that from this we obtain the

assertion of the proposition in the case 1 < � < �0. }

Proposition 4.5 is a key result that allows immediately to conclude that the mea-

sure Q�;N is concentrated on the union of 2M(N) disjoint balls of radius c
p
�=m�,

provided � � 
(m�)2, for �nite positive constants 
 and c. This is in perfect agree-

ment with the prediction of the physicists [AGS], and even the scaling of the upper

bound on � as � # 0 is in accordance with these predictions. Of course, our constants

are pretty lousy, as one might expect. We state this result for easy reference as

Theorem 4.8: There exist 0 < c0; C; 
a < 1 such that for all � > 1,
p
� <


a(m
�)2, and all � satisfying c0

�p
�

m� ^N�1=4
�
< � < m�=

p
2, we have, with proba-

bility one, for all but a �nite number of indices N ,

QN;�

�[M�=1 [s=�1 B�(sm
�e�)

� � 1� e�C(M^N1=2): (4:71)

The same result holds for the measures Q�;N .

Remark. A version of Theorem 4.8, with worse bounds on the radii of the balls

and on the maximal value of � was �rst proven in [BGP2] (although the relevant
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estimates were already contained in [BGP1]). The correct asymptotics near � = 1

was proven in [BG1]. We have been following widely the version of the arguments

given in [BG2]. An alternative proof was also given by Talagrand [T2].

As we have already explained in the analysis of the p-spin SK model, having

established a result like Theorem 4.8, two questions remain open: How is the mass

distributed over individual \lumps" (here balls), and what are the properties of the

measure conditioned on one lump (ball)? In the case of �nite M we could completely

answer both questions. When M grows, both become much more subtle. As we

will soon see, amazingly enough the second question can be answered in full under

additional conditions on � and �. Concerning the �rst question, a full answer has been

given only under very strong conditions on the growth rate of M , namely M2 � N

in [BM]. The approach used there consisted essentially in pushing the analyses of

the �nite M case to its limits, employing in the process some very strong Gaussian

approximation results. Since these appear to be rather special methods that work

in a rather non-canonical regime, I will not include a discussion in these notes. On

the other hand, there are some weaker, but very general results concerning these

weights based on concentration of measure estimates that I will discuss in the next

sub-section.

4.3.2 Logarithmic equivalence of the \lump"-weights.

Theorem 4.8 suggests quite naturally that as in the �nite M case, there should be

(at least) a pair of pure states corresponding to each pattern and its mirror image.

However, on closer inspection one sees that this is somewhat premature. The point

is that the theorem says nothing about the mass of any given pattern: it could

well be that the mass of some of the balls is exponentially small (in N) and thus

there would be no reason to give it preference over any other region in the state

space. In particular, if one adopts the external �eld construction of extremal in�nite-

volume limits of Gibbs states, in such a situation we would not recover a limit state

corresponding to such a pattern. This problem has been an obstruction for quite some

time. Namely, a straightforward estimation (see [BGP1]) of the relative weights of

these balls would only show that they di�er by no more than a factor exp(O(M)); this
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suÆces in the case M(N)=N # 0. This allowed to construct the extremal measures

under these hypothesis [BGP1], but it remained unclear what would happen if �

is strictly positive. This problem was solved in [BGP2] where it was realized that

the right tool to address this are concentration inequalities. By todays standards,

the approach used in [BGP2] was rather clumsy, and due to some new concentration

inequalities proven subsequently by Talagrand [T1] (cited as Theorem 2.11 in Section

2), this is now a very simple and standard routine.

Theorem 4.9: Let � be as in Theorem 4.8 Set

I�N � 1

�N
ln

Z
B�(e�m�)

dze��N��;N (z) (4:72)

Then for any �; � �M(N),

P [jI�N � I�N j � x] � 4 exp

�
�N x2

128(m�)2

�
(4:73)

The same result holds if I�N is replaced by J�N � (�N)�1 lnQ�;N (B�(e
�m�)).

Proof. Note that by symmetry E jI�N = EI�N , and so

jI�N � I�N j �= jI�N � EI�N j+ jI�N � EI�N j (4:74)

Thus

P [jI�N � I�N j � x] � 2P [jI�N � EI�N j � x=2] (4:75)

We want to use Theorem 2.11 to bound this probability. To do so we must prove a

Lipshitz bound on I�N . Note �rst that using Cauchy{Schwarz in a very similar way

as in (4.53), we get that

j��;N [�](z)� ��;N [�
0](z)j � k� � �0k2kzk2 (4:76)

while

jI�N [�]� I�N [�0]j = (�N)�1
�����ln
 R

B�(m�e�) dze
��N��;N [�](z)R

B�(m�e�) dze
��N��;N [�0](z)

!�����
=(�N)�1

�����ln
 R

B�(m�e�) dze
��N��;N [�0](z)+�N [��;N [�0](z)���;N [�](z)]R
B�(m�e�) dze

��N��;N [�0](z)

!�����
� sup

z2B�(m�e�)
j��;N [�](z)� ��;N [�]

0(z)j � k� � �0k2(m� + �) � 2m�k� � �0k2
(4:77)
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(4.73) is now straightforward.}

It remains to show that this result for the measure QN;� extends also to the

measure Q�;N , and therefore to the Gibbs measure itself. But this is quite simple,

using the fact that Q�;N is a convolution of Q�;N with a M -dimensional Gaussian

measure with mean zero and covariance �N1I. This allows to bound

Q�;N (B�(m
�e�)) � Q�;N (B�+Æ(m

�e�)) + 2Me��NÆ2=4 (4:78)

that is up to an exponentially small correction, Q�;N (B�(m
�e�)) andQ�;N (B�(m

�e�))

di�er at most by the Q�;N mass of the shell between the radii ��Æ and �+Æ. Choos-
ing Æ suÆciently small, and � not too small, this has exponentially small mass, and

this implies the result for Q . }

At this stage a reasonably satisfactory qualitative picture is reached that con�rms

the heuristic and numerical �ndings that for small � and not too small � Gibbs mea-

sures corresponding to each of the patterns (and their mirror images) exist, implying

in some sense that the model, in this regime, does what it was conceived for, namely

to \store a number of preselected random patterns".

4.4. The replica symmetric solution.

From the point of view of our general philosophy, having established certain lo-

calization properties of the Gibbs measures, we should now ask how the measure

conditioned on one ball looked like. One natural approach (although, as it turned

out, not the only one) appeared clearly to analyse more carefully the properties of

the function ��;N in the vicinity of its minima. The aim of such an analysis should

should clearly be

(i) To localize more precisely the position of the minima (which so far are only local-

ized in a ball of radius � p�).

(ii) To determine the value of � at the minimum.

(iii) To determine whether or not there is a unique minimum in a suÆciently small

ball around m�e�.
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This analysis was started in the paper [BG1]. Our starting idea there was to

extend the use of the Taylor expansion, which had been very useful for �nite M

beyond its natural realm of applicability. The idea behind this was rather sim-

ple: in the �nite M case we used Taylor expansions in the arguments of functions

like 1
N

P
i ln cosh(�(z; �i)) and we took advantage of the uniform bound j(z; �i)j �

kzk1� �
p
Mkzk2. Now this bound is realized essentially when ��i = sign (z�), for

all �. But of course, for given z, unless the �i are very untypical, it is impossible that

this holds true for a large number of indices i. Rather, for most values of i, it should

be true that j(z; �i)j � kzk2, leaving room for a Taylor expansion to work even when

M = �N .

While the main thrust of the paper [BG1] was directed towards answering the

question (i), and to determine good bounds on the numerical constants allowing for

the existence of local minima near m�e�, the most consequential result proved to be

the answer to the third question which could accidentally also be given in a limited

domain of � and � values. I will therefore concentrate on reviewing this issue.

4.4.1. Local convexity.

How does one prove that a function has a unique minimum in a region where

the existence of a minimum is already established? In the absence of a better idea,

prove that the function is convex in this region. This was done in [BG1], where the

following result was proved.

Theorem 4.10: There exist �nite positive constants c1; c2; 
a such that if

(i) � � 
2am
�(�)4 and

(ii) � > c��1, then for � as in Theorem 4.8, with probability one, for all but a �nite

number of values of N , the function ��;N(z) is strictly convex on any of the balls

B�(�m�e�), and there exists � > 0, s.t. the Hessian matrix r2��;N (z) has a smallest

eigenvalue larger than � for all z 2 B�(�m�e�).

Remark. The lower bound (ii) on � may come as a surprise, but we will explain

that it is qualitatively optimal, which we will see is a pity.
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Proof. Let us consider without loss of generality the the neighbourhood of the point

m�e1. It will be convenient to set z = m�e1 + v. We are interested in kvk2 � �.

Then we have

r2��;N (z) = 1I� 1

N

NX
i=1

�

cosh2(�(m��1i + (�i; v)))
�i�i (4:79)

It is instructive to �rst consider the point v = 0. Here

r2��;N (m
�e1) = 1I� �

cosh2(�(m�))
A = 1I� �(1� (m�)2)A (4:80)

with A the matrix introduced earlier (4.54). Here we used that cosh�2 x = 1�tanh2 x
and m� = tanh�m�. This matrix is positive if and only of

(1 +
p
�)2�(1� (m�(�))2) < 1 (4:81)

Note that with � = 0, this is just the condition for the positivity of the second

derivative at m� in the Curie{Weiss model, and thus we know that for all � > 1,

there exists �0(�), such that (4.82) holds for � < �0(�). Moreover, as � " 1, �0

tends to in�nity. Thus, so far we have not seen any sign of condition (ii).

To understand this point, it is best to think of � being large. Then positivity

requires that the cosh2 in the denominators be large to compensate for the � in the

numerator. This requires the argument to be roughly of order ln �. Now assume that

even for a single term in the sum in (4.79) m��1i + (�i; v) � 0. Then35

r2��;N (z) � 1I� �

N
�i�i (4:82)

and since the matrix �i�i has norm M , this cannot be positive de�nite if �� > 1.

On the other hand, if v has components v� = ��i �
1
im

�=M , and m��1i + (�i; v) = 0,

and kvk2 = m�=
p
M so that the corresponding point is within the ball B�(e

1m�).

Thus we see that Condition (ii) is surely necessary. To prove that it is also suÆcient,

35We use the notation A > B for matrices to mean A �B is positive de�nite.
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we must show that the condition m��1i + (�i; v) � 0 cannot be realized for too many

indices i at the same time. To make this precise, �x 0 < � < 1 and write

r2��;N (z) =1I� �

N

NX
i=1

�i�i +
�

N

NX
i=1

tanh2(�(m��1i + (�i; v)))�i�i1Ij(�i;v)j��

+
�

N

NX
i=1

tanh2(�(m��1i + (�i; v)))�i�i1Ij(�i;v)j>�

(4:83)

Using positivity of �i�i this can be bounded by

r2��;N (z) �1I� �

N

NX
i=1

�i�i + tanh2(�m�(1� �)) �
N

NX
i=1

�i�i

+
�

N

NX
i=1

�
tanh2(�(m��1i + (�i; v)))� tanh2(�m�(1� �))� �i�i1Ij(�i;v)j>�

� 1I� �
�
1� tanh2(�m�(1� �))

�
A

� � tanh2(�m�(1� �)) 1
N

NX
i=1

�i�i1Ij(�i;v)j>�

(4:84)

Clearly the only dangerous and diÆcult term is the last one. We see that, as � grows,

it behaves like � times a certain matrix whose norm we therefore need to control.

This is not an entirely trivial task, and I am not sure that we have found the most

eÆcient way of dealing with it.

We start from the observation that for any symmetric matrix B,

kBk = supw:kwk2=1(w;Bw). Thus

sup
v2B�






 1
N

NX
i=1

1Ifj(�i;v)j>�m�g�
T
i �i







= sup

v2B�
sup

w:kwk2=�
1
�2

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; w)2

� 1
�2 sup

v2B�
sup
w2B�

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; w)2

(4:85)
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It will be convenient to use that

1Ifj(�i;v)j>�m�g(�i; w)
2

= 1Ifj(�i;v)j>�m�g(�i; w)2
�
1Ifj(�i;w)j<j(�i;v)jg + 1Ifj(�i;w)j�j(�i;v)jg

�
� 1Ifj(�i;v)j>�m�g(�i; v)2 + 1Ifj(�i;w)j>�m�g(�i; w)2

(4:86))

which allows to bound (4.85). Thus

2��2 sup
v2B�

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; v)2 � 2 sup
v2B�

X�m�(v) (4:87)

Thus our task is to bound the supremum of the quantities Xa which actually can

be seen as the partial second moments of the empirical measure of family of random

variables (�i; v). This was done in [BG1], and I give here only a sketch of the ar-

guments. As in the analysis of the function ��;N we are faced with the problem of

controlling the supremum over a continuous family of random variables indexed by a

high-dimensional set. Thus we may expect to have to use again the chaining technol-

ogy. As we already know, this requires exponential estimates on the Xa(v) as well as

on di�erences Xa(v) � Xa(v
0). Actually this is a rather tricky business, and things

will be quite a lot more complicated, and we will be forced to study simultaneously

a second object, the empirical distribution function of the same variables (�i; v),

Ya(v) � 1
N

NX
i=1

1Ifj(�i;v)j>�m�g (4:88)

Instead of considering simply the di�erences Xa(v)�Xa(v
0), we will use the following

lemma.

Lemma 4.11: Let a1; b1 > 0, v; � 2 B�. Then

Xa1+b1(v + �) � Xa1(v) + 2
p
Xa1(v)(�; A�) + 2a21Yb1(�) + 3(�; A�) (4:89)

and

Ya1+b1(v + �) � Ya1(v) + Yb1(�) (4:90)
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Proof. The basic idea behind this lemma is the simple observation that j(�i; v+�)j >
a1 + b1 can only be true if j(�i; v)j > a1, or if j(�i; v)j � a1 and j(�i; �)j > b1, that is

1Ij(�i;v+�)j>a1+b1 � 1Ij(�i;v)j>a1 + 1Ij(�i;v)j�a11Ij(�i;�)j>b1 (4:91)

(4.90) is already obvious from this. To get (4.89) we still have to work work with

(�i; v + �)2. Squaring out the sum and using again (4.91) together with the Schwarz

inequality then gives the result rather easily. }

The second basic ingredient are the exponential bounds on both Xa(v) and Ya(v).

Lemma 4.12: Set pa � 2 exp(�a2=2). Then for all v with kvk = 1,

P[Xa(v) � x] � exp
�
N [2p1=2a � x=4]

�
(4:92)

and for x � pa,

P[Ya(v) � x] � exp
�
N [(2pa)

1=2 � xa2=4]
�

(4:93)

The proof of this lemma can be found in [BG1] (Lemma 4.2). It is, as usual, a

somewhat involved application of the exponential Chebyshev inequality. Note that

pa is roughly equal to the mean of Ya(v). Note also that the corresponding estimates

for other values of kvk2 follow by scaling since Ya(Cv) = Ya=C(v) and Xa(Cv) =

C2Xa=C(v).

We now have all the ingredients for the analysis of the supremum together: Choos-

ing a lattice WM;r1 , we can control Xa(v) everywhere in terms of Xa1(v1) with v1 on

the lattice and the supremum of Ya�aa(�) with k�k2 � r1. This latter supremum is

then controlled via the usual chaining, using (4.90).

This allows to prove the following estimate:

Proposition 4.13:There exists �nite positive constants C; c such that if

�(�; a) = Ce�ca
2

+ C�j ln�j (4:94)
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Then for all � > 0

P

"
sup
v2B�

Xa(v) � �2�(�; a=�)

#
� Ce�N (4:95)

Remark. Proposition 4.8 in [BG1] is a quantitatively more precise version of this

statement.

We can now combine this proposition with (4.87) and (4.84) to get immediately a

uniform lower bound on the Hessian of �:

Lemma 4.14: Let �(�; a) be as in Proposition 4.13. Then, with probability large

than 1� Ce��N ,

inf
z2B�(m�e1)

r2��;N (z)

� 1� �[1� tanh2(�(m�(1� �)))](1 +p�)2 � � tanh2(�(m�(1� �)))�(�; �m�=�)
(4:96)

If we choose � = c
m� the lower bound is

1� �[1� tanh2(�(m�(1� �)))](1 +
p
�)2

� 
2(m�)2� tanh2(�(m�(1� �)))�(�; �=
)
� 1� �[1� tanh2(�(m�(1� �)))](1 +

p
�)2

� C� tanh2(�(m�(1� �)))(e�c=

2

+ �j ln�j)

(4:97)

Thus we see that this bound is strictly positive on a nonempty domain of parameters

� and �, which has the shape claimed in the theorem. }}
4.4.2. A heuristic derivation of the replica symmetric solution.

Before investigating the consequences of this convexity result, it may be instructive

to go through some very heuristic considerations that, however, will illustrate our

goal.

To this end we go back to the equations (4.26) determining the location of a

minimum of ��;N near a point e�m�. To simplify the notation, we consider the case
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� = 1, and we may take without loss of generality �1i � 1. Let us write this time

z(1) = m1 + x where x1 = 0. Then we get instead of (4.27) the system of equations

m1 =
1

N

NX
i=1

tanh(�(m1 + (x; �i)))

x� =
1

N

NX
i=1

��i tanh(�(m1 + (x; �i)))

(4:98)

Let us denote by RN the empirical measure

RN � 1

N

NX
i=1

Æ(x;�i) (4:99)

Then m1 is only a function of this empirical measure through the equation

m1 =

Z
RN (dg) tanh(�(m1 + g)) (4:100)

Now it is not diÆcult to see that, provided all x� tend to zero suÆciently fast as

N " 1, RN converges to a Gaussian distribution with mean zero and variance kxk22.
Thus if we knew that this convergence held for the (random!) solution of these

equations, all we would need to determine was this variance. This should be the

rôle of the remaining equations. Naively one might want to simply square both sides

and sum over �, but a bit more care must be taken to disentangle the dependence

between the argument of the tanh and the coeÆcient ��i . Thus it will be more useful

to write

(x; �i) = x��
�
i + (x(�); �i) (4:101)

and to Taylor expand

x� =
1

N

NX
i=1

��i tanh(�(m1 + (x(�); �i))) +
1

N

NX
i=1

��i �x��
�
i cosh

�2(�(m1 + (x(�); �i)))

= x��
1

N

NX
i=1

cosh�2(�(m1 + (x(�); �i))) +
1

N

NX
i=1

��i tanh(�(m1 + (x(�); �i)))

(4:102)
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which can be written, using that 1� cosh�2(y) = tanh2(y), as

x�

 
1� � + �

1

N

NX
i=1

tanh2(�(m1 + (x(�); �i)))

!
=

1

N

NX
i=1

��i tanh(�(m1 + (x(�); �i)))

(4:103)

Now if we ignore the small di�erence between (�i; x) and (�i; x
(�)), the coeÆcient of

x� is just 1� � + �
R
RN (dg) tanh

2(�(m1 + g)). Then squaring and summing over �

gives

kxk22
�
1� � + �

Z
RN (dg) tanh

2(�(m1 + g))

�2

= �

Z
RN (dg) tanh

2(�(m1 + g))

+
1

N2

X
i6=j

MX
�=2

��i �
�
j tanh(�(m1 + (x(�); �i))) tanh(�(m1 + (x(�); �j)))

(4:104)

The important point now is that the second term in the numerator on the right has

mean zero, by construction. Thus if it was true that in the limit N " 1, kxk22 is

almost surely constant and equal to its mean value, then this limit must satisfy

kxk22 = Ekxk22 =
�
R
R1(dg) tanh2(�(m1 + g))�

1� � + �
R
R1(dg) tanh2(�(m1 + g))

�2 (4:105)

assuming that R1 is a Gaussian distribution with mean zero and variance kxk22 � �r,

we see that we arrive at a closed system of equations for the two parameters m1 and

r, namely

m1 =
1p
2�

Z
dge�g

2=2 tanh(�(m1 +
p
�r))

r =
q

(1� � + �q)2
; with

q � 1p
2�

Z
dge�g

2=2 tanh2(�(m1 +
p
�r))

(4:106)

The solution of this system of equations is known as the \replica-symmetric" solution,

�rst derived by Amit, Gutfreund, and Sompolinsky [AGS] using what is called the

\replica trick". Although the derivation of these equations I gave above may look

somewhat less striking than the replica method, it is hardly more rigorous, given the

numerous ad hoc assumptions we had to make. It is surprising that they can indeed

be derived rigorously, as we shall explain in the sequel.
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4.4.3. The cavity method 1.

To see how our convexity results are related to the question of the replica symmet-

ric solution, we have to take a step back and look at an approach to the analysis of

disordered mean �eld models that was originally introduced by Parisi et al. (see [M-

PV]) as an alternative to the replica method, called the cavity method. This method

is in principle nothing else than induction, more precisely induction over the volume,

N , of the system. The basic idea is simple. Let fN be any thermodynamic quantity

of interest. Suppose we could derive a relation of the form fN+1 = F (fN ) + o(1).

Then, if fN converges to limit, this limit must be a �xed point of the map F . More-

over, under certain hypothesis, we may even be able to show that fN will converge by

virtue of this recursion relation. Of course the diÆculty will be that one will not be

able in general to �nd such relations, in particular it will not be true that fN+1 will

be a function of fN only. However, at least heuristically, i.e. ignoring the problem

of proving that the error terms are really o(1), it is indeed possible to obtain such

recursions for certain, suÆciently large sets of thermodynamic quantities.

Let us look at this problem in our model. The way to proceed is in fact not quite

obvious, but we will to some extend be guided by the preceding heuristic discussion.

Note that we are now interested in local properties of the Gibbs measure, that is we

want to consider the measure restricted to, say, the ball B�(m
�e1). We denote by

�
(1;1)
�;N ;Q(1;1)

�;N , etc. the conditioned measures

��;N
��jmN (�) 2 B�(m

�e1)
�
; resp. Q�;N

��jz 2 B�(m
�e1)

�
(4:107)

. Consider the Hamiltonian in a volume N + 1. We may write it as

HN+1(�) = � 1

2(N + 1)

MX
�=1

N+1X
i;j=1

��i �
�
j �i�j

=� 1

2(N + 1)

MX
�=1

NX
i;j=1

��i �
�
j �i�j �

1

N + 1
�N+1

MX
�=1

NX
j=1

��N+1�
�
j �j �

M

2(N + 1)

=
N + 1

N
HN (�)� N

N + 1
�N+1(�N+1;mN (�))� M

2(N + 1)
(4:108)
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It will also be important to note that

kmN+1(�)�mN (�)k2 � 1

N
kmN (�)k2 +

p
M

N
(4:109)

Let us now consider

Z�;N+1

Z�;N
=

X
�N+1=�1

E�e
�0�N+1(�N+1;mN(�))e��

0NN+1HN (�)Z�0;N
Z�0;N
Z�;N

e
M

2(N+1)

=
X

�N+1=�1
��0;N

�
e�

0�N+1(�N+1;mN(�))
� Z�0;N
Z�;N

e
M

2(N+1)

(4:110)

where �0 � N
N+1�. Similarly we get

�
(1;1)
�;N+1(�N+1) =

P
s=�1 s�

(1;1)
�0;N

�
e�

0s(�N+1;mN(�))
�

P
s=�1 �

(1;1)
�0;N

�
e�0s(�N+1;mN (�))

� (4:111)

up to a small error (of order exp(��N)) coming from the fact that the conditioning

on the left is on the vector mN+1(�) while on the right it is on mN (�). But due to

(4.109), this di�erence gives only contributions of the size of the order of the mass of

the shell ��
p
M
N � �N (�)k2 � �+

p
M
N which is exponentially small. We will ignore

all errors of that order in the sequel.

(4.111) can be easily extended to a formula representing all �nite-dimensional

marginal distributions. It shows that a central rôle is played by the Laplace transform

eL�;N(t) � �
(1;1)
�0;N

�
e�

0t(�N+1;mN(�))
�
= Q

(1;1)
�0 ;N

�
e�

0t(�N+1;m)
�

= e�=2Q(1;1)
�0;N

�
e�

0t(�N+1;z)
�
� e�=2L�;N (t)

(4:112)

Thus we can rewrite (4.111) as

�
(1;1)
�;N+1(�N+1) =

P
s=�1 sQ(1;1)

�0;N

�
e�

0s(�N+1;z)
�

P
s=�1Q(1;1)

�0;N

�
e�0s(�N+1;z)

� (4:113)

Being able to replace the measure Q by Q will actually be very useful (although it

shouldn't). Formula (4.111) appeared in the work of Pastur et al. [PS,PST] where it
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was realized that being able to control the Laplace transform L�;N was a key step to

getting the replica symmetric solution. This was later pushed by Talagrand towards

full rigour. Let us see why this is the case.

We compute �rst the mean of L�;N (t) with respect to the variables �N+1. This is

possible since Q�;N is independent of them. Of course we get simply

E �N+1
L�;N (t) = Q�;N

�
e
P

�
ln cosh(�tz�)

�
(4:114)

Now this would make sense if L could then be shown to be self-averaging. But this

is not the case. In a way one can see that taking this average throws out too much

information. One thing one can try then is to extract �rst a random part, and try to

show that what is left is self-averaging. A natural possibility is to center the variable

z in the exponent. Let Z denote the r.v. whose distribution is Q(1;1)
�;N , and write

�Z � Z �Q(1;1)
�;N (Z); actually, at least at this point we start to feel that our notations

are getting too heavy. Let us therefore denote henceforth by EQ the expectation with

respect to the random measure Q(1;1)
�;N . Then we can of course write

L�;N (t) = et(�N+1;EQZ)EQet(�N+1; �Z) (4:115)

As in (4.114) we get of course that

EEQet(�N+1; �Z) = EQ

�
e
P

�
ln cosh(�t �Z�)

�
(4:116)

Now, if all �Z� are small, ln cosh(�t �Z�) � 1
2�

2t2k �Zk22. Assume for a moment that the
distribution of �Z was anM -dimensional Gaussian distribution with variance of order

1=N . Then the length of �Z would be sharply concentrated about its mean, since

its distribution would have a density proportional to exp(�N(r2=2� ln r)). Thus in

such a case we would get that

EEQet(�N+1; �Z) = e
1
2�

2t2EQk �Zk22+o(1) (4:117)
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4.4.4. Brascamp-Lieb inequalities.

Of course, Q(1;1)
�;N is not a Gaussian distribution, but maybe it is suÆciently similar

to one so that we still get (4.117)? Indeed, we the local convexity proven in Theorem

4.10 does imply (4.117) as well as a number of similar results that we will need in

the sequel. Interestingly, the proof of this fact uses a rather sophisticated result form

functional analysis, the so-called Brascamp-Lieb inequalities [BL], and I doubt that

an elementary proof (e.g. as in the Gaussian case) could be given. Unfortunately,

while convexity gives a very elegant way of advancing here, it is known not to be

necessary, neither for the Brascamp-Lieb inequalities, nor for the replica symmetric

solution to be correct. The proof I will present here does therefore not give the best

available conditions. In principal there are two ways to get to better the results:

(i) to give a proof that does not use Brascamp-Lieb inequalities (and (4.117)). This

was Talagrand's original approach [T2]; in its original version, this gave however

conditions that were comparable to those under which convexity holds; improved

conditions, closer to those expected by physicists, required substantially more work

[T5] than the already very diÆcult [T2]36. (ii) There has been considerable work

done to establish Brascamp-Lieb inequalities without the assumption of convexity

[BJS]. In fact the real conditions for the B-L inequalities to hold concern the minimal

eigenvalue of a certain matrix-di�erential operator. [BJS] have establish criteria that

allow to bound this operator from below even even when convexity fails, but so far

nobody has been able to show that they are useful in our situation. This remains an

interesting question to study.

Let us now state the Brascamp-Lieb inequalities in their original form.

Lemma 4.15: Let V : RM ! R be nonnegative and strictly convex with Hess(V (x)) �
�. Denote by EV the expectation with respect to the probability measure

e�NV (x)dx=
R
e�NV (y)dy. Let f : RM ! R be any continuously di�erentiable func-

tion that is square integrable w.r.t. EV . Then

EV (f � E f )
2 � 1

�N
EV krfk22 (4:118)

36Recently, M. Talagrand has, however, told me, that a new, simpli�ed approach will soon
appear.
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Remark. It is not diÆcult to see that the result holds also, up to an exponentially

small error term, if V is an extended convex function, i.e. it is a convex function

on its domain D and equal to +1 outside of D. See e.g. [BG3] for details. In our

situation this is what we will actually have to use.

Remark. The condition Hess(V (x)) can be replaced by the condition that the

smallest eigenvalue of the matrix-di�erential operator

(��+rV � r)
 1I + Hess(V (x)) (4:119)

is larger than �. It is easy to see that the �rst two terms are a positive operator,

so that if the Hessian matrix is strictly positive, this gives an immediate bound.

However, as pointed out above, this condition is not necessary.

The following simple applications of Lemma 4.15 show how we will actually use

these inequalities (see [BG2]).

Corollary 4.16: Let EV be as in Lemma 4.15. Then

(i) EV kx� EV xk22 � M
�N

(ii) EV kx� EV xk44 � 4 M
�2N2

(iii) if any function f such that Vt(x) � V (x) � tf(x)=N for t 2 [0; 1] is still strictly

convex and Hess(r2Vt) � �0 > 0, then

0 � ln EV e
f � EV f � 1

2�0N
sup
t2[0;1]

EVt krfk22 (4:120)

In particular

(iii) ln EV e
(t;(x�EV x)) � ktk22

2�N

(iv) ln EV e
kx�EV xk22 � EV kx� EV xk22 � M

�2N2

The point of these relations is that the measure EV behaves with regard to its

covariance structure essentially like a Gaussian measure. A �rst important conse-

quence of this corollary is (4.117) that follows easily from these estimates and the
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bound x2=2� x4=4 � ln cosh(x) � x2=2 (Exercise!). Moreover, the same tool allows

to estimate the variance of EQet(�N+1; �Z), namely

E
�
EQet(�N+1; �Z) � EEQet(�N+1; �Z)

�2
� C

N
(4:121)

4.4.5. The local mean �eld.

These results combine to the following following important observation.

Lemma 4.17: Whenever the conclusions of Theorem 4.10 hold, there exists a con-

stant C <1 such that

lnL�;N(t) = �t(�N+1; EQ (z)) +
t2�2

2
EQk �Zk22 +RN (4:122)

where

ER2
N � C

N
(4:123)

Remark. Note that this lemma can be seen as a statement about the distribution of

the random �eld (�N+1; Z) under the Gibbs measure, stating that it is asymptotically

Gaussian with mean (�N+1; EQ (Z)) and variance EQk �Zk22. Its mean is still a random

variable that we will now have to investigate.

From our previous results we certainly expect that the vector EQz has one compo-

nent (the �rst one) of order m�, while all other components should be 'microscopic',

i.e. tend to zero as N " 1. Thus we write

(�N+1; EQ (Z)) = �1N+1EQ (Z1) + (�̂N+1; EQ (Ẑ)) (4:124)

where Ẑ = 0 and Ẑ� = Z� for � 6= 1. It is now very natural to expect that the

second term in (4.124), being a sum of �N independent random variables (under the

conditional distribution given �1; : : : ; �N ), will converge in distribution to a Gaussian

random variable with mean zero and variance kEQ Ẑk22. If, moreover, as one might
also expect, the quantity kEQ Ẑk22 converges to a constant almost surely, as N " 1,
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this second term would in fact converge in distribution to the same Gaussian also

unconditionally. In that case the entire Laplace transform L�;N (t) would be fully

characterized in terms of the three constants m1(N) � EQ (Z1); UN � kEQ Ẑk22, and
TN � EQk �Zk22.

Thus we are left with three problems to solve: (1) Show that the central limit

theorem alluded to holds37. (2) Show that the three quantities mentioned above are

self-averaging. (3) Proof that these converge and characterize their limits. Techni-

cally, both (1) and (2) will rely essentially on concentration of measure estimates.

Problem (3) will then be solved by the cavity method, i.e. we will derive a system

of recursive equations that can be proven to have a unique stable �x-point in the

domain where these quantities are a priori located38.

We will immediately formulate a somewhat more general version of this central

limit theorem (which we will actually need to construct the metastate).

Proposition 4.18: Let I � Nnf1; : : : ; Ng be �nite, independent of N . For i 2 I,

set Xi(N) � 1p
TN

P
�=2 �

�
i EQZ�. Whenever the conclusions of Theorem 4.10 hold,

either this family converges to a family of i.i.d. standard normal random variables,

or
p
TNXi(N) converges to zero in probability.

Proof. To prove such a result requires essentially to show that EQZ� for all � � 2

tend to zero as N " 1. We note �rst that by symmetry, for all � � 2, EEQZ� =

EEQZ2. On the other hand,

MX
�=2

[EEQZ�]2 � E

MX
�=2

[EQZ�]2 � �2 (4:125)

so that jEEQZ�j � �M�1=2.

To use information on the mean values, we will need a concentration estimate

37This fact is assumed in [PST] without proof. It is however rather delicate and requires con-
centration estimates that were not available at that time.

38This approach is in principle contained in [PST]; Talagrand gave the �rst fully rigorous version,
without using the a priori estimates furnished by the Brascamp-Lieb inequalities, making the entire
inductive scheme even more complicated.
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for derivatives of self-averaging quantities (since all expectations w.r.t. EQ can be

represented as derivatives of some log-Laplace transforms).

Lemma 4.19: Assume that f(x) is a random function de�ned on some open

neighbourhood U � R. Assume that f satis�es for all x 2 U that for all 0 � r � 1,

P [jf(x)� Ef(x)j > r] � c exp

�
�Nr

2

c

�
(4:126)

and that, at least with probability 1 � p, jf 0(x)j � C, jf 00(x)j � C < 1 both hold

uniformly in U . Then, for any 0 < � � 1=2, and for any 0 < Æ < N �=2,

P
h
jf 0(x)� Ef 0(x)j > ÆN��=2

i
� 32C2

Æ2
N � exp

�
�Æ

4N1�2�

256c

�
+ p (4:127)

The rather elementary proof of this lemma can be found in [BG2] or [BG3].

We will now use Lemma 4.19 to control EQZ�. We de�ne

f(x) =
1

�N
ln

Z
B
(1;1)
�

dMze�Nxz�e��N��;N;M (z) (4:128)

and denote by EQ;x the corresponding modi�ed expectation. By exactly the same

arguments as in the proof of Theorem 4.9, f(x) veri�es (4.126). Moreover, f 0(x) =

EQ;xZ� and

f 00(x) = �NEQ;x (Z� � EQ;xZ�)
2 (4:129)

Amazingly enough, it is again the Brascamp-Lieb inequalities that allow us to bound

this second derivative:

EQ;x (Z� � EQ;xZ�)
2 � 1

�N�
(4:130)

and so f 00(x) � c = 1
� .

Thus we arrive at

Corollary 4.20: There are �nite positive constants c; C such that, for any 0 < � �
1
2 , for any �,

P
h
jEQZ� � EEQZ�j � N��=2

i
� CN � exp

�
�N

1�2�

c

�
(4:131)
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We are now ready to conclude the proof of our proposition. We may choose e.g.

� = 1=4 and denote by 
N the subset of 
 where, for all �, jEQZ��EEQZ�j � N�1=8.

Then P[
c
N ] � O

�
e�N

1=2
�
.

We will now show that the characteristic function converges to that of a product

of standard normal distributions, i.e. we show that for any t 2 RI , E
Q

j2I e
itjXj(N)

converges to
Q

j2I e
� 1

2 t
2
j . We have

E
Y
j2I

eitjXj(N) = E �Ic

�
1I
N E �I e

i
P

j2I tjXj(N)
+ 1I
c

N
E �I e

i
P

j2I tjXj(N)
�

= E �Ic

241I
N Y
��2

Y
j2I

cos

�
tjp
TN

EQZ�

�35+ O
�
e�N

1=2
� (4:132)

Thus the second term tends to zero rapidly and can be forgotten. On the other hand,

on 
N ,
MX
�=2

(EQZ�)4 � N�1=4
MX
�=2

(EQZ�)2 � N�1=4TN (4:133)

Moreover, for any �nite tj , for N large enough,
��� tjp

TN
EQZ�

��� � 1. Thus, using that

j ln cosx+ x2=2j � cx4 for jxj � 1, and that

E �Ic 1I
N E �e
i
P

j2I tjXj(N)

� e
�
P

j2I t
2
j=2 sup


N

24Y
j2I

exp

 
c
t4jN

�1=4

TN

!35P�(
N )
(4:134)

Clearly, the right hand side converges to e
�
P

j2I t
2
j=2, provided only that N1=4TN "

1. Otherwise, ETNXi(N)2 =# 0. Thus the lemma is proven. }

4.4.6. Gibbs measures and metastates.

We now control the convergence of our Laplace transform except for the two

parameters m1(N) � EQZ1 and TN �PM
�=2 [EQZ�]

2. What we have to show is that
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these quantities converge almost surely and that the limits satisfy the equations of

the replica symmetric solution of Amit, Gutfreund and Sompolinsky [AGS].

While the issue of convergence is crucial, the technical intricacies of its proof are

largely disconnected to the question of the convergence of the Gibbs measures. We

will therefore assume for the moment that these quantities do converge to some limits

and draw the conclusions for the Gibbs measures from the results of this section under

this assumption (which will later be proven to hold).

To this end we �rst note that all of the preceding discussion may be carried out

without substantial changes for the Laplace transforms of the local mean �elds acting

on a �nite family of singled out spins �i; i 2 I � N (the details of the computations

can be found in [BG3]). As a result one obtains the following expression for the

Gibbs mass of cylinder events:

�
(1;1)
�;�;�[!] (f�I = sIg) = e

�0N
P

i2I si[m1(N)�1i+Xi(N)
p
TN ]+RN (sI)

2IE�I e
�0
N

P
i2I �i[m1(N)�1

i
+Xi(N)

p
TN ]+RN (�I )

(4:135)

where
�0N ! �

RN (sI)! 0 in Probability

Xi(N)! gi in law

TN ! �r a.s.

m1(N)! m1 a.s.

for some numbers r;m1 and there fgigi2N is a family of i.i.d. standard Gaussian

random variables. Note that the �rst three of these assertions are proven, while the

last two are for the moment assumed. From this representation we obtain:

Proposition 4.21: In addition to our general assumptions, assume that TN ! �r,

a.s. and m1(N)! m1, a.s. Then, for any �nite I � N

�
(1;1)
�;�;� (f�I = sIg)!

Y
i2I

e�si[m1
��1i+gi

p
�r]

2 cosh
�
��i

�
m1

��1i + gi
p
�r
�� (4:136)

where the convergence holds in law with respect to the measure P, and fgigi2N is

a family of i.i.d. standard normal random variables and f��1i gi2N are independent
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Rademacher random variables, independent of the gi and having the same distribution

as the variables �1i .

To arrive at the convergence in law of the random Gibbs measures, it is enough

to show that (4.136) holds jointly for any �nite family of cylinder sets, f�i =

si; 8i2Ikg; Ik � N , k = 1; : : : ; ` (C.f. [Ka], Theorem 4.2). But this is easily seen

to hold from the same arguments. Therefore, denoting by �
(1;1)
1;� the random measure

�
(1;1)
1;� [!](�) �

Y
i2N

e��i[m1�
1
i [!]+

p
�rgi[!]]

2 cosh (�[m1�1i [!] +
p
�rgi[!]])

(4:137)

we have

Theorem 4.22: Under the assumptions of Proposition 4.21, and with the same

notation,

�
(1;1)
�;�;� ! �

(1;1)
1;� ; in law, as � " 1 ; (4:138)

This result can easily be extended to the language of metastates. The following

Theorem gives an explicit representation of the Aizenman-Wehr metastate in our

situation:

Theorem 4.23: Let ��(�)[!] denote the Aizenman-Wehr metastate. Under the

hypothesis of Proposition 4.22, for almost all !, for any continuous function F :

Rk ! R, and cylinder functions fi on f�1; 1gIi, i = 1; : : : ; k, one hasZ
M1(S1)

��(d�)[!]F (�(f1); : : : ; �(fk))

=

Z Y
i2I

dN (gi)F

 
E sI1 fi(sI1)

Y
i2I1

e�[
p
�rgi+m1�

1
i [!]]

2 cosh (
p
�rgi +m1�1i [!])

; : : :

: : : ; E sIk fk(sIk)
Y
i2Ik

e�[
p
�rgi+m1�

1
i [!]]

2 cosh (
p
�rgi +m1�1i [!])

! (4:139))

where N denotes the standard normal distribution.

Proof. This theorem is proven just as Theorem 4.22, except that the \almost sure

version" of the central limit theorem, Proposition 4.18, is used. The details are left

to the reader.}
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Remark. Our conditions on the parameters � and � place us in the regime where,

according to [AGS] the \replica symmetry" is expected to hold.

Some remarks concerning the implications of this proposition are in place. First,

it shows (modulo a small argument that can be found in [BG3]) that if the standard

de�nition of limiting Gibbs measures as weak limit points is adapted, then we have

discovered that in the Hop�eld model all product measures on f�1; 1gN are extremal

Gibbs states. Such a statement contains some information, but it is clearly not useful

as information on the approximate nature of a �nite-volume state. This con�rms our

discussion in Section 2 on the necessity to use a metastate formalism.

Second, one may ask whether conditioning or the application of external �elds of

vanishing strength as discussed in Section 2 can improve the convergence behaviour

of our measures. The answer appears obviously to be no. Contrary to a situation

where a symmetry is present whose breaking biases the system to choose one of the

possible states, the application of an arbitrarily weak �eld cannot alter anything.

Third, we note that the total set of limiting Gibbs measures does not depend on

the conditioning on the ball B
(1;1)
� , while the metastate obtained does depend on

it. Thus the conditioning allows us to construct two metastates corresponding to

each of the stored patterns. These metastates are in a sense extremal, since they are

concentrated on the set of extremal (i.e. product) measures of our system. Without

conditioning one can construct other metastates (which however we cannot control

explicitly in our situation).

4.4.7. The cavity method 2.

We now conclude our analysis by showing that the quantities UN � EQk �Zk22,
m1(N) � EQZ1 and TN � PM

�=2[EQZ�]
2 actually do converge almost surely under

our general assumptions. The proof consist of two steps: First we show that these

quantities are self-averaging and then the convergence of their mean values is proven

by induction. We will assume throughout this section that the parameters � and �

are such that local convexity holds. The basic ideas of this section are otherwise due

to Pastur, Shcherbina, and Tirozzi [PST], and Talagrand [T2].
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We �rst need some more concentration of measure results.

Proposition 4.24: Let AN denote any of the three quantities UN , m1(N) or TN .

Then there are �nite positive constants c; C such that, for any 0 < � � 1
2
,

P
h
jAN � EAN j � N��=2

i
� CN � exp

�
�N

1�2�

c

�
(4:140))

Proof. The proofs of these three statements are all very similar to that of Corollary

4.20. Indeed, for m1(N), (4.140) is a special case of that corollary. In the two other

cases, we just need to de�ne the appropriate analogues of the `generating function'

f from (4.128). They are

g(x) � 1

�N
ln E
2Q e�Nx( �Z; �Z0) (4:141)

in the case of TN and

~g(x) � 1

�N
ln E
2Q e�Nxk �Zk22 (4:142)

The proof then proceeds as in that of Corollary 4.20. }

We now turn to the induction part of the proof and derive a recursion relation for

the three quantities above. To simplify notation we will whenceforth set � � �N+1.

Let us de�ne

uN (�) � ln EQe��(�;Z) (4:143)

We also set vN (�) � ��(�; EQZ) and wN (�) � uN (�)� vN (�). In the sequel we will

need the following auxiliary result

Lemma 4.25: Under our general assumptions

(i) 1
�
p
TN

d
d� (vN (�) � ���1EQZ1) converges weakly to a standard Gaussian random

variable.

(ii)
�� d
d�
wN (�)� ��2EEQk �Zk22

�� converges to zero in probability.

Proof. (i) is obvious from Proposition 4.19 and the de�nition of vN (�). To prove

(ii), note that wN (�) is convex and d2

d�2wN (�) � ��
� . Thus, if var (wN (�)) � Cp

N
,
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then var
�
d
d�wN (�)

� � C0

N1=4 by a standard result similar in spirit to Lemma 4.19 (see

e.g. [T6], Proposition 5.4). On the other hand, jEwN (�)� �2�2

2
EEQk �Zk22j � Kp

N
, by

Lemma 5.3, which, together with the boundedness of the second derivative of wN (�)

implies that j d
d�
EwN (�) � ��2EEQk �Zk22j # 0. This means that var (wN (�)) � Cp

N

implies the lemma. Since we already know from (4.123) that ER2
N � C

N , it is enough

to prove var
�
EQk �Zk22

� � Cp
N
. This follows just as the corresponding concentration

estimate for UN . }

We are now ready to start the induction procedure. We will place ourselves on a

subspace e
 � 
 where, for all but �nitely many N , it is true that jUN � EUN j �
N�1=4, jTN�ETN j � N�1=4, etc. This subspace has probability one by our estimates.

Let us note that EQZ� and
R
dQ(1;1)

N;�;�(m)m� di�er only by an exponentially small

term. Thus

EQZ� =
1

N

X
i=1

��i

Z
�
(1;1)
N;�;�(d�)�i + O

�
e�cM

�
(4:144)

Since we want to perform induction over N , we will have to add an index referring

to the volume to the mesures Q. Note that by symmetry, from (4.144) we get

EEQN+1
(Z�) = E��

Z
�
(1;1)
N+1;�;�(d�)�N+1 +O

�
e�cM

�
(4:145)

Using (4.113) and the de�nition of uN , this gives

EEQN+1
(Z�) = E��

euN (1) � euN (�1)

euN (1) + euN (�1) + O
�
e�cM

�
(4:146)

where to be precise one should note that the left and right hand side are computed

at temperatures � and �0 = N
N �, respectively, and that the value of M is equal to

M(N +1) on both sides; that is, both sides correspond to slightly di�erent values of

� and �, but we will see that this causes no problems.

Using our concentration results and Lemma 4.17 this gives

EEQN+1
(Z�) = E�� tanh

�
�(�1Em1(N) +

p
ETNXN+1(N))

�
+ O(N�1=4) (4:147)

Using further Proposition 4.18 we get a �rst recursion for m1(N):

m1(N + 1) =

Z
dN (g) tanh

�
�(Em1(N) +

p
ETN g)

�
+ o(1) (4:148)
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We need of course a recursion for TN as well. From here on there is no great

di�erence from the procedure in [PST], except that the N -dependences have to be

kept track of carefully. To simplify the notation, we ignore all the o(1) error terms

and put them back in the end only. Also, the remarks concerning � and � made

above apply throughout.

Note that TN = kEQZk22 � (EQZ1)
2 and

EkEQN+1
Zk22 =

MX
�=1

E

 
1

N + 1

N+1X
i=1

��i ��;N+1;M (�i)

!2

=
M

N + 1
E
�
�
(1;1)
�;N+1;M (�N+1)

�2
+

MX
�=1

E��N+1�
(1;1)
�;N+1;M (�N+1)

 
1

N + 1

NX
i=1

��i ��;N+1;M (�i)

! (4:149)

Using (4.113) as in the step leading to (4.146), we get for the �rst term in (4.149)

E
�
�
(1;1)
�;N+1;M (�N+1)

�2
= E tanh2

�
�(�1EQZ1 +

p
ETNXN+1(N))

�
� EQN (4:150)

For the second term, we use the identity from [PST]

MX
�=1

��N+1

 
1

N

NX
i=1

��i ��;N+1;M (�i)

!
=

P
�N+1

EQ(�N+1; Z)e
��N+1(�N+1;Z)P

�N+1
EQe��N+1(�N+1;Z)

=��1
P

�=�1 uN
0(�)euN (�)P

�=�1 euN (�)

(4:151)

Together with Lemma 4.25 one concludes that in law up to small errors

MX
�=1

��N+1

 
1

N + 1

NX
i=1

��i ��;N+1;M (�i)

!
= �1N+1EQZ1 +

p
ETNXN

+ �EQk �Zk22 tanh�
�
�1N+1EQZ1 +

p
ETNXN

� (4:152)

and so

EkEQN+1
Zk22 = �EQN + E

"
tanh �

�
�1N+1EQZ1 +

p
ETNXN

�
�
h
�1N+1EQZ1 +

p
ETNXN

i#
+ �EEQk �Zk22 tanh2 �

�
�1N+1EQZ1 +

p
ETNXN

�
(4:153)
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Using the self-averaging properties of EQk �Zk22, the last term is of course essentially

equal to

�EEQk �Zk22EQN (4:154)

The reappearance of EQk �Zk22 (remember that this was the variance of the local

mean �eld!) may seem disturbing, as it introduces a new quantity into the system.

Fortunately, it is the last one. The point is that proceeding as above, we can show

that

EEQN+1
kZk22 =�+ E

"
tanh�

�
�1N+1EQZ1 +

p
ETNXN

�
�
h
�1N+1EQZ1 +

p
ETNXN

i#
+ �EEQk �Zk22EQN

(4:155)

so that setting UN � EQk �Zk22, we get, subtracting (4.153) from (4.155), the simple

recursion

EUN+1 = �(1� EQN ) + �(1� EQN )EUN (4:156)

From this we get (since all quantities considered are self-averaging, we drop the E to

simplify the notation), setting m1(N) � EQZ1,

TN+1 = �(m1(N + 1))2 + �QN + �UNQN

+

Z
dN (g)[m1(N) +

p
TNg] tanh�(m1(N) +

p
TNg)

= m1(N + 1)(m1(N)�m1(N + 1)) + �UNQN + �TN (1�QN ) + �QN

(4:157)

where we used integration by parts. The complete system of recursion relations can

thus be written as

m1(N + 1) =

Z
dN (g) tanh�

�
m1(N) +

p
TNg

�
+ O(N�1=4)

TN+1 = m1(N � 1)(m1(N)�m1(N + 1)) + �UNQN + �TN (1�QN ) + �QN

+O(N�1=4)

UN+1 = �(1�QN ) + �(1�QN )UN + O(N�1=4)

QN+1 =

Z
dN (g) tanh2 �

�
m1(N) +

p
TNg

�
+O(N�1=4)

(4:158)
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If the solutions to this system of equations converge, than the limits r = limN"1 TN=�,

q = limN"1QN and m1 = limN"1m1(N) (u � limN"1 UN can be eliminated) must

satisfy the equations

m1 =

Z
dN (g) tanh(�(m1 +

p
�rg)) (4:159)

q =

Z
dN (g) tanh2(�(m1 +

p
�rg)) (4:160)

r =
q

(1� � + �q)2
(4:161)

which are the equations for the replica symmetric solution of the Hop�eld model

found by Amit et al. [AGS], and also through our heuristic speculations in Section

4.4.2!

In principle one might think that to prove convergence it is enough to study the

stability of the dynamical system above without the error terms. However, this is not

quite true. Note that the parameters � and � of the quantities on the two sides of the

equation di�er slightly (although this is suppressed in the notation). In particular, if

we iterate too often, � will tend to zero. The way out of this diÆculty was proposed

by Talagrand [T2]. We will brie
y explain his idea. In a simpli�ed notation, we

are in the following situation: We have a sequence Xn(p) of functions depending on

a parameter p. There is an explicit sequence pn, satisfying jpn+1 � pnj � c=n and

functions Fp such that

Xn+1(pn+1) = Fpn(Xn(pn)) + O(n�1=4) (4:162)

In this setting, we have the following lemma.

Lemma 4.26: Assume that there exist a domain D containing a single �xed point

X�(p) of Fp. Assume that Fp(X) is Lipshitz continuous as a function of X, Lipshitz

continuous as a function of p uniformly for X 2 D and that for all X 2 D, Fn
p (X)!

X�(p). Assume we know that for all n large enough, Xn(p) 2 D. Then

lim
n"1

Xn(p) = X�(p) (4:163)
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Proof. Let us choose a integer valued monotone increasing function k(n) such that

k(n) " 1 as n goes to in�nity. Assume e.g. k(n) � lnn. We will show that

lim
n"1

Xn+k(n)(p) = X�(p) (4:164)

To see this, note �rst that jpn+k(n) � pnj � k(n)
n . By (4.162), we have that using the

Lipshitz properties of F

Xn+k(n)(p) = F k(n)
p (Xn(pn)) +O(n�1=4) (4:165)

where we choose pn such that pn+k(n) = p. Now since Xn(pn) 2 D,���F k(n)
p (Xn(pn)�X�(p))

��� # 0 as n and thus k(n) goes to in�nity, so that (4.165)

implies (4.164). But (4.164) for any slowly diverging function k(n) implies the con-

vergence of Xn(p), as claimed. }

This lemma can be applied to the recurrence (4.157). The main point to check is

whether the corresponding F� attracts a domain in which the parameters

m1(N); TN ; UN ; QN are a priori located due to the support properties of the measureeQ(1;1)
N;�;�. This stability analysis was carried out (for an equivalent system) by Tala-

grand and answered to the aÆrmative. We do not want to repeat this tedious, but

in principle elementary, computation here.

We would like to make, however, some remarks. It is clear that if we consider

conditional measures, then we can always force the parameters m1(N); RN ; UN ; QN

to be in some domain. Thus, in principle, we could �rst study the �xed points of

(4.157), determine their domains of attraction and then de�ne corresponding con-

ditional Gibbs measures. However, these measures may then be metastable. Also,

of course, at least in our derivation, we need to verify the local convexity in the

corresponding domains since this was used in the derivation of the equations (4.157).
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