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Preface

In these notes, we present a number of recent results concerning discrete and continuous
random trees, and spatial branching processes. In the last chapter we also briefly discuss
connections with topics such as partial differential equations or infinite particle systems.
Obviously, we did not aim at an exhaustive account, and we give special attention to the
quadratic branching case, which is the most important one in applications. The case of a
general branching mechanism is however discussed in our presentation of superprocesses in
Chapter 3, and in the connections with Lévy processes presented in Chapter 5 (more about
these connections will be found in the forthcoming monograph [19]). Our first objective was
to give a thorough presentation of both the coding of continuous trees (whose prototype is
Aldous’ CRT) and the construction of the associated spatial branching processes (superpro-
cesses, Brownian snake). In Chapters 2 to 4, we emphasize explicit calculations: Marginal
distributions of continuous random trees or moments of superprocesses or the Brownian
snake. On the other hand, in Chapter 5 we give a more probabilistic point of view relying
on certain deep properties of spectrally positive Lévy processes. In the first five chapters,
complete proofs are provided, with a few minor exceptions. On the opposite, Chapter 6,
which discusses connections with other topics, contains no proofs (including them would
have required many more pages).

Chapter 1 discusses scaling limits of Galton-Watson trees whose offspring distribution is
critical with finite variance. We give a detailed proof of the fact that the rescaled contour
processes of a sequence of independent Galton-Watson trees converge in distribution, in a
functional sense, towards reflected Brownian motion. Our approach is taken from [19], where
the same result is proved in a much greater generality. Aldous [2] gives another version
(more delicate to prove) of essentially the same result, by considering the Galton-Watson
tree conditioned to have a (fixed) large population size.

The results of Chapter 1 are not used in the remainder of the notes, but they strongly
suggest that continuous random trees can be coded (in the sense of the contour process)
by Brownian excursions. This coding is explained at the beginning of Chapter 2 (which is
essentially Chapter III of [26]). The main goal of Chapter 2 is then to give explicit formulas
for finite-dimensional marginals of continuous trees coded by Brownian excursions. In the
case of the Brownian excursion conditioned to have duration 1, one recovers the marginal
distributions of Aldous’ continuum random tree [1],[2].

Chapter 3 is a brief introduction to superprocesses (measure-valued branching processes).
Starting from branching particle systems where both the number of particles and the branch-
ing rate tend to infinity, a simple analysis of the Laplace functionals of transition kernels
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yields certain semigroups in the space of finite measures. Superprocesses are then defined
to be the Markov processes corresponding to these semigroups. We emphasize expressions
for Laplace functionals, in the spirit of Dynkin’s work, and we use moments to derive some
simple path properties in the quadratic branching case. The presentation of Chapter 3 is
taken from [26]. More information about superprocesses may be found in [9], [10], [16], or
[30].

Chapter 4 is devoted to the Brownian snake approach [24],[26]. This approach exploits the
idea that the genealogical structure of superprocesses with quadratic branching mechanism is
described by continuous random trees, which are themselves coded by Brownian excursions
in the sense explained in Chapter 2. In the Brownian snake construction of superprocesses,
the genealogical structure is first prescribed by a Poisson collection of Brownian excursions,
and the spatial motions of “individual particles” are then constructed in a way compatible
with this genealogical structure. Chapter 4 also gives a few applications of the Brownian
snake construction. In particular, the Brownian snake yields a simple approach to the
random measure known as ISE (Integrated Super-Brownian Excursion), which has appeared
in several recent papers discussing asymptotics for models of statistical mechanics [11], [23].

In Chapter 5, we extend the snake approach to the case of a general branching mechanism.
The basic idea is the same as in the Brownian snake approach of Chapter 4. However the
genealogy of the superprocess is no longer coded by Brownian excursions, but instead by a
certain functional of a spectrally positive Lévy process whose Laplace exponent is precisely
the given branching mechanism. This construction is taken from [27], [28] (applications are
given in [19]). However the approach presented here is less computational (although a little
less general) than the one given in [28], which relied on explicit moment calculations in the
spirit of Chapter 4 of the present work.

Finally, Chapter 6 discusses connections with other topics such as partial differential
equations, infinite particle systems or scaling limits of lattice trees.
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Chapter 1

Galton-Watson trees

1.1 Preliminaries

Our goal in this chapter is to study the convergence in distribution of rescaled Galton-Watson
trees, under the assumption that the associated offspring distribution is critical with finite
variance. To give a precise meaning to the convergence of trees, we will code Galton-Watson
trees by a discrete height process, and we will establish the convergence of these (rescaled)
discrete processes to reflected Brownian motion. We will also prove that similar convergences
hold when the discrete height processes are replaced by the contour processes of the trees.

Let us introduce the assumptions that will be in force throughout this chapter. We start
from an offspring distribution µ, that is a probability measure (µ(k), k = 0, 1, . . .) on the
nonnegative integers. We make the following two basic assumptions:

(i) (critical branching)
∞∑
k=0

k µ(k) = 1.

(ii) (finite variance) 0 < σ2 :=

∞∑
k=0

k2 µ(k)− 1 <∞.

The criticality assumption means that the mean number of children of an individual is
equal to 1. The condition σ2 > 0 is needed to exclude the trivial case where µ is the Dirac
measure at 1.

The µ-Galton-Watson tree is then the genealogical tree of a population that evolves
according to the following simple rules. At generation 0, the population starts with only one
individual, called the ancestor. Then each individual in the population has, independently of
the others, a random number of children distributed according to the offspring distribution
µ.

Under our assumptions on µ, the population becomes extinct after a finite number of
generations, and so the genealogical tree is finite a.s. It will be convenient to view the
µ-genealogical tree T as a (random) finite subset of

∞⋃
n=0

Nn
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where N = {1, 2, . . .} and N0 = {∅} by convention. Here ∅ corresponds to the ancestor,
the children of the ancestor are labelled 1, 2, . . ., the children of 12 are labelled 11, 12, . . .
and so on (cf Fig. 1). In this special representation, it is implicit that the children of each
individual are ordered, a fact that plays an important role in what follows. We can also view
the µ-Galton-Watson tree as a random element of the set of all finite rooted ordered trees.

Our main interest is in studying the law of the µ-Galton-Watson tree conditioned on
the event that this tree is large in some sense. One could use several methods to make the
conditioning precise. For instance, it would be natural to condition the tree to have exactly
n vertices or individuals (this makes sense under mild assumptions on µ) and then to let n
tend to infinity. For mathematical convenience, we will adopt a different point of view and
prove a limit theorem for a sequence of independent µ-Galton-Watson trees. It turns out
that this limit theorem really gives information about the “large” trees in the sequence and
thus answers our original question in a satisfactory way.

How can we make sense of the convergence of rescaled random trees ? In this work, we
will code Galton-Watson trees by random functions and then use the well-known notions
of weak convergence of random processes. This approach has the advantage of avoiding
any additional formalism (topology on discrete or continuous trees) and is still efficient for
applications. We start from a sequence T1, T2, . . . of independent µ-Galton-Watson trees.
We attach to this sequence two discrete-time integer-valued random processes. The first
one, called the contour process is especially easy to visualize (cf Fig.1). We imagine the
displacement of a particle that starts at time 0 from the ancestor of the tree T1 and then
moves on this tree according to the following rules. The particle jumps from an individual to
its first not yet visited child, if any, and if none to the father of the individual. Eventually,
the particle comes back to the ancestor after having visited all individuals of the tree, and
it then jumps to the ancestor of the next tree. The value Cn of the contour process at time
n is the generation of the individual visited at step n in this evolution. In some sense, the
graph of the function n→ Cn draws the contour of the tree.
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The height process Hn is defined in a slightly more complicated way, but is mathemat-
ically more tractable. Write

T1 = {u1
0, u

1
1, . . . , u

1
n1−1}

for the individuals of the tree T1 listed in lexicographical order (thus u1
0 = ∅, u1

1 = 1, etc.).
Then, for n ∈ {0, 1, . . . , n1 − 1}, we let Hn = |u1

n| be the generation of individual u1
n.

Similarly, if
T2 = {u2

0, u
2
1, . . . , u

2
n2−1}

are the individuals of the tree T2 listed in genealogical order, we set Hn = |u2
n−n1

| for
n ∈ {n1, n1 + 1, . . . , n1 + n2 − 1}, and so on. In other words, we have a particle that visits
the different vertices of the sequence of trees one tree after another and in lexicographical
order for each tree (thus each vertex is visited exactly once) and we let Hn be the generation
of the vertex visited at step n. Fig. 1 shows the contour process and the height process for
a single Galton-Watson tree.

It is elementary to verify that both the height process and the contour process characterize
the sequence T1, T2, . . . and in this sense provide a coding of the sequence of trees.

We start with a simple lemma that is crucial for our approach. Recall that if ν is
a probability distribution on the integers, a discrete-time process (Sn, n ≥ 0) is called a
random walk with jump distribution ν if it can be written as

Sn = Y1 + Y2 + · · ·+ Yn

where the variables Y1, Y2, . . . are independent with distribution ν.

Lemma 1.1.1 Let T1, T2, . . . be a sequence of independent µ-Galton-Watson trees, and let
(Hn, n ≥ 0) be the associated height process. There exists a random walk Sn with jump
distribution ν(k) = µ(k + 1), for k = −1, 0, 1, 2, . . ., such that for every n ≥ 0,

Hn = Card {k ∈ {0, 1, . . . , n− 1} : Sk = inf
k≤j≤n

Sj}. (1.1)

It would be cumbersome to give a detailed proof of this lemma, and we only explain the
idea. As previously, write n1, resp. n2, n3, . . . for the number of individuals in the tree T1,
resp. T2, T3, . . .. Recall that Hn is the generation of the individual visited at time n for a
particle that visits the different vertices of the sequence of trees one tree after another and
in lexicographical order for each tree. Write Rn for the quantity equal to the number of
younger brothers (younger refers to the order on the tree) of the individual visited at time
n plus the number of younger brothers of his father, plus the number of younger brothers of
his grandfather etc. Then the random walk that appears in the lemma may be defined by

Sn = Rn − (j − 1) if n1 + · · ·nj−1 ≤ n < n1 + · · ·+ nj .

To verify that S is a random walk with jump distribution ν, note that because of the lexi-
cographical order of visits, we have at time n no information on the fact that the individual
visited at that time has children or not. If he has say k ≥ 1 children, which occurs with
probability µ(k), then the individual visited at time n+ 1 will be the first of these children,
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and our definitions give Rn+1 = Rn + (k − 1) and Sn+1 = Sn + (k − 1). On the other hand
if he has no child, which occurs with probability µ(0), then the individual visited at time
n+ 1 is the first of the brothers counted in the definition of Rn (or the ancestor of the next
tree if Rn = 0) and we easily see that Sn+1 = Sn − 1. We thus get exactly the transition
mechanism of the random walk with jump distribution ν.

Let us finally explain formula (1.1). From our definition of Rn and Sn, it is easy to see
that the condition n < inf{j > k : Sj < Sk} holds iff the individual visited at time n is a
descendant of the individual visited at time k (more precisely, inf{j > k : Sj < Sk} is the
time of the first visit after k of an individual that is not a descendant of individual k). Put
in a different way, the condition Sk = infk≤j≤n Sj holds iff the individual visited at time k
is an ascendant of the individual visited at time n. It is now clear that the right-hand side
of (1.1) just counts the number of ascendants of the individual visited at time n, that is the
generation of this individual.

The representation (1.1) easily leads to the following useful property of the height process.

Lemma 1.1.2 Let τ be a stopping time of the filtration (Fn) generated by the random walk
S. Then the process (

Hτ+n − inf
τ≤k≤τ+n

Hk, n ≥ 0
)

is independent of Fτ and has the same distribution as (Hn, n ≥ 0).

Proof. Using (1.1) and considering the first time after τ where the random walk S attains
its minimum over [τ, τ + n], one easily gets

inf
τ≤k≤τ+n

Hk = Card {k ∈ {0, 1, . . . , τ − 1} : Sk = inf
k≤j≤τ+n

Sj}.

Hence,

Hτ+n − inf
τ≤k≤τ+n

Hk = Card {k ∈ {τ, . . . , τ + n− 1} : Sk = inf
k≤j≤τ+n

Sj}
= Card {k ∈ {0, . . . , n− 1} : Sτk = inf

k≤j≤n
Sτj },

where Sτ denotes the shifted random walk Sτn = Sτ+n − Sτ . Since Sτ is independent of Fτ
and has the same distribution as S, the desired result follows from the previous formula and
Lemma 1.1.1. �

1.2 The basic limit theorem

We will now state and prove the main result of this chapter. Recall the assumptions on
the offspring distribution µ formulated in the previous section. By definition, a reflected
Brownian motion (started at the origin) is the absolute value of a standard linear Brownian
motion started at the origin. The notation [x] refers to the integer part of x.
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Theorem 1.2.1 Let T1, T2, . . . be a sequence of independent µ-Galton-Watson trees, and let
(Hn, n ≥ 0) be the associated height process. Then

(
1
√
p
H[pt], t ≥ 0)

(d)−→
p→∞

(
2

σ
βt, t ≥ 0)

where β is a reflected Brownian motion. The convergence holds in the sense of weak conver-
gence on D(R+,R+).

The proof of Theorem 1.2.1 consists of two separate steps. In the first one, we obtain the
weak convergence of finite-dimensional marginals and in the second one we prove tightness.

First step. Let S = (Sn, n ≥ 0) be as in Lemma 1.1.1. Note that the jump distribution
ν has mean 0 and finite variance σ2, and thus the random walk S is recurrent. We also
introduce the notation

Mn = sup
0≤k≤n

Sk

In = inf
0≤k≤n

Sk .

Donsker’s invariance theorem gives

(
1
√
p
S[pt], t ≥ 0)

(d)−→
p→∞

(σ Bt, t ≥ 0) (1.2)

where B is a standard linear Brownian motion started at the origin.
For every n ≥ 0, introduce the time-reversed random walk Ŝn defined by

Ŝnk = Sn − S(n−k)+

and note that (Ŝnk , 0 ≤ k ≤ n) has the same distribution as (Sn, 0 ≤ k ≤ n). ¿From formula
(1.1), we have

Hn = Card {k ∈ {0, 1, . . . , n− 1} : Sk = inf
k≤j≤n

Sj} = Φn(Ŝ
n),

where for any discrete trajectory ω = (ω(0), ω(1), . . .), we have set

Φn(ω) = Card {k ∈ {1, . . . , n} : ω(k) = sup
0≤j≤k

ω(j)}.

We also set
Kn = Φn(S) = Card {k ∈ {1, . . . , n} : Sk = Mk}.

The following lemma is standard.

Lemma 1.2.2 Define a sequence of stopping times Tj, j = 0, 1, . . . inductively by setting
T0 = 0 and for every j ≥ 1,

Tj = inf{n > Tj−1 : Sn = Mn}.

Then the random variables STj
− STj−1

, j = 1, 2, . . . are independent and identically dis-
tributed, with distribution

P [ST1 = k] = ν([k,∞)) , k ≥ 0.
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Note that the distribution of ST1 has a finite first moment:

E[ST1 ] =
∞∑
k=0

k ν([k,∞)) =
∞∑
j=0

j(j + 1)

2
ν(j) =

σ2

2
.

The next lemma is the key to the first part of the proof.

Lemma 1.2.3 We have
Hn

Sn − In

(P)−→
n→∞

2

σ2
,

where the notation
(P)→ means convergence in probability.

Proof. From our definitions, we have

Mn =
∑
Tk≤n

(STk
− STk−1

) =

Kn∑
k=1

(STk
− STk−1

).

Using Lemma 1.2.2 and the law of large numbers, we get

Mn

Kn

(a.s.)−→
n→∞

E[ST1 ] =
σ2

2
.

By replacing S with the time-reversed walk Ŝn we see that for every n, the pair (Mn, Kn)
has the same distribution as (Sn − In, Hn). Hence the previous convergence entails

Sn − In
Hn

(P)−→
n→∞

σ2

2
,

and the lemma follows. �
¿From (1.2), we have for every choice of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm,

1
√
p

(
S[pt1] − I[pt1], . . . , S[ptm] − I[ptm]

)
(d)−→
p→∞

σ
(
Bt1 − inf

0≤s≤t1
Bs, . . . , Btm − inf

0≤s≤tm
Bs

)
.

Therefore it follows from Lemma 1.2.3 that

1
√
p

(
H[pt1], . . . , H[ptm]

)
(d)−→
p→∞

2

σ

(
Bt1 − inf

0≤s≤t1
Bs, . . . , Btm − inf

0≤s≤tm
Bs

)
.

However, a famous theorem of Lévy states that the process

βt = Bt − inf
0≤s≤t

Bs

is a reflected Brownian motion. This completes the proof of the convergence of finite-
dimensional marginals in Theorem 1.2.1.
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Second step. To simplify notation, set

H
(p)
t =

1
√
p
H[pt].

We have to prove the tightness of the laws of the processes H (p) in the set of all probability
measures on the Skorokhod space D(R+,R). By standard results (see e.g. Corollary 3.7.4 in
[20]), it is enough to verify the following two properties:

(i) For every t ≥ 0 and η > 0, there exists a constant K ≥ 0 such that

lim inf
p→∞

P [H
(p)
t ≤ K] ≥ 1− η.

(ii) For every T > 0 and δ > 0,

lim
n→∞

lim sup
p→∞

P
[

sup
1≤i≤2n

sup
t∈[(i−1)2−nT,i2−nT ]

|H(p)
t −H

(p)

(i−1)2−nT | > δ
]

= 0.

Property (i) is immediate from the convergence of finite-dimensional marginals. Thus
the real problem is to prove (ii). We fix δ > 0 and T > 0 and first observe that

P
[

sup
1≤i≤2n

sup
t∈[(i−1)2−nT,i2−nT ]

|H(p)
t −H

(p)
(i−1)2−nT | > δ

]
≤ A1(n, p) + A2(n, p) + A3(n, p) (1.3)

where

A1(n, p) = P
[

sup
1≤i≤2n

|H(p)

i2−nT −H
(p)

(i−1)2−nT | >
δ

5

]
A2(n, p) = P

[
sup

t∈[(i−1)2−nT,i2nT ]

H
(p)
t > H

(p)
(i−1)2−nT +

4δ

5
for some 1 ≤ i ≤ 2n

]
A3(n, p) = P

[
inf

t∈[(i−1)2−nT,i2nT ]
H

(p)
t < H

(p)
i2nT −

4δ

5
for some 1 ≤ i ≤ 2n

]
The term A1 is easy to bound. By the convergence of finite-dimensional marginals, we have

lim sup
p→∞

A1(n, p) ≤ P
[

sup
1≤i≤2n

2

σ
|βi2−nT − β(i−1)2−nT | ≥

δ

5

]
and the path continuity of the process β ensures that the right-hand side tends to 0 as
n→∞.

To bound the terms A2 and A3, we introduce the stopping times τ
(p)
k , k ≥ 0 defined by

induction as follows:

τ
(p)
0 = 0

τ
(p)
k+1 = inf{t ≥ τ

(p)
k : H

(p)
t > inf

τ
(p)
k ≤r≤t

H(p)
r +

δ

5
}.
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Let i ∈ {1, . . . , 2n} be such that

sup
t∈[(i−1)2−nT,i2nT ]

H
(p)
t > H

(p)
(i−1)2−nT +

4δ

5
. (1.4)

Then it is clear that the interval [(i− 1)2−nT, i2nT ] must contain at least one of the random

times τ
(p)
k , k ≥ 0. Let τ

(p)
j be the first such time. By construction we have

sup
t∈[(i−1)2−nT,τ

(p)
j )

H
(p)
t ≤ H

(p)

(i−1)2−nT +
δ

5
,

and since the positive jumps of H(p) are of size 1√
p
, we get also

H
(p)

τ
(p)
j

≤ H
(p)
(i−1)2−nT +

δ

5
+

1
√
p
< H

(p)
(i−1)2−nT +

2δ

5

provided that p > (5/δ)2. From (1.4), we have then

sup
t∈[τ

(p)
j ,i2nT ]

H
(p)
t > H

(p)

τ
(p)
j

+
δ

5
,

which implies that τ
(p)
j+1 ≤ i2−nT . Summarizing, we get for p > (5/δ)2

A2(n, p) ≤ P
[
τ

(p)
k < T and τ

(p)
k+1 − τ

(p)
k < 2−nT for some k ≥ 0

]
. (1.5)

A similar argument gives exactly the same bound for the quantity A3(n, p).
The following lemma is directly inspired from [20] p.134-135.

Lemma 1.2.4 For every x > 0 and p ≥ 1, set

Gp(x) = P
[
τ

(p)
k < T and τ

(p)
k+1 − τ

(p)
k < x for some k ≥ 0

]
and

Fp(x) = sup
k≥0

P
[
τ

(p)
k < T and τ

(p)
k+1 − τ

(p)
k < x

]
.

Then, for every integer L ≥ 1,

Gp(x) ≤ LFp(x) + LeT
∫ ∞

0

dy e−Ly Fp(y).

Proof. For every integer L ≥ 1, we have

Gp(x) ≤
L−1∑
k=0

P [τ
(p)
k < T and τ

(p)
k+1 − τ

(p)
k < x] + P [τ

(p)
L < T ]

≤ LFp(x) + eTE
[
1{τ (p)

L <T}. exp
(
−

L−1∑
k=0

(τ
(p)
k+1 − τ

(p)
k )
)]

≤ LFp(x) + eT
L−1∏
k=0

E
[
1{τ (p)

L <T} exp(−L(τ
(p)
k+1 − τ

(p)
k ))

]1/L
.
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Then observe that for every k ∈ {0, 1, . . . , L− 1},

E
[
1{τ (p)

L <T} exp(−L(τ
(p)
k+1 − τ

(p)
k ))

]
≤ E

[
1{τ (p)

k <T}

∫ ∞

τ
(p)
k+1−τ

(p)
k

dy Le−Ly
]

≤
∫ ∞

0

dy Le−Ly Fp(y).

The desired result follows. �
Thanks to Lemma 1.2.4, the limiting behavior of the right-hand side of (1.5) will be

reduced to that of the function Fp(x). To handle Fp(x), we use the next lemma.

Lemma 1.2.5 The random variables τ
(p)
k+1−τ

(p)
k are independent and identically distributed.

Furthermore,

lim
x↓0

(
lim sup
p→∞

P [τ
(p)
1 ≤ x]

)
= 0.

Proof. The first assertion is a straightforward consequence of Lemma 1.1.2. Let us turn to
the second assertion. To simplify notation, we write δ′ = δ/5. For every η > 0, set

T (p)
η = inf{t ≥ 0 :

1
√
p
S[pt] < −η}.

Then,

P [τ
(p)
1 ≤ x] = P

[
sup
s≤x

H(p)
s > δ′

]
≤ P

[
sup
s≤T (p)

η

H(p)
s > δ′

]
+ P [T (p)

η < x].

On one hand, by (1.2)

lim sup
p→∞

P [T (p)
η < x] ≤ lim sup

p→∞
P [inf

t≤x
1
√
p
S[pt] ≤ −η] ≤ P [inf

t≤x
βt ≤ −η],

and the right-hand side goes to zero as x ↓ 0, for any choice of η > 0. On the other hand,
the construction of the height process shows that the quantity

sup
s≤T (p)

η

H(p)
s

is distributed as (Mp − 1)/
√
p, where Mp is the extinction time of a Galton-Watson process

with offspring distribution µ, started at [η
√
p] + 1. Write g for the generating function of µ

and gk for the k-th iterate of g. It follows that

P
[

sup
s≤T (p)

η

H(p)
s > δ′

]
= 1− g[δ′√p]+1(0)[η

√
p]+1.

A classical result of the theory of branching processes [4] states that, as k →∞,

gk(0) = 1− 2

σ2k
+ o(

1

k
).
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It follows that
lim
η→0

(
lim inf
p→∞

g[δ′√p]+1(0)[η
√
p]+1
)

= 1

andthuslimη→0

(
lim supp→∞ P

[
sup

s≤T (p)
η
H

(p)
s > δ′

])
= 0.Thesecondassertionofthelemmanowfollows.

�
We can now complete the proof of Theorem 1.2.1. Set:

F (x) = lim sup
p→∞

Fp(x) , G(x) = lim sup
p→∞

Gp(x).

Lemma 1.2.5 immediately shows that F (x) ↓ 0 as x ↓ 0. On the other hand, we get from
Lemma 1.2.4 that for every integer L ≥ 1,

G(x) ≤ LF (x) + LeT
∫ ∞

0

dy e−Ly F (y).

It follows that we have also G(x) ↓ 0 as x ↓ 0. By (1.5), this gives

lim
n→∞

(
lim sup
p→∞

A2(n, p)
)

= 0,

and the same property holds for A3(n, p). This completes step 2 and the proof of Theorem
1.2.1. �

1.3 Convergence of contour processes

In this section, we show that the limit theorem obtained in the previous section for rescaled
discrete height processes can be formulated as well in terms of the contour processes of the
Galton-Watson trees. The proof relies on simple connections between the height process and
the contour process of a sequence of Galton-Watson trees.

As in Theorem 1.2.1, we consider the height process (Hn, n ≥ 0) associated with a
sequence of independent µ-Galton-Watson trees. We also let (Cn, n ≥ 0) be the contour
process associated with this sequence of trees (see Section 1.1). By linear interpolation we
can extend the contour process to real values of the time-parameter t ≥ 0 (cf fig.1). We also
set

Jn = Card{k ∈ {1, . . . , n}, Hk = 0}
and

Kn = 2n−Hn − 2Jn.

Note that the sequence Kn is strictly increasing and Kn ≥ n.
Recall that the value at time n of the height process corresponds to the generation of the

individual visited at time n, assuming that individuals are visited in lexicographical order
one tree after another. It is easily checked by induction on n that [Kn, Kn+1] is exactly the
time interval during which the contour process goes from the individual n to the individual
n+ 1. From this observation, we get

sup
t∈[Kn,Kn+1]

|Ct −Hn| ≤ |Hn+1 −Hn|+ 1.
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A more precise argument for this bound follows from the explicit formula for Ct in terms of
the height process: For t ∈ [Kn, Kn+1],

Ct = Hn − (t−Kn) if t ∈ [Kn, 2n+ 1−Hn+1 − Jn − Jn+1],

Ct = Hn+1 − (Kn+1 − t) if t ∈ [2n+ 1−Hn+1 − Jn − Jn+1, Kn+1].

These formulas are easily checked by induction on n.
Define a random function ϕ : R+ −→ N by setting ϕ(t) = n iff t ∈ [Kn, Kn+1). From the

previous bound, we get for every integer m ≥ 1,

sup
t∈[0,m]

|Ct −Hϕ(t)| ≤ sup
t∈[0,Km]

|Ct −Hϕ(t)|leq1 + sup
n≤m

|Hn+1 −Hn|. (1.6)

Similarly, it follows from the definition of Kn that

sup
t∈[0,m]

|ϕ(t)− t

2
| ≤ sup

t∈[0,Km]

|ϕ(t)− t

2
| ≤ 1

2
sup
n≤m

Hn + Jm + 1. (1.7)

Theorem 1.3.1 We have (
1
√
p
Cpt , t ≥ 0

)
(d)−→
p→∞

(

√
2

σ
βt, t ≥ 0). (1.8)

where β is a reflected Brownian motion and the convergence holds in the sense of weak
convergence in D(R+,R+).

Proof. For every p ≥ 1, set ϕp(t) = p−1ϕ(pt). By (1.6), we have for every m ≥ 1,

sup
t≤m

∣∣∣ 1
√
p
Cpt −

1
√
p
Hpϕp(t)

∣∣∣ ≤ 1
√
p

+
1
√
p

sup
t≤m

|H[pt]+1 −H[pt]| −→
p→∞

0 (1.9)

in probability, by Theorem 1.2.1.
On the other hand, it easily follows from (1.1) that Jn = − infk≤n Sk, and so the conver-

gence (1.2) implies that, for every m ≥ 1,

1
√
p
Jmp

(d)−→
p→∞

−σ inf
t≤m

Bt. (1.10)

Then, we get from (1.7)

sup
t≤m

|ϕp(t)−
t

2
| ≤ 1

2p
sup
k≤mp

Hk +
1

p
Jmp +

1

p
−→
p→∞

0 (1.11)

in probability, by Theorem 1.2.1 and (1.10).
The statement of the theorem now follows from Theorem 1.2.1, (1.9) and (1.11). �

17



Remark. There is one special case where Theorem 1.3.1 is easy. This is the case where
µ is the geometric distribution µ(k) = 2−k−1, which satisfies our assumptions with σ2 = 2.
In that case, it is not hard to see that our contour process (Cn, n ≥ 0) is distributed as a
simple random walk reflected at the origin. Thus the statement of Theorem 1.3.1 follows
from Donsker’s invariance theorem (note that

√
2/σ = 1).
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Chapter 2

Trees embedded in Brownian
excursions

In the previous chapter, we proved that the height process or the contour process of Galton-
Watson trees, suitably rescaled, converges in distribution towards reflected Brownian motion.
This strongly suggests that Brownian excursions code continuous trees in the same way as
the height process or the contour process codes Galton-Watson trees. In this chapter, we
will first give an informal description of the tree coded by an excursion, and then provide
explicit calculations for the distribution of the tree associated with a Brownian excursion.
These calculations play a major role in the approach to superprocesses that will be devel-
oped in Chapter 4. When the Brownian excursion is normalized to have length one, the
corresponding tree is Aldous’ continuum random tree, which has appeared in a number of
recent works.

2.1 The tree coded by a continuous function

We denote by C(R+,R+) the space of all continuous functions from R+ into R+, which is
equipped with the topology of uniform convergence on the compact subsets of R+ and the
associated Borel σ-field. A special role will be played by the subset E of excursions : An
excursion e is an element of C(R+,R+) such that e(0) = 0 and e(t) > 0 if and only if
0 < t < γ for some γ = γ(e) > 0.

Let us fix f ∈ C(R+,R+) with f(0) = 0. We can view this function as coding a continuous
tree according to the following informal prescriptions:

(i) Each s ∈ R+ corresponds to a vertex of the tree at generation f(s).

(ii) If s, s′ ∈ R+ the vertex (corresponding to) s is an ancestor of the vertex corresponding
to s′ iff

f(s) = inf
r∈[s,s′]

f(r) (f(s) = inf
r∈[s′,s]

f(r) if s′ < s).

More generally, the quantity infr∈[s,s′] f(r) is the generation of the last common ancestor
to s and s′.
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(iii) The distance between vertices s and s′ is defined to be

d(s, s′) = f(s) + f(s′)− 2 inf
r∈[s,s′]

f(r)

and we identify s and s′ (we write s ∼ s′) if d(s, s′) = 0.

With these definitions at hand, the tree coded by f is the quotient set R+/ ∼, equipped
with the distance d and the genealogical relation defined in (ii). In this chapter, we will
consider the case when f is an excursion with duration γ and then we only need to consider
[0, γ]/ ∼, since vertices corresponding to s ≥ γ are obviously identified with γ.

Note that the line of ancestors of the vertex s is isometric to the line segment [0, f(s)].
If s < s′, the lines of ancestors of s and s′ share a common part isometric to the segment
[0, inf [s,s′] f(r)] and then become distinct. More generally, we can define the genealogical tree
of ancestors of any p vertices s1, . . . , sp, , and our principal aim is to determine the law of
the tree when f is randomly distributed according to the law of a Brownian excursion, and
s1, . . . , sp are chosen uniformly at random over the duration interval of the excursion.

Aldous’ continuum random tree (the CRT) is by definition the random tree coded in the
previous sense by the random function equal to twice the normalized Brownian excursion
(see [1], [2] for different constructions of the CRT).

We start by recalling basic facts about Brownian excursions.

2.2 The Itô excursion measure

We denote by (Bt, t ≥ 0) a linear Brownian motion, which starts at x under the probability
measure Px. We also set T0 = inf{t ≥ 0, Bt = 0}. For x > 0, the density of the law of T0

under Px is

qx(t) =
x√
2πt3

e−
x2

2t .

A major role in what follows will be played by the Itô measure n(de) of positive excursions.
This is an infinite measure on the set E of excursions, which can be characterized as follows.
Let F be a bounded continuous function on C(R+,R+) and assume that there exists a
number α > 0 such that F (f) = 0 as soon as f(t) = 0 for every t ≥ α. Then,

lim
ε→0

1

2ε
Eε[F (Bs∧T0, s ≥ 0)] = n(F ).

The factor 2 in 1
2ε

is just a convenient normalization.
For most of our purposes in this chapter, it will be enough to know that n(de) has the

following two (characteristic) properties:

(i) For every t > 0, and every measurable function g : R+ −→ R+ such that g(0) = 0,∫
n(de) g(e(t)) =

∫ ∞

0

dx qx(t) g(x). (2.1)
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(ii) Let t > 0 and let Φ and Ψ be two nonnegative measurable functions defined respectively
on C([0, t],R+) and C(R+,R+). Then,∫

n(de) Φ(e(r), 0 ≤ r ≤ t)Ψ(e(t+ r), r ≥ 0)

=

∫
n(de) Φ(e(r), 0 ≤ r ≤ t) Ee(t)(Ψ(Br∧T0, r ≥ 0)).

Note that (i) implies n(γ > t) = n(e(t) > 0) = (2πt)−1/2 < ∞. Property (ii) means
that the process (e(t), t > 0) is Markovian under n with the transition kernels of Brownian
motion absorbed at 0.

Let us also recall the useful formula n( sups≥0 e(s) > ε) = (2ε)−1 for ε > 0.

Lemma 2.2.1 If g is measurable and nonnegative over R+ and g(0) = 0,

n
(∫ ∞

0

dt g(e(t))
)

=

∫ ∞

0

dx g(x).

Proof. This is a simple consequence of (2.1). �
For every t ≥ 0, we set It = inf0≤s≤tBs.

Lemma 2.2.2 If g is measurable and nonnegative over R3 and x ≥ 0,

Ex

(∫ T0

0

dt g(t, It, Bt)
)

= 2

∫ x

0

dy

∫ ∞

y

dz

∫ ∞

0

dt qx+z−2y(t) g(t, y, z) (2.2)

In particular, if h is measurable and nonnegative over R2,

Ex

(∫ T0

0

dt h(It, Bt)
)

= 2

∫ x

0

dy

∫ ∞

y

dz h(y, z). (2.3)

Proof. Since

Ex

(∫ T0

0

dt g(t, It, Bt)
)

=

∫ ∞

0

dtEx(g(t, It, Bt) 1{It>0}),

the lemma follows from the explicit formula

Ex(g(It, Bt)) =

∫ x

−∞

∫ ∞

y

dz
2(x+ z − 2y)√

2πt3
e−

(x+z−2y)2

2t g(y, z)

which is itself a consequence of the reflection principle for linear Brownian motion. �
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2.3 Binary trees

We use the same formalism for trees as in Chapter 1, but we restrict our attention to (ordered
rooted) binary trees. Such a tree describes the genealogy of a population starting with one
ancestor (the root ∅), where each individual can have 0 or 2 children, and the population
becomes extinct after a finite number of generations (the tree is finite).

Analogously to Chapter 1, we define a tree as a finite subset T of ∪∞n=0{1, 2}n (with
{1, 2}0 = {∅}) satisfying the obvious conditions:

(i) ∅ ∈ T ;

(ii) if (i1, . . . , in) ∈ T with n ≥ 1, then (i1, . . . , in−1) ∈ T ;

(iii) if (i1, . . . , in) ∈ T , then either (i1, . . . , in, 1) ∈ T and (i1, . . . , in, 2) ∈ T , or (i1, . . . , in, 1) /∈
T and (i1, . . . , in, 2) /∈ T .

The elements of T are the vertices (or individuals in the branching process terminology)
of the tree. Individuals without children are called leaves. If T and T ′ are two trees, the
concatenation of T and T ′, denoted by T ∗ T ′, is defined in the obvious way: For n ≥ 1,
(i1, . . . , in) belongs to T ∗ T ′ if and only if i1 = 1 and (i2, . . . , in) belongs to T , or i1 = 2
and (i2, . . . , in) belongs to T ′. Note that T ∗ T ′ 6= T ′ ∗ T in general. For p ≥ 1, we denote

by Tp the set of all (ordered rooted binary) trees with p leaves. It is easy to compute
ap = Card Tp. Obviously a1 = 1 and if p ≥ 2, decomposing the tree at the root shows that
ap =

∑p−1
j=1 ajap−j. It follows that

ap =
1× 3× . . .× (2p− 3)

p!
2p−1.

A marked tree is a pair (T, {hv, v ∈ T}), where hv ≥ 0 for every v ∈ T . Intuitively, hv
represents the lifetime of individual v.

We denote by Tp the set of all marked trees with p leaves. Let θ = (T, {hv, v ∈ T}) ∈ Tp,
θ′ = (T ′, {h′v, v ∈ T ′)}) ∈ Tp′ , and h ≥ 0. the concatenation

θ ∗
h
θ′

is the element of Tp+p′ whose “skeleton” is T ∗ T ′ and such that the marks of vertices in T ,
respectively in T ′, become the marks of the corresponding vertices in T ∗ T ′, and finally the
mark of ∅ in T ∗ T ′ is h.

2.4 The genealogy of a finite set of vertices

We will now give a precise definition of the genealogical tree for p given vertices in the tree
coded by an excursion e in the sense of Section 1. If the vertices correspond to times t1, . . . , tp
in the coding of Section 1, the associated tree denoted by θ(e, t1, . . . , tp) will be an element
of Tp.

22



For the construction, it is convenient to work in a slightly greater generality. Let f :
[a, b] −→ R+ be a continuous function defined on a subinterval [a, b] of R+. For every
a ≤ u ≤ v ≤ b, we set

m(u, v) = inf
u≤t≤v

f(t).

Let t1, . . . , tp ∈ R+ be such that a ≤ t1 ≤ t2 ≤ · · · ≤ tp ≤ b. We construct the marked tree

θ(f, t1, . . . , tp) = (T (f, t1, . . . , tp), {hv(f, t1, . . . , tp), v ∈ T}) ∈ Tp

by induction on p. If p = 1, T (f, t1) is the unique element of T1, and h∅(f, t1) = f(t1).
If p = 2, T (f, t1, t2) is the unique element of T2, h∅ = m(t1, t2), h1 = f(t1) − m(t1, t2),
h2 = f(t2)−m(t1, t2).

Then let p ≥ 3 and suppose that the tree has been constructed up to the order p − 1.
Let j = inf{i ∈ {1, . . . , p− 1}, m(ti, ti+1) = m(t1, tp)}. Define f ′ and f ′′ by the formulas

f ′(t) = f(t)−m(t1, tp), t ∈ [t1, tj],

f ′′(t) = f(t)−m(t1, tp), t ∈ [tj+1, tp].

By the induction hypothesis, we can associate with f ′ and t1, . . . , tj, respectively with f ′′

and tj+1, . . . , tp, a tree θ(f ′, t1, . . . , tj) ∈ Tj , resp. θ(f ′′, tj+1, . . . , tp) ∈ Tp−j. We set

θ(f, t1, . . . , tp) = θ(f ′, t1, . . . , tj) ∗
m(t1,tp)

θ(f ′′, tj+1, . . . , tp).

It should be clear that when f is an excursion, the tree θ(f, t1, . . . , tp) describes the
genealogy of the vertices corresponding to t1, . . . , tp, for the continuous tree coded by f in
the way explained in Section 1.

The previous construction shows that the tree θ(f, t1, . . . , tp) only depends on the values
f(t1), . . . , f(tp) of f at times t1, . . . , tp, and on the minima m(t1, t2), . . . , m(tp−1, tp):

θ(e, t1, . . . , tp) = Γp(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp)),

where Γp is a measurable function from R
2p−1
+ into Tp

2.5 The law of the tree coded by an excursion

Our goal is now to determine the law of the tree θ(e, t1, . . . , tp) when e is chosen according to
the Itô measure of excursions, and (t1, . . . , tp) according to Lebesgue measure on [0, γ(e)]p.
We keep the notation m(u, v) = infu≤t≤v e(t).

Proposition 2.5.1 Let F be nonnegative and measurable on R
2p−1
+ . Then

n
(∫

{0≤t1≤···≤tp≤γ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp))

)
= 2p−1

∫
R

2p−1
+

dα1 . . . dαp−1dβ1 . . . dβp

( p−1∏
i=1

1[0,βi∧βi+1](αi)
)
f(α1, . . . , αp−1, β1, . . . , βp).
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Proof. This is a simple consequence of Lemmas 2.2.1 and 2.2.2. For p = 1, the result is
exactly Lemma 2.2.1. We proceed by induction on p using property (ii) of the Itô measure
and then (2.3):

n
( ∫

{0≤t1≤···≤tp≤γ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp))

)
= n

(∫
{0≤t1≤···≤tp−1≤γ}

dt1 . . . dtp−1

Ee(tp−1)

(∫ T0

0

dt f(m(t1, t2), . . . , m(tp−2, tp−1), It, e(t1), . . . , e(tp−1), Bt)
))

= 2n
(∫

{0≤t1≤···≤tp−1≤γ}
dt1 . . . dtp−1∫ e(tp−1)

0

dαp−1

∫ ∞

αp−1

dβp f(m(t1, t2), . . . , m(tp−2, tp−1), αp−1, e(t1), . . . , e(tp−1), βp)
)
.

The proof is then completed by using the induction hypothesis. �
The uniform measure Λp on Tp is defined by∫

Λp(dθ)F (θ) =
∑
T∈Tp

∫ ∏
v∈T

dhv F (T, {hv, v ∈ T}).

Theorem 2.5.2 The law of the tree θ(e, t1, . . . , tp) under the measure

n(de) 1{0≤t1≤···≤tp≤γ(e)}dt1 . . . dtp

is 2p−1Λp.

Proof. Denote by ∆p the measure on R
2p−1
+ defined by

∆p(dα1 . . . dαp−1dβ1 . . . dβp) =
( p−1∏
i=1

1[0,βi∧βi+1](αi)
)
dα1 . . . dαp−1dβ1 . . . dβp.

Recall the notation Γp introduced at the end of Section 2.4. In view of Proposition 2.5.1,
the proof of Theorem 2.5.2 reduces to checking that Γp(∆p) = Λp. For p = 1, this is obvious.

Let p ≥ 2 and suppose that the result holds up to order p−1. For every j ∈ {1, . . . , p−1},
let Hj be the subset of R

2p−1
+ defined by

Hj = {(α1, . . . , αp−1, β1, . . . , βp); αj < αi for every i 6= j}.

Then,

∆p =

p−1∑
j=1

1Hj
·∆p.
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On the other hand, it is immediate to verify that 1Hj
·∆p is the image of the measure

∆j(dα
′
1 . . . dβ

′
j)⊗ 1(0,∞)(h)dh⊗∆p−j(dα′′1 . . . dβ

′′
p−j)

under the mapping Φ : (α′1, . . . , β
′
j, h, α

′′
1 . . . , β

′′
p−j) −→ (α1, . . . , βp) defined by

αj = h,
αi = α′i + h for 1 ≤ i ≤ j − 1,
βi = β ′i + h for 1 ≤ i ≤ j,
αi = α′′i−j + h for j + 1 ≤ i ≤ p− 1,
βi = β ′′i−j + h for j + 1 ≤ i ≤ p.

The construction by induction of the tree θ(e, t1, . . . , tp) exactly shows that

Γp ◦ Φ(α′1, . . . , β
′
j, h, α

′′
1 . . . , β

′′
p−j) = Γj(α

′
1, . . . , β

′
j) ∗

h
Γp−j(α′′1 . . . , β

′′
p−j).

Together with the induction hypothesis, the previous observations imply that for any
nonnegative measurable function f on Tp,∫

∆p(du) 1Hj
(u) f(Γp(u)) =

∫ ∞

0

dh

∫ ∫
∆j(du

′)∆p−j(du′′) f(Γp(Φ(u′, h, u′′)))

=

∫ ∞

0

dh

∫ ∫
∆j(du

′)∆p−j(du′′) f(Γj(u
′) ∗

h
Γp−j(u′′))

=

∫ ∞

0

dh

∫
Λj ∗

h
Λp−j(dθ) f(θ)

where we write Λj ∗
h

Λp−j for the image of Λj(dθ)Λp−j(dθ′) under the mapping (θ, θ′) −→
θ ∗
h
θ′. To complete the proof, simply note that

Λp =

p−1∑
j=1

∫ ∞

0

dhΛj ∗
h

Λp−j.

�

2.6 The normalized excursion and Aldous’ continuum

random tree

In this section, we propose to calculate the law of the tree θ(e, t1, . . . , tp) when e is chosen
according to the law of the Brownian excursion conditioned to have duration 1, and t1, . . . , tp
are chosen according to the probability measure p!1{0≤t1≤···≤tp≤1}dt1 . . . dtp. In contrast with
the measure Λp of Theorem 4, we get for every p a probability measure on Tp. These
probability measures are compatible in a certain sense and they can be identified with the
finite-dimensional marginals of Aldous’ continuum random tree (this identification is obvious
if the CRT is described by the coding explained in Section 1).
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We first recall a few basic facts about the normalized Brownian excursion. There exists a
unique collection of probability measures (n(s), s > 0) on E such that the following properties
hold:

(i) For every s > 0, n(s)(γ = s) = 1.

(ii) For every λ > 0 and s > 0, the law under n(s)(de) of eλ(t) =
√
λe(t/λ) is n(λs).

(iii) For every Borel subset A of E ,

n(A) =
1

2
(2π)−1/2

∫ ∞

0

s−3/2 n(s)(A) ds.

The measure n(1) is called the law of the normalized Brownian excursion.

Our first goal is to get a statement more precise than Theorem 2.5.2 by considering the
pair (θ(e, t1, . . . , tp), γ) instead of θ(e, t1, . . . , tp). If θ = (T, {hv, v ∈ T}) is a marked tree,
the length of θ is defined in the obvious way by

L(θ) =
∑
v∈T

hv.

Proposition 2.6.1 The law of the pair (θ(e, t1, . . . , tp), γ) under the measure

n(de) 1{0≤t1≤···≤tp≤γ(e)}dt1 . . . dtp

is

2p−1 Λp(dθ) q2L(θ)(s)ds.

Proof. Recall the notation of the proof of Theorem 2.5.2. We will verify that, for any
nonnegative measurable function f on R

3p
+ ,

n
(∫

{0≤t1≤···≤tp≤γ}
dt1 . . . dtp

f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp), t1, t2 − t1, . . . , γ − tp)
)

= 2p−1

∫
∆p(dα1 . . . dαp−1dβ1 . . . dβp)

∫
R

p+1
+

ds1 . . . dsp+1 qβ1(s1)qβ1+β2−2α1(s2) . . .

. . . qβp−1+βp−2αp−1(sp)qβp(sp+1) f(α1, . . . , αp−1, β1, . . . , βp, s1, . . . , sp+1). (2.4)

Suppose that (2.4) holds. It is easy to check (for instance by induction on p) that

2L(Γp(α1, . . . , αp−1, β1, . . . , βp)) = β1 +

p−1∑
i=1

(βi + βi−1 − 2αi) + βp.
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Using the convolution identity qx ∗ qy = qx+y, we get from (2.4) that

n
( ∫

{0≤t1≤···≤tp≤γ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp), γ)

)
= 2p−1

∫
∆p(dα1 . . . dαp−1dβ1 . . . dβp)

∫ ∞

0

dt q2L(Γp(α1,...,βp))(t) f(α1, . . . , βp, t).

As in the proof of Theorem 2.5.2, the statement of Proposition 2.6.1 follows from this last
identity and the equality Γp(∆p) = Λp.

It remains to prove (2.4). The case p = 1 is easy: By using property (ii) of the Itô
measure, then the definition of the function qx and finally (2.1), we get∫

n(de)

∫ γ

0

dt f(e(t), t, γ − t) =

∫
n(de)

∫ γ

0

dtEe(t)(f(e(t), t, T0))

=

∫
n(de)

∫ γ

0

dt

∫ ∞

0

dt′ qe(t)(t′)f(e(t), t, t′)

=

∫ ∞

0

dx

∫ ∞

0

dt qx(t)

∫ ∞

0

dt′ qx(t′) f(x, t, t′).

Let p ≥ 2. Applying the Markov property under n successively at tp and at tp−1, and then
using (2.2), we obtain

n
(∫

{0≤t1≤···≤tp≤γ}
dt1 . . . dtp

×f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp), t1, t2 − t1, . . . , γ − tp)
)

=n
(∫

{0≤t1≤···≤tp−1≤γ}
dt1 . . . dtp−1Ee(tp−1)

(∫ T0

0

dt

∫ ∞

0

ds qBt(s)

×f(m(t1, t2), . . . , m(tp−2, tp−1), It, e(t1), . . . , e(tp−1), Bt, t1, . . . , tp−1 − tp−2, t, s)
))

=2n
(∫

{0≤t1≤···≤tp−1≤γ}
dt1 . . . dtp−1

∫ e(tp−1)

0

dy

∫ ∞

y

dz

∫ ∞

0

dt

∫ ∞

0

ds qe(tp−1)+z−2y(t)qz(s)

×f(m(t1, t2), . . . , m(tp−2, tp−1), y, e(t1), . . . , e(tp−1), z, t1, . . . , tp−1 − tp−2, t, s)
)
.

It is then straightforward to complete the proof by induction on p. �
We can now state and prove the main result of this section.

Theorem 2.6.2 The law of the tree θ(e, t1, . . . , tp) under the probability measure

p! 1{0≤t1≤···≤tp≤1}dt1 . . . dtp n(1)(de)

is

p! 2p+1L(θ) exp (− 2L(θ)2) Λp(dθ).
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Proof. We equip Tp with the obvious product topology. Let F ∈ Cb+(Tp) and let h be
bounded, nonnegative and measurable on R+. By Proposition 2.6.1,∫

n(de) h(γ)

∫
{0≤t1≤···≤tp≤γ}

dt1 . . . dtp F (θ(e, t1, . . . , tp))

= 2p−1

∫ ∞

0

ds h(s)

∫
Λp(dθ) q2L(θ)(s)F (θ).

On the other hand, using the properties of the definition of the measures n(s), we have also∫
n(de) h(γ)

∫
{0≤t1≤···≤tp≤γ}

dt1 . . . dtp F (θ(e, t1, . . . , tp))

=
1

2
(2π)−1/2

∫ ∞

0

ds s−3/2 h(s)

∫
n(s)(de)

∫
{0≤t1≤···≤tp≤s}

dt1 . . . dtp F (θ(e, t1, . . . , tp)).

By comparing with the previous identity, we get for a.a. s > 0,∫
n(s)(de)

∫
{0≤t1≤···≤tp≤s}

dt1 . . . dtp F (θ(e, t1, . . . , tp))

= 2p+1

∫
Λp(dθ)L(θ) exp (− 2L(θ)2

s
)F (θ).

Both sides of the previous equality are continuous functions of s (use the scaling property of
n(s) for the left side). Thus the equality holds for every s > 0, and in particular for s = 1.
This completes the proof. �
Concluding remarks. If we pick t1, . . . , tp independently according to Lebesgue measure on
[0, 1] we can consider the increasing rearrangement t′1 ≤ t′2 ≤ · · · ≤ t′p of t1, . . . , tp and define
θ(e, t1, . . . , tp) = θ(e, t′1, . . . , t

′
p). We can also keep track of the initial ordering and consider

the tree θ̃(e, t1, . . . , tp) defined as the tree θ(e, t1, . . . , tp) where leaves are labelled 1, . . . , p,
the leaf corresponding to time ti receiving the label i. (This labelling has nothing to do with
the ordering of the tree.) Theorem 2.6.2 implies that the law of the tree θ̃(e, t1, . . . , tp) under
the probability measure

1[0,1]p(t1, . . . , tp)dt1 . . . dtp n(1)(de)

has density
2p+1L(θ) exp(−2L(θ)2)

with respect to Λ̃p(dθ), the uniform measure on the set of labelled marked trees.

We can then “forget” the ordering. Define θ∗(e, t1, . . . , tp) as the tree θ̃(e, t1, . . . , tp)
without the order structure. Since there are 2p−1 possible orderings for a given labelled tree,
we get that the law (under the same measure) of the tree θ∗(e, t1, . . . , tp) has density

22pL(θ) exp(−2L(θ)2)

with respect to Λ∗
p(dθ), the uniform measure on the set of labelled marked unordered trees.

For convenience, replace the excursion e by 2e (this simply means that all heights are mul-

28



tiplied by 2). We obtain that the law of the tree θ∗(2e, t1, . . . , tp) has density

L(θ) exp(−L(θ)2

2
)

with respect to Λ∗
p(dθ). It is remarkable that the previous density (apparently) does not

depend on p.

In the previous form, we recognize the finite-dimensional marginals of Aldous’ continuum
random tree [1],[2]. To give a more explicit description, the discrete skeleton T ∗(2e, t1, . . . , tp)
is distributed uniformly on the set of labelled rooted binary trees with p leaves. (This set
has bp elements, with bp = p! 2−(p−1)ap = 1× 3× · · · × (2p− 3).) Then, conditionally on the
discrete skeleton, the heights hv are distributed with the density

bp (
∑

hv) exp (− (
∑
hv)

2

2
)

(verify that this is a probability density on R
2p−1
+ !).
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Chapter 3

A brief introduction to superprocesses

3.1 Continuous-state branching processes

In this section we study the limiting behavior of a sequence of rescaled Galton-Watson
branching processes, when the initial population tends to infinity whereas the mean lifetime
goes to zero. This is the first step needed to understand the construction of superprocesses,
which combine the branching phenomenon with a spatial motion.

We start from a function ψ : R+ → R+ of the following type:

ψ(u) = αu+ βu2 +

∫
π(dr)(e−ru − 1 + ru) ,

where α ≥ 0, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫
π(dr)(r ∧ r2) < ∞.

Note that the function ψ is nonnegative and Lipschitz on compact subsets of R+. These
properties play an important role in what follows.

For every ε ∈ (0, 1), we then consider a Galton-Watson process in continuous time
Xε = (Xε

t , t ≥ 0) where individuals die at rate ρε = αε+βε+γε (the parameters αε, βε, γε ≥ 0
will be determined below). When an individual dies, three possibilities may occur:

• with probability αε/ρε, the individual dies without descendants;

• with probability βε/ρε, the individual gives rise to 0 or 2 children with probability 1/2;

• with probability γε/ρε, the individual gives rise to a random number of offsprings which
is distributed as follows: Let V be a random variable distributed according to

πε(dv) = π((ε,∞))−11{v>ε}π(dv) ;

then, conditionally on V , the number of offsprings is Poisson with parameter mεV ,
where mε > 0 is a parameter that will be fixed later.

In other words, the generating function of the branching distribution is:

ϕε(r) =
αε

αε + βε + γε
+

βε
αε + βε + γε

(1 + r2

2

)
+

γε
αε + βε + γε

∫
piε(dv)e

−mεv(1−r) .

We choose the parameters αε, βε, γε and mε so that
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(i) limε↓0mε = +∞.

(ii) If π 6= 0, limε↓0mεγεπ((ε,∞))−1 = 1. If π = 0, γε = 0.

(iii) limε↓0 1
2
m−1
ε βε = β.

(iv) limε↓0(αε − mεγε
∫
πε(dr)r + γε) = α, and αε − mεγε

∫
πε(dr)r + γrepsilon ≥ 0, for

every ε > 0.

Obviously it is possible, in many different ways, to choose αε, βε, γε and mε such that these
properties hold.

We set gε(r) = ρε(ϕε(r)− r) = αε(1− r) + βε

2
(1− r)2 + γε(

∫
πε(dv)e

−mεv(1−r) − r). Write
Pk for the probability measure under which Xε starts at k. By standard results of the theory
of branching processes (see e.g. Athreya-Ney [4]), we have for r ∈ [0, 1],

E1[r
Xε

t ] = vεt (r)

where

vεt (r) = r +

∫ t

0

gε(v
ε
s(r))ds .

We are interested in scaling limits of the processes Xε: We will start Xε with Xε
0 = [mεx],

for some fixed x > 0, and study the behaviour of m−1
ε Xε

t . Thus we consider for λ ≥ 0

E[mεx][e
−λm−1

ε Xε
t ] = vεt (e

−λ/mε)
[mεx]

= exp
(
[mεx] log vεt (e

−λ/mε)
)
. (3.1)

This suggests to define uεt (λ) = mε(1− vεt (e
−λ/mε)). The function uεt solves the equation

uεt (λ) +

∫ t

0

ψε(u
ε
s(λ))ds = mε(1− e−λ/mVep) , (3.2)

where ψε(u) = mε gε(1−m−1
ε u).

¿From the previous formulas, we have

ψε(u) = αεu+m−1
ε βε

u2

2
+mεγε

∫
πε(dr)(e

−ru − 1 +m−1
ε u)

= (αε −mεγε

∫
πε(dr)r + γε)u+m−1

ε βε
u2

2

+mεγεπ((ε,∞))−1

∫
(ε,∞)

π(dr)(e−ru − 1 + ru) .

Proposition 3.1.1 Suppose that properties (i) – (iv) hold. Then, for every t > 0, x ≥
0, the law of m−1

ε Xε
t under P[mεx] converges as ε → 0 to a probability measure Pt(x, dy).

Furthermore, the kernels (Pt(x, dy), t > 0, x ∈ R+) form a collection of transition kernels on
R+, which satisfy the additivity property

Pt(x+ x′, ·) = Pt(x, ·) ∗ Pt(x′, ·)
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and are subcritical in the sense that
∫
y Pt(x, dy) ≤ x for every x ≥ 0. Finally these kernels

are associated with the function ψ in the sense that, for every λ ≥ 0,∫
Pt(x, dy)e

−λy = e−xut(λ) ,

where the function (ut(λ), t ≥ 0, λ ≥ 0) is the unique nonnegative solution of the integral
equation

ut(λ) +

∫ t

0

ψ(us(λ)) ds = λ . (3.3)

Proof. From (i) – (iv) we have
lim
ε↓0

ψε(u) = ψ(u) (3.4)

uniformly over compact subsets of R+. Let ut(λ) be the unique nonnegative solution of

(3.3) (ut(λ) may be defined by:
∫ λ
ut(λ)

ψ(v)−1dv = t when λ > 0; this definition makes sense

because ψ(v) ≤ Cv for v ≤ 1, so that
∫
0+
ψ(v)−1dv = +∞).

We then make the difference between (3.2) and (3.3), and use (3.4) and the fact that ψ
is Lipschitz over [0, λ] to obtain that for t ∈ [0, T ]

|ut(λ)− uεt(λ)| ≤ Cλ

∫ t

0

|us(λ)− uεs(λ)|ds+ aT (ε, λ)

where aT (ε, λ) → 0 as ε → 0, and the constant Cλ is the Lipschitz constant for ψ on [0, λ].
We conclude from Gronwall’s lemma that for every λ ≥ 0,

lim
ε↓0

uεt (λ) = ut(λ)

uniformly on compact sets in t. Coming back to (3.1) we have

lim
ε→0

E[mεx][e
−λm−1

ε Xε
t ] = e−xut(λ)

and the first assertion of the proposition follows from a classical statement about Laplace
transforms.

The end of the proof is straightforward. The Chapman-Kolmogorov relation for Pt(x, dy)
follows from the identity ut+s = ut ◦ us, which is easy from (3.3). The additivity property is
immediate since∫

Pt(x+ x′, dy)e−λy = e−(x+x′)ut(λ) =
(∫

Pt(x, dy)e
−λy
)(∫

Pt(x
′, dy)e−λy

)
.

The property
∫
Pt(x, dy)y ≤ x follows from the fact that lim supλ→0 λ

−1ut(λ) ≤ 1. Finally
the kernels Pt(x, dy) are associated with ψ by construction. �

Definition. The ψ-continuous state branching process (in short, the ψ-CSBP) is the Markov
process in R+ (Xt, t ≥ 0) whose transition kernels Pt(x, dy) are associated with the function ψ
in the way explained in Proposition 3.1.1. The function ψ is called the branching mechanism
of X.
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Examples.

(i) If ψ(u) = αu, Xt = X0e
−αt

(ii) If ψ(u) = βu2 one can compute explicitely ut(λ) = λ
1+βλt

. The corresponding process
X is called the Feller diffusion, for reasons that are explained in the exercise below.

(iii) By taking α = β = 0, π(dr) = c dr
r1+b with 1 < b < 2, one gets ψ(u) = c′ub. This is

called the stable branching mechanism.

¿From the form of the Laplace functionals, it is very easy to see that the kernels Pt(x, dy)
satisfy the Feller property, as defined in [32] Chapter III (use the fact that linear combinations
of functions e−λx are dense in the space of continuous functions on R+ that tend to 0 at
infinity). By standard results, every ψ-CSBP has a modification whose paths are right-
continuous with left limits, and which is also strong Markov.

Exercise. Verify that the Feller diffusion can also be obtained as the solution to the stochas-
tic differential equation

dXt =
√

2βXtdBt

where B is a one-dimensional Brownian motion [Hint: Apply Itô’s formula to see that

exp
(
− λXs

1 + βλ(t− s)

)
, 0 ≤ s ≤ t

is a martingale.]

Exercise. (Almost sure extinction) Let X be a ψ-CSBP started at x > 0, and let T =
inf{t ≥ 0, Xt = 0}. Verify that Xt = 0 for every t ≥ T , a.s. (use the strong Markov
property). Prove that T <∞ a.s. if and only if∫ ∞ du

ψ(u)
<∞.

(This is true in particular for the Feller diffusion.) If this condition fails, then T = ∞ a.s.

3.2 Superprocesses

In this section we will combine the continuous-state branching processes of the previous
section with spatial motion, in order to get the so-called superprocesses. The spatial motion
will be given by a Markov process (ξs, s ≥ 0) with values in a Polish space E. We assume
that the paths of ξ are càdlàg (right-continuous with left limits) and so ξ may be defined on
the canonical Skorokhod space D(R+, E). We write Πx for the law of ξ started at x. The
mapping x→ Πx is measurable by assumption. We denote by Bb+(E) (resp. Cb+(E)) the set
of all bounded nonnegative measurable (resp. bounded nonnegative continuous) functions
on E.

In the spirit of the previous section, we use an approximation by branching particle
systems. Recall the notation ρε, mε, ϕε of the previous section. We suppose that, at time
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t = 0, we have Nε particles located respectively at points xε1, . . . , x
ε
Nε

in E. These particles
move independently in E according to the law of the spatial motion ξ. Each particle dies
at rate ρε and gives rise to a random number of offspring according to the distribution with
generating function ϕε. Let Zε

t be the random measure on E defined as the sum of the Dirac
masses at the positions of the particles alive at t. Note that the total mass process 〈Zε

t , 1〉
has the same distribution as the process Xε

t of the previous section, started at Nε. (Here and
later, we use the notation 〈ν, f〉 =

∫
f dν.) Our goal is to investigate the limiting behavior

of m−1
ε Zε

t , for a suitable choice of the initial distribution.

The process (Zε
t , t ≥ 0) is a Markov process with values in the set Mp(E) of all point

measures on E. We write Pεθ for the probability measure under which Zε starts at θ.

Fix a Borel function f on E such that c ≤ f ≤ 1 for some c > 0. For every x ∈ E, t ≥ 0
set

wεt (x) = Eε
δx(exp〈Zε

t , log f〉).
Note that the quantity exp〈Zε

t , log f〉 is the product of the values of f evaluated at the
positions of the particles alive at t.

Proposition 3.2.1 The function wεt (x) solves the integral equation

wεt (x)− ρεΠx

(∫ t

0

ds(ϕε(w
ε
t−s(ξs))− wεt−s(ξs))

)
= Πx(f(ξt)) .

Proof. Since the parameter ε is fixed for the moment, we omit it, only in this proof. Note
that we have for every positive integer n

Enδx(exp〈Zt, log f〉) = wt(x)
n .

Under Pδx the system starts with one particle located at x. Denote by T the first branching
time and by M the number of offspring of the initial particle. Let also PM(dm) be the law
of M (the generating function of PM is ϕ). Then

wt(x) = Eδx(1{T>t} exp〈Zt, log f〉) + Eδx(1{T≤t} exp〈Zt, log f〉)

= e−ρtΠx(f(ξt)) + ρΠx ⊗ PM

(∫ t

0

ds e−ρsEmδξs
(exp〈Zt−s, log f〉)

)
= e−ρtΠx(f(ξt)) + ρΠx

(∫ t

0

ds e−ρsϕ(wt−s(ξs))
)
, (3.5)

using the fact that Emδξs
(exp〈Zt−s, log f〉) = (Eδξs

(exp〈Zt−s, log f〉))m. The integral equa-
tion of the proposition is easily derived from this identity: From (3.5) we have

ρΠx

(∫ t

0

dswt−s(ξs)
)

= ρΠx

(∫ t

0

ds e−ρsΠξs(f(ξt−s))
)

+ ρ2Πx

(∫ t

0

dsΠξs

(∫ t−s

0

dr e−ρrϕ(wt−s−r(ξr))
))

= ρ

∫ t

0

ds e−ρsΠx(f(ξt)) + ρ2

∫ t

0

ds

∫ t

s

dr e−ρ(r−s)Πx

(
Πξs(ϕ(wt−r(ξr−s)))

)
= (1− e−ρt)Πx(f(ξt)) + ρΠx

(∫ t

0

dr(1− e−ρr)ϕ(wt−r(ξr))
)
.
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By adding this equality to (3.5) we get the desired result. �
We now fix a function g ∈ Bb+(E), then take f = e−m

−1
ε g in the definition of wεt (x) and

set
uεt(x) = mε(1− wεt (x)) = mε

(
1− Eε

δx(e
−m−1

ε 〈Zε
t ,g〉)

)
.

¿From Proposition 3.2.1, it readily follows that

uεt(x) + Πx

(∫ t

0

ds ψε(u
ε
t−s(ξs))

)
= mεΠx(1− e−m

−1
ε g(ξt)) (3.6)

where the function ψε is as in Section 1.

Lemma 3.2.2 The limit
lim
ε→0

uεt(x) =: ut(x)

exists for every t ≥ 0 and x ∈ E, and the convergence is uniform on the sets [0, T ] × E.
Furthermore, ut(x) is the unique nonnegative solution of the integral equation

ut(x) + Πx

(∫ t

0

ds ψ(ut−s(ξs))
)

= Πx(g(ξt)) . (3.7)

Proof. From our assumptions, ψε ≥ 0, and so it follows from (3.6) that uεt(x) ≤ λ :=
supx∈E g(x). Also note that

lim
ε→0

mεΠx(1− e−m
−1
ε g(ξt)) = Πx(g(ξt))

uniformly in (t, x) ∈ R+ × E (indeed the rate of convergence only depends on λ). Using
the uniform convergence of ψε towards ψ on [0, λ] (and the Lipschitz property of ψ as in the
proof of Proposition 3.1.1), we get for ε > ε′ > 0 and t ∈ [0, T ],

|uεt(x)− uε
′
t (x)| ≤ Cλ

∫ t

0

ds sup
y∈E

|uεs(y)− uε
′
s (y)|+ b(ε, T, λ)

where b(ε, T, λ) → 0 as ε → 0. From Gronwall’s lemma, we obtain that uεt (x) converges
uniformly on the sets [0, T ]× E. Passing to the limit in (3.6) shows that the limit satisfies
(3.7). Finally the uniqueness of the nonnegative solution of (3.7) is also a consequence of
Gronwall’s lemma. �

We are now ready to state our basic construction theorem for superprocesses. We denote
by Mf(E) the space of all finite measures on E, which is equipped with the topology of
weak convergence.

Theorem 3.2.3 For every µ ∈ Mf(E) and every t > 0, there exists a (unique) probability
measure Qt(µ, dν) on Mf(E) such that for every g ∈ Bb+(E),∫

Qt(µ, dν)e
−〈ν,g〉 = e−〈µ,ut〉 (3.8)
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where (ut(x), x ∈ E) is the unique nonnegative solution of (3.7). The collection Qt(µ, dν),
t > 0, µ ∈ Mf(E) is a measurable family of transition kernels on Mf(E), which satisfies
the additivity property

Qt(µ, ·) ∗Qt(µ
′, ·) = Qt(µ+ µ′, ·) .

The Markov process Z in Mf(E) corresponding to the transition kernels Qt(µ, dν) is
called the (ξ, ψ)-superprocess. By specializing the key formula (3.8) to constant functions,
one easily sees that the “total mass process” 〈Z, 1〉 is a ψ-CSBP. When ψ(u) = βu2, we call
Z the superprocess with spatial motion ξ and (quadratic) branching rate β. Finally, when ξ
is Brownian motion in Rd and ψ(u) = βu2 (quadratic branching mechanism), the process Z
is called super-Brownian motion.

Proof. Consider the Markov process Zε in the case when its initial value Zε
0 is distributed

according to the law of the Poisson point measure on E with intensity mεµ. By the expo-
nential formula for Poisson measures, we have for g ∈ Bb+(E),

E[e−〈m
−1
ε Zε

t ,g〉] = E
[
exp(

∫
Zε

0(dx) log Eε
δx(e

−〈m−1
ε Zε

t ,g〉))
]

= exp
(
−mε

∫
µ(dx)(1− Eε

δx(e
−〈m−1

ε Zε
t ,g〉))

)
= exp(−〈µ, uεt〉) .

¿From Lemma 3.2.2, we get

lim
ε↓0

E(e−〈m
−1
ε Zε

t ,g〉) = exp(−〈µ, ut〉) .

Furthermore we see from the proof of Lemma 3.2.2 that the convergence is uniform when g
varies in the set {g ∈ Bb+(E), 0 ≤ g ≤ λ} =: Hλ.

Lemma 3.2.4 Suppose that Rn(dν) is a sequence of probability measures on Mf(E) such
that, for every g ∈ Bb+(E),

lim
n→∞

∫
Rn(dν)e

−〈ν,g〉 = L(g)

with a convergence uniform on the sets Hλ. Then there exists a probability measure R(dν)
on Mf(E) such that ∫

R(dν)e−〈ν,g〉 = L(g)

for every g ∈ Bb+(E).

We omit the proof of this lemma (which can be viewed as a generalization of the classical
criterion involving Laplace transforms of measures on R+, see [26] for a detailed argument)
and complete the proof of Theorem 3.2.3. The first assertion is a consequence of Lemma
3.2.4 and the beginning of the proof. The uniqueness of Qt(µ, dν) follows from the fact that
a probability measure R(dν) onMf(E) is determined by the quantities

∫
R(dν) exp(−〈ν, g〉)
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for g ∈ Bb+(E) (or even g ∈ Cb+(E)). To see this, use standard monotone class arguments to
verify that the closure under bounded pointwise convergence of the subspace of Bb(Mf(E))
generated by the functions ν → exp(−〈ν, g〉), g ∈ Bb+(E), is Bb(Mf(E)).

For the sake of clarity, write u
(g)
t for the solution of (3.7) corresponding to the function

g. The Chapman–Kolmogorov equation Qt+s = QtQs follows from the identity

u
(u

(g)
s )

t = u
(g)
t+s ,

which is easily checked from (3.7). The measurability of the family of kernels Qt(µ, ·) is a
consequence of (3.8) and the measurability of the functions ut(x). Finally, the additivity
property follows from (3.8). �

We will write Z = (Zt, t ≥ 0) for the (ξ, ψ)-superprocess whose existence follows from
Theorem 3.2.3. For µ ∈ Mf(E), we denote by Pµ the probability measure under which
Z starts at µ. From an intuitive point of view, the measure Zt should be interpreted as
uniformly spread over a cloud of infinitesimal particles moving independently in E according
to the spatial motion ξ, and subject continuously to a branching phenomenon governed by
ψ.

3.3 More Laplace functionals

In this section, we derive certain properties of superprocesses that will be used to make the
connection with the different approach presented in the next chapters. Our first result gives
the Laplace functional of finite-dimensional distributions of the process. To state this result,
it is convenient to denote by Πs,x the probability measure under which the spatial motion ξ
starts from x at time s. Under Πs,x, ξt is only defined for t ≥ s. We will make the convention
that Πs,x(f(ξt)) = 0 if t < s.

Proposition 3.3.1 Let 0 ≤ t1 < t2 < · · · < tp and let f1, . . . , fp ∈ Bb+(E). Then, for any
θ ∈Mf(E),

Eθ(exp−
p∑
i=1

〈Zti, fi〉) = exp(−〈θ, w0〉)

where the function (wt(x), t ≥ 0, x ∈ E) is the unique nonnegative solution of the integral
equation

wt(x) + Πt,x

(∫ ∞

t

ψ(ws(ξs)) ds
)

= Πt,x(

p∑
i=1

fi(ξti)) . (3.9)

Note that formula (3.9) and the previous convention imply that wt(x) = 0 for t > tp.

Proof. We argue by induction on p. When p = 1, (3.9) is merely a rewriting of (3.7): Let
ut(x) be the solution of (3.7) with ϕ = f1, then

wt(x) = 1{t≤t1}ut1−t(x)
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solves (3.9) and

Eθ(exp−〈Zt1 , f1〉) = exp−〈θ, ut1〉 = exp−〈θ, w0gle .

Let p ≥ 2 and assume that the result holds up to the order p− 1. By the Markov property
at time t1,

Eθ(exp−
p∑
i=1

〈Zti , fi〉) = Eθ

(
exp(−〈Zt1 , f1〉)EZt1

(exp−
p∑
i=2

〈Zti−t1 , fi〉)
)

= Eθ(exp(−〈Zt1 , f1〉 − 〈Zt1 , w̃0〉)

where w̃ solves

w̃t(x) + Πt,x

(∫ ∞

t

ψ(w̃s(ξs)) ds
)

= Πt,x

( p∑
i=2

fi(ξti−t1r)
)
.

By the case p = 1 we get

Eθ

(
exp−

p∑
i=1

〈Zti, fi〉
)

= exp−〈θ, w̄0〉 ,

with

w̄t(x) + Πt,x

(∫ ∞

t

ψ(w̄s(ξs)) ds
)

= Πt,x(f1(ξt1) + w̃0(ξt1)) .

We complete the induction by observing that the function wt(x) defined by

wt(x) = 1{t≤t1}w̄t(x) + 1{t>t1}w̃t−t1(x)

solves (3.9).
Finally the uniqueness of the nonnegative solution of (3.9) easily follows from Gronwall’s

lemma (note that any nonnegative solution w of (3.9) is automatically bounded and such
that wt(x) = 0 for t > tp). �

Remark. The same proof shows that

exp−〈θ, wt〉 = Et,θ

(
exp−

p∑
i=1

〈Zti, fi〉
)

= Eθ

(
exp−

p∑
i=1

ptstyleti≥t

〈Zti−t, fi〉
)
.

¿From now on, we make the mild assumption that the process ξt is continuous in prob-
ability under Πx, for every x ∈ E. Then it is a simple exercise to derive from the previous
proposition that Zt is also continuous in probability under Pθ, for every θ ∈ Mf(E). As
a consequence, we can replace Z by a measurable modification, and this allows us to make
sense of integrals of the type ∫ ∞

0

dt

∫
Zt(dx)F (t, x)
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for any nonnegative measurable function F on R+ × E. Assume furthermore that F is
bounded and continuous, and vanishes over [T,∞)×E for some T <∞. Then the continuity
in probability of Z entails that the previous integral is the limit in probability, as n → ∞,
of the quantities

1

n

∞∑
i=1

〈Zi/n, F (i/n, ·)〉.

By passing to the limit n → ∞ in the Laplace transform of these quantities (Proposition
3.3.1) we arrive at the following result.

Proposition 3.3.2 Let F ∈ Cb+(R+ × E) be such that F (t, x) = 0 for every t ≥ T and
x ∈ E, for some T <∞. Then,

Eθ(exp−
∫ ∞

0

dt

∫
Zt(dx)F (t, x)) = exp(−〈θ, w0〉)

where the function (wt(x), t ≥ 0, x ∈ E) is the unique nonnegative solution of the integral
equation

wt(x) + Πt,x

(∫ ∞

t

ψ(ws(ξs)) ds
)

= Πt,x(

∫ ∞

t

F (s, ξs) ds) . (3.10)

3.4 Moments in the quadratic branching case

In this section and the next one we concentrate on the quadratic case ψ(u) = βu2. ¿From
the expression of the Laplace functional of Zt, one easily derives formulas for the moments
of this random measure. For simplicity, we consider only first and second moments. We
denote by Qt the semigroup of the Markov process ξ: Qtf(x) = Πx(f(ξt)).

Proposition 3.4.1 For any nonnegative measurable function f on E

Eθ(〈Zt, f〉) =< θ,Qtf >=

∫
θ(dx)Ex(f(ξt)), (3.11)

and, for any nonnegative measurable function ϕ on E ×E,

Eθ

(∫ ∫
Zt(dy)Zt(dy

′)ϕ(y, y′)
)

=

∫ ∫
θQt(dy) θQt(dy

′)ϕ(y, y′)

+2β

∫ t

0

ds

∫
θQs(dz)

∫
Qt−s(z, dy)

∫
Qt−s(z, dy′)ϕ(y, y′). (3.12)

Remark. The first moment formula provided the motivation for the name superprocess.
The two terms in the second moment formula can be interpreted as follows in terms of the
approximating branching particle system. The first term corresponds to the case when the
particles located at y, y′ at time t have different ancestors at time 0. The second term takes
account of the case when the particles have the same ancestors up to time s ∈ [0, t].
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Proof. By (3.8) and (3.7), we have for λ > 0,

Eθ(exp−λ〈Zt, f〉) = exp−〈θ, vλt 〉,

where

vλt (x) = λQtf(x)− β

∫ t

0

Qt−s((vλs )
2)(x) ds.

In particular, 0 ≤ vλt (x) ≤ λQtf(x) ≤ λ‖f‖∞, so that vλt (x) = λQtf(x) +O(λ2), and then

vλt (x) = λQtf(x)− βλ2

∫ t

0

Qt−s((Qsf)2)(x) ds+O(λ3). (3.13)

It follows that

Eθ(exp−λ〈Zt, f〉)

= 1− λ〈θ,Qtf〉+
λ2

2

(
〈θ,Qtf〉2 + 2β

∫ t

0

〈θQt−s, (Qsf)2〉ds
)

+ o(λ2).

The formula for Eθ(〈Zt, f〉) follows immediately, as well as the formula (3.12) in the special
case when ϕ(y, y′) = f(y)f(y′). The general case follows by standard arguments. �

3.5 Sample path properties

In this last section, we consider super-Brownian motion, that is we asssume both that ψ(u) =
βu2 and that the underlying spatial motion ξ is Brownian motion in Rd. Thus, Qt(x, dy) =
qt(x, y)dy, where

qt(x, y) = (2πt)−d/2 exp(−|y − x|2
2t

)

is the Brownian transition density. We fix t > 0 and our goal is to derive some information
about the random measure Zt. An important role will be played by the function

Hx(y, y
′) =

∫ t

0

ds

∫
dz qt−s(z − x) qs(y − z) qs(y

′ − z), x, y, y′ ∈ Rd.

We start with the case d = 1.

Theorem 3.5.1 If d = 1, there exists a process (Yt(y), y ∈ R) continuous in the L2-norm,
such that Zt(dy) = Yt(y) dy a.s.

Proof. For a ∈ R and ε > 0, set

Y ε(a) =
1

2ε
Zt((a− ε, a+ ε))
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By (3.12), we have

Eθ(Y
ε(a)Y ε′(a′)) =

1

4εε′
Eθ

(
Zt((a− ε, a+ ε))Zt((a

′ − ε′, a′ + ε′))
)

=
1

4εε′

(
θQt((a− ε, a+ ε))θQt((a

′ − ε′, a′ + ε′))

+2β

∫ a+ε

a−ε
dy

∫ a′+ε′

a′−ε′
dy′
∫
θ(dx)Hx(y, y

′)
)
.

The measure θQt has density qt ∗ θ, which is bounded and uniformly continuous over R.
Hence,

1

4εε′
θQt((a− ε, a+ ε))θQt((a

′ − ε′, a′ + ε′)) −→
ε,ε′→0

qt ∗ θ(a)qt ∗ θ(a′)

uniformly in a, a′ ∈ R. On the other hand, it is easily checked that if d = 1, the function
(x, y, y′) → Hx(y, y

′) is uniformly continuous on R3. In consequence,

1

4εε′

∫
θ(dx)

∫ a+ε

a−ε
dy

∫ a′+ε′

a′−ε′
dy′Hx(y, y

′) −→
ε,ε′→0

∫
θ(dx)Hx(a, a

′),

again uniformly in a, a′. We conclude that Eθ(Y
ε(a)Y ε′(a′)) converges as ε, ε′ go to 0. In

particular, the collection (Y ε(a), ε > 0) is Cauchy in L2, and we can set

Ȳt(a) = lim
ε→0

Y ε(a) (3.14)

where the convergence holds in L2, uniformly in a. We can then choose a sequence εp ↓ 0
such that convergence (3.14) holds a.s. along this sequence, for every a ∈ R. We then set,
for every a ∈ R,

Yt(a) = lim inf
p→∞

Y εp(a), ∀a ∈ R,

in such a way that Yt(a) = Ȳt(a), p.s., and the process (Yt(a), a ∈ R) is measurable.

Then, if ϕ is continuous with compact support on R,

< Zt, ϕ > = lim
ε↓0

∫
Zt(dy)

1

2ε

∫ y+ε

y−ε
daϕ(a)

= lim
ε↓0

∫
daϕ(a) Y ε(a)

=

∫
daϕ(a)Zt(a),

where the last convergence holds in L2(Pθ).

Finally,

Eθ(Yt(a)Yt(a
′)) = lim

ε→0
Eθ(Y

ε(a)Y ε(a′)) = qt ∗ θ(a)qt ∗ θ(a′) + 2β

∫
θ(dx)Hx(a, a

′),
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which implies

Eθ((Yt(a)− Yt(a
′))2) = (qt ∗ θ(a)− qt ∗ θ(a′))2

+ 2β

∫
θ(dx) (Hx(a, a)− 2Hx(a, a

′) +Hx(a
′, a′)),

and gives the desired continuity of a→ Yt(a). �
In higher dimensions, we can use similar techniques to get a lower bound on the Hausdorff

dimension of the support of super-Brownian motion. We denote by suppZt the topological
support of the measure Zt.

Proposition 3.5.2 If d ≥ 2,

dim suppZt ≥ 2 a.s . on {Zt 6= 0}.

Remark. As will be proved in the next chapter, the lower bound of the proposition is in
fact an equality, and this implies that the measure Zt is singular with respect to Lebesgue
measure in dimension d ≥ 3. The latter property also holds in dimension d = 2 but a finer
argument is required.

Proof. Let BK = B(0, K) be the ball of radius K centered at 0 in Rd. From Frostman’s
lemma (see e.g. [21]), it is enough to check that, for every K > 0, ε > 0,∫∫

B2
K

Zt(dy)Zt(dy
′) |y − y′|ε−2 <∞, a.s. (3.15)

However, by (3.12),

Eθ

(∫∫
B2

K

Zt(dy)Zt(dy
′) |y − y′|ε−2

)
=

∫∫
B2

K

dy dy′ θ ∗ qt(y) θ ∗ qt(y′) |y − y′|ε−2

+ 2β

∫
θ(dx)

∫∫
B2

K

dy dy′Hx(y, y
′) |y − y′|ε−2.

Then, on the one hand, the function θ ∗ qt is bounded on Rd, on the other hand, some simple
estimates give

Hx(y, y
′) ≤

{
C
(
1 + log+ (1/|y − y′|)

)
if d = 2,

C(1 + |y − y′|2−d) if d ≥ 3.

It follows that the expected value of the left side of (3.15) is finite, which completes the
proof.

�
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Chapter 4

The Brownian snake approach

4.1 Combining spatial motion with a branching

structure

Throughout this chapter, we consider a Markov process (ξt,Πx) with values in a Polish space
E. We will make stronger continuity assumptions than in the previous chapter. Namely,
we assume that ξ has continuous sample paths and that there exist an integer p > 2 and
positive constants C and ε such that for every x ∈ E and t > 0,

Πx

(
sup

0≤r≤t
δ(x, ξr)

p
)
≤ Ct2+ε, (4.1)

where δ denotes the distance on E. This assumption is not really necessary, but it will
simplify our treatment. It holds for Brownian motion or for solutions of stochastic differential
equations with smooth coefficients in Rd or on a manifold.

We denote by W the set of finite E-valued paths. An element of W is a continuous
mapping w : [0, ζ ] → E, where ζ = ζ(w) ≥ 0 depends on w and is called the lifetime of w.
The final point of w will be denoted by ŵ = w(ζ). If x ∈ E, the trivial path w such that
ζ(w) = 0 and w(0) = x is identified with the point x, so that E is embedded in W. The set
W is a Polish space for the distance

d(w,w′) = |ζ − ζ ′|+ sup
t≥0

δ(w(t ∧ ζ),w′(t ∧ ζ ′)).

Let f : R+ → R+ be a continuous mapping with f(0) = 0. We saw in Chapter 2 that f
codes a continuous genealogical structure, where vertices are labelled by reals s ≥ 0, and by
construction the generation of the last common ancestor to s and s′ is inf [s,s′] f(r). We can
now combine this genealogical structure with spatial motions distributed according to the
law of the process ξ.

Notation. Let w : [0, ζ ] → E be an element of W, let a ∈ [0, ζ ] and b ≥ a. We denote by
Ra,b(w, dw

′) the unique probability measure on W such that

(i) ζ ′ = b, Ra,b(w, dw
′) a.s.
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(ii) w′(t) = w(t), ∀t ≤ a, Ra,b(w, dw
′) a.s.

(iii) The law under Ra,b(w, dw
′) of (w′(a + t), 0 ≤ t ≤ b − a) coincides with the law of

(ξt, 0 ≤ t ≤ b− a) under Πw(a).

Under Ra,b(w, dw
′), the path w′ is the same as w up to time a and then behaves according

to the spatial motion ξ up to time b.

Proposition 4.1.1 Assume that f is Hölder continuous with exponent 1
2
−α for every α > 0,

and let x ∈ E. There exists a unique probability measure Θf
x on C(R+,W) such that W0 = x,

Θf
x a.s., and, under Θf

x, the canonical process (Ws, s ≥ 0) is (time-inhomogeneous) Markov
with transition kernels

Rm(s,s′),f(s′)(w, dw
′)

where m(s, s′) = inf [s,s′] f(r).

The intuitive meaning of this construction should be clear if we think of s and s′ as
labelling two vertices in a continuous tree, which have the same ancestors up to level m(s, s′).
The respective spatial motions Ws and Ws′ must be the same up to level m(s, s′) and then
behave independently. Thus, the path Ws′ is obtained from the path Ws through the kernel
Rm(s,s′),f(s′)(Ws, dw

′).

Proof. For each choice of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tp, we can consider the probability measure

πx,ft1,...,tp on Wp defined by

πx,ft1,...,tp(dw1 . . . dwp) = R0,f(t1)(x, dw1)Rm(t1,t2),f(t2)(w1, dw2) . . . Rm(tp−1,tp),f(tp)(wp−1, dwp).

It is easy to verify that this collection is consistent when p and t1, . . . , tp vary. Hence the
Kolmogorov extension theorem yields the existence of process (Ws, s ≥ 0) with values in W
(in fact in Wx := {w ∈ W : w(0) = x}) whose finite-dimensional marginals are the measures
πx,ft1,...,tp .

To complete the proof, we have to verify that (Ws, s ≥ 0) has a continuous modification.
Thanks to the classical Kolmogorov lemma, it is enough to show that, for every T > 0 there
are constants β > 0 and C such that

E[d(Ws,Ws′)
p] ≤ C|s− s′|1+β, (4.2)

for every s ≤ s′ ≤ T .
By our construction, the joint distribution of (Ws,Ws′) is

R0,f(s)(x, dw)Rm(s,s′),f(s′)(w, dw
′).

This means that Ws and Ws′ are two random paths that coincide up to time m(s, s′) and
then behave independently according to the law of the process ξ. Using the definition of the
distance d, we get for every s, s′ ∈ [0, T ], s ≤ s′,

E(d(Ws,Ws′)
p) ≤ cp

(
|f(s)− f(s′)|p + 2 Πx

(
Πξm(s,s′)( sup

0≤t≤(f(s)∨f(s′))−m(s,s′)
δ(ξ0, ξt)

p)
))

≤ cp

(
|f(s)− f(s′)|p + 2C|(f(s) ∨ f(s′))−m(s, s′)|2+ε

)
≤ cp

(
Cp
η,T |s− s′|p( 1

2
−α) + 2C C2+ε

η,T |s− s′|(2+ε)( 1
2
−α)
)
,
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where we used assumption (4.1) in the second inequality. We can choose α > 0 small enough
so that p(1

2
− α) > 1 and (2 + ε)(1

2
− α) > 1. The bound (4.2) then follows. �

Remark. If we no longer assume that f(0) = 0, but consider instead an element w0 ∈ W
with ζ(w0) = f(0), a similar argument gives the existence of a probability measure Θf

w0

on C(R+,W) such that W0 = w0, Θf
w0

a.s. and the process Ws is (time-inhomogeneous)
Markovian under Θf

w0
with transition kernels Rm(s,s′),f(s′)(w, dw

′).

4.2 The Brownian snake

We now randomize f in the construction of the previous section. For every r ≥ 0, we denote
by Pr(df) the law of reflected Brownian motion started at r (the law of (|Bt|, t ≥ 0) if B
is a linear Brownian motion started at r). For every s > 0, we denote by ρrs(da db) the law
under Pr of the pair

( inf
0≤u≤s

f(u), f(s)).

The reflection principle easily gives the explicit form of ρrs(da db):

ρrs(da db) =
2(x+ b− 2a)

(2πs3)1/2
exp−(r + b− 2a)2

2s
1(0<a<b∧r) da db

+ 2 (2πs)−1/2 exp−(r + b)2

2s
1(0<b)δ0(da) db.

Theorem 4.2.1 Let Px be the probability measure on C(R+,R+)× C(R+,W) defined by

Px(dfdω) = P0(df)Θf
x(dω).

The canonical process Ws(f, ω) = ω(s) is under Px a continuous Markov process with values
in W, with initial value x and transition kernels

Qs(w, dw
′) =

∫
ρ
ζ(w)
s (dadb)Ra,b(w, dw

′).

This process is called the Brownian snake with spatial motion ξ.

Proof. The continuity is obvious and it is also clear that W0 = x, Px a.s. As for the Markov
property, we write

Ex[F (Ws1, . . . ,Wsp)G(Wsp+1)]

=

∫
P0(df)

∫
Wp+1

R0,f(s1)(x, dw1) . . . Rm(sp,sp+1),f(sp+1)(wp, dwp+1)F (w1, . . . ,wp)G(wp+1)

=

∫
R

2(p+1)
+

ρ0
s1(da1db1)ρ

b1
s2−s1(da2db2) . . . ρ

bp
sp+1−sp

(dap+1dbp+1)∫
Wp+1

R0,b1(x, dw1) . . . Rap+1,bp+1(wp, dwp+1)F (w1, . . . ,wp)G(wp+1)
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=

∫
R

2(p+1)
+

ρ0
s1

(da1db1)ρ
b1
s2−s1(da2db2) . . . ρ

bp−1

sp−sp−1
(dapdbp)∫

Wp

R0,b1(x, dw1) . . . Rap,bp(wp−1, dwp)F (w1, . . . ,wp)Qsp+1−spG(wp)

= Ex[F (Ws1 , . . . ,Wsp)Qsp+1−spG(Wsp)]

�
Remark. For every w ∈ W, we can similarly define the law of the Brownian snake started
at w by setting

Pw(dfdω) = Pζ(w)
(df)Θf

w(dω).

We denote by ζs = ζ(Ws) the lifetime of Ws. Under Px (resp. under Pw), the process
(ζs, s ≥ 0) is a reflected started at 0 (resp. at ζ(w)). This property is obvious since by
construction ζs(f, ω) = f(s), Px a.s.

Excursion measures. For every x ∈ E, the excursion measure Nx is the σ-finite measure
on C(R+,R+)× C(R+,W) defined by

Nx(dfdω) = n(df)Θf
x(dω),

where n(df) denotes Itô’s excursion measure as in Chapter 2. As in Chapter 2, we will use
the notation γ = γ(f) for the duration of the excursion under Nx(dfdω). Alternatively,
the law of (Ws, s ≥ 0) under Nx is easily identified as the excursion measure from x of the
Brownian snake.

We will see later that excursion measures play a major role in connections between the
Brownian snake and superprocesses.

4.3 Finite-dimensional distributions

under the excursion measure

In this section, we briefly derive a description of the finite-dimensional marginals of the
Brownian snake, in terms of the marked trees that were introduced in the Chapter 2.

Let θ ∈ Tp be a marked tree with p branches. We associate with θ a probability measure
on (Wx)

p denoted by Πθ
x, which is defined inductively as follows.

If p = 1, then θ = ({∅}, h) for some h ≥ 0 and we let Πθ
x = Πh

x be the law of (ξt, 0 ≤ t ≤ h)
under Πx.

If p ≥ 2, then we can write in a unique way

θ = θ′ ∗
h
θ′′ ,

where θ′ ∈ Tj, θ′′ ∈ Tp−j, and j ∈ {1, . . . , p− 1}. We then define Πθ
x by∫

Πθ
x(dw1, . . . , dwp)F (w1, . . . ,wp) = Πx

(∫ ∫
Πθ′
ξh

(dw′
1, . . . , dw

′
j)Π

θ′′
ξh

(dw′′
1 , . . . , dw

′′
p−j)

F (ξ[0,h] � w′
1, . . . , ξ[0,h] � w′

j , ξ[0,h] � w′′
1 , . . . , ξ[0,h] � w′′

p−j)
)
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where ξ[0,h] � w denotes the concatenation (defined in an obvious way) of the paths (ξt, 0 ≤
t ≤ h) and (w(t), 0 ≤ t ≤ ζw).

Informally, Πθ
x is obtained by running independent copies of ξ along the branches of the

tree θ.

Proposition 4.3.1 (i) Let f ∈ C(R+,R+) such that f(0) = 0, and let 0 ≤ t1 ≤ t2 ≤ · · · ≤
tp. Then the law under Θf

x of (ω(t1), . . . , ω(tp)) is Π
θ(f,t1,...,tp)
x .

(ii) For any F ∈ B+(wp
x),

Nx

(∫
{0≤s1≤···≤sp≤γ}

ds1 . . . dsp F (Wt1 , . . . ,Wtp)
)

= 2p−1

∫
Λp(dθ) Πθ

x(F ) .

Proof. Assertion (i) follows easily from the definition of Θf
x and the construction of the

trees θ(f, t1, . . . , tp). A precise argument can be given using induction on p, but we leave
details to the reader. To get (ii), we write

Nx

(∫
{0≤t1≤···≤tp≤γ}

dt1 . . . dtp F (Wt1 , . . . ,Wtp)
)

=

∫
n(df)

∫
{0≤t1≤···≤tp≤γ}

dt1 . . . dtp Θf
x

(
F (Wt1 , . . . ,Wtp)

)
=

∫
n(df)

∫
{0≤t1≤···≤tp≤γ}

dt1 . . . dtp Πθ(f,t1,...,tp)
x (F )

= 2p−1

∫
Λp(dθ) Πθ

x(F ).

The first equality is the definition of Nx, the second one is part (i) of the proposition, and
the last one is Theorem 2.5.2. �

The cases p = 1 and p = 2 of Proposition 4.3.1 (ii) are of special interest. Let us rewrite
the corresponding formulas in a special case. Recall that we denote by ŵ the terminal point
of w. For any g ∈ B+(E), we have

Nx

(∫ γ

0

ds g(Ŵs)
)

= Πx

(∫ ∞

0

dt g(ξt)
)
,

and

Nx

(( ∫ γ

0

ds g(Ŵs)
)2)

= 4 Πx

(∫ ∞

0

dt
(
Πξt

(∫ ∞

0

dr g(ξr)
))2)

.

These formulas are reminiscent of the moment formulas for superprocesses obtained in Chap-
ter 3. We will see in the next section that this analogy is not a coincidence.

4.4 The connection with superprocesses

We start with a key technical result.
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Proposition 4.4.1 Let g ∈ Bb+(R+ × E) such that g(t, y) = 0 for t ≥ A > 0. Then the
function

ut(x) = Nx

(
1− exp−

∫ γ

0

ds g(t+ ζs, Ŵs)
)

solves the integral equation

ut(x) + 2 Πt,x

(∫ ∞

t

dr(ur(ξr))
2
)

= Πt,x

(∫ ∞

t

dr g(r, ξr)
)

(4.3)

(recall that the process ξ starts from x at time t under the probability measure Πt,x).

Proof. For every integer p ≥ 1, set

T pg(t, x) =
1

p!
Nx

(
(

∫ γ

0

ds g(t+ ζs, Ŵs))
p
)
.

By the case p = 1 of Proposition 4.3.1 (ii), we have

T 1g(t, x) = Πx

(∫ ∞

0

dr g(t+ r, ξr)
)
. (4.4)

Then let p ≥ 2. Using Proposition 4.3.1 (ii) again we have

T pg(t, x) = Nx

(∫
{0≤s1≤···≤sp≤γ}

ds1 . . . dsp

p∏
i=1

g(t+ ζsi
, Ŵsi

)
)

= 2p−1

∫
Λp(dθ)

∫
Πθ
x(dw1 . . . dwp)

p∏
i=1

g(t+ ζwi
, ŵi).

At this stage, we decompose the tree θ at its first node, using the relation

Λp =

p−1∑
j=1

∫ ∞

0

dhΛj ∗
h

Λp−j

and the fact that if θ = θ′ ∗
h
θ′′, we can construct Πθ

x by first considering a path of ξ started

at x on the time interval [0, h] and then concatenating paths w′
1, . . . , w

′
j with distribution

Πθ′
ξh

and paths w′′
1 , . . . , w

′′
p−j with distribution Πθ′′

ξh
. It follows that

T pg(t, x) = 2p−1

p−1∑
j=1

∫ ∞

0

dh

∫ ∫
Λj(dθ

′)Λp−j(dθ′′)

Πx

(
(

∫
Πθ′
ξh

(dw′
1 · · · dw′

j)

j∏
i=1

g(t+ h+ ζw′i, ŵ
′
i))

×(

∫
Πθ′′
ξh

(dw′′
1 · · · dw′′

p−j)
p−j∏
i=1

g(t+ h+ ζw′′i , ŵ
′′
i ))
)

= 2

p−1∑
j=1

Πx

(∫ ∞

0

dh T jg(t+ h, ξh)T
p−jg(t+ h, ξh)

)
. (4.5)
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For p = 1, (4.4) gives the bound

T 1g(t, x) ≤ C1[0,A](t) .

Recall from Chapter 2 the definition of the numbers ap satisfying ap =
∑p−1

j=1 ajap−j. ¿From

the bound for p = 1 and (4.5), we easily get T pg(t, x) ≤ (2A)p−1Cpap 1[0,A](t) by induction
on p. Since ap ≤ 4p, we obtain

T pg(t, x) ≤ (C ′)p1[0,A](t) .

It follows that, for 0 < λ < λ0 := (C ′)−1,

∞∑
p=1

λpT pg(t, x) ≤ K 1[0,A](t), (4.6)

for some constant K <∞.

By expanding the exponential we get for λ ∈ (0, λ0)

uλt (x) := Nx

(
1− exp(−λ

∫ γ

0

ds g(t+ ζs, dehatWs))
)

=

∞∑
p=1

(−1)p+1λpT pg(t, x) .

By (4.5), we have also

2Πx

(∫ ∞

0

dr(uλt+r(ξr))
2
)

= 2Πx

(∫ ∞

0

dr(

∞∑
p=1

(−1)p+1λpT pg(t+ r, ξr))
2
)

= 2

∞∑
p=2

(−1)pλp
p−1∑
j=1

Πx

(∫ ∞

0

drT jg(t+ r, ξr)T
p−jg(t+ r, ξr)

)
=

∞∑
p=2

(−1)pλpT pg(t, x) .

(The use of Fubini’s theorem in the second equality is justified thanks to (4.6).) ¿From the
last equality and the previous formula for uλt (x), we get, for λ ∈ (0, λ0),

uλt (x) + 2Πx

(∫ ∞

0

dr(uλt+r(ξr))
2
)

= λT 1g(t, x) = λΠx

(∫ ∞

0

dr g(t+ r, ξr)
)
.

This is the desired integral equation, except that we want it for λ = 1. Note however that
the function λ −→ uλt (x) is holomorphic on the domain {Reλ > 0}. Thus, an easy argument
of analytic continuation shows that if the previous equation holds for λ ∈ (0, λ0), it must
hold for every λ > 0. This completes the proof. �

Theorem 4.4.2 Let µ ∈Mf(E) and let∑
i∈I

δ(xi,fi,ωi)
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be a Poisson point measure with intensity µ(dx)Nx(df dω). Write W i
s = Ws(fi, ωi), ζ

i
s =

ζs(fi, ωi) and γi = γ(fi) for every i ∈ I, s ≥ 0. Then there exists a superprocess (Zt, t ≥ 0)
with spatial motion ξ and quadratic branching rate 4, started at Z0 = µ, such that for every
ϕ ∈ Bb+(R+ × E), ∫ ∞

0

dt

∫
Zt(dx)ϕ(t, x) =

∑
i∈I

∫ γi

0

ϕ(ζ is, Ŵ
i
s) ds . (4.7)

More precisely, Zt can be defined for t > 0 by

〈Zt, g〉 =
∑
i∈I

∫ γi

0

d`ts(ζ
i)g(Ŵ i

s) , (4.8)

where `ts(ζ
i) denotes the local time at level t and at time s of (ζ ir, r ≥ 0).

Remarks. (i) The local time `ts(ζ
i) can be defined via the usual approximation

`ts(ζ
i) = lim

ε→0

1

ε

∫ s

0

dr 1(t,t+ε)(ζ
i
r).

The function (`ts(ζ
i), s ≥ 0) is continuous and increasing, for every i ∈ I, a.s., and the

notation d`ts(ζ
i) refers to integration with respect to this function.

(ii) The superprocess Z has branching rate 4, but a trivial modification will give a
superprocess with an arbitrary branching rate. Simply observe that, for every λ > 0, the
process (λZt, t ≥ 0) is a superprocess with spatial motion ξ and branching rate 4λ.

Proof. Let L denote the random measure on R+ × E defined by∫
L(dt dy)ϕ(t, y) =

∑
i∈I

∫ γi

0

ϕ(ζ is, Ŵ
i
s)ds .

Suppose that ϕ(t, y) = 0 for t ≥ A, for some A <∞. By the exponential formula for Poisson
measures and then Proposition 4.4.1, we get

E(exp−
∫
L(dt dy)ϕ(t, y)) = exp

(
−
∫
µ(dx)Nx(1− exp−

∫ γ

0

ds ϕ(ζs, hatWs))
)

= exp(−〈µ, u0〉)

where (ut(x), t ≥ 0, x ∈ E) is the unique nonnegative solution of

ut(x) + 2Πt,x

(∫ ∞

t

dr(ur(ξr))
2
)

= Πt,x

(∫ ∞

t

dr ϕ(r, ξr)
)
.

By comparing with Proposition 3.3.2, we see that the random measure L has the same
distribution as

dt Z ′
t(dy)

where Z ′ is a superprocess with spatial motion ξ and branching rate 4, started at Z ′
0 = µ.
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Since Z ′ is continuous in probability we easily obtain that, for every t ≥ 0,

Z ′
t = lim

ε↓0
1

ε

∫ t+ε

t

Z ′
rdr ,

in probability. It follows that for every t ≥ 0 the limit

Zt(dy) := lim
ε↓0

1

ε

∫ t+ε

t

L(dr dy)

exists in probability. Clearly the process Z has the same distribution as Z ′ and is thus also
a superprocess with spatial motion ξ and branching rate 4 started at µ.

Then, if t > 0 and g ∈ Cb+(E),

langleZt, g〉 = lim
ε↓0

1

ε

∫
L(dr dy)1[t,t+ε](r)g(y)

= lim
ε↓0

1

ε

∑
i∈I

∫ γi

0

ds 1[t,t+ε](ζ
i
s)g(Ŵ

i
s) .

Note that there is only a finite number of nonzero terms in the sum over i ∈ I (for t > 0,
Nx(sup ζs ≥ t) = n(sup e(s) ≥ t) <∞). Furthermore, the usual approximation of Brownian

local time, and the continuity of the mapping s→ Ŵs give

lim
ε↓0

1

ε

∫ γ

0

ds 1[t,t+ε](ζs)g(Ŵs) =

∫ γ

0

d`ts(ζ)g(Ŵs)

Nx a.s., for every x ∈ E. Formula (4.8) now follows, and (4.7) is then a consequence of the
occupation time formula for Brownian local time. �

Let us comment on the representation provided by Theorem 4.4.2. Define under Nx a
measure-valued process (Zt, t > 0) by the formula

〈Zt, g〉 =

∫ γ

0

d`ts(ζ)g(Ŵs) . (4.9)

The “law” of (Zt, t > 0) under Nx is sometimes called the canonical measure (of the su-
perprocess with spatial motion ξ and branching rate 4) with initial point x. Intuitively the
canonical measure represents the contributions to the superprocess of the descendants of one
single “individual” alive at time 0 at the point x. (This intuitive explanation could be made
rigorous by an approximation by discrete branching particle systems in the spirit of Chapter
3.) The representation of the theorem can be written as

Zt =
∑
i∈I

Z i
t

and means (informally) that the population at time t is obtained by superimposing the
contributions of the different individuals alive at time 0.

The canonical representation can be derived independently of the Brownian snake ap-
proach: Up to some point, it is a special case of the Lévy-Khintchine decomposition for
infinitely divisible random measures. One advantage of the Brownian snake approach is that
it gives the explicit formula (4.9) for the canonical measure.
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4.5 Some applications of the Brownian snake represen-

tation

The representation derived in Theorem 4.4.2 has some interesting consequences for path
properties of superprocesses.

Theorem 4.5.1 Let Z be a superprocess with spatial motion ξ. Then (Zt, t ≥ 0) has a
continuous modification. For this modification, suppZt is compact for every t > 0 a.s.

Proof. We may assume that the branching rate is 4 (cf remarks after Theorem 4.4.2) and
that Z is given by the representation formula (4.8):

〈Zt, g〉 =
∑
i∈I

∫ γi

0

d`ts(ζ
i)g(Ŵ i

s).

Note that the set Iδ = {i ∈ I : sups≥0 ζ
i
s ≥ δ} is finite a.s., and that if t ∈ [δ,∞) only the

terms corresponding to i ∈ Iδ can be non-zero in the right-hand side of (4.8). Furthermore,
the joint continuity of Brownian local times implies that the mapping t → d`ts(ζ) is con-

tinuous from R+ into Mf(R+), Nx a.e. Since we also know that the mapping s → Ŵ i
s is

continuous, we immediately see that the process Zt , as defined by (4.8), is continuous over
(0,∞).

Before dealing with the continuity at t = 0, let us observe that the last assertion of the
theorem is easy from the previous arguments. Indeed, for t ∈ [δ,∞), we have

suppZt ⊂
⋃
i∈Iδ

{Ŵ i
s : s ≥ 0}

where Iδ is finite a.s., and for every i the set {Ŵ i
s , s ≥ 0} is compact as the image of the

compact interval [0, γi] under the continuous mapping s→ Ŵ i
s .

To deal with the continuity at t = 0, let g be a bounded nonnegative Lipschitz function
on E, and let vt(x) be the (nonnegative) solution of the integral equation

vt(x) + 2Πx

(∫ t

0

vt−s(ξs)2ds
)

= Πx(g(ξt)) . (4.10)

Then for every fixed t > 0,

exp−〈Zr, vt−r〉 = E(exp−〈Zt, g〉|Zr)
is a martingale indexed by r ∈ [0, t]. By standard results on martingales,

lim
r↓0
〈Zr, vt−r〉

exists a.s., at least along rationals. On the other hand, it easily follows from (4.10) and
assumption (4.1) that vt(x) converges to g(x) as t ↓ 0, uniformly in x ∈ E. Hence,

lim sup
r↓0, r∈Q

〈Zr, g〉 ≤ lim sup
r↓0, r∈Q

〈Zr, vt−r〉+ ε(t)

with ε(t) → 0 as t ↓ 0, and similarly for the lim inf. We conclude that limr↓0〈Zr, g〉 exists
a.s. and the limit must be 〈µ, g〉 by the continuity in probability. �
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Theorem 4.5.2 Let Z be super-Brownian motion in Rd. Then:

(i) For every δ > 0,

dim
(⋃
t≥δ

suppZt

)
= 4 ∧ d, a.s. on {Zδ 6= 0}

(ii) For every t > 0,
dim (suppZt) = 2 ∧ d, a.s. on {Zt 6= 0}

Proof. (i) We only prove the upper bound

dim
(⋃
t≥δ

suppZt

)
≤ 4, a.s.

The lower bound is easily proved by an application of Frostman’s lemma similar to the proof
of Proposition 3.5.2.

We may again assume that Z is given by formula (4.8). Then, as in the previous proof,
we have ⋃

t≥δ
suppZt ⊂

⋃
i∈Iδ

{Ŵ i
s : s ≥ 0}.

The proof thus reduces to showing that

dim
⋃
i∈Iδ

{Ŵ i
s : s ≥ 0} ≤ 4

or equivalently,
dim {Ŵs : s ≥ 0} ≤ 4 Nx a.e. (4.11)

To this end we use more detailed information about the Hölder continuity of the mapping
s → Ŵs. Note that when ξ is Brownian motion in Rd, assumption (4.1) holds with any
p > 4 and 2 + ε = p/2. The argument of the proof of Proposition 4.1.1 shows that for any
continuous f : R+ −→ R+ such that f(0) = 0, for s ≤ s′,

Θf
x(|Ŵs − Ŵs′|p) ≤ cp

(
|f(s)− f(s′)|p + (f(s) + f(s′)− inf

r∈[s,s′]
f(r))p/2

)
.

If f is Hölder continuous with exponent 1/2− ε (which holds n(df) a.e.), we get

Θf
x(|Ŵs − Ŵs′|p) ≤ Cp,f,ε|s− s′|

p
2
( 1
2
−ε).

Then the Kolmogorov lemma implies that the mapping s → Ŵs is Hölder continuous with
exponent 1

4
− ε, for every ε > 0, Nx a.e. The bound (4.11) is an immediate consequence.

(ii) The lower bound dim (suppZt) ≥ 2∧d on {Zt 6= 0} was already obtained in Chapter
3 (Proposition 3.5.2). For the upper bound, we note that by formula (4.8), we have for t ≥ δ,

suppZt ⊂
⋃
i∈Iδ

{Ŵ i
s : s ≥ 0, ζ is = t}
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(recall that the local time measure d`ts(ζ
i) is supported on {s ≥ 0 : ζ is = t}). Hence we need

to verify that
dim {Ŵs : s ≥ 0, ζs = t} ≤ 2 Nx a.e. (4.12)

By the first part of the proof, the mapping s → Ŵs is Hölder continuous with exponent
1
4
− ε, and on the other hand, it is well-known that the level sets of Brownian motion have

dimension 1/2:

dim {s ≥ 0 : ζs = t} ≤ 1

2
, n(dζ) a.e.

The bound (4.12) follows, which completes the proof. �
The Brownian snake has turned out to be a powerful tool for investigating path properties

of super-Brownian motion. See e.g. [29] for a typical example of such applications.

4.6 Integrated super-Brownian excursion

In this last section, we discuss the random measure known as integrated super-Brownian
excursion (ISE). The motivation for studying this random measure comes from limit theorems
showing that ISE arises in the asymptotic behavior of certain models of statistical mechanics.

We suppose that the spatial motion ξ is Brownian motion in Rd. We use the notation J
for the total occupation measure of the Brownian snake under Nx:

〈J , g〉 =

∫ γ

0

ds g(Ŵs) , g ∈ B+(Rd).

Informally, ISE is J under N0(· | γ = 1).

To give a cleaner definition, recall the notation n(1) for the law of the normalized Brownian
excursion (cf Chapter 2). With the notation of Proposition 4.1.1, define a probability measure

N
(1)
x on C(R+,R+)× C(R+,Wx) by setting

N(1)
x (df dω) = n(1)(df) Θf

x(dω).

Definition. ISE is the random measure J on Rd defined under N
(1)
0 by

〈J , g〉 =

∫ 1

0

ds g(Ŵs) , g ∈ B+(Rd).

¿From Theorem 4.5.2 (i) and a scaling argument, it is straightforward to verify that
dim suppJ = 4 ∧ d a.s.

One can use Theorem 2.5.2 to get an explicit formula for the moments of ISE. These
moment formulas are important in the proof of the limit theorems involving ISE: See Derbez
and Slade [11].

Before stating the result, recall the notation Πθ
x introduced in Section 3 above. We use

the tree formalism described in Section 2.3. In particular, a tree T is defined as the set of
its vertices, which are elements of ∪∞n=0{1, 2}n. We denote by LT the set of all leaves of T
and if v ∈ T , v 6= ∅, we denote by ṽ the father of v.
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Proposition 4.6.1 Let p ≥ 1 be an integer and let F ∈ B+(Wp). Then,

N
(1)
0

(∫
0≤s1≤s2≤···≤sp≤1}

ds1 . . . dsp F (Ws1, . . . ,Wsp)
)

= 2p+1

∫
Λp(dθ)L(θ) exp(−2L(θ)2) Πθ

0(F (w1, . . . , wp)). (4.13)

Let g ∈ B+(Rd). Then,

N
(1)
0 (〈J , g〉p) = p! 2p+1

∑
T∈Tp

∫
(R+)T

∏
v∈T

dhv (
∑
v∈T

hv) exp (− 2(
∑
v∈T

hv)
2)

×
∫

(Rd)T

∏
v∈T

dyv

(∏
v∈T

qhv(yṽ, yv)
) ∏

v∈LT

g(yv), (4.14)

where yṽ = 0 if v = ∅ by convention, and qt(y, y
′) denotes the Brownian transition density.

Proof. Formula (4.13) is an immediate consequence of Theorem 2.5.2 and Proposition 4.3.1
(i), along the lines of the proof of Proposition 4.3.1 (ii). Formula (4.14) follows as a special
case (taking F (w1, . . . , wp) = g(ŵ1) . . . g(ŵp)) using the construction of Πθ

0 and the definition
of Λp(dθ). �

Formula (4.13) obviously contains more information than (4.14). For instance, it yields
as easily the moment functionals for space-time ISE, which is the random measure J ∗ on
R+ ×Rd defined under N

(1)
0 as

〈J ∗, g〉 =

∫ 1

0

ds g(ζs, Ŵs) , g ∈ B+(R+ ×Rd).

The formula analogous to (4.14) when J is replaced by J ∗ is left as an exercise for the
reader.

Remark. The second formula of Proposition 4.6.1 can be rewritten in several equivalent
ways. Arguing as in the concluding remarks of Chapter 2, we may replace the sum over
ordered binary trees with p leaves by a sum over (unordered) binary trees with p labelled
leaves. The formula is unchanged, except that the factor p! 2p+1 is replaced by 22p. In this
way, we (almost) get the usual form of the moment functionals of ISE: See Aldous [3] or
Derbez and Slade [11]. There are still some extra factors 2 due to the fact that in the usual
definition of ISE, n(1)(df) is replaced by its image under the mapping f → 2f . To recover
exactly the usual formula, simply replace phv(yṽ, yv) by p2hv(yṽ, yv).
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Chapter 5

Lévy processes and branching
processes

Our goal in this chapter is to extend the Brownian snake approach of Chapter 4 to super-
processes with a general branching mechanism. This extension will rely on properties of
spectrally positive Lévy processes. Most of the properties of Lévy processes that we will
need can be found in Bertoin’s monograph [5], especially in Chapter VII.

5.1 Lévy processes

In this section we introduce the class of Lévy processes that will be relevant to our purposes
and we record some of their properties.

We start from a function ψ of the type considered in Chapter 3:

ψ(λ) = αλ+ βλ2 +

∫
(0,∞)

π(dr)(e−λr − 1 + λr)

where α ≥ 0, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫
π(dr)(r ∧ r2) <∞.

Then there exists a Lévy process (real-valued process with stationary independent incre-
ments) Y = (Yt, t ≥ 0) started at Y0 = 0, whose Laplace exponent is ψ, in the sense that for
every t ≥ 0, λ ≥ 0:

E[e−λYt ] = etψ(λ) .

The measure π is the Lévy measure of Y , β corresponds to its Brownian part, and −α to a
drift coefficient (after compensation of the jumps). Since π is supported on (0,∞), Y has
no negative jumps. In fact, under our assumptions, Y can be the most general Lévy process
without negative jumps that does not drift to +∞ (i.e. we cannot have Yt →∞ as t→∞,
a.s.). This corresponds to the fact that we consider only critical or subcritical branching.
The point 0 is always regular for (−∞, 0), with respect to Y , meaning that

P ( inf{t > 0, Yt < 0} = 0) = 1 .
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It is not always true that 0 is regular for (0,∞), but this holds if

β > 0 , or β = 0 and

∫ 1

0

rπ(dr) = ∞ . (5.1)

¿From now on we will assume that (5.1) holds. This is equivalent to the property that the
paths of Y are a.s. of infinite variation. A parallel theory can be developed in the finite
variation case, but the cases of interest in relation with superprocesses (in particular the
stable case where π(dr) = cr−2−αdr, 0 < α < 1) do satisfy (5.1).

Consider the maximum and minimum processes of Y :

St = sup
s≤t

Ys , It = inf
s≤t

Ys .

Both S−Y and Y −I are Markov processes in R+ (this is true indeed for any Lévy process).
¿From the previous remarks on the regularity of 0, it immediately follows that 0 is a regular
point (for itself) with respect to both S − Y and Y − I. We can therefore consider the
(Markov) local time of both S − Y and Y − I at level 0.

It is easy to see that the process −I provides a local time at 0 for Y − I. We will denote
by N the associated excursion measure. By abuse of notation, we still denote by Y the
canonical process under N . Under N , Y takes nonnegative values and Yt > 0 if and only if
0 < t < γ, where γ denotes the duration of the excursion.

We denote by L = (Lt, t ≥ 0) the local time at 0 of S − Y . Here we need to specify the
normalization of L. This can be done by the following approximation:

Lt = lim
ε↓0

1

ε

∫ t

0

1{Ss−Ys<ε}ds , (5.2)

in probability. If L−1(t) = inf{s, Ls > t} denotes the right-continuous inverse of L, formula
(5.2) follows from the slightly more precise result

lim
ε→0

E
[(1

ε

∫ L−1(t)

0

1{Ss−Ys<ε}ds− (t ∧ L∞)
)2]

= 0 (5.3)

which can be derived from excursion theory for S−Y (after choosing the proper normalization
for L, see [19]).

The process (SL−1(t), t ≥ 0) is a subordinator (that is, a Lévy process with nondecreasing
paths) and a famous formula of fluctuation theory (cf Theorem VII-4 (ii) in [5]) gives its
Laplace transform

E(exp−λSL−1(t)) = exp (− t
ψ(λ)

λ
) . (5.4)

Note that there should be a normalization constant in the exponential of the right side, but
this constant is equal to 1 under our normalization of local time. We have

ψ(λ)

λ
= α+ βλ+

∫ ∞

0

dr π((r,∞))(1− e−λr)
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so that the subordinator (SL−1(t), t ≥ 0) has Lévy measure π((r,∞))dr, drift β and is killed
at rate α. In particular for every s ≥ 0, if m denotes Lebesgue measure on R+, we have a.s.

m({SL−1(r); 0 ≤ r ≤ s, L−1(r) <∞}) = β(s ∧ L∞)

from which it easily follows that

m({Sr, 0 ≤ r ≤ t}) = βLt . (5.5)

Note that when β > 0 this formula yields an explicit expression for Lt.

5.2 The height process

Recall formula (1.1) in Lemma 1.1.1, which gives an expression for the height process of a
sequence of independent Galton-Watson trees with an arbitrary offspring distribution (this
formula does not depend on the particular assumptions made on the offspring distribution
in Chapter 1). If we formally try to extend this formula to our continuous setting, replacing
the random walk S by the Lévy process Y , we are lead to define Ht as the Lebesgue measure
of the set {s ≤ t, Ys = Ist }, where

Ist = inf
s≤r≤t

Yr .

Under our assumptions however, this Lebesgue measure is always zero (if s < t, we have
P (Ys = Ist ) = 0 because 0 is regular for (−∞, 0)) and so we need to use some kind of local
time that will measure the size of the set in consideration. More precisely, for a fixed t > 0,
we introduce the time-reversed process

Ŷ (t)
r = Yt − Y(t−r)− , 0 ≤ r ≤ t (Y0− = 0 by convention)

and its supremum process
Ŝ(t)
r = sup

0≤s≤r
Ŷ (t)
s , 0 ≤ r ≤ t .

Note that (Ŷ
(t)
r , Ŝ

(t)
r ; 0 ≤ r ≤ t) has the same distribution as (Yr, Sr; 0 ≤ r ≤ t). Via time-

reversal, the set {s ≤ t, Ys = Ist } corresponds to the set {s ≤ t, Ŝ
(t)
s = Ŷ

(t)
s }. This leads us

to the following definition.

Definition. For every t ≥ 0, we let Ht be the local time at 0, at time t, of the process
Ŝ(t) − Ŷ (t). The process (Ht, t ≥ 0) is called the height process.

Obviously, the normalization of local time is the one that was described in the previous
section. From this definition it is not clear that the sample paths of (Ht, t ≥ 0) have any
regularity property. In this work, in order to avoid technical difficulties, we will reinforce
assumption (5.1) by imposing that

β > 0 . (5.6)

We emphasize that (5.6) is only for technical convenience and that all theorems and propo-
sitions that follow hold under (5.1) (for a suitable choice of a modification of (Ht, t ≥ 0)).
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Under (5.6) we can get a simpler expression for Ht. Indeed from (5.5) we have

Ht =
1

β
m({Ŝ(t)

r , 0 ≤ r ≤ t}) ,

or equivalently,

Ht =
1

β
m({Irt , 0 ≤ r ≤ t}) . (5.7)

The right side of the previous formula obviously gives a continuous modification of H (recall
that Y has no negative jumps). From now on we deal only with this modification.

If ψ(u) = βu2, Y is a (scaled) linear Brownian motion and has continuous paths. The
previous formula then implies that Ht = 1

β
(Yt − It) is a (scaled) reflected Brownian motion,

by a famous theorem of Lévy.

We can now state our main results. The key underlying idea is thatH codes the genealogy
of a ψ-CSBP in the same way as reflected Brownian motion codes the genealogy of the Feller
diffusion. Our first theorem shows that the local time process of H (evaluated at a suitable
stopping time), as a function of the space variable, is a ψ-CSBP.

Theorem 5.2.1 For every r > 0, set τr = inf{t, It = −r}. There exists a ψ-CSBP X =
(Xa, a ≥ 0) started at r, such that for every h ∈ Bb+(R+),∫ ∞

0

da h(a)Xa =

∫ τr

0

ds h(Hs) .

Obviously X can be defined by

Xa = lim
ε↓0

1

ε

∫ τr

0

ds 1{a<Hs<a+ε}, a.s.

Remark. It is easy to verify that a.s. for every t ≥ 0, Ht = 0 iff Yt = It. (The implication
Yt = It =⇒ Ht = 0 is trivial.) Since τr is the inverse local time at 0 of Y − I, we can also
interpret τr as the inverse local time at 0 of H . Indeed, Theorem 5.2.1 implies

r = X0 = lim
ε↓0

1

ε

∫ τr

0

ds 1{0<Hs<ε} , a.s.

from which it easily follows that for every t ≥ 0

lim
ε↓0

1

ε

∫ t

0

ds 1{0<Hs<ε} = −It , a.s.

Using this remark, we see that the case ψ(u) = β u2 of the previous theorem reduces to a
classical Ray-Knight theorem on the Markovian properties of Brownian local times.

We now turn to a snake-like construction of (ξ, ψ)-superprocesses, that generalizes the
construction of Chapter 4. As in Chapter 4 we consider a Markov process ξ with values in
a Polish space E, satisfying the assumptions in Section 4.1. Also recall that N stands for
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the excursion measure of Y − I away from 0. The definition of the process (Hs, s ≥ 0) (via
formula (5.7)) makes sense under N , and H has continuous sample paths under N .

For every fixed x ∈ E, we can construct a σ-finite measure Nx and a process (Ws, s ≥ 0)
with values inWx, defined under the measure Nx, whose law is characterized by the following
two properties (we use the notation of Section 4.1):

(i) ζs = ζ(Ws), s ≥ 0 is distributed under Nx as the process Hs, s ≥ 0 under N .

(ii) Conditionally on ζs = f(s), s ≥ 0, the process W has distribution Θf
x.

Note that this is exactly similar to the construction of Chapter 4, but the role of the Itô
excursion measure is played by the law of the processH under N . There is another significant
difference: The process W is not Markovian, because H itself is not. This explains why we
constructed only the excursion measures Nx and not the law of the process W started at an
arbitrary starting point (this would not make sense, see however Section 4 below).

Our assumption β > 0 implies that H has Hölder continuous sample paths with exponent
η for any η < 1/2 (see [19]). By arguing as in the proof of Proposition 4.1.1, it follows that
(Ws, s ≥ 0) has a continuous modification under Nx. Hence, without loss of generality, we
can assume in the next theorem (but not necessarily in the remainder of this chapter) that Nx

is defined on the canonical space C(R+,R+)×C(R+,W) in such a way that ζs(f, ω) = f(s)
and Ws = ω(s), Nx(dfdω) a.e.

Theorem 5.2.2 Let µ ∈Mf(E) and let∑
i∈I

δ(xi,fi,ωi)

be a Poisson point measure with intensity µ(dx)Nx(df dω). Write W i
s = Ws(fi, ωi), ζ

i
s =

ζs(fi, ωi) and γi = γ(fi) for every i ∈ I, s ≥ 0. Then there exists a (ξ, ψ)-superprocess
(Zt, t ≥ 0) with Z0 = µ, such that for every ϕ ∈ Bb+(R+ ×E),∫ ∞

0

dt

∫
Zt(dx)ϕ(t, x) =

∑
i∈I

∫ γi

0

ϕ(ζ is, Ŵ
i
s) ds . (5.8)

Remark. As in Theorem 4.4.2 we could have given a somewhat more explicit formula for
Z by using the local times of the height process at every level: See [19].

5.3 The exploration process

Before we proceed to the proofs, we need to introduce a crucial tool. We noticed that H
is in general not a Markov process. For the calculations that will follow it is important to
consider another process which contains more information than H and is Markovian.

Definition. The exploration process (ρt, t ≥ 0) is the process with values in Mf(R+) defined
by

〈ρt, g〉 =

∫
[0,t]

dsI
s
t g(Hs) ,
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for g ∈ Bb+(R+). The integral in the right side is with respect to the increasing function
s −→ Ist .

We can easily obtain a more explicit formula for ρt: A change of variables using (5.7)
shows that

〈ρt, g〉 =

∫ t

0

ds I
s
t g(β

−1m({Irs , r ≤ s}))

=

∫ t

0

ds I
s
t g(β

−1m({Irt , r ≤ s}))

= β

∫ Ht

0

da g(a) +
∑

s≤t:Ys−<Is
t

(Ist − Ys−)g(Hs)

so that
ρt(da) = β1[0,Ht](a)da+

∑
s≤t:Ys−<Is

t

(Ist − Ys−)δHs(da) . (5.9)

¿From this formula, it is clear that

supp ρt = [0, Ht] , for every t ≥ 0 , a.s.

The definition of ρt also shows that

〈ρt, 1〉 = Yt − It .

If µ ∈Mf(R+) and a ∈ R we define kaµ ∈ Mf(R+) by the formula

kaµ([0, r]) = µ([0, r]) ∧ a+ .

When a ≤ 0, kaµ = 0, and when a > 0, kaµ can be interpreted as the measure µ “truncated
at mass a”.

If µ ∈Mf(R+) has compact support and ν ∈Mf(R+), the concatenation [µ, ν] is defined
by ∫

[µ, ν](dr)h(r) =

∫
µ(dr)h(r) +

∫
ν(dr)h(H(µ) + r)

where H(µ) = sup(supp µ).

Proposition 5.3.1 The process (ρt, t ≥ 0) is a càdlàg strong Markov process with values in
the space Mf(R+) of all finite measures on R+. If θ ∈Mf(R+), the process started at θ can
be defined by the explicit formula

ρθt = [k<θ,1>+Itθ, ρt].

Proof. The càdlàg property of paths follows from the explicit formula (5.9). This formula
shows more precisely that t is a discontinuity time for ρ iff it is so for Y , and ρt = ρt− +
∆Yt δHt .
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Then, let T be a stopping time of the canonical filtration (Ft)t≥0 of Y . Consider the
shifted process

Y
(T )
t = YT+t − YT , t ≥ 0,

which has the same distribution as Y and is independent of FT . Then, from the explicit
formulas for ρ and H , one easily verifies that, a.s. for every t > 0,

ρT+t = [k
<ρT ,1>+I

(T )
t
ρT , ρ

(T )
t ],

with an obvious notation for ρ
(T )
t and I

(T )
t . The statement of the proposition now follows

from the fact that (I
(T )
t , ρ

(T )
t ) has the same distribution as (It, ρt) and is independent of FT .

�
Remark. Let ρθ be defined as in Proposition 5.3.1 and set T0 = inf{t ≥ 0 : ρθt = 0}. Then
the formula of Proposition 5.3.1 implies that T0 = inf{t ≥ 0 : Yt = −〈θ, 1〉}. For t ≤ T0,
the total mass of ρθt is equal to 〈θ, 1〉+ It + 〈ρt, 1〉 = 〈θ, 1〉+ Yt. Furthermore, if (a, b) is an
excursion interval of Y − I before time T0, we have ρθt = [k<θ,1>+Iaθ, ρt] for every t ∈ [a, b],
and in particular ρa = ρb = k<θ,1>+Iaθ. These observations will be useful in Section 4 below.

The following proposition gives an explicit formula for the invariant measure of ρ. Before
stating this result, we give some important observations. Recall that N denotes the excursion
measure of Y − I away from 0. Formulas (5.7) and (5.9) providing explicit expressions for
the processes ρ and H still make sense under the excursion measure N . Furthermore, these
formulas show that both ρt and Ht depend only on the values taken by Y −I on the excursion
et of Y − I that straddles t, and

ρt = ρt−at(et) , Ht = Ht−at(et),

if at denotes the starting time of this excursion. Since 〈ρt, 1〉 = Yt−It the excursion intervals
of ρ away from 0 are the same as those of Y − I, and the “law” of (ρt, t ≥ 0) under N is
easily identified with the excursion measure of the Markov process ρ away from 0.

We set ψ̃(u) = u−1ψ(u) and denote by U = (Ut, t ≥ 0) a subordinator with Laplace

exponent ψ̃, i.e. with killing rate α, drift β and Lévy measure π([r,∞))dr.

Proposition 5.3.2 For every nonnegative measurable function Φ on Mf(R+),

N
(∫ γ

0

dtΦ(ρt)
)

=

∫ ∞

0

daE(Φ(Ja)),

where Ja(dr) = 1[0,a](r) dUr if U is not killed before time a, and we make the convention that
Φ(Ja) = 0 if U is killed before time a .

Proof. We may assume that Φ is bounded and continuous. Recall the notation τr in
Theorem 5.2.1. From excursion theory for Y − I and the remarks preceding the proposition,
we have for every ε > 0, C > 0,

N
(∫ γ

0

dtΦ(ρt) 1{Ht≤C}
)

=
1

ε
E
(∫ τε

0

dtΦ(ρt) 1{Ht≤C}
)

=
1

ε

∫ ∞

0

dtE(1{t<τε,Ht≤C}Φ(ρt)).
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Then, for every fixed t > 0, we use time-reversal at time t. Recalling the definition of H and
ρ, we see that

ρt = η̂
(t)
t

where η̂
(t)
t is defined by

〈η̂(t)
t , f〉 =

∫ t

0

dŜ(t)
r f(L̂

(t)
t − L̂(t)

r )

and L̂
(t)
r = β−1m({Ŝ(t)

s , 0 ≤ s ≤ t}) as in (5.5). Similarly,

{t < τε, Ht ≤ C} = {Ŝ(t)
t − Ŷ

(t)
t < ε, L̂

(t)
t ≤ C}

and so we can write

E(1{t<τε,Ht≤C}Φ(ρt)) = E(1{Ŝ(t)
t −Ŷ (t)

t <ε,L̂
(t)
t ≤C}Φ(η̂

(t)
t )) = E(1{St−Yt<ε,Lt≤C}Φ(ηt))

where

〈ηt, f〉 =

∫ t

0

dSr f(Lt − Lr).

Summarizing, we have for every ε > 0

N
( ∫ γ

0

dtΦ(ρt) 1{Ht≤C}
)

= E
(1

ε

∫ ∞

0

dt 1{St−Yt<ε,Lt≤C}Φ(ηt)
)
.

Note from (5.2) that the random measures ε−11{St−Yt<ε}dt converge in probability to the
measure dLt. Furthermore, (5.3) allows us to pass to the limit under the expectation sign
and we arrive at

lim
ε→0

E
(1

ε

∫ ∞

0

dt 1{St−Yt<ε,Lt≤C}Φ(ηt)
)

= E
(∫ ∞

0

dLt 1{Lt≤C} Φ(ηt)
)

= E
(∫ L∞∧C

0

daΦ(ηL−1(a))
)
.

We finally let C tend to ∞ to get

N
(∫ γ

0

dtΦ(ρt)
)

= E
(∫ L∞

0

daΦ(ηL−1(a))
)
.

Then note that, on the event {a < L∞},

〈ηL−1(a), f〉 =

∫ L−1(a)

0

dSr f(a− Lr) =

∫ a

0

dVs f(a− s),

where Vs = SL−1(s) is a subordinator with exponent ψ(λ)
λ

(cf (5.4)). The desired result now
follows. �
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5.4 The Lévy snake

If µ ∈Mf(R+), we set
H(µ) = sup(suppµ) ∈ [0,∞]

where H(µ) = 0 if µ = 0 by convention. It is important to observe that H(ρs) = Hs for
every s ≥ 0, P a.s. or N a.e. (this was pointed out in the previous section).

We denote by M0
f the set of all measures µ ∈M0

f such that H(µ) <∞ and the support
of µ is equal to the interval [0, H(µ)] (or to ∅ in the case µ = 0).

¿From Proposition 5.3.1 it is easy to see that the process ρ started at µ ∈ M0
f will

remain forever in M0
f . Therefore we may and will consider the exploration process as a

Markov process in M0
f . It also follows from the representation in Proposition 5.3.1, that

H(ρs) has continuous sample paths whenever ρ0 ∈ M0
f (this is the reason for the condition

suppµ = [0, H(µ)] in the definition of M0
f).

Finally, for every x ∈ E, we let ∆x be the set of all pairs (µ,w) ∈ M0
f ×Wx such that

ζ(w) = H(µ). Recall from the end of Section 4.1 the definition of the distributions Θf
w.

Definition. The ψ-Lévy snake with initial point x ∈ E is the Markov process (ρs,Ws) with
values in ∆x whose law is characterized by the following properties. If (µ,w) ∈ ∆x, the Lévy
snake started at (µ,w) is such that:

(i) The first coordinate (ρs, s ≥ 0) is the exploration process started at µ.

(ii) Conditionally on (ρs, s ≥ 0), the process (Ws, s ≥ 0) has distribution Θ
H(ρ)
w .

The fact that the process (ρs,Ws) satisfying properties (i) and (ii) above is Markovian
follows from the Markov property of ρ by using arguments similar to the proof of Theorem
4.2.1. We will denote by Pµ,w the probability measure under which the Lévy snake starts
at (µ,w). We also write P∗µ,w for the law of the same process stopped when it hits 0. As
previously, we will use the notation ζs = ζ(Ws) for the lifetime of Ws. By property (ii),
ζs = H(ρs) for every s ≥ 0, Pµ,w a.s.

Again an important role will be played by excursion measures. The excursion measure
Nx of the Lévy snake away from (0, x) is the σ-finite measure such that

(i’) The distribution of (ρs, s ≥ 0) under Nx coincides with its distribution under N .

(ii’) Under Nx, conditionally on (ρs, s ≥ 0), the process (Ws, s ≥ 0) has distribution Θ
H(ρ)
x .

This is consistent with our previous use of the notation Nx in Section 2 above, up to a slight
abuse of notation (to be specific, we were considering in Theorem 5.2.2 the law of the pair
(H(ρs),Ws; s ≥ 0) under Nx).

¿From the Markov property of the exploration process under N and property (ii’) above,
it easily follows that the process (ρs,Ws) is Markovian under Nx with the transition kernels
of the Lévy snake stopped when it hits 0.

The next result is an immediate consequence of Proposition 5.3.2 and property (ii’) above
of the excursion measure. We keep the notation introduced before Proposition 5.3.2.
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Proposition 5.4.1 For every nonnegative measurable function Φ on ∆x,

Nx

(∫ γ

0

dtΦ(ρt,Wt)
)

=

∫ ∞

0

daE ⊗ Πx(Φ(Ja, (ξr, 0 ≤ r ≤ a))).

We need still another result giving information about the law of the Lévy snake started
at (µ,w) ∈ Wx. First observe that Yt = 〈ρt, 1〉 is distributed under P∗µ,w as the underlying
Lévy process started at 〈µ, 1〉 and stopped when it first hits 0. We write It = infr≤t Yr,
and we denote by (αi, βi), i ∈ J the excursion intervals of Y − I away from 0, before time
T0 = inf{t ≥ 0 : Yt = 0}. Consider one such excursion interval (αi, βi). From Proposition
5.3.1 and the remark following this proposition, it is easy to see that for every s ∈ [αi, βi], the
minimum of H(ρ) over [0, s] is equal to hi = H(ραi

) = H(ρβi
). Hence, by the snake property

(property (ii) above), it follows that Ws(t) = w(t) for every t ∈ [0, hi] and s ∈ [αi, βi], P∗µ,w
a.s. We then define the pair (ρi,W i) by the formulas

〈ρis, ϕ〉 =
∫
(hi,∞)

ραi+s(dr)ϕ(r− hi) if 0 ≤ s ≤ βi − αi
ρis = 0 if s > βi − αi,

and

W i
s(t) = Wαi+s(hi + t), ζ is = H(ραi+s)− hi if 0 < s < βi − αi

W i
s = w(hi) if s = 0 or s ≥ βi − αi.

Lemma 5.4.2 Let (µ,w) ∈ Θx. The point measure∑
i∈J

δ(hi,ρi,W i)

is under P∗µ,w a Poisson point measure with intensity

µ(dh) Nw(h)(dρ dW ).

Proof. Consider first the point measure∑
i∈J

δ(hi,ρi).

If Js = Is − 〈µ, 1〉, we have hi = H(ραi
) = H(k−Jαi

µ). Excursion theory for Y − I ensures
that ∑

i∈I
δ(−Jαi

,ρi)

is under P∗µ,w a Poisson point measure with intensity 1[0,<µ,1>](u) duN(dρ). (By abuse of
notation, we write N(dρ) for the distribution of ρ under N .) Since the image measure of
1[0,<µ,1>](u) du under the mapping u −→ H(kuµ) is precisely the measure µ, it follows that∑

i∈J
δ(hi,ρi)
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is a Poisson point measure with intensity µ(dh)N(dρ). To complete the proof, it remains to
obtain the conditional distribution of (W i, i ∈ J) knowing (ρs, s ≥ 0). However, the form

of the conditional law Θ
H(ρ)
w easily implies that under Θ

H(ρ)
w , the processes W i, i ∈ J are

independent, and furthermore the conditional distribution ofW i is ΘHi

w(hi)
, whereH i

s = H(ρis).
It follows that ∑

i∈J
δ(hi,ρi,W i)

is a Poisson measure with intensity

µ(dh)N(dρ) Θ
H(ρ)
w(h)(dW ) = µ(dh) Nw(h)(dρdW ).

This completes the proof. �
We will use the following consequence of the lemma. Let ϕ be a nonnegative measurable

function on R+ × E. We can then compute

Eµ,w

(
exp−

∫ T0

0

ds ϕ(ζs, Ŵs)
)

in the following way. Note that the set {s ≤ T0 : Ys = Is} has Lebesgue measure 0 (because
0 is regular for (−∞, 0) for the underlying Lévy process). Hence, with the notation of the
lemma, we have∫ T0

0

ds ϕ(ζs, Ŵs) =
∑
i∈J

∫ βi

αi

ds ϕ(ζs, Ŵs) =
∑
i∈J

∫ βi−αi

0

ds ϕ(hi + ζ is, Ŵ
i
s).

¿From Lemma 5.4.2, it now follows that

Eµ,w

(
exp−

∫ T0

0

ds ϕ(ζs, Ŵs)
)

= exp−
∫
µ(dh) Nw(h)

(
1− exp−

∫ γ

0

ds ϕ(h+ ζs, Ŵs)
)
.

(5.10)

5.5 Proof of the main theorem

We prove only Theorem 5.2.2, since the “Ray-Knight theorem” (Theorem 5.2.1) then follows
immediately by taking functions ϕ(t, x) that do not depend on x (use excursion theory for
Y − I and recall that the total mass process of the (ξ, ψ)-superprocess is a ψ-CSBP). Let
ϕ ∈ Cb+(R+×E) be such that ϕ(t, x) = 0 for every t ≥ T and x ∈ E. In view of Proposition
3.3.2, it is enough to verify that

Eθ

(
exp−

∑
i∈I

∫ γi

0

ϕ(ζ is, Ŵ
i
s) ds

)
= exp(−〈µ, u0〉) (5.11)

where the function (ut(x), t ≥ 0, x ∈ E) is the unique nonnegative solution of the integral
equation

ut(x) + Πx

(∫ ∞

0

ψ(ut+s(ξs)) ds
)

= Πx

(∫ ∞

0

ϕ(t+ s, ξs) ds
)
. (5.12)
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Indeed, by comparing with Proposition 3.3.2, this will imply that the measure

ϕ −→
∑
i∈I

∫ γi

0

ϕ(ζ is, Ŵ
i
s) ds

has the same Laplace functional as the measure

ϕ −→
∫ ∞

0

dt

∫
Zt(dx)ϕ(t, x)

when Z is a (ξ, ψ)-superprocess started at µ, and the desired result follows.
By the exponential formula for Poisson measures, the left-hand side of (5.11) is equal to

exp
(
−
∫
µ(dx) Nx

(
1− exp−

∫ γ

0

ds ϕ(ζs, Ŵs)
))
.

So, if we set

ut(x) = Nx

(
1− exp−

∫ γ

0

ds ϕ(t+ ζs, Ŵs)
)

it only remains to show that ut(x) solves the integral equation (5.12).
Now note that

1− exp−
∫ γ

0

ds ϕ(t+ ζs, Ŵs) =

∫ γ

0

ds ϕ(t+ ζs, Ŵs) exp
(
−
∫ γ

s

dr ϕ(t+ ζr, Ŵr)
)
.

By using the Markov property of the Lévy snake under Nx, it follows that

ut(x) = Nx

(∫ γ

0

ds ϕ(t+ ζs, Ŵs) E∗
ρs,Ws

(
exp−

∫ T0

0

dr ϕ(t+ ζr, Ŵr)
))
.

However, by (5.10), we have

E∗
ρs,Ws

(
exp−

∫ T0

0

dr ϕ(t+ ζr, Ŵr)
)

= exp
(
−
∫
ρs(dh)NWs(h)

(
1− exp−

∫ γ

0

dr ϕ(t+ h+ ζr, Ŵr)
))

= exp
(
−
∫
ρs(dh) ut+h(Ws(h))

)
.

Hence,

ut(x) = Nx

(∫ γ

0

ds ϕ(t+ ζs, Ŵs) exp
(
−
∫
ρs(dh) ut+h(Ws(h))

))
.

We can use Proposition 5.4.1 to evaluate the latter quantity. From the definition of Ja (and
with the same convention as in Proposition 5.3.2), we have for any nonnegative function f ,

E
(

exp−
∫
Ja(dh) f(h)

)
= exp

(
−
∫ a

0

dh ψ̃(f(h))
)
.
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By using this together with Proposition 5.4.1, we arrive at

ut(x) =

∫ ∞

0

daΠx

(
g(t+ a, ξa)E

(
exp

(
−
∫
Ja(dh) ut+h(ξh)

))
=

∫ ∞

0

daΠx

(
g(t+ a, ξa) exp

(
−
∫ a

0

dh ψ̃(ut+h(ξh))
))
.

¿From the last formula the proof is now easily completed by means of the standard
Feynman-Kac argument:

Πx

( ∫ ∞

0

da g(t+ a, ξa)
)
− ut(x)

= Πx

(∫ ∞

0

da g(t+ a, ξa)
(
1− exp

(
−
∫ a

0

dh ψ̃(ut+h(ξh))
))

= Πx

(∫ ∞

0

da g(t+ a, ξa)

∫ a

0

db ψ̃(ut+b(ξb)) exp
(
−
∫ a

b

dh ψ̃(ut+h(ξh))
))

= Πx

(∫ ∞

0

db ψ̃(ut+b(ξb))

∫ ∞

b

da g(t+ a, ξa) exp
(
−
∫ a

b

dh ψ̃(ut+h(ξh))
))

= Πx

(∫ ∞

0

db ψ̃(ut+b(ξb)) Πξb

(∫ ∞

0

da g(t+ b+ a, ξa) exp
(
−
∫ a

0

dh ψ̃(ut+b+h(ξh))
)))

= Πx

(∫ ∞

0

db ψ̃(ut+b(ξb)) ut+b(ξb)
)

= Πx

(∫ ∞

0

db ψ(ut+b(ξb))
)
.

We have thus obtained the desired integral equation (5.12), and this completes the proof.

Remark. In the case ψ(u) = βu2, the underlying Lévy process is Brownian motion, the law
of H under N is the Itô excursion measure and Theorem 5.2.2 yields the Brownian snake
representation of Chapter 4. The approach presented here (taken from [19]) is different and
in a sense more probabilistic than the proof of Theorem 4.4.2 in Chapter 4. An approach of
Theorem 5.2.2 in the spirit of Chapter 4 can be found in [28].
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Chapter 6

Some connections

In this chapter, we briefly discuss without proofs some connections of the preceding results
with other topics. We restrict our attention to the quadratic branching case, and so we do
not use the results of Chapter 5. Sections 1,2,3 below can be read independently.

Throughout this chapter, we use the notation of Chapter 4. The spatial motion ξ is
always Brownian motion in Rd.

6.1 Partial differential equations

When ψ(u) = βu2 and ξ is Brownian motion in Rd, the integral equation (3.7) is the integral
form of the parabolic partial differential equation:

∂u

∂t
=

1

2
∆u− βu2

u0 = ϕ

This suggests that super-Brownian motion could be used to give a probabilistic approach to
elliptic problems involving the nonlinear operator 1

2
∆u−βu2. This program was carried over

by Dynkin in a series of important papers [13],[14],[15]. We give here a brief presentation in
terms of the Brownian snake (see e.g. [26] for more details).

In the classical relations between Brownian motion and the Laplace equation, a key role
is played by the exit point of Brownian motion from a domain. Similarly, the probabilistic
approach to the Dirichlet problem for the operator 1

2
∆u− βu2 will involve the exit points of

the Brownian snake paths Ws, s ≥ 0 under the excursion measures Nx. Precisely, let D be a
domain in Rd, and for any path w ∈ W, let

τ(w) = inf{t ≥ 0 : w(t) /∈ D} (inf ∅ = ∞).

We set
ED := {Ws(τ(Ws)) : s ≥ 0, τ(Ws) <∞},

which represents the set of exit points of the paths Ws, for those paths that do exit the
domain D.
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Our first task is to construct a random measure that is in some sense uniformly distributed
over ED.

Proposition 6.1.1 Let x ∈ D. The limit

〈ZD, f〉 = lim
ε↓0

1

ε

∫ γ

0

f(Ws(τ(Ws)))1{τ(Ws)<ζs<τ(Ws)+ε} ds

exists for every f ∈ C(Rd,R+), Nx a.e. and defines a random measure supported on ED
called the exit measure from D.

The approximation used to define the exit measure is reminiscent of the classical approx-
imation for Brownian local time, and in fact the existence of the limit is easily obtained by
considering the local time at 0 of the process (ζs− τ(Ws))

+ (see [26], Chapter V for details).

The exit measure leads to the probabilistic solution of the Dirichlet problem for the
operator ∆u − u2 due to Dynkin. For simplicity, we assume that D is bounded and has a
smooth boundary.

Theorem 6.1.2 [13] Let g be continuous and nonnegative over ∂D. Then the function

u(x) = Nx(1− exp(−〈ZD, g〉), x ∈ D

is the unique nonnegative solution of the problem{
∆u = 4u2 in D

u|∂D = g .

A very interesting feature of the probabilistic representation of the previous theorem is
that it is robust in the sense that various limiting procedures will lead from this representation
to analogous formulas for several classes of singular solutions. In particular, one gets a
representation for the maximal nonnegative solution in a domain. We denote by R the
range of the Brownian snake, defined by

R = {Ŵs : s ≥ 0}.

Corollary 6.1.3 [13] Let D be any open set in Rd. The function

u(x) = Nx(R∩Dc 6= ∅), x ∈ D

is the maximal nonnegative solution of ∆u = 4u2 in D. In particular, if K is a compact
subset of Rd, K is polar (in the sense that Nx(R∩K 6= ∅) = 0 for every x ∈ Rd\K) if and
only if there is no nontrivial nonnegative solution of ∆u = 4u2 in Rd\K.

This corollary has allowed Dynkin to give an analytic characterization of polar sets for
super-Brownian motion [13]. Until now there exists no probabilistic proof of this character-
ization.

It is natural to ask whether a probabilistic representation of the type of Theorem 6.1.2
holds for any nonnegative solution of ∆u = u2. It turns out that the answer is yes in two
dimensions.
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Theorem 6.1.4 [25] Assume that d = 2 and ∂D is of class C2. There is a 1− 1 correspon-
dence between

• nonnegative solutions u of ∆u = 4u2 in D

• pairs (K, ν), where K is a compact subset of ∂D and ν is a Radon measure on ∂D\K.

This correspondence is given by

u(x) = Nx

(
1− 1{ED∩K=∅} exp−〈ν, zD〉

)
, x ∈ D

where (zD(y), y ∈ ∂D) is the continuous density of the exit measure ZD with respect to
Lebesgue measure on the boundary.

In the correspondence of Theorem 6.1.4, both the compact set K and the measure ν can
be recovered from the boundary behavior of the solution u. The pair (K, ν) is called the
trace of ν.

Marcus and Véron [31] have used analytic methods to rederive the previous theorem
(except for the probabilistic representation) and to extend it to the equation ∆u = up, when
p > 1 and d < p+1

p−1
. In the supercritical case (i.e. d ≥ p+1

p−1
, in particular when d ≥ 3

for equation ∆u = u2), things become more complicated. One can still define the trace
(K, ν) of a solution but there is no longer a one-to-one correspondence between a solution
and its trace. Interesting results in this connection have been obtained by Dynkin and
Kuznetsov [17]. Dynkin and Kuznetsov obtain a satisfactory probabilistic representation
and classification for all σ-moderate solutions (a nonnegative solution is moderate if it is
bounded above by a harmonic function, and a solution is σ-moderate if it is the increasing
limit of a sequence of moderate solutions). The key remaining question [18] is:

Is every positive solution σ-moderate ?

6.2 Interacting particle systems

Several recent papers [12],[8],[6] show that the asymptotic behavior of certain interacting
particle systems (contact process, voter model) can be analysed in terms of super-Brownian
motion. The rough idea is that in the scaling limit the interaction reduces to a branching
phenomenon. Here we will concentrate on the voter model and present some results of [6].

The voter model is one of the most classical interacting particle systems. At each site
x ∈ Zd sits an individual who can have two possible opinions, say 0 or 1. At rate 1, each
individual forgets his opinion and gets a new one by choosing one of his nearest neighbors
uniformly at random, and taking his opinion. Our goal is to understand the way opinions
propagate in space. We restrict our attention to dimensions d ≥ 2 and we denote by ξt(x)
the opinion of x at time t.

We consider the simple situation where all individuals have type (opinion) 0 at the initial
time, except for the individual at the origin who has type 1 (in other words ξ0(x) = 1{x=0}).
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Then with a high probability, type 1 will disappear. More precisely, if Ut = {x ∈ Zd : ξt(x) =
1} denotes the set of individuals who have type 1 at time t, Bramson and Griffeath [7] proved
that for t large,

pt := P [Ut 6= ∅] ∼


γ2 log t

t
if d = 2

γd
t

if d ≥ 3

where γd is a positive constant. One may then ask about the shape of the set Ut conditional
on the event {Ut 6= ∅}.

Theorem 6.2.1 [6] The law of the random set 1√
t
Ut conditional on {Ut 6= ∅} converges as

t→∞ to the law under N0(· | sup ζs ≥ 1) of the set

{ 1√
d
Ws(1) : s ≥ 0, ζs ≥ 1}.

Here the convergence of sets is in the sense of the Hausdorff metric on compact subsets of
Rd. One can prove functional versions of the previous theorem, which show that conditionally
on non-extinction on a large time interval, the set of 1’s evolves like super-Brownian motion
under its excursion measure (more precisely, like the process Zt of (4.9) under N0(· | sup ζs ≥
1)).

Theorem 6.2.1 yields interesting complements to the Bramson-Griffeath result recalled
above. Let A be an open subset of Rd and assume for simplicity that A has a smooth bound-
ary. As a simple consequence of Theorem 6.2.1 and connections between super-Brownian
motion and partial differential equations, we get the limiting behavior of the probability that
Ut intersects

√
tA.

Corollary 6.2.2 [6] We have

lim
t→∞

P (Ut ∩
√
tA 6= ∅ | Ut 6= ∅) = N0(∃s ≥ 0 : ζs ≥ 1 and Ŵs ∈ A | sup ζs ≥ 1) = u1(0)

where (ut(x), t > 0, x ∈ Rd) is the unique nonnegative solution of the problem

∂u

∂t
=

1

2d
∆u− u2 on (0,∞)× Rd ,

u0(x) = +∞, x ∈ A ,
u0(x) = 0, x ∈ Rd\Ā .

6.3 Lattice trees

A d-dimensional lattice tree with n bonds is a connected subgraph of Zd with n bonds and
n+ 1 vertices in which there are no loops. One is interested in describing the typical shape
of a lattice tree when n is large. To this end, let Qn(dω) be the uniform probability measure
on the set of all lattice trees with n bonds that contain the origin. For every tree ω, let
Xn(ω) be the probability measure on Rd obtained by putting mass 1

n+1
to each vertex of the
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rescaled tree cn−1/4ω. Here c = c(d) is a positive constant that must be fixed properly for
the following to hold.

The following theorem was conjectured by Aldous [3] and then proved by Derbez and
Slade [11]. Recall from Section 4.6 the definition of ISE.

Theorem 6.3.1 [11] If d is large enough, the law of Xn under Qn converges weakly as
n→∞ to the law of ISE.

It is believed that d > 8 should be the right condition for the previous theorem to hold
(under this condition, the topological support of ISE is indeed a tree). Derbez and Slade
have proved a version of the previous result in dimension d > 8, but only for sufficiently
spread-out trees.

The proof of Theorem 6.3.1 uses the lace expansion method developed by Brydges and
Spencer. Another recent work of Hara and Slade [23] shows that ISE also arises as a scaling
limit of the incipient infinite percolation cluster at the critical probability, again in high
dimensions. Furthermore, a work in preparation of van der Hofstad, Hara and Slade indi-
cates that super-Brownian motion under its excursion measure appears in scaling limits for
oriented percolation.
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