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Preface

These are lecture notes for a course in Aarhus, August 1999. For a second printing of
the notes, a few errors have been corrected. Chapter 1 is on the classical empirical process
de�ned in terms of empirical distribution functions. A proof, expanding on one in a 1989
paper by Bretagnolle and Massart, is given for the Koml�os-Major-Tusn�ady result on the speed
of convergence of the empirical process to a Brownian bridge in the supremum norm. In this
second printing Chapter 1 has been improved to prove the constants stated by Bretagnolle and
Massart.

The rest of the notes are about the theory of empirical processes on general spaces, and
are an abridgment of my book, Uniform Central Limit Theorems, or \UCLT," published by
Cambridge University Press in 1999. In this abridgment, proofs are not given except for
some very short ones and some not given in UCLT. Also omitted are several sections that
summarize recent results without proofs, the Notes, and the problems except for those on
Chapter 4. Because the Notes are left out, attributions of statements are not as thorough as
they are in UCLT. Although some results of mine are included, the absence of an attribution to
anyone else should not be interepreted as a claim of credit for myself. Due to various changes,
numberings of statements di�er between these notes and UCLT.

Some of the material appeared in an earlier form in my lecture notes for the Ecole d'�et�e
de probabilit�es de St.-Flour, 1982, published in Lecture Notes in Math. (Springer) vol. 1097
(1984), pp. 1-142.

I thank Uwe Einmahl, Evarist Gin�e, Stanis law Kwapien, David Mason, and Agata Smok-
tunowicz for information about some material in these notes which is not in UCLT.

For useful conversations on topics in UCLT I'm glad to thank Kenneth Alexander, Niels
Trolle Andersen, Miguel Arcones, Patrice Assouad, Erich Berger, Lucien Birg�e, Igor S. Borisov,
Donald Cohn, Yves Derrienic, Uwe Einmahl, Joseph Fu, Evarist Gin�e, Sam Gutmann, David
Haussler, J�rgen Ho�mann-J�rgensen, Yen-Chin Huang, Vladimir Koltchinskii, Lucien Le
Cam, Pascal Massart, James Munkres, Rimas Norvai�sa, Walter Philipp, Tom Salisbury, Rae
Shortt, Michel Talagrand, He Sheng Wu, Joe Yukich, and Joel Zinn. I especially thank Peter
Gaenssler and Franz Strobl, Evarist Gin�e, and Jinghua Qian, for providing lists of corrections
and suggestions. I also thank Xavier Fernique and Evarist Gin�e very much for sending me
copies of recent expositions, and J�rgen Ho�mann-J�rgensen for the invitation to give the
lectures.

Throughout these notes, all references to \RAP" are to the author's book Real Analysis
and Probability, Wadsworth and Brooks/Cole, Paci�c Grove, Calif. 1989, reprinted by CRC,
1999, and with corrections by Chapman and Hall, New York, 1993; the latter is out of print
at this writing.

Also, \A := B" means A is de�ned by B, whereas \A =: B" means B is de�ned by A.

Richard Dudley
Cambridge, Mass., January 24, 2000
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Chapter 1

Empirical distribution functions:

the KMT theorem

1.1 Introduction

Let U [0; 1] be the uniform distribution on [0; 1] and U its distribution function. Let X1;X2; : : :
be independent and identically distributed random variables with law U . Let Fn(t) be the
empirical distribution function based on X1;X2; : : : ; Xn,

Fn(t) :=
1

n

nX
j=1

1fXj�tg;

and �n(t) the corresponding empirical process, i.e., �n(t) =
p
n(Fn(t) � t); t 2 [0; 1]: Here

�n may be called the classical empirical process. Recall that a Brownian bridge is a Gaussian
stochastic process B(t); 0 � t � 1, with EB(t) = 0 and EB(t)B(u) = t(1�u) for 0 � t � u �
1. Donsker (1952) proved (neglecting measurability problems) that �n(t) converges in law to
a Brownian bridge B(t) with respect to the sup norm. Koml�os, Major, and Tusn�ady (1975)
stated a sharp rate of convergence, namely that on some probability space there exist Xi i.i.d.
U [0; 1] and Brownian bridges Bn such that

P

 
sup
0�t�1

jpn(�n(t)�Bn(t))j > x+ c log n

!
< Ke��x (1.1)

for all n and x, where c;K; and � are positive absolute constants. Koml�os, Major and Tusn�ady
(KMT) formulated a construction giving a joint distribution of �n and Bn, and this construc-
tion has been accepted by later workers. But Koml�os, Major and Tusn�ady gave hardly any
proof for (1.1). Cs�org}o and R�ev�esz (1981) sketched a method of proof of (1.1) based on lemmas
of G. Tusn�ady, Lemmas 1.2 and 1.4 below. The implication from Lemma 1.4 to 1.2 is not dif-
�cult, but Cs�org}o and R�ev�esz did not include a proof of Lemma 1.4. Bretagnolle and Massart
(1989) gave a proof of the lemmas and of the inequality (1.1) with speci�c constants, Theorem
1.1 below. Bretagnolle and Massart's proof was rather compressed and some readers have
had di�culty following it. Cs�org}o and Horv�ath (1993), pp. 116-139, expanded the proof while
making it more elementary and gave a proof of Lemma 1.4 for n � n0 where n0 is at least 100.
The purpose of the present chapter is to give a detailed and in some minor details corrected
version of the original Bretagnolle and Massart proof of the lemmas for all n, overlapping in
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part with the Cs�org}o and Horv�ath proof, then to prove (1.1) for some constants, as given by
Bretagnolle and Massart and largely following their proof.

Mason and van Zwet (1987) gave another proof of the inequality (1.1) and an extended
form of it for subintervals 0 � t � d=n with 1 � d � n and log n replaced by log d, without
Tusn�ady's inequalities and without specifying the constants c;K; �. Some parts of the proof
sketched by Mason and van Zwet are given in more detail by Mason (1998).

Acknowledgments. I am very grateful to Evarist Gin�e, David Mason, Jon Wellner, and Uwe
Einmahl for conversations and correspondence on the topic.

1.2 Statements: the theorem and Tusn�ady's lemmas

The main result of the present chapter is:

Theorem 1.1. (Bretagnolle and Massart) The approximation (1.1) of the empirical process
by the Brownian bridge holds with c = 12, K = 2 and � = 1=6 for n � 2.

The rest of this chapter will give a proof of the theorem. In a preprint, Rio (1991, Theorem
5.1) states in place of (1.1)

P

 
sup
0�t�1

jpn(�n(t)�Bn(t))j > ax + b log n+  log 2

!
< Ke�x (1.2)

for n � 8 where a = 3:26; b = 4:86,  = 2:70, and K = 1. This implies that for n � 8, (1.1)
holds with c = 5:76; K = 1, and � = 1=3:26, where all three constants are better than in
Theorem 1.1.

Tusn�ady's lemmas are concerned with approximating symmetric binomial distributions by
normal distributions. Let B(n; 1=2) denote the symmetric binomial distribution for n trials.
Thus if Bn has this distribution, Bn is the number of successes in n independent trials with
probability 1=2 of success on each trial. For any distribution function F and 0 < t < 1 let
F�1(t) := inffx : F (x) � tg. Here is one of Tusn�ady's lemmas (Lemma 4 of Bretagnolle and
Massart (1989)).

Lemma 1.2. Let � be the standard normal distribution function and Y a standard normal
random variable. Let �n be the distribution function of B(n; 1=2) and set Cn := ��1n (�(Y ))�
n=2. Then

jCnj � 1 + (
p
n=2)jY j; (1.3)

jCn � (
p
n=2)Y j � 1 + Y 2=8: (1.4)

Recall the following well known and easily checked facts:

Theorem 1.3. Let X be a real random variable with distribution function F .
(a) If F is continuous then F (X) has a U [0; 1] distribution.
(b) For any F , if V has a U [0; 1] distribution then F�1(V ) has distribution function F .

Thus �(Y ) has a U [0; 1] distribution and ��1n (�(Y )) has distribution B(n; 1=2). Lemma 1.2
will be shown (by a relatively short proof) to follow from:

2



Lemma 1.4. Let Y be a standard normal variable and let �n be a binomial random variable
with distribution B(n; 1=2). Then for any integer j such that 0 � j � n and n+ j is even, we
have

P (�n � (n+ j)=2) � P (
p
nY=2 � n(1�

q
1� j=n)); (1.5)

P (�n � (n+ j)=2) � P (
p
nY=2 � (j � 2)=2): (1.6)

Remarks. The restriction that n + j be even is not stated in the formulation of the lemma
by Bretagnolle and Massart (1989), but n+ j is always even in their proof. If (1.5) holds for
n+ j even it also holds directly for n+ j odd, but the same is not clear for (1.6). It turns out
that only the case n + j even is needed in the proof of Lemma 1.2, so I chose to restrict the
statement to that case.

The following form of Stirling's formula with remainder is used in the proof of Lemma 1.4.

Lemma 1.5. Let n! = (n=e)n
p

2�nAn where An = 1 + �n=(12n), which de�nes An and �n
for n = 1; 2; � � �. Then �n#1 as n!1.

1.3 Stirling's formula: Proof of Lemma 1.5

It can be checked directly that �1 > �2 > � � � > �8 > 1. So it su�ces to prove the lemma
for n � 8. We have An = exp((12n)�1 � �n=(360n3)) where 0 < �n < 1, see Whittaker and
Watson (1927), p. 252 or Nanjundiah (1959). Then by Taylor's theorem with remainder,

An =

�
1 +

1

12n
+

1

288n2
+

1

6(12n)3
�ne

1=12n
�

exp(��n=(360n3))

where 0 < �n < 1. Next,

�n+1 � 12(n+ 1)

�
exp

�
1

12(n+ 1)

�
� 1

�

� 1 +
1

24(n+ 1)
+

1

6(12(n + 1))2
e1=(12(n+1));

from which lim supn!1 �n � 1, and

�n = 12n[An � 1] � 12n

��
1 +

1

12n
+

1

288n2

�
exp(�1=(360n3))� 1

�
:

Using e�x � 1� x gives

�n � 12n

�
1

12n
+

1

288n2
� 1

360n3

�
1 +

1

12n
+

1

288n2

��

= 1 +
1

24n
� 1

30n2

�
1 +

1

12n
+

1

288n2

�
:

Thus lim infn!1 �n � 1 and �n ! 1 as n!1. To prove �n � �n+1 for n � 8 it will su�ce
to show that

1 +
1

24(n+ 1)
+

e1=108

6 � 144n2
� 1 +

1

24n
� 1

30n2

�
1 +

1

96
+

1

288 � 82
�

3



or
e1=108

6 � 144n2
+

1

30n2

�
1 +

1

96
+

1

288 � 64

�
� 1

24n(n+ 1)

or that 0:035=n2 � 1=[24n(n+ 1)] or 0:84 � 1� 1=(n+ 1), which holds for n � 8, proving that
�n decreases with n. Since its limit is 1, Lemma 1.5 is proved. �

1.4 Proof of Lemma 1.4

First, (1.5) will be proved. For any i = 0; 1; � � � ; n such that n+ i is even, let k := (n + i)=2
so that k is an integer, n=2 � k � n, and i = 2k�n. Let pni := P (�n = (n+ i)=2) = P (�n =
k) = (nk)=2n and xi := i=n. De�ne pni := 0 for n + i odd. The factorials in (nk) will be
approximated via Stirling's formula with correction terms as in Lemma 1.5. To that end, let

CS(u; v; w; x; n) :=
1 + u=(12n)

(1 + v=[6n(1 � x)])(1 + w=[6n(1 + x)])
:

By Lemma 1.5, we can write for 0 � i < n and n+ i even

pni = CS(xi; n)
q

2=�n exp(�ng(xi)=2 � (1=2) log(1� x2i )) (1.7)

where g(x) := (1+x) log(1+x)+(1�x) log(1�x) and CS(xi; n) := CS(�n; �n�k; �k; xi; n):
By Lemma 1.5 and since k � n=2,

1+ := 1:013251 � 12(e(2�)�1=2 � 1) = �1 � �n�k � �k � �n > 1:

Thus, for x := xi, by clear or easily checked monotonicity properties,

CS(x; n) � CS(�n; �k; �k; x; n) =

�
1 +

�n
12n

�"
1 +

�k
3n(1� x2)

+
�2k

36n2(1� x2)

#�1

� CS(�n; �k; �k; 0; n) � CS(�n; �n; �n; 0; n)

� CS(1; 1; 1; 0; n) =

�
1 +

1

12n

��
1 +

1

3n
+

1

36n2

��1
:

It will be shown next that log(1 + y) � 2 log(1 + 2y) � �3y + 7y2=2 for y � 0. Both sides
vanish for y = 0. Di�erentiating and clearing fractions, we get a clearly true inequality. Setting
y := 1=(12n) then gives

logCS(xi; n) � �1=(4n) + 7=(288n2): (1.8)

To get a lower bound for CS(x; n) we have by an analogous string of inequalities

CS(x; n) �
�

1 +
1

12n

�(
1 +

1+

3n(1� x2)
+

(1+)2

36n2(1� x2)

)�1
: (1.9)
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The inequality (1.5) to be proved can be written as

nX
i=j

pni � 1� �(2
p
n(1�

q
1� j=n)): (1.10)

When j = 0 the result is clear. When n � 4 and j = n or n� 2 the result can be checked from
tables of the normal distribution. Thus we can assume from here on

n � 5: (1.11)

CASE I. Let j2 � 2n, in other words xj �
p

2=n. Recall that for t > 0 we have P (Y > t) �
(t
p

2�)�1 exp(�t2=2), e.g. Dudley (1993), Lemma 12.1.6(a). Then (1.10) follows easily when
j = n and n � 5. To prove it for j = n� 2 it is enough to show

n(2� log 2)� 4
p

2n+ log(n+ 1) + 4 + log[2
p

2�(
p
n�p

2)] � 0; n � 5:

The left side is increasing in n for n � 5 and is � 0 at n = 5.
For 5 � n � 7 we have (n� 4)2 < 2n, so we can assume in the present case that 2n � j2 �

(n� 4)2 and n � 8. Let yi := 2
p
n(1�p1� i=n). Then it will su�ce to show

pni �
Z yi+2

yi

�(u)du; i = j; j + 2; � � � ; n� 4; (1.12)

where � is the standard normal density function. Let

fn(x) :=
q
n=2�(1 � x) exp(�2n(1�p

1� x)2): (1.13)

By the change of variables u = 2
p
n(1�p

1� x), (1.12) becomes

pni �
Z xi+2

xi
fn(x)dx: (1.14)

Clearly fn > 0. To see that fn(x) is decreasing in x for
p

2=n � x � 1� 4=n, note that

2(1 � x)f 0n=fn = 1� 4n[
p

1� x� 1 + x];

so fn is decreasing where
p

1� x � (1 � x) > 1=(4n): We have
p
y � y � y for y � 1=4, sop

y � y > 1=(4n) for 1=(4n) < y � 1=4. Let y := 1 � x. Also
p

1� x � (1 � x) > x=4 for
x < 8=9, so

p
1� x � (1 � x) > 1=(4n) for 1=n < x < 8=9. Thus

p
1� x � (1 � x) > 1=(4n)

for 1=n < x < 1 � 1=(4n), which includes the desired range. Thus to prove (1.14) it will be
enough to show that

pni � (2=n)fn(xi); i = j; j + 2; � � � ; n� 4: (1.15)

So by (1.7) it will be enough to show that for
p

2=n � x � 1 � 4=n and n � 8,

CS(x; n)(1 + x)�1=2 exp[nf4(1 �p
1� x)2 � g(x)g=2] � 1: (1.16)

Let
J(x) := 4(1 �p

1� x)2 � g(x): (1.17)
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Then J is increasing for 0 < x < 1, since its �rst and second derivatives are both 0 at 0, while
its third derivative is easily checked to be positive on (0; 1). In light of (1.9), to prove (1.16) it
su�ces to show that�

1 +
1

12n

�
enJ(x)=2 � p

1 + x

 
1 +

1+

3n(1� x2)
+

(1+)2

36n2(1� x2)

!
: (1.18)

When x � 1 � 4=n and n � 8 the right side is less than 1.5, using �rst
p

1 + x � p
2, next

x � 1 � 4=n, and lastly n � 8. For x � 0:55 and n � 8 the left side is larger than 1.57, so
(1.18) is proved for x � 0:55. We will next need the inequality

J(x) � x3=2 + 7x4=48; 0 � x � 0:55: (1.19)

To check this one can calculate J(0) = J 0(0) = J 00(0) = 0, J (3)(0) = 3; J (4)(0) = 7=2, so that
the right side of (1.19) is the Taylor series of J around 0 through fourth order. One then shows
straightforwardly that J (5)(x) > 0 for 0 � x < 1.

It follows since nx2 � 2 and n � 8 that nJ(x)=2 � x=2 + 7=24n. Let K(x) :=
exp(x=2)=

p
1 + x and �(x) := (K(x) � 1)=x2. We will next see that �(�) is decreasing

on [0; 1]. To show �0 � 0 is equivalent to ex=2[4 + 4x � x2] � 4(1 + x)3=2, which is true at
x = 0. Di�erentiating, we would like to show ex=2[6 � x2=2] � 6

p
1 + x, or squaring that and

multiplying by 4, ex(144� 24x2 + x4) � 144(1 + x). This is true at x = 0. Di�erentiating, we
would like to prove ex(144� 48x� 24x2 + 4x3 +x4) � 144. Using ex � 1 +x and algebra gives
this result for 0 � x � 1.

It follows that K(x) � 1 + 0:3799=n when
p

2=n � x � 0:55. It remains to show that for
x � 0:55,

�
1 +

1

12n

��
1 +

0:3799

n

�
e7=(24n) � 1 +

1+

3n(1� x2)
+

(1+)2

36n2(1� x2)
:

At x = 0:55 the right side is less than 1 + 0:543=n, so Case I is completed since 0:543 �
1=12 + 0:3799 + 7=24:

CASE II. The remaining case is j <
p

2n. For any integer k, P (�n � k) = 1�P (�n � k�1). For
k = (n+ j)=2 we have k�1 = (n+ j�2)=2. If n is odd, then P (�n � n=2) = 1=2 = P (Y � 0).
If n is even, then P (�n � n=2) � pn0=2 = 1=2 = P (Y � 0). So, since pn0 = 0 for n odd, (1.5)
is equivalent to

1

2
pn0 +

X
0<i�j�2

pni � P (0 � Y � 2
p
n(1�

q
1� j=n)): (1.20)

Given j <
p

2n, a family I0; I1; � � � ; IK of adjacent intervals will be de�ned such that for n odd,

pni � P (
p
nY=2 2 Ik) with i = 2k + 1; 0 � k � K := (j � 3)=2; (1.21)

while for n even,

pni � P (
p
nY=2 2 Ik) with i = 2k; 1 � k � K := (j � 2)=2; (1.22)

and
pn0=2 � P (

p
nY=2 2 I0): (1.23)
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In either case,

I0 [ I1 [ � � � [ IK � [0; n(1 �
q

1� j=n)]: (1.24)

The intervals will be de�ned by

�k+1 := (k + 1)=n+ k(k + 1=2)(k + 1)=n3=2; k � 0; (1.25)

�k+1 := �k+1 + k + 1=2 = �k+1 + (i + 1)=2; i = 2k; n even; (1.26)

�k+1 := �k+1 + k + 1 = �k+1 + (i+ 1)=2; i = 2k + 1; n odd; (1.27)

Ik := [�k;�k+1] with �0 = 0: (1.28)

It will be shown that I0; I1; � � � ; IK de�ned by (1.25) through (1.28) satisfy (1.21) through
(1.24). Recall that n � 5 (1.11) and xi := i=n.

Proof of (1.24). It needs to be shown that �K+1 � n(1 �p1� xj). Since j <
p

2n, we have
K � j=2 � 1 <

p
n=2� 1 and

�K+1 � (K + 1)=n + K(K + 1=2)=(n
p

2) � xj=2 + nx2j=(4
p

2):

We have �K+1 = nxj=2� 1=2 + �K+1. It will be shown next that

1�p
1� x � x=2 + x2=8; 0 � x � 1: (1.29)

The functions and their �rst derivatives agree at 0 while the second derivative of the left side
is clearly larger.

It then remains to prove that

1=2 + nx2j(1=8 � 1=4
p

2)� xj=2 � 0:

This is true since nx2j � 2 and xj � (2=8)1=2 = 1=2, so (1.24) is proved.

Proof of (1.21)-(1.23). First it will be proved that

pni �
p

2p
�n

exp

"
� 1

4n
+

7

288n2
� (n� 1)i2

2n2
+

(i=n)2n

2n(1� i2=n2)

#
: (1.30)

In light of (1.7) and (1.8), it is enough to prove, for x := i=n, that

�[ng(x) + log(1� x2)� (n� 1)x2]=2 � x2n=2n(1 � x2): (1.31)

It is easy to verify that for 0 � t < 1,

g(t) = (1 + t) log(1 + t) + (1� t) log(1� t) =
1X
r=1

t2r=r(2r � 1):

Thus the left side of (1.31) can be expanded as
P

r�2 x
2r(1 � n=(2r � 1))=2r = A + B where

A =
Pn�1

r=2 and B =
P

r�n. We have

d2A=dx2 =
X

2�r�(n+1)=2

(2r � n� 1)(x2r�2 � x2n�2r)
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which is � 0 for 0 � x � 1. Since A = dA=dx = 0 for x = 0 we have A � 0 for 0 � x � 1.
Then, 2nB � x2n=(1� x2), so (1.30) is proved.

We have for n � 5 and x � (
p

2n� 2)=n that x2n=(1� x2) < 10�3, since n 7! (
p

2n� 2)=n
is decreasing in n for n � 8 and the statement can be checked for n = 5; 6; 7; 8. So (1.30) yields

pni �
q

2=�n exp[�0:249=n + 7=288n2 � (n� 1)i2=2n2]: (1.32)

Next we will need:

Lemma 1.6. For any 0 � a < b and a standard normal variable Y ,

P (Y 2 [a; b]) �
q

1=2�(b� a) exp[�a2=4� b2=4]�(a; b) (1.33)

where �(a; b) := [4=(b2 � a2)] sinh[(b2 � a2)=4] � 1.

Proof. Since the Taylor series of sinh around 0 has all coe�cients positive, and (sinhu)=u is an
even function, clearly sinhu=u � 1 for any real u. The conclusion of the lemma is equivalent
to

a+ b

2

Z b

a
exp(�u2=2)du � exp(�a2=2)� exp(�b2=2): (1.34)

Letting x := b� a and v := u� a we need to prove�
a+

x

2

�Z x

0
exp(�av � v2=2)dv � 1� exp(�ax� x2=2):

This holds for x = 0. Taking derivatives of both sides and simplifying, we would like to showZ x

0
exp(�av � v2=2)dv � x exp(�ax� x2=2):

This also holds for x = 0, and di�erentiating both sides leads to a clearly true inequality, so
Lemma 1.6 is proved. �

For the intervals Ik, Lemma 1.6 yields

P (
p
nY=2 2 Ik) �

q
2=�n�k exp[�(�2

k+1 + �2
k)=n+ log(�k+1 ��k)] (1.35)

where �k := �(2�k=
p
n; 2�k+1=

p
n). The aim is to show that the ratio of the bounds (1.35)

over (1.32) is at least 1.

First consider the case k = 0. If n is even, this means we want to prove (1.23). Using
(1.32) and (1.35) and �0 � 1, it su�ces to show that

0:249=n � 7=288n2 � 1=4n� 1=n2 � 1=n3 + log(1 + 2=n) � 0:

Since log(1 + u) � u� u2=2 for u � 0 by taking a derivative, it will be enough to show that

(E)n := 1:999=n � 3=n2 � 7=288n2 � 1=n3 � 0;

and it is easily checked that n(E)n > 0 since n � 5.
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If n is odd, then (1.32) applies for i = 2k+1 = 1 and we have �0 = 0, �1 = �1+1 = 1 + 1=n
so (1.35) yields

P (
p
nY=2 2 I0) �

q
2=�n exp[�(1 + 1=n)2=n+ log(1 + 1=n)]:

Using log(1 + u) � u � u2=2 again, the desired inequality can be checked since n � 5. This
completes the case k = 0.

Now suppose k � 1. In this case, i <
p

2n� 2 implies n � 10 for n even and n � 13 for n
odd. Let sk := �k + �k+1 and dk := �k+1 � �k. Then for i as in the de�nition of �k+1,

�k+1 + �k = i+ sk; (1.36)

�k+1 ��k = 1 + dk; (1.37)

sk =
2k + 1

n
+

2k3 + k

n3=2
; (1.38)

and

dk =
1

n
+

3k2

n3=2
: (1.39)

From the Taylor series of sinh around 0 one easily sees that (sinhu)=u � 1 + u2=6 for all u.
Letting u := (�2

k+1 ��2
k)=n � i=n gives

log�k � log(1 + i2=6n2): (1.40)

We have
dk � 3=(2

p
n) (1.41)

since 2k � p
2n� 2 and n � 10. Next we have another lemma:

Lemma 1.7. log(1 + x) � �x for 0 � x � � for each of the pairs (�; �) = (0:207; 0:9);
(0:195; 0:913), (0:14; 0:93); (0:04; 0:98).

Proof. Since x 7! log(1 + x) is concave, or equivalently we are proving 1 + x � e�x where the
latter function is convex, it su�ces to check the inequalities at the endpoints, where they hold.
�

Lemma 1.7 and (1.40) then give

log�k � 0:98i2=6n2 (1.42)

since i2=(6n2) � 1=3n � 0:04; n � 10. Next,

Lemma 1.8. We have log(�k+1 � �k) � �dk where � = 0:9 when n is even and n � 20,
� = 0:93 when n is odd and n � 25, and � = 0:913 when k = 1 and n � 10. Only these cases
are possible (for k � 1).

Proof. If n is even and k � 2, then 4 � i = 2k <
p

2n � 2 implies n � 20. If n is odd and
k � 2, then 5 � i = 2k + 1 <

p
2n� 2 implies n � 25. So only the given cases are possible.

We have k � kn :=
p
n=2 � 1 for n even or kn :=

p
n=2 � 3=2 for n odd. Let

d(n) := 1=n + 3k2n=n
3=2 and t := 1=

p
n. It will be shown that d(n) is decreasing in n,
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separately for n even and odd. For n even we would like to show that 3t=2 + (1� 3
p

2)t2 + 3t3

is increasing for 0 � t � 1=
p

20 and in fact its derivative is > 0:04. For n odd we would like to
show that 3t=2 + (1 � 9=

p
2)t2 + 27t3=4 is increasing. We �nd that its derivative has no real

roots and so is always positive as desired.
Since d(�) is decreasing for n � 20, its maximum for n even, n � 20 is at n = 20 and we

�nd it is less than 0:207 so Lemma 1.7 applies to give � = 0:9. Similarly for n odd and n � 25
we have the maximum d(25) < 0:14 and Lemma 1.7 applies to give � = 0:93.

If k = 1 then n 7! n�1 + 3=n3=2 is clearly decreasing. Its value at n = 10 is less than 0:195
and Lemma 1.7 applies with � = 0:913: So Lemma 1.8 is proved. �

It will next be shown that for n � 10

sk � n�1 + k=
p
n: (1.43)

By (1.38) this is equivalent to 2=
p
n + (2k2 + 1)=n � 1. Since k � p

n=2 � 1 one can check
that (1.43) holds for n � 14. For n = 10; 11; 12; 13 note that k is an integer, in fact k � 1, and
(1.43) holds.

After some calculations, letting s := sk and d := dk and noting that

�2
k + �2

k+1 =
1

2
[(�k+1 ��k)2 + (�k + �k+1)

2];

to show that the ratio of (1.35) to (1.32) is at least 1 is equivalent to showing that

� is
n
� d

n
� s2

2n
� d2

2n
� 1

2n
� 7

288n2
� i2

2n2
+

0:249

n
+ log(1 + d) + log�k � 0: (1.44)

Proof of (1.44). First suppose that n is even and n � 20 or n is odd and n � 25. Apply the
bound (1.41) for d2=2n, (1.42) for log�k, (1.43) for s and Lemma 1.8 for log(1 +d). Apply the
exact value (1.39) of d in the d=n and �d terms. We assemble together terms with factors k2,
k and no factor of k, getting a lower bound A for (1.44) of the form

A := �[k2=n3=2]� 2�[k=n5=4] + [1=n] (1.45)

where, if n is even, so i = 2k and � = 0:9, we get

� = 0:7 � [2:5 � 2(0:98)=3]=
p
n� 3=n;

� = n�3=4 + n�5=4=2;

 = 0:649 � [17=8 + 7=288]=n � 1=2n2:

Note that for each �xed n, A is 1=n times a quadratic in k=n1=4. Also, � and  are increasing
in n while � is decreasing. Thus for n � 20 the supremum of �2 � � is attained at n = 20
where it is < �0:06. So the quadratic has no real roots and since � > 0 it is always positive,
thus (1.44) holds.

When n is odd, i = 2k+ 1, � = 0:93 and n � 25. We get a lower bound A for (1.44) of the
same form (1.45) where now

� = 0:79 � [2:5 � 2(0:98)=3]=
p
n� 3=n;
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� = 1=2n1=4 + 2(1 � 0:98=6)=n3=4 + 1=2n5=4;

 = 0:679 � (3:625 + 7=288 � 0:98=6)=n � 1=2n2:

For the same reasons, the supremum of �2 � � for n � 25 is now attained at n = 25 and is
negative (less than -0.015), so the conclusion (1.44) again holds.

It remains to consider the case k = 1 where n is even and n � 10 or n is odd and n � 13.
Here instead of bounds for sk and dk we use the exact values (1.38) and (1.39) for k = 1. We
still use the bounds (1.42) for log�k and Lemma 1.8 for log(1+dk). When n is even, i = 2k = 2,
and we obtain a lower bound A0 for (1.44) of the form a1=n+a2=n

3=2 + � � � : All terms n�2 and
beyond have negative coe�cients. Applying the inequality �n�(3=2)�� � �n�3=2 � 10�� for
n � 10 and � = 1=2; 1; � � � ; I found a lower bound A0 � 0:662=n � 1:115=n3=2 > 0 for n � 10.
The same method for n odd gave A0 � 0:662=n�1:998=n3=2 > 0 for n � 13. The proof of (1.5)
is complete.

Proof of (1.6). For n odd, (1.6) is clear when j = 1, so we can assume j � 3. For n even,
(1.6) is clear when j = 2. We next consider the case j = 0. By symmetry we need to prove
that pn0 � P (

p
njY j=2 � 1). This can be checked from a normal table for n = 2. For n � 4

we have pn0 �
p

2=�n by (1.32). The integral of the standard normal density from �2=
p
n

to 2=
p
n is clearly larger than the length of the interval times the density at the endpoints,

namely 2
p

2=�n exp(�2=n). Since exp(�2=n) � 1=2 for n � 4 the proof for n even and j = 0
is done.

We are left with the cases j � 3. For j = n, we have pnn = 2�n and can check the
conclusion for n = 3; 4 from a normal table. Let � be the standard normal density. We have
the inequality, for t > 0,

P (Y � t) �  (t) := �(t)[t�1 � t�3]; (1.46)

Feller (1968), p. 175. Feller does not give a proof. For completeness, here is one:

 (t) = �
Z 1
t

 0(x)dx =

Z 1
t

�(x)(1 � 3x�4)dx � P (Y � t):

To prove (1.6) via (1.46) for j = n � 5 we need to prove

1=2n � �(tn)t�1n (1� t�2n )

where tn := (n� 2)=
p
n. Clearly n 7! tn is increasing. For n � 5 we have 1� t�2n � 4=9 and

(2�)�1=2e2�2=n � 4=9 � 0:878. Thus it su�ces to prove

n(log 2� 0:5) + 0:5 log n� log(n� 2) + log(0:878) � 0; n � 5:

This can be checked for n = 5; 6 and the left side is increasing in n for n � 6, so (1.6) for
j = n � 5 follows.

So it will su�ce to prove pni � P (
p
nY=2 2 [(i� 2)=2; i=2]) for j � i < n. From (1.30) and

Lemma 1.6, and the bound �k � 1, it will su�ce to prove, for x := i=n,

� 1

4n
+

7

288n2
� (n� 1)x2

2
+

x2n

2n(1� x2)
� �n[(x� 2=n)2 + x2]

4

where 3=n � x � 1� 2=n. Note that 2n(1� x2) � 4. Thus it is enough to prove that

x� x2=2� x2n=4 � 3=4n + 7=288n2
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for 3=n � x � 1 and n � 5, which holds since the function on the left is concave, and the
inequality holds at the endpoints. Thus (1.6) and Lemma 1.4 are proved. �

1.5 Proof of Lemma 1.2

Let G(x) be the distribution function of a normal random variable Z with mean n=2 and vari-
ance n=4 (the same mean and variance as for B(n; 1=2)). Let B(k; n; 1=2) :=

P
0�i�k(ni )2�n.

Lemma 1.4 directly implies

G(
p

2kn� n=2) � B(k; n; 1=2) � G(k + 1) for k � n=2: (1.47)

Speci�cally, letting k := (n� j)=2, (1.6) implies

B(k; n; 1=2) � P (Z � n� k � 1) = P (k + 1 � n� Z) = G(k + 1)

since n� Z has the same distribution as Z. (1.5) implies

B(k; n; 1=2) � P

 
n

2
�
p
n

2
Y � �n

2
+
p

2kn

!
= G(

p
2kn� n=2):

Let
� := ��1n (G(Z)): (1.48)

This de�nition of � from Z is called a quantile transformation. By Theorem 1.3, G(Z) has a
U [0; 1] distribution and � a B(n; 1=2) distribution. It will be shown that

Z � 1 � � � Z + (Z � n=2)2=2n+ 1 if Z � n=2; (1.49)

and
Z � (Z � n=2)2=2n � 1 � � � Z + 1 if Z � n=2: (1.50)

De�ne a sequence of extended real numbers �1 = c�1 < c0 < c1 < � � � < cn = +1 by G(ck) =
B(k; n; 1=2) Then one can check that � = k on the event Ak := f! : ck�1 < Z(!) � ckg. By
(1.47), G(ck) = B(k; n; 1=2) � G(k + 1) for k � n=2. So, on the set Ak for k � n=2 we have
Z � 1 � ck � 1 � k = �. Note that for n even, n=2 < cn=2 while for n odd, n=2 = c(n�1)=2. So
the left side of (1.49) is proved.

If Y is a standard normal random variable with distribution function � and density � then
�(x) � �(x)=x for x > 0, e.g. Dudley (1993), Lemma 12.1.6(a). So we have

P (Z � �n=2) = P

 
n

2
+

p
n

2
Y � �n

2

!
=

P

 p
n

2
Y � �n

!
= �(�2

p
n) � e�2n

2
p

2�n
<

1

2n
:

So G(�n=2) < G(c0) = 2�n and �n=2 < c0. Thus if Z � �n=2 then � = 0. Next note that
Z + (Z � n=2)2=2n = (Z + n=2)2=2n � 0 always. Thus the right side of (1.49) holds when
Z � �n=2 and whenever � = 0. Now assume that Z � �n=2. By (1.47), for 1 � k � n=2

G((2(k � 1)n)1=2 � n=2) � B(k � 1; n; 1=2) = G(ck�1);
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from which it follows that (2(k � 1)n)1=2 � n=2 � ck�1 and

k � 1 � (ck�1 + n=2)2=2n: (1.51)

The function x 7! (x+ n=2)2 is clearly increasing for x � �n=2 and thus for x � c0. Applying
(1.51) we get on the set Ak for 1 � k � n=2

� = k � (Z + n=2)2=2n + 1 = Z + (Z � n=2)2=2n + 1:

Since P (Z � n=2) = 1=2 � P (� � n=2), and � is a non-decreasing function of Z, Z � n=2
implies � � n=2. So (1.49) is proved.

It will be shown next that (�; Z) has the same joint distribution as (n � �; n � Z). It is
clear that � and n� � have the same distribution and that Z and n�Z do. We have for each
k = 0; 1; � � � ; n; n�� = k if and only if � = n�k if and only if cn�k�1 < Z � cn�k. We need to
show that this is equivalent to ck�1 � n�Z < ck, in other words n�ck < Z � n�ck�1. Thus we
want to show that cn�k�1 = n�ck for each k. It is easy to check that G(n�ck) = P (Z � ck) =
1�G(ck) while G(ck) = B(k; n; 1=2) and G(cn�k�1) = B(n� k� 1; n; 1=2) = 1�B(k; n; 1=2).
The statement about joint distributions follows. (1.49) thus implies (1.50).

Some elementary algebra, (1.49) and (1.50) imply

j� � Zj � 1 + (Z � n=2)2=2n (1.52)

and since Z < n=2 implies � � n=2 and Z > n=2 implies � � n=2,

j� � n=2j � 1 + jZ � n=2j: (1.53)

Letting Z = (n +
p
nY )=2 and noting that then G(Z) � �(Y ), (1.48), (1.52), and (1.53)

imply Lemma 1.2 with Cn = � � n=2. �

1.6 Inequalities for the separate processes

We will need facts providing a modulus of continuity for the Brownian bridge and something
similar for the empirical process (although it is discontinuous). Let h(t) := +1 if t � �1
and

h(t) := (1 + t) log(1 + t)� t; t > �1: (1.54)

Lemma 1.9. Let � be a binomial random variable with parameters n and p. Then for any
x � 0 and m := np we have

P (� �m � x) � inf
s>0

e�sxEes(��m) =

�
m

m+ x

�m+x � n�m

n�m� x

�n�m�x
: (1.55)

If p � 1=2 then bounds for the right side of (1.55) give

P (� � m+ x) � exp

�
� m

1� p
h

�
x

m

��
(1.56)

and
P (� � m� x) � exp(�x2=[2p(1 � p)]): (1.57)
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Proof. The �rst inequality in (1.55) is clear. Let E(k; n; p) denote the probability of at least
k successes in n independent trials with probability p of success on each trial, and B(k; n; p)
the probability of at most k successes. According to Cherno�'s inequalities (Cherno�, 1954),
we have with q := 1� p

E(k; n; p) � (np=k)k(nq=(n� k))n�k if k � np;

and symmetrically

B(k; n; p) � (np=k)k(nq=(n� k))n�k if k � np:

These inequalities hold for k not necessarily an integer; for this and the equality in (1.55) see
also Hoe�ding (1963). Then for p � 1=2, (1.56) is a consequence proved by Bennett (1962), see
also Shorack and Wellner (1986, p. 440, (3)), and (1.57) is a consequence proved by Okamoto
(1958) and extended by Hoe�ding (1963). �

Let Fn be an empirical distribution function for the uniform distribution on [0; 1] and
�n(t) :=

p
n(Fn(t)� t), 0 � t � 1, the corresponding empirical process. The previous lemma

extends via martingales to a bound for the empirical process on intervals.

Lemma 1.10. For any b with 0 < b � 1=2 and x > 0,

P ( sup
0�t�b

j�n(t)j > x=
p
n) � 2 exp

�
� nb

1� b
h

�
x(1� b)

nb

��

� 2 exp(�nb(1� b)h(x=(nb))): (1.58)

Remark. The bound given by (1.58) is Lemma 2 of Bretagnolle and Massart (1989). Lemma
1.2 of Cs�org}o and Horv�ath (1993), p. 116, has instead the bound 2 exp(�nbh(x=(nb))). This
does not follow from Lemma 1.10, while the converse implication holds by (1.83) below, but I
could not follow Cs�org}o and Horv�ath's proof of their form.

Proof. From the binomial conditional distributions of multinomial variables we have for 0 �
s � t < 1

E(Fn(t)jFn(u); u � s) = E(Fn(t)jFn(s))

= Fn(s) +
t� s

1� s
(1� Fn(s)) =

t� s

1� s
+

1� t

1� s
Fn(s);

from which it follows directly that

E

�
Fn(t)� t

1� t

���Fn(u); u � s

�
=

Fn(s)� s

1� s
;

in other words, the process (Fn(t) � t)=(1 � t), 0 � t < 1 is a martingale in t (here n is
�xed). Thus, �n(t)=(1 � t); 0 � t < 1, is also a martingale, and for any real s the process
exp(s�n(t)=(1 � t)) is a submartingale, e.g. Dudley (1993), 10.3.3(b). Then

P ( sup
0�t�b

�n(t) > x=
p
n) � P ( sup

0�t�b
�n(t)=(1 � t) > x=

p
n)
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which for any s > 0 equals

P

 
sup
0�t�b

exp(s�n(t)=(1 � t)) > exp(sx=
p
n)

!
:

By Doob's inequality (e.g. Dudley (1993), 10.4.2, for a �nite sequence increasing up to a dense
set) the latter probability is

� inf
s>0

exp(�sx=pn)E exp(s�n(b)=(1 � b)) � exp

�
� nb

1� b
h

�
x(1� b)

nb

��

by Lemma 1.9, (1.56). In the same way, by (1.57) we get

P ( sup
0�t�b

(��n(t)) > x=
p
n) � exp(�x2(1� b)=(2nb))): (1.59)

It is easy to check that h(u) � u2=2 for u � 0, so the �rst inequality in Lemma 1.10 follows.
It is easily shown by derivatives that h(qy) � q2h(y) for y � 0 and 0 � q � 1. For q = 1 � b,
the bound in (1.58) then follows. �

We next have a corresponding inequality for the Brownian bridge.

Lemma 1.11. Let B(t); 0 � t � 1, be a Brownian bridge, 0 < b < 1 and x > 0. Let � be the
standard normal distribution function. Then

P ( sup
0�t�b

B(t) > x) = 1� �(x=
q
b(1� b))

+ exp(�2x2)

 
1� �

 
(1� 2b)xp
b(1� b)

!!
: (1.60)

If 0 < b � 1=2, then for all x > 0,

P ( sup
0�t�b

B(t) > x) � exp(�x2=(2b(1 � b))): (1.61)

Proof. Let X(t); 0 � t < 1 be a Wiener process. For some real � and value of X(1) let
� := X(1) � �. It will be shown that for any real � and y

Pf sup
0�t�1

X(t)� �t > yjX(1)g = 1f�>yg + exp(�2y(y � �))1f��yg: (1.62)

Clearly, if � > y then sup0�t�1X(t) � �t > y (let t = 1). Suppose � � y. One can apply
a reection argument as in the proof of Dudley (1993), Proposition 12.3.3, where details are
given on making such an argument rigorous. Let X(t) = B(t) + tX(1) for 0 � t � 1, where
B(�) is a Brownian bridge. We want to �nd P (sup0�t�1B(t) + �t > y). But this is the same
as P (sup0�t�1 Y (t) > yjY (1) = �) for a Wiener process Y . For � � y, the probability that
sup0�t�1 Y (t) > y and � � Y (1) � � + dy is the same by reection as P (2y � � � Y (1) �
2y � � + dy). Thus the desired conditional probability, for the standard normal density �, is
�(2y � �)=�(�) = exp(�2y(y � �)) as stated. So (1.62) is proved.
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We can write the Brownian bridge B as W (t)� tW (1), 0 � t � 1, for a Wiener process W .
Let W1(t) := b�1=2W (bt), 0 � t <1. Then W1 is a Wiener process. Let � := W (1)�W (b).
Then � has a normal N(0; 1 � b) distribution and is independent of W1(t); 0 � t � 1. Let
 := ((1 � b)W1(1)�p

b�)
p
b=x. We have

P ( sup
0�t�b

B(t) > xj�;W1(1)) = P

 
sup
0�t�1

(W1(t)� (bW1(1) +
p
b�)t) > x=

p
bj�;W1(1)

!
:

Now the process W1(t) � (bW1(t) +
p
b�)t; 0 � t � 1, has the same distribution as a Wiener

process Y (t); 0 � t � 1, given that Y (1) = (1� b)W1(1)�p
b�. Thus by (1.62) with � = 0,

P ( sup
0�t�b

B(t) > xj�;W1(1)) = 1f>1g + 1f�1g exp(�2x2(1� )=b): (1.63)

Thus, integrating gives

P ( sup
0�t�b

B(t) > x) = P ( > 1) + exp(�2x2=b)E
�
exp(2x2=b)1f�1g

�
:

From the de�nition of  it has a N(0; b(1� b)=x2) distribution. Since x is constant, the latter
integral with respect to  can be evaluated by completing the square in the exponent and
yields (1.60).

We next need the inequality, for x � 0,

1� �(x) � 1

2
exp(�x2=2): (1.64)

This is easy to check via the �rst derivative for 0 � x �p2=�. On the other hand we have the
inequality 1��(x) � �(x)=x; x > 0, e.g. Dudley (1993), 12.1.6(a), which gives the conclusion
for x � p2=�.

Applying (1.64) to both terms of (1.60) gives (1.61), so the Lemma is proved. �

1.7 Proof of Theorem 1.1

For the Brownian bridge B(t), 0 � t � 1, it is well known that for any x > 0

P ( sup
0�t�1

jB(t)j � x) � 2 exp(�2x2);

e.g. Dudley (1993), Proposition 12.3.3. It follows that

P (
p
n sup
0�t�1

jB(t)j � u) � 2 exp(�u=3)

for u � n=6. We also have j�1(t)j � 1 for all t and

P ( sup
0�t�1

j�n(t)j � x) � D exp(�2x2); (1.65)
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which is the Dvoretzky-Kiefer-Wolfowitz inequality with a constant D. Massart (1990) proved
(1.65) with the sharp constant D = 2. Earlier Hu (1985) proved it with D = 4

p
2. D = 6

su�ces for present purposes. Given D, it follows that for u � n=6,

P (
p
n sup
0�t�1

j�n(t)j � u) � D exp(�u=3):

For x < 6 log 2, we have 2e�x=6 > 1 so the conclusion of Theorem 1.1 holds. holds. For
x > n=3� 12 log n, u := (x+ 12 log n)=2 > n=6 so the left side of (1.1) is bounded above by
(2 +D)n�2e�x=6. We have (2 +D)n�2 � 2 for n � 2 and D � 6.

Thus it will be enough to prove Theorem 1.1 when

6 log 2 � x � n=3 � 12 log n: (1.66)

The function t 7! t=3 � 12 log t is decreasing for t < 36, increasing for t > 36. Thus one can
check that for (1.66) to be non-vacuous is equivalent to

n � 204: (1.67)

Let N be the largest integer such that 2N � n, so that � := 2N � n < 2�. Let Z be
a �-dimensional normal random variable with independent components, each having mean 0
and variance � := n=�. For integers 0 � i < m let A(i;m) := fi + 1; � � � ;mg. For any
two vectors a := (a1; � � � ; a�) and b := (b1; � � � ; b�) in R

� , we have the usual inner product
(a; b) :=

P�
i=1 aibi. For any subset D � A(0; �) let 1D be its indicator function as a member

of R� . For any integers j = 0; 1; 2; � � � and k = 0; 1; � � �, let

Ij;k := A(2jk; 2j(k + 1)); (1.68)

let ej;k be the indicator function of Ij;k and for j � 1, let e0j;k := ej�1;2k � ej;k=2. Then one

can easily check that the family E := fe0j;k : 1 � j � N; 0 � k < 2N�jg [ feN;0g is an

orthogonal basis of R� with (eN;0; eN;0) = � and (e0j;k; e
0
j;k) = 2j�2 for each of the given j; k.

Let Wj;k := (Z; ej;k) and W 0j;k := (Z; e0j;k). Then since the elements of E are orthogonal it

follows that the random variables W 0j;k for 1 � j � N; 0 � k < 2N�j and WN;0 are independent
normal with

EW 0j;k = EWN;0 = 0; Var(W 0j;k) = �2j�2; Var(WN;0) = ��: (1.69)

Recalling the notation of Lemma 1.2, let �n be the distribution function of a binomial B(n; 1=2)
random variable, with inverse ��1n . Now let Gm(t) := ��1m (�(t)).

We will begin de�ning the construction that will connect the empirical process with a
Brownian bridge. Let

UN;0 := n (1.70)

and then recursively as j decreases from j = N to j = 1,

Uj�1;2k := GUj;k((22�j=�)1=2W 0j;k); Uj�1;2k+1 := Uj;k � Uj�1;2k; (1.71)

k = 0; 1; � � � ; 2N�j�1. Note that by (1.69), (22�j=�)1=2W 0j;k has a standard normal distribution,
so � of it has a U [0; 1] distribution. It is easy to verify successively for j = N;N � 1; � � � ; 0
that the random vector fUj;k; 0 � k < 2N�jg has a multinomial distribution with parameters
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n; 2j�N ; � � � ; 2j�N . Let X := (U0;0; U0;1; � � � ; U0;��1). Then the random vector X has a
multinomial distribution with parameters n; 1=�; � � � ; 1=�.

The random vector X is equal in distribution to

fn(Fn((k + 1)=�) � Fn(k=�)); 0 � k � � � 1g; (1.72)

while for a Wiener process W , Z is equal in distribution to

fpn(W ((k + 1)=�) �W (k=�)); 0 � k � � � 1g: (1.73)

Without loss of generality, we can assume that the above equalities in distribution are actual
equalities for some uniform empirical distribution functions Fn and Wiener process W = Wn.
Speci�cally, consider a vector of i.i.d. uniform random variables (x1; � � � ; xn) 2 R

n such that

Fn(t) :=
1

n

nX
j=1

1fxj�tg

and note that W has sample paths in C[0; 1]. Both R
n and C[0; 1] are separable Banach

spaces. Thus one can let (x1; � � � ; xn) and W be conditionally independent given the vectors in
(1.72) and (1.73) which have the joint distribution of X and Z, by the Vorob'ev-Berkes-Philipp
theorem, see Berkes and Philippp (1979), Lemma A1. Then we de�ne a Brownian bridge by
Bn(t) := Wn(t)� tWn(1) and the empirical process �n(t) :=

p
n(Fn(t)� t), 0 � t � 1. By

our choices, we then have

fn(Fn(j=�) � j=�)g�j=0 =

8<
:
j�1X
i=0

�
Xi � n

�

�9=
;
�

j=0

(1.74)

and �p
nBn(j=�)

	�
j=0 =

8<
:
0
@j�1X
i=0

Zi

1
A� j

�

��1X
r=0

Zr

9=
;
�

j=0

: (1.75)

Theorem 1.1 will be proved for the given Bn and �n. Speci�cally, we want to prove

P0 := P

 
sup
0�t�1

j�n(t)�Bn(t)j > (x+ 12 log n)=
p
n

!
� 2 exp(�x=6): (1.76)

It will be shown that �n(j=�) and Bn(j=�) are not too far apart for j = 0; 1; � � � ; � while
the increments of the processes over the intervals between the lattice points j=� are also not
too large.

Let C := 0:29. Let M be the least integer such that

C(x+ 6 log n) � �2M+1: (1.77)

Since n � 204 (1.67) and � < 2 this implies M � 2. We have by de�nition of M and (1.66)

2M � �2M � C(x+ 6 log n) � Cn=3 < 0:1 � 2N+1 < 2N�2

so M � N � 3.
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For each t 2 [0; 1], let �M (t) be the nearest point of the grid fi=2N�M ; 0 � i � 2N�Mg, or
if there are two nearest points, take the smaller one. Let D := X�Z and D(m) :=

Pm
i=1Di.

Let C 0 := 0:855 and de�ne

� := fUj;k � �(1 + C 0)2j whenever M + 1 < j � N; 0 � k < 2N�jg

\ fUj;k � �(1� C 0)2j whenever M < j � N; 0 � k < 2N�jg:
Then

P0 � P1 + P2 + P3 + P (�c)

where

P1 := P

 
sup
0�t�1

j�n(t)� �n(�M (t))j > 0:28(x + 6 log n)=
p
n

!
; (1.78)

P2 := P

 
sup
0�t�1

jBn(t)�Bn(�M (t))j > 0:22(x + 6 log n)=
p
n

!
; (1.79)

and, recalling (1.74) and (1.75),

P3 := 2N�M max
m2A(M)

P

��
jD(m)� m

�
D(�)j > 0:5x + 9 log n

�
\�

�
; (1.80)

where A(M) := fk2M : k = 1; 2; � � �g \A(0; �).
First we bound P (�c). Since by (1.71) Uj;k = Uj�1;2k + Uj�1;2k+1, we have

�c �
[

0�k<2N�M�2

fUM+2;k > (1 + C 0)�2M+2g [
[

0�k<2N�M�1

fUM+1;k < (1� C 0)�2M+1g:

Since UM+2;k and UM+1;k are binomial random variables, Lemma 1.9 gives

P (�c) � 2N�M�1
�
exp(��2M+2h(C 0)) + exp(��2M+1h(�C 0))

�
:

Now 2h(C 0) � 0:5823 � h(�C 0) � 0:575 (note that C 0 has been chosen to make 2h(C 0)
and h(�C 0) approximately equal). By de�nition of M (1.77), �2M+1 � C(x + 6 log n), and
0:575C > 1=6, so

P (�c) � 2�M exp(�x=6): (1.81)

Next, to bound P1 and P2. Let b := 2M�N�1 � 1=2. Since �n(t) has stationary increments,
we can apply Lemma 1.10. Let u := x+ 6 log n. We have by de�nition of M (1.77)

nb = n2M�N�1 < Cu=2: (1.82)

By (1.66), u < n=3 so b < C=6. Recalling (1.54), note that h0(t) � log(1 + t). Thus h is
increasing. For any given v > 0 it is easy to check that

y 7! yh(v=y) is decreasing for y > 0: (1.83)

Lemma 1.10 gives

P1 � 2N�M+2 exp

�
�nb(1� b)h

�
0:28u

nb

��
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< 2N�M+2 exp

�
�C

2

�
1� C

6

�
uh

�
0:28 � 2

C

��

by (1.83) and (1.82) and since 1� b > 1� C=6, so one can calculate

P1 � 2N�M+2e�u=6 � 22�M��1 exp(�x=6): (1.84)

The Brownian bridge also has stationary increments, so Lemma 1.11, (1.61) and (1.82) give

P2 � 2N�M+2 exp(�(0:22u)2=(2nb))

� 2N�M+2 exp(�(0:22)2u=C) � 22�M��1e�x=6 (1.85)

since (0:22)2=C > 1=6.
It remains to bound P3. Fix m 2 A(M). A bound is needed for

P3(m) := P

��
jD(m)� m

�
D(�)j > 0:5x + 9 log n

�
\�

�
: (1.86)

For each j = 1; � � � ; N take k(j) such that m 2 Ij;k(j). By the de�nition (1.68) of Ij;k, k(M) =

m2�M � 1 and k(j) = [k(j � 1)=2] for j = 1; � � � ; N where [x] is the largest integer � x.
From here on each double subscript j; k(j) will be abbreviated to the single subscript j, e.g.
e0j := e0j;k(j). The following orthogonal expansion holds in E :

1A(0;m) =
m

�
eN;0 +

X
M<j�N

cje
0
j ; (1.87)

where 0 � cj � 1 for m < j � N . To see this, note that 1A(0;m) ? e0j;k for j � M since 2M

is a divisor of m. Also, 1A(0;m) ? e0j;k for k 6= k(j) since 1A(0;m) has all 0's or all 1's on the
set where e0j;k has non-zero entries, half of which are +1=2 and the other half �1=2. In an

orthogonal expansion f =
P

j cjfj we always have cj = (f; fj)=kfjk2 where kvk2 := (v; v).

We have ke0jk = 2(j�2)=2. Now, (1A(0;m); e
0
j) is as large as possible when the components of

e0j equal = 1=2 only for indices � m, and then the inner product equals 2j�2, so jcj j � 1 as
stated. The m=� factor is clear.

We next have
ej = 2j�NeN;0 +

X
i>j

(�1)s(i;j;m)2j+1�ie0i (1.88)

where s(i; j;m) = 0 or 1 for each i; j;m so that the corresponding factors are �1, the signs
being immaterial in what follows. Let �j := (D; e0j). Then from (1.87),

����D(m)� m

�
D(�)

���� � X
M<j�N

j�j j: (1.89)

Recall that W 0j = (Z; e0j) (see between (1.68) and (1.69)) and D = X � Z. Let �j :=

(22�j=�)1=2W 0j for M < j � N . Then by (1.69) and the preceding statement, �M+1; � � � ; �N
are i.i.d. standard normal random variables. We have Uj;k = (X; ej;k) for all j and k from the
de�nitions. Then Uj = (X; ej). Let U 0j = (X; e0j). By (1.71) and Lemma 1.2, (1.4),

jU 0j �
q
Uj�j=2j � 1 + �2j =8: (1.90)
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Let
Lj := jW 0j �

q
Uj�j=2j = j�j jj

q
Uj �

p
�2j j=2

by de�nition of �j. Thus
j�jj � Lj + 1 + �2j =8: (1.91)

Then we have on �

j
q
Uj �

p
�2j j = jUj � �2j j=(

p
�2j +

q
Uj) � jUj � �2j jp

�2j
� 1

1 +
p

1� C 0
;

where as before C 0 := 0:855. Then by (1.71), (1.88) and (1.3) of Lemma 1.2,

jUj � �2j j � 2j�N jUN � nj+ 2
X

j<i�N

2j�ijU 0i j

� 2 + (�(1 + C 0))1=2
X

j<i�N

2j�i=2j�ij

on �, recalling that by (1.70), UN = UN;0 = n. Let C2 := 1=(1 +
p

1� C 0). It follows that

Lj � 2�j=2C2j�j j+ 1

2
C2

p
1 +C 0

X
j<i�N

2(j�i)=2j�j jj�ij: (1.92)

Applying the inequality j�ijj�j j � (�2i + �2j )=2; we get the bound

X
M<j�N

X
j<i�N

2(j�i)=2j�i�j j �
X

M<j�N

Aj�
2
j (1.93)

where

Aj :=
1

2

0
@ X
M<r<j

2(r�j)=2 +
X

j<i�N

2(j�i)=2

1
A :

Then

Aj � 1

2

"
2�1=2 � 2(M�j)=2

1� 2�1=2
+

2�1=2

1� 2�1=2

#

� 1 +
p

2� 2(M�j�2)=2=(1 � 2�1=2):

Let C3 := C2(1 +
p

2)
p

1 + C 0=2 � 1:19067: Then

X
M<j�N

Lj � C3

X
M<j�N

�2j +
X

M<j�N

2�j=2j�jjC2

 
1�

p
1 + C 0

2
2(M�2)=2j�jj=(1 � 2�1=2)

!
:

(1.94)
Let

C4 :=

p
1 + C 0

4(1 � 2�1=2)
=

p
2
p

1 + C 0(
p

2 + 1)

4
;

and for each M let cM := 1=(4C42
M=2). Then for any real number x, we have x(1�C42

M=2x) �
cM . It follows that X

M<j�N

Lj �
X

M<j�N

C3�
2
j + cMC22

�j=2

21



� C2cM2�(M+1)=2=(1 � 2�1=2) +
X

M<j�N

C3�
2
j

� C22
�M

p
2
p

1 + C 0
+

X
M<j�N

C3�
2
j :

Thus, combining (1.91) and (1.94) we get on �

X
M<j�N

j�j j � N +

�
1

8
+C3

� X
M<j�N

�2j : (1.95)

We have E exp(t�2) = (1 � 2t)�1=2 for t < 1=2 and any standard normal variable � such as �j
for each j. Since �M+1; � � � ; �N are independent we get

E exp

0
@
0
@1

3

X
M<j�N

j�j j
1
A 1�

1
A � eN=3

�
1� 2

3

�
C3 +

1

8

��(M�N)=2

� eN=321:513(N�M) � 22N�1:5M :

Markov's inequality and (1.89) then yield

P3(m) � e�x=6n�322N�1:5M :

Thus

P3 � e�x=6n�323N�2:5M � 2�2:5Me�x=6: (1.96)

Collecting (1.81), (1.84), (1.85) and (1.96) we get that P0 � (23�M��1 + 2�M + 2�2:5M )e�x=6.
By (1.77) and (1.67) and since x � 6 log 2 (1.66) and M � 2, it follows that Theorem 1.1 holds.
�
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Chapter 2

Gaussian Measures and Processes;

Sample Continuity

Let X1;X2; : : :, be independent, identically distributed real-valued random variables with
EX1 = 0 and EX2

1 = �2 < 1. Let Sn := X1 + � � � + Xn. Then the one-dimensional
central limit theorem says that the distribution of Sn=n

1=2 converges as n!1 to the normal
distribution N

�
0; �2

�
, which (if � > 0) has a density ��1(2�)�1=2 exp

��x2= �2�2�� with re-
spect to Lebesgue measure on R (RAP, Theorem 9.5.6). Also, if the Xi are i.i.d. with values
in R

k , EX1 = 0 and E jX1j2 < 1, then the distribution of Sn=n
1=2 converges to a normal

distribution N(0; C) where C is the covariance matrix of X1 (ibid.).

These notes are mainly about extensions of the central limit theorem to in�nite-dimensional
situations. Here the limit distributions will be normal distributions on in�nite-dimensional
spaces. Since their behavior is not as simple as in the �nite-dimensional case, this chapter is
devoted to a study of normal or Gaussian measures.

2.1 Some de�nitions.

Let X be a real vector space. Recall that a seminorm is a function k � k from X into the
nonnegative real numbers such that kx+yk � kxk+kyk for all x and y in X and kcxk = jcjkxk
for all real c and x 2 X. The seminorm k�k is called a norm if kxk = 0 only for x = 0 in X, and
then (X; k � k) is called a normed linear space. A norm de�nes a metric by d(x; y) := kx� yk:
A normed linear space complete for this metric is called a Banach space. As with any metric
space, it is called separable if it has a countable dense subset. A probability distribution P
de�ned on a separable Banach space will be assumed to be de�ned on the Borel �-algebra
generated by the open sets, unless another �-algebra is speci�ed. Then P will be called a law.

Let (X; k � k) be a separable Banach space. A law P on X will be called Gaussian or normal
i� for every continuous linear form f 2 X 0; P � f�1 is a normal law on R: Recall that a law on
a �nite-dimensional real vector space is normal if and only if every real linear form is normally
distributed (RAP, Theorem 9.5.13).
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2.2 Gaussian vectors are probably not very large.

First, let's have some bounds for one-dimensional Gaussian variables. Let � be the standard
normal distribution function and � its density function, so �(x) = (2�)�1=2 exp(�x2=2) for all
real x, and �(x) = sx�1 �(u)du:

Proposition 2.1. Let X be a real-valued random variable with a normal distribution N(0; �2):
Then

(a) for any M > 0; Pr(jXj > M) � exp
��M2=

�
2�2

��
;

(b) if M=� � 1, then

�

M
�

�
M

�

�
� Pr(jXj > M) � 2�

M
�

�
M

�

�
:

This section will give an extension of inequality (a) to in�nite-dimensional Gaussian vari-
ables such as those taking values in separable Banach spaces. It will be said that a law P on
a separable Banach space (X; k � k) has mean 0 if

R kxkdP (x) < 1 and
R
f(x)dP (x) = 0 for

each f 2 X 0: Here is one of the main results.

Theorem 2.2. (Landau-Shepp-Marcus-Fernique) Let P be a normal law with mean 0 on a
separable Banach space X. For f 2 X 0 let �2(f) :=

R
f2dP: Then �2 := supf�2(f) : kfk0 �

1g <1 and

R
exp(�kxk2)dP (x) < 1 for any � < 1=(2�2):

By Proposition 2.1(a), the theorem holds in the one-dimensional case, and by the left side
of part (b), the condition � < 1=(2�2) is best possible. Some related facts will be given.

De�nition. Let X be a real vector space and B a �-algebra of subsets of X: Then (X;B) is
called a measurable vector space if both

(a) addition is jointly measurable from X �X to X; and

(b) scalar multiplication is jointly measurable from R�X to X (for the usual Borel �-algebra
on R).

Example. Let X be a topological vector space, namely a vector space with a topology for
which (a) and (b) hold with \measurable" replaced by \continuous". Suppose the topology of
X is metrizable and separable. For a Cartesian product of two separable metric spaces, since
their topologies have countable bases, the Borel �-algebra in the product equals the product
�-algebra of the Borel �-algebras in the two spaces (RAP, Proposition 4.1.7). Thus X with its
Borel �-algebra is a measurable vector space.

The notion of normal law can't be de�ned for general measurable vector spaces by way of
linear forms, as it was for Banach spaces in the last section, since there exist measurable vector
spaces, such as spaces Lp[0; 1] for 0 < p < 1; which have non-trivial normal measures but turn
out to have no non-trivial measurable linear forms (Appendix F). Fernique (1970) proposed
the following ingenious de�nition:
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De�nition. A probability measure P on a measurable vector space (X;B) will be called
centered Gaussian i� for variables U and V independent with law P (say, coordinates on the
product X �X for the product law P � P ) and any � with 0 < � < 2�; U cos � + V sin � and
�U sin � + V cos � are also independent with distribution P:

If X = R, the transformation of (U; V ) 2 R
2 in the last de�nition is a rotation through

an angle �. Normal laws with mean 0 on �nite-dimensional real vector spaces are centered
Gaussian in this sense, as can be seen from covariances. Conversely, a law on X = R satisfying
the above de�nition of \centered Gaussian", even for one value of � with sin(2�) 6= 0; must
be normal according to the \Darmois-Skitovi�c" theorem. We will not need the full strength of
the latter theorem below, but we have:

Proposition 2.3. A centered Gaussian law P on R is a law N(0; �2) for some �2 � 0:

Given a normal measure P = N(m;C) on a �nite-dimensional space X and a vector
subspace Y of X, it follows from the structure of normal measures (RAP, Theorem 9.5.7) that
P (Y ) = 0 or 1: This fact extends to general measurable vector spaces:

Theorem 2.4. (0-1 law) Let (X;B) be a measurable vector space and Y a vector subspace
with Y 2 B: Then for any centered Gaussian law P on X; P (Y ) = 0 or 1:

A measurable function k � k from a measurable vector space X into [0;1] will be called a
pseudo-seminorm i� Y := fx 2 X : kxk <1g is a vector subspace of X and k�k is a seminorm
on Y; that is, kcxk = jcjkxk for each real c and x 2 Y; and so for all x 2 X; with 0 � 1 := 0;
and kx+ yk � kxk+ kyk for all x; y 2 Y; and so for all x; y 2 X:

By the 0{1 law (Theorem 2.4), for any pseudo-seminorm k � k and centered Gaussian P on
X; P (k � k <1) = 0 or 1: Likewise, P (k:k = 0) = 0 or 1:

A real-valued stochastic process consists of a set T , a probability space (
;A; P ) and a
map (t; !) 7! Xt(!) from T � 
 into R, such that for each t 2 T , Xt(�) is measurable from

 into R. A sample function of the process is a function t 7! Xt(!) for any �xed !. The
process is called Gaussian i� for every �nite subset F of T , the law L(fXtgt2F ) is a normal
distribution on R

F .
If S is a countable set, then R

S ; the set of all real-valued functions on S; with product
topology, is a separable metric topological linear space, hence a measurable vector space. If P
is the law of a Gaussian stochastic process fxt; t 2 Sg on R

S ; with Ext = 0 for all t 2 S; then
P is centered Gaussian on R

S : The supremum \norm" kfyt; t 2 Sgk := supt jytj is clearly a
pseudo-seminorm on R

S :
Theorem 2.2 is a corollary of the following fact:

Theorem 2.5. Let (X;B) be a measurable vector space and P a centered Gaussian law on
X: Let fyngn�1 be a sequence of measurable linear forms: X 7! R: Let kxk := supn jyn(x)j:
Suppose that P (kxk < 1) > 0: Then � := (supn

R
y2ndP )1=2 < 1; and E exp(�kxk2) < 1 if

and only if � < 1=(2�2):

2.3 Inequalities and comparisons for Gaussian distributions.

The main result of this section will say that if a set of Gaussian random variables is large
enough in the sense of metric entropy (as de�ned in Appendix K), meaning that the number of
variables more than " apart grows rather fast as " # 0; then it is almost surely unbounded. The
proof is based on some inequalities, one due to Slepian and another to Sudakov and Chevet.
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Theorem 2.6. Slepian's inequality. Let X1; � � � ; Xn be real random variables with a normal
joint distribution N(0; r) on R

n : Let Pn(r) := PrfXj � 0 for all j = 1: � � � ; ng: Let q be another
covariance matrix, with rii = qii = 1 for all i = 1; � � � ; n: If rij � qij for all i and j; then
Pn(r) � Pn(q):

Remarks. Since each Xj has distribution N(0; 1); clearly Pn(r) � 1=2; with Pn(r) = 1=2 when
rij = 1 for all i and j: On the other hand, Pn(r) = 0 if rij = �1 for some i 6= j:

Recall that the correlation (coe�cient) r(X;Y ) of two non-constant variables X and Y
with �nite second moments is de�ned by

r(X;Y ) := E((X �EX)(Y �EY ))=(�X�Y )

where �X := �(X) is the standard deviation (E(X �EX)2)1=2:

Corollary 2.7. Let X1; � � � ; Xn and Y1; � � � ; Yn be two sets of jointly normally distributed vari-
ables with mean 0; �(Xi) > 0 and �(Yi) > 0 for all i; and r(Xi;Xj) � r(Yi; Yj) for all
i 6= j = 1; � � � ; n: Then

PrfXi � 0; i = 1; � � � ; ng � PrfYi � 0; i = 1; � � � ; ng:
Proof. Replacing each Xi by Xi=�(Xi) and Yi by Yi=�(Yi) does not change the events being
considered or the correlations, and gives covariances to which Slepian's inequality applies. �

Let C be a set of Gaussian random variables with mean 0, and with the L2 metric
d(X;Y ) := (E(X � Y )2)1=2: Recall that for " > 0, D("; C) := D("; C; d) := supfn :
for some X1; � � � ; Xn 2 C; d(Xi;Xj) > "; 1 � i < j � ng (Appendix K).

Theorem 2.8. (Sudakov-Chevet) If lim sup"#0 "
2 logD("; C) = +1; then supfjXj : X 2 Cg =

+1 almost surely.

Example. Let Gn be i.i.d. N(0; 1) variables and Xn := Gn=(log n)1=2; n � 2: Then d(Xj ;Xk)
> (log j)�1=2 for j < k; so D("; fXjg2�j�n) � n � 1 if " � (log(n � 1))�1=2: So for 0 < " <
1; D("; fXjgj�2) � [exp("�2)] � exp("�2)=2 where [x] denotes the greatest integer � x: So
logD("; fXjgj�2) � "�2 � log 2 � "�2=2 for 0 < " < 1=2: On the other hand for each n;
Proposition 2.1 gives PrfjXnj � 2g � exp(�2 log n) = 1=n2 so by the Borel-Cantelli Lemma,
lim supn!1 jXnj � 2 and supn jXnj < +1 a.s., so Theorem 2.8 is sharp.

Here is another comparison of Gaussian laws.

Theorem 2.9. Let N(0; C) and N(0; D) be two normal measures with mean 0 on R
n . Let

X = fXigni=1 have law N(0; C) and let Y = fYigni=1 have law N(0; D). Suppose that for all
i; j = 1; � � � ; n, we have E((Yi � Yj)

2) � E((Xi �Xj)
2), in other words for each i; j;

Dii +Djj � 2Dij � Cii + Cjj � 2Cij : (2.1)

Then
(a) Efmax1�i;j�n(Yi � Yj)g � Efmax1�i;j�n(Xi �Xj)g and
(b) Emaxi Yi � EmaxiXi.

Let Mn := max(Z1; � � � ; Zn) be the maximum of n i.i.d. standard normal variables Zi.
Then EMn is bounded below as follows.

Lemma 2.10. For all n � 1, EMn � (log n)1=2=12.

Remark. The constant 1=12 can be improved to (� log 2)�1=2, by a less elementary proof
(Fernique, 1997, (1.7.1) and references given there).
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2.4 Gaussian measures and convexity.

There are several useful inequalities about normal measures and convex sets. Just one will be
given as a sample in these notes. Convex sets were treated in RAP, sections 6.2 and 6.6.

A set C in a vector space is called symmetric if �C := f�x : x 2 Cg = C: A function
f is called even if f(�x) = f(x) for all x: Thus, the indicator function of a set is even if and
only if the set is symmetric.

Theorem 2.11. Let C be a convex, symmetric set in R
k : Let f be a nonnegative, even function

in L1(Rk ;B; V ) where V is Lebesgue measure �k and B is the Borel �-algebra. Suppose that
for every t > 0; Kt := fx : f(x) > tg is convex. Then for 0 � � � 1; any y 2 R

k ; and
dx := dV (x); R

Cf(x+ �y)dx � R
Cf(x+ y)dx:

2.5 The isonormal process: sample boundedness and continu-

ity.

The isonormal Gaussian process L on a Hilbert space H is de�ned so that for any x 2
H; L(x) is a Gaussian random variable with distribution N(0; kxk2); and for any x1; � � � ; xn 2
H; (L(x1); � � � ; L(xn)) have a jointly normal distribution with covariance given by the in-
ner products (xi; xj): Then L exists by the nonnegative de�niteness property of the inner
product (e.g. RAP, Theorem 12.1.4). In these notes, usually H will be separable and in�nite-
dimensional. We have that L(�) is linear, in other words, for any c 2 R and x; y 2 H we have
L(cx + y) = cL(x) + L(y) almost surely. (One can check that L(cx + y) � cL(x) � L(y) has
mean and variance 0.)

Historically, an isonormal process was �rst de�ned on the Hilbert space L2([0;1); �), where
� is Lebesgue measure, as the \stochastic integral" L(f) =

R
f(t)dxt where xt is a Brownian

motion process, a Gaussian process with mean 0 and covariance Exsxt = min(s; t). Instead,
the isonormal process is easy to de�ne in general, and one can set xt = L(1[0;t]). Thus there is
no need to de�ne a stochastic integral for non-random integrands f with respect to xt.

Two stochastic processes fXt; t 2 Tg and fYt; t 2 Tg de�ned on the same index set, but
possibly on di�erent probability spaces, will be said to have the same laws, or one will be said
to be a version of the other, if for each �nite subset F of T; fXt; t 2 Fg and fYt; t 2 Fg have
the same law. If Xt and Yt are de�ned on the same probability space then one is said to be a
modi�cation of the other if for each t 2 T , we have P (Xt = Yt) = 1. On the relationship of
versions and modi�cations, especially for the isonormal process restricted to a set, see Appendix
I.

Any Gaussian process with mean 0 can be factored through the isonormal process in the
following sense. Let Xt; t 2 T , be a Gaussian stochastic process where T is any set and
EXt = 0 for all t 2 T . Then for some probability space (
;A; P ), Xt(�) 2 L2(
;A; P ) for each
t. Let t 7! ht be a map from T into a Hilbert space H with inner product (�; �) such that for
all s; t 2 T , (hs; ht) = E(XsXt). Then L(ht) is a version of Xt. One can take H = L2(
;A; P )
and ht � Xt.

It will be seen that sample boundedness and continuity of Gaussian processes can be largely
treated by way of the isonormal process restricted to suitable subsets. For sample continuity
this is done in section 2.8 below. For boundedness see Theorem 2.13.
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For any subset A � H, L(A)� will be de�ned as ess.supx2AL(x), the smallest random
variable Y such that Y � L(x) a.s. for all x 2 A, where Y is determined up to a.s. equality.
Here \ess.sup" stands for \essential supremum." Similarly let jL(A)j� := ess.supx2AjL(x)j.

Lemma 2.12. For any subset A � H, L(A)� and jL(A)j� are well-de�ned up to almost sure
equality.

De�nitions. A set C in H is called a GB-set i� jL(C)j� < 1 a.s. Also, C will be called a
GC-set i� it is totally bounded and the restriction of L to C can be chosen so that each of its
sample functions x 7! L(x)(!); x 2 C; is uniformly continuous on C:

Since a uniformly continuous function on a totally bounded set must be bounded, every
GC-set is a GB-set.

Theorem 2.13. Let Xt; t 2 T , be a Gaussian process with mean 0 on a probability space
(
;A; P ). Then the process has a version with bounded sample functions if and only if C :=
fXt(�) : t 2 Tg is a GB-set in L2(
;A; P ).

Proof. If: take a version of L with bounded sample functions on C, then t 7! L(Xt) is a
version of Xt and has bounded sample functions on T .

Only if: C must be totally bounded by the Sudakov-Chevet theorem 2.8 and so has a
countable dense set D. There is some S � T such that t 7! Xt(�) maps S 1-1 onto D. Since
L(Xt) is a version of Xt on S, it follows that D is a GB-set. Since jL(C)j� = jL(D)j�, C is
also a GB-set. �

De�nition. A function f from a set C in a vector space V into R will be called prelinear i�
for any c1; � � � ; cn 2 C and a1; � � � ; an 2 R such that a1c1 + � � � + ancn = 0; we have a1f(c1) +
� � �+ anf(cn) = 0:

Lemma 2.14. For any prelinear function f on a set C in a real vector space V into R; let

g(x1c1 + � � �+ xncn) := x1f(c1) + � � �+ xnf(cn)

for any x1; � � � ; xn 2 R and c1; � � � ; cn 2 C: Then g is a well-de�ned linear function from the
linear span of C into R which extends f: Such an extension exists if and only if f is prelinear.

Now, a �nite-dimensional projection (fdp) will be an orthogonal projection (RAP, end of
x5.3) of H onto a �nite-dimensional subspace of H: For a sequence f�ng of such projections,
�n " I will mean that the range of �n is included in that of �n+1 for all n and that the union
of all the ranges is dense in H: Since �nx is the nearest point to x in the range of �n (RAP,
Theorems 5.3.6 and 5.3.8), it follows that k�nx � xk ! 0 as n ! 1 for all x 2 H: For
any orthogonal projection �; let �? := I � �; the orthogonal projection onto the orthogonal
complement of the range of � (RAP, 5.3.8).

Lemma 2.15. Whenever fdp's �n " I; there is an orthonormal basis of H which includes an
orthonormal basis of the range of �n for each n:
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If C is a totally bounded set in a metric space, then the set V1 of all uniformly continuous
real-valued functions on C is a vector space. For any real function f on C let kfkC :=
supfjf(x)j : x 2 Cg: Then V1 with norm k � kC is naturally isometric to the space C(K) of all
continuous functions on the completion K of C; where K is compact, so C(K) is separable for
the supremum norm (RAP, Corollary 11.2.5).

Let C � H and let V2 be the set of prelinear elements of V1: Each element h of H de�nes
a function on C by x 7! (x; h); x 2 C: Let HC be the completion of H for k � kC : Note that
each element of HC naturally de�nes a uniformly continuous, prelinear function on C as a
uniform limit of uniformly continuous, prelinear functions. Let V3 be the set of functions on
C so de�ned. Then V3 � V2: (Often, V3 = V2; but whether V3 = V2 in all cases will not be
settled here.)

Let V be a set of functions on C: Say that L on C can be realized on V if there is a
probability measure � on V such that the process (v; x) 7! v(x); v 2 V; x 2 C; has the joint
distributions of L restricted to C : for any x1; � � � ; xn in C; v 7! v(xi) are jointly Gaussian with
mean 0 and covariances (xi; xj); i; j = 1; � � � ; n:

From the de�nition, � would be de�ned on the smallest �-algebra BC making all evaluations
v 7! v(x) measurable for x 2 C. If D is a countable dense set in C, V is a set of continuous
functions on C and v; w 2 V , then

kv � wkC := supfj(v �w)(y) : y 2 Cg = supfj(v � w)(y) : y 2 Dg;
so v 7! kv � wkC is BC measurable for w �xed. If also V is a set of bounded functions on
C, separable for k:kC , as V1; V2 and V3 are, then all open sets for the k:kC topology are in BC
(RAP, Proposition 2.1.4 and its proof), so BC equals the Borel �-algebra.

Given a set A in a vector space, the symmetric convex hull of A is the smallest convex
set including A and �A = f�x : x 2 Ag; and is the set of all �nite convex combinationsPn

i=1 �iai; ai 2 A [ �A; with �i � 0 and
Pn

i=1 �i = 1; for all positive integers n: The closed
symmetric convex hull of A for some topology (in this case the Hilbert norm) is the closure of
the symmetric convex hull. Here is a set of characterizations of GC-sets:

Theorem 2.16. The following are equivalent for a totally bounded set C in H :
(a) C is a GC-set;
(a0) The closed, symmetric convex hull of C is a GC-set;
(b) For any " > 0; Pr(jL(C)j� < ") > 0;
(c) There exist fdp's �n " I such that lim infn!1 jL(�?n C)j� = 0 a.s.;
(d) For some sequence �n " I of fdp's, jL(�?n C)j� ! 0 in probability;
(d0) For some sequence �n " I of fdp's, jL(�?n C)j� ! 0 almost surely;
(e) For every sequence �n " I of fdp's, jL(�?n C)j� ! 0 in probability;
(e0) For every sequence �n " I of fdp's, jL(�?n C)j� ! 0 almost surely;
(f) L can be realized on the completion V3 of H for k � kC ;
(g) L on C can be realized on the space V2 of uniformly continuous, prelinear functions;
(h) L on C can be realized on the space V1 of uniformly continuous functions.

Corollary 2.17. For any two GC-sets C; D; their union C [D is also a GC-set.

Proof. Condition (e) or (e0) in Theorem 2.16 holds on C and D and so on C [D: �

Recall that a Borel probability measure on a separable Banach space B is called Gaussian
if every continuous linear form in B0 has a Gaussian distribution. It follows that the norm
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k � k on B satis�es some inequalities on the upper tail of its distribution for � (Landau-Shepp-
Marcus-Fernique bounds, Theorem 2.2). In particular,

R kxk2d�(x) <1:

Theorem 2.18. Let (B; k � k) be a separable Banach space. Let � be a Gaussian probability
measure with mean 0 on the Borel sets of B: Then the unit ball B01 := ff : kfk0 � 1g in the
dual Banach space B0 is a compact GC-set in L2(B;�):

Next, here is a lower bound based on packing numbers (Appendix K).

Theorem 2.19. For any countable subset S of a Hilbert space H with its usual metric d, and
any " > 0,

E supx2S L(x) � 1
17"(logD("; S; d))1=2:

Remark The constant 1=17 can be improved to (2� log 2)�1=2 (Fernique, 1997, Theorem 4.1.4).

The rest of this section is not in UCLT:

Proposition 2.20. If C is any GB-set then jL(C)j� = supn jXnj a.s. for some sequence fXng
of jointly Gaussian random variables with mean 0, and the result of Theorem 2.5 applies to
k:k = jL(C)j�.
Proof. C is totally bounded by the Sudakov-Chevet theorem 2.8. Thus C is separable. Let
fxngn�1 be a countable dense set in C. Let Xn := L(xn) for each n. Lemma 2.12 and
its proof show that jL(C)j� = supn jXnj a.s. The product R1 of a sequence of copies of R
with product �-algebra (the smallest for which the coordinates are measurable) is clearly a
measurable vector space, so Theorem 2.5 applies to fXng 2 R

1 where yn are the coordinate
functions, yn(fXjgj�1) := Xn. �

Proposition 2.21. If C is a GC-set and the isonormal process L is chosen to be uniformly
continuous on C a.s., then

lim
�#0

Efsup jL(x)� L(y)j : kx� yk � �; x; y 2 Cg = 0:

Proof. The quantity in braces decreases to 0 a.s. as �#0. Its expectation is �nite for any �xed
� > 0 by Proposition 2.20. Thus the result follows from dominated convergence or monotone
convergence. �

The following theorem gives a necessary condition for the GC property, corresponding to
Theorem 2.8 for the GB property. Fernique (1997) attributes both to Sudakov.

Theorem 2.22. If C is a GC-set then "2 logD("; C) ! 0 as "#0.

Proof. Given h > 0, take � > 0 by Proposition 2.21 such that for B(x; �) := fy : kx�yk � �g,
we have for all x 2 C,

E supfL(y) : y 2 B(x; �) \ Cg � h=34:

Let N := D(�; C). Then C is covered by some closed balls B(xi; �); i = 1; � � � ; N . We have
D(u;C) � N maxiD(u;B(xi; �)\C). Using

p
a+ b � p

a+
p
b for a; b � 0 and Theorem 2.19

applied to each S = B(xi; �)\C we get u
p

logD(u;C) � u
p

logN +h=2 for 0 < u <1. For
u < h=(2

p
logN) we get u

p
logD(u;C) � h. � .
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2.6 A metric entropy su�cient condition for sample continuity.

Recall that a stochastic process Xt(!), t 2 T , is said to be sample-bounded on T if supt2T Xt

is �nite for almost all !. If T is a topological space, then the process is said to be sample-
continuous if for almost all !, t 7! Xt(!) is continuous. The isonormal process is not sample-
continuous on the Hilbert space H : let feng be an orthonormal sequence. Then L(en) are
i.i.d. N(0; 1) variables. Thus if an ! 0 slowly enough, speci�cally if an(log n)1=2 ! 1 as
n! 1; L(anen) are almost surely unbounded (by Theorem 2.8). So not all bounded sets or
even compact sets are GB-sets or GC-sets. This section will state a su�cient condition based
on metric entropy (de�ned in Appendix K), while x2.7 will give characterizations based on
what are called majorizing measures.

A metric entropy su�cient condition for sample continuity of L will actually give a quan-
titative bound for the continuity. Let (T; d) be a metric space. A function f will be called
a sample modulus for a real stochastic process fXt; t 2 Tg i� there is a process Yt with the
same laws as Xt and such that for almost all ! there is an M(!) < 1 such that for all
s; t 2 T; jYs � Ytj(!) �M(!)f(d(s; t)):

Whenever f is a sample modulus for L on C � H; and fXt; t 2 Tg is a Gaussian process
with mean 0 and fXt(�) : t 2 Tg = C; then f is also a sample modulus for the process Xt;
with the intrinsic pseudo-metric d(s; t) := (E(Xs �Xt)

2)1=2 on T:

See in Appendix K the de�nitions of N("; C) and H("; C); for the usual metric d(x; y) :=
kx� yk on H. Now the main theorem of this section can be stated:

Theorem 2.23. For any C � H; if
R1
0 (logN(t; C))1=2dt <1 then C is a GC-set, and if

f(x) :=
R x
0 (logN(t; C))1=2dt; x > 0;

then f is a sample modulus for L on C:

Note. If C is bounded, then N(t; C) = 1 and logN(t; C) = 0 for t large enough, and N(�; C)
is a nonincreasing function, so integrability of (logN(t; C))1=2 is only an issue near t = 0: If
f(x) = +1 for some x > 0; then f(x) = +1 for all x > 0; so it still provides a sample
modulus but only a trivial one. By Theorem K.1 of Appendix K, N(t; C) could be replaced
equivalently by D(t; C).

It follows from Theorem 2.23 that C is a GC-set if as " # 0; N("; C) = O(exp("�p)) for
some p < 2; or if N("; C) = O(exp("�2j log "j�r)) for some r > 2: On the other hand Theorem
2.8 implies that C is not a GB-set if as " # 0; eventually N("; C) � exp("�p) for some p > 2 or
N("; C) � exp("�2j log "js) for some s > 0: It turns out that the gap cannot be closed further:
if N("; C) is of the order of exp("�2j log "j�r) for 0 � r � 2; there are examples showing that
C may or may not be a GB-set. So a characterization of the GB-property can't be given in
terms of metric entropy, although it comes rather close. For a characterization in other terms,
see the next section.

Remark. If C is a GC-set, then L(�)(�) can be chosen such that for all !, x 7! L(x)(!) is
continuous for x 2 C. Then for any countable dense subset A of C, L(C)� = supx2A L(x) a.s.

Next, the same integral as in Theorem 2.23 yields a bound for expectations of certain
suprema.
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Theorem 2.24. Let C � H be non-empty and let D := diam C = supx;y2C kx � yk. Let
B := fx� y : x; y 2 Cg. Then for f as in Theorem 2.23,
(a) EjL(B)j� � 81f(D=4) and
(b) EL(C)� � 81f(D=4):

Remarks. All three quantities in (a), (b) are invariant under translation, replacing C by
fc + u : c 2 Cg for any �xed u. But EjL(C)j� does not have such invariance, and becomes
unbounded as kuk ! 1, so for it we cannot have an upper bound Kf(D); K <1.

If the constant 81=4 is replaced by a larger one, one can have, instead of the quantities on
the left in (a) and (b), Young-Orlicz norms (Appendix H) k � kg where g(x) := exp(x2) � 1,
see Theorem 2.25 next.

Let g be a convex, increasing function from [0;1) onto itself. If Y is a random variable
such that Eg(�Y ) < 1 for some � > 0, let kY kg := inffc > 0 : Eg(jY j=c) � 1g. Then
k:kg is a seminorm on such random variables (Appendix H). If there is no such � > 0, let
kY kg := +1.

Theorem 2.25. There is an absolute constant M <1 such that for any subset C of a Hilbert
space H, and g(x) := exp(x2)� 1,

kL(C)�kg � k jL(C)j�kg � ME(jL(C)j�) � 2ME(L(C)�):

2.7 Majorizing measures.

This section will state characterizations of GB-sets and GC-sets in terms of majorizing mea-
sures, to be de�ned next. The characterizations are due to X. Fernique and M. Talagrand.
For a metric space (T; d); r > 0; and x 2 T; the open ball of center x and radius r is
B(x; r) := fy : d(x; y) < rg:
De�nition. Let (T; d) be a metric space and P(T ) the set of all laws (Borel probability
measures) on T: For m 2 P(T ) let

m(T ) := sup
x2T

Z 1
0

�
log

�
1

m(B(x; r))

��1=2
dr:

If m(T ) < 1; then m is called a majorizing measure for (T; d): Let (T ) := (T; d) :=
inffm(T ) : m 2 P(T )g:

Then (T; d) <1 if and only if there exists a majorizing measure on T: If m is a majorizing
measure on T , then for all x 2 T , m(B(x; r)) > 0 for all r > 0 and does not approach 0 too
fast as r#0. For example, if T is �nite, then m(T ) < 1 if and only if m(fxg) > 0 for all
x 2 T . On [0; 1] with usual metric, Lebesgue measure � is a majorizing measure, as is any law
having an absolutely continuous component with a density h � c for some c > 0.

Two theorems, which together characterize GB-sets as sets in Hilbert space having ma-
jorizing measures, will be stated. Here T = C will be a subset of a Hilbert space with the
usual Hilbert metric. Recall L(C)� := ess.supx2CL(x) and jL(C)j� as de�ned by Lemma
2.12.
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Theorem 2.26. (Fernique, 1975) If C is a subset of a Hilbert space H and (C) <1 then C
is a GB-set. For some absolute constant K; EL(C)� � K(C):

Notes. Translation of C; replacing it by fc + h : c 2 Cg for some �xed h; preserves all of
N("; C); (C); and EL(C)� but not EjL(C)j�. The word \majorizing" apparently refers to
the inequality in Theorem 2.26.

Theorem 2.27. (Talagrand, 1987) If C is a GB-set then (C) < 1: For some absolute
constant K 0 and all C � H; (C) � K 0EL(C)�:

The original proof has been considerably shortened: Talagrand (1992), Fernique (1997).

Theorem 2.28. Let (T; d) be a totally bounded metric space. Suppose that m is a law (Borel
probability measure) on T such that for some M < 1 and all r > 0, supx2T m(B(x; r)) <
M infy2T m(B(y; r)): Then the following are equivalent:

(i) m is a majorizing measure for T ;
(ii) (T ) <1;

(iii)
R 1
0 (logD("; T ))1=2d" < 1:

Corollary 2.29. Let (T; d) be a metric space such that there is a group G of 1{1 transforma-
tions g of T onto itself for which

(a) d is G-invariant: for all s; t 2 T and g 2 G;

d(g(s); g(t)) = d(s; t);

(b) There is a law (Borel probability measure) m on T which is G-invariant, i.e. m�g�1 = m
for all g 2 G;

(c) G acts transitively on T : for all s; t 2 T there is a g 2 G with g(s) = t:
Then the hypotheses and thus the conclusion of Theorem 2.28 hold.

Proof. The hypotheses imply that for each r > 0, m(B(x; r)) is the same for all x 2 T . Thus
Theorem 2.28 applies for any M � 1. �

Notes. Fernique (1975) proved that for Gaussian processes satisfying a homogeneity condition
like that in Corollary 2.29, the metric entropy integral condition (Theorem 2.28(iii)) is necessary
and su�cient for sample continuity. Theorems 2.26 and 2.27 above, with Theorem 2.28, show
that the metric entropy integral condition is equivalent to sample continuity for the isonormal
process on T for a subset T of a Hilbert space satisfying the conditions of Theorem 2.28.

For an example of the situation in Corollary 2.29 let T be the unit circle x2 + y2 = 1 in
R
2 , let G be the group of rotations, let d be the usual metric on R

2 , and let dm(�) = d�=(2�).
Likewise T could be a sphere of any dimension, with the orthogonal group G.

To see how Theorem 2.28 applies beyond Corollary 2.29, suppose one wants to prove sample-
continuity of a Gaussian process on a locally compact but not compact metric space, such as
a Euclidean space or a non-compact manifold. Then it su�ces to prove sample continuity on
each of a family of compact sets whose interiors form a base for the topology, such as balls
in Euclidean spaces. Then one can often de�ne a measure, such as Lebesgue measure in a
Euclidean space, restrict it to a compact set C and normalize it to have mass 1 to get a law
m. Then m(B(x; r)) may not depend on x while B(x; r) is included in the interior of C, but
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become smaller as x approaches the boundary of C, yet the hypothesis of Theorem 2.28 still
holds.

There is also a criterion for the GC property where the majorizing measure condition is
strengthened, as follows. Fernique proved \if" and Talagrand (1987) \only if."

Theorem 2.30. (Fernique-Talagrand) Let H be a Hilbert space and C � H. Then C is a
GC-set if and only if there exists a probability measure � on C such that

lim
"#0

sup
x2C

Z "

0

�
log

�
1

�(B(x; r))

��1=2
dr = 0:

Proof. A proof for \only if" will be given here since it is not given in UCLT. Let C be a
GC-set and let L be chosen to be uniformly continuous on C a.s. Let R be the diameter of
C. Recall that B(x; r) := fy : kx � yk � rg. In integrals for majorizing measures, B(x; r)
can be replaced equivalently by B(x; r) since �(B(x; r)) di�ers from �(B(x; r)) only for r in a
countable set: r 7! �(B(x; r)) and r 7! �(B(x; r)) are the left-continuous and right-continuous
versions of the same non-decreasing function of r.

For n = 1; 2; � � � ; let Mn := M(n) := D(R=2n; C). Let Sn := fxnigM(n)
i=1 be a maximal

set with kxni � xnjk > R=2n for i 6= j. Let Tni := B(xni; R=2
n) \ C for each n and i. Then

C =
SM(n)
i=1 Tni for each n. By Theorem 2.27, for any constant A > K 0, choose for each n and

i = 1; � � � ;Mn a majorizing measure �ni on Tni such that

Z R=2n�1

0

"
log

1

�ni(Tni \B(t; u))

#1=2
du � AE supfL(x) : x 2 Tnig

for all t 2 Tni. Let

� :=
1X
n=0

2�n�1
M(n)X
i=1

�ni=Mn;

a probability measure on C. For each t 2 C and each n, we have t 2 Tni for some i �Mn. Thus
for 0 < u < R=2n, �(B(t; u)) � 2�n�1�ni(B(t; u))=Mn: We have

p
a+ b+ c � p

a+
p
b+

p
c

for a; b; c � 0. So Z R=2n

0

h
log(1=�(B(t; u)))

i1=2
du

� [
q

(n+ 1) log 2 +
p

logMn]R=2n +AE supfL(x) : x 2 Tnig: (2.2)

For n = 0, M0 = 1 so logM0 = 0. I claim that R � p
2�E supt2C L(t). To prove this let

x; y 2 H, kx� yk = r. Then

EmaxfL(x); L(y)g = E[L(x) + max(0; L(y) � L(x))] = Emax(0; rZ)

where Z has a N(0; 1) distribution. Then Emax(0; Z) = 1=
p

2�. Letting r " R the claim
follows.

We then have for all t 2 CZ R

0

h
log(1=�(B(t; u)))

i1=2
du � (A+

p
2�)E sup

x2C
L(x):
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Since C is a GC-set, it is a GB-set and EL(C)� < 1 by Proposition 2.20. Thus � is a
majorizing measure on C. For other values of n, (2.2) gives that

sup
t2C

Z R=2n

0

h
log(1=�(B(t; u)))

i1=2
du

is bounded by a sum of three terms. As n ! 1, the �rst goes to 0 clearly, the second by
Theorem 2.22, and the third by Proposition 2.21. Thus \only if" in Theorem 2.30 is proved.
�

2.8 Sample continuity and compactness.

In this section it will be seen that for a Gaussian process Xt indexed by a compact metric
space, or other suitable parameter space such as an open or closed set in a Euclidean space,
sample continuity reduces to that of the isonormal process on some subsets, and continuity of
the non-random function t 7! EXt.

Let (T;T ) and (W;U) be two topological spaces. Let fXt; t 2 Tg be a stochastic process
de�ned over a probability space (
;B; P ) with values in W; meaning that for each t 2 T and
Borel set B � W; X�1t (B) 2 B: (Recall that the �-algebra of Borel sets is generated by the
open sets and that it's equivalent to assume X�1t (U) 2 B for each U 2 U :) A process fXtgt2T
will be called version-continuous i� there is a process Y with the same laws, possibly de�ned
over a di�erent probability space (
0;B0; P 0); such that for all !0 2 
0; t 7! Yt(!

0) is continuous
from T into W: (Equivalently, continuity need only hold for almost all !0.)

Theorem 2.31. A Gaussian process fXtg indexed by a metric space T; de�ned on a probability
space (
; P ); is version-continuous if and only if both

(a) the non-random function t 7! EXt is continuous, and
(b) the process fXt �EXtg is version-continuous.

Then, t 7! Xt(�) is continuous into L2(P ):

So in studying sample continuity or version-continuity of Gaussian processes we may as
well restrict ourselves to processes with mean 0. Let Xt be such a process, t 2 T: Each Xt(�)
is an element of a Hilbert space H; namely L2(P ): Consider the isonormal process L on this
H: Then since L is Gaussian, has mean 0 and preserves covariances, we see that L(Xt) has the
same laws as Xt:

If h(�) is a continuous function from T into a Hilbert space H; with range C := fh(t) : t 2
Tg; and if L restricted to C is version-continuous, then the process L � h is clearly version-
continuous. Conversely, if (T; e) is compact and h is 1{1, then h is a a homeomorphism (RAP,
Theorem 2.2.11). Then, version continuity of L on C and L � h on T are equivalent. So, for
(T; e) compact and t 7! Xt(�) one-to-one, version continuity of the Gaussian process Xt reduces
to that of L on a subset C of H: (Theorem 2.32 and Corollary 2.33 below will show that the
1{1 assumption is not actually necessary.) If T is locally compact, for example an open or
closed subset of some Rk ; then continuity is equivalent to continuity on each compact subset.

The next fact holds for general, not necessarily Gaussian processes.

Theorem 2.32. If (T; e) is a compact metric space, h is a continuous function from T onto
a metric space K and Y (x; !); x 2 K; ! 2 
; is a stochastic process on K with values in a
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complete separable metric space S; then Y � h is version-continuous on T if and only if Y is
on K.

Remark. If Y (x; !) � Y (x); a non-random function, then the result is a known fact in
general topology (RAP, Theorem 2.2.11). The di�culty in the proof is that if Y � h is version-
continuous, it is not clear that the corresponding sample-continuous process X can be written
as Y 0 � h for a process Y 0 on K:

Corollary 2.33. A Gaussian process fXt; t 2 Tg with mean 0 on a compact metric space
(T; e) is version-continuous if and only if both t 7! Xt(�) 2 H := L2(P ) is continuous and its
range K is a GC-set.

Example. If Xt is a Gaussian process de�ned for t 2 R; suppose Xt is periodic of period
2�; Xt � Xt+2� for all t: Suppose that E((Xt �Xs)

2) > 0 for js� tj < 2�: Then we can write
the process as Xt = Y (eit) where Y is a process indexed by the unit circle T 1 := fz : jzj = 1g
in the complex plane, which is compact. Version continuity for X and Y are equivalent, and
z 7! Y (z)(�) is 1{1 from T 1 into H := L2(P ); so version continuity is equivalent to that of L on
the range of Y in H (without needing Theorem 2.32 and Corollary 2.33). On the other hand
any process indexed by R is version continuous if and only if it is so on each compact interval
[�N;N ]; where in this example for N � �; the process is not 1{1 into H:

Recall that a sample function of a stochastic process Xt is a function t 7! Xt(!) for a �xed
!. The usual metric on Hilbert space is the natural one for an isonormal process, but the
GC-property holds for other metrics in the following sense:

Theorem 2.34. Let C be a subset of Hilbert space H: Then the following are equivalent:
(I) C is a GC-set;

(II) L on C has a version with bounded, uniformly continuous sample functions;
(III) there exists a metric � on C such that (C; �) is totally bounded, and the sample functions

of the isonormal process L on C can be chosen to be �-uniformly continuous a.s.

Proof. (I) implies (II) since by de�nition a GC-set is totally bounded, so a uniformly contin-
uous function on it must be bounded. (II) implies (III) directly where � is the usual metric.

Suppose (III) holds. Take a version of L such that on a set of probability one, the sample
functions of L are �-uniformly continuous on C. Then L extends to a Gaussian process t 7! Xt

on the compact completion M of C for �: Here Xt is version-continuous and so by Corollary
2.33, C is included in, and thus is, a GC-set. �
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Chapter 3

Foundations of uniform central limit

theorems; Donsker classes

3.1 De�nitions: convergence in law

Let (S;B; P ) be a probability space, to be called the sample space. Examples to have in mind
for S are Euclidean spaces such as the plane R

2 . To form empirical measures, we'd like to
take variables X1;X2; � � �, i.i.d. with law P . To do this, take a countable product S1 of copies
of (S;B; P ) (RAP, Theorem 8.2.2) and let Xi be the coordinates on the product. A product
may be taken with another probability space. Throughout the rest of these notes, Xi will be
de�ned as such coordinates unless something is said to the contrary. This way of de�ning Xi

will be called the standard model. An example showing that use of the standard model makes
a di�erence will be given at the end of Section 5.3.

Then, we can form the empirical measures Pn := 1
n

Pn
i=1 �Xi , and the empirical process

�n := n1=2(Pn � P ). So Pn is a probability measure on S, de�ned on B and actually on all
subsets of S, for any values of X1; � � � ;Xn. Each �n is a �nite signed measure of total charge
0.

As n ! 1, for any set A 2 B; �n(A) converges in law to a normal law with mean 0 and
variance P (A)(1�P (A)). Next, a general analogue of the Brownian bridge will be de�ned. Let
GP be a Gaussian process indexed by the set L2(P ) of measurable, square-integrable functions
for P , having mean 0 and covariance EGP (f)GP (g) = s fgdP �s fdP s gdP: To see that such
a Gaussian process exists, we need to check that the given covariance is nonnegative de�nite,
which holds since it is just the covariance for P , in other words

EGP (f)GP (g) = (f; g)0;P := CovP (f; g) := s fgdP � s fdP s gdP;
and such a covariance is always nonnegative de�nite.

Let L20(P ) be the set of all functions f 2 L2(P ) such that s fdP = 0: Let L20(P ) be
the set of all equivalence classes of elements of L20(P ) for equality a.s. (P ). On L20(P ), the
covariance for GP reduces to the ordinary L2 semi-inner product. In other words, restricted
to the subspace L20(P ); GP is an isonormal process. Let C be the one-dimensional space of
constant functions c as a subspace of L2(P ). Then GP is 0 on C, while the spaces C and
L20(P ) are orthogonal complements of each other (RAP, Theorem 5.3.8) in L2(P ). For any
f and g in L2(P ) and c 2 R, GP (cf + g) = cGP (f) + GP (g) a.s., since as is easily checked,
GP (cf + g)� cGP (f)�GP (g) has mean and variance both 0.
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Letting �P (f; g) := (E(GP (f) � GP (g))2)1=2 de�nes a pseudo-metric on L2(P ). Then �P
equals the usual L2(P ) pseudometric on L20(P ). Moreover, with respect to the semi-inner
product (�; �)0;P on L2(P ), GP is the isonormal process and �P the usual pseudo-metric. Thus,
the results of Chapter 2 apply to sample continuity of GP with respect to �P .

The Brownian bridge process yt is a special case of the GP process where P is Lebesgue
measure on [0; 1] and yt = GP (1[0;t]); it is easily checked that this has the right covariance.

The Brownian bridge process can be taken to have continuous sample paths, in other
words to be continuous as a function of t for each ! (RAP, Theorem 12.1.5). But GP is not
sample-continuous on the whole space L2(P ). In fact, unless P is concentrated in �nitely many
atoms, the spaces L2(P ) and L20(P ) are in�nite-dimensional, in the sense that they contain
in�nite orthonormal sets, and we saw in Section 2.6 that an isonormal process on an in�nite-
dimensional Hilbert space H is not sample-continuous. We will be concerned then with suitable
subsets of L2(P ). A class F � L2 will be called pregaussian if a GP process (f; !) 7! GP (f)(!)
can be de�ned on some probability space such that for each !; f 7! GP (f)(!) is bounded and
uniformly continuous for �P from F into R.

Given f 2 L2(P ), let �0(f) := f � s fdP . Then �0(f) 2 L20(P ). Given F � L2(P ), let
�0(F) be the set of all functions �0(f); f 2 F . For any f 2 L2(P ); �P (f; �0(f)) = 0; and
GP (f) = GP (�0(f)) a.s. I claim that F is pregaussian if and only if �0(F) is: if �0(F) is
pregaussian, then f 7! GP (�0(f)) has the desired properties on F , while if F is pregaussian,
then for any g 2 �0(F), select arbitrarily (by the axiom of choice!) an fg 2 F with �0(fg) = g.
Then g 7! GP (fg) has the desired properties.

Now recall the de�nitions of GB-set and GC-set from Section 2.5 above. Note that if a set
C in a Hilbert space is a GB-set, then it must be totally bounded by Theorem 2.8. If C is also
a GC-set, then uniformly continuous sample functions of the isonormal process on C must be
bounded. Thus since GP is isonormal on L20(P ), any set G � L20(P ) is pregaussian if and only
if the corresponding set in L20(P ) is a GC-set.

Recall the notion of prelinear function (Lemma 2.14). A GP process Y on a class F �
L2(S;B; P ) for a probability space (S;B; P ) will be called coherent if for each ! 2 S, the
function f 7! Y (f)(!) on F is bounded, �P -uniformly continuous and prelinear.

Theorem 3.1. Let (S;B; P ) be any probability space. Then for any class F � L2(S;B; P ), F
is pregaussian if and only if there exists a coherent GP process on F .

Proof. \If" follows from the de�nition of pregaussian. For the converse, note that �0 above
is linear and GP is isonormal on L20(S;B; P ), and apply Theorem 2.16. �

Now, if a class F � L2(P ) is pregaussian we can ask whether �n converges in distribution,
or in law, to GP with respect to uniform convergence over F . Recall that for random variables
Yn with values in a separable metric space S, convergence in law of Yn to Y0 is de�ned to
mean that Eg(Yn) ! Eg(Y0) as n ! 1 for every bounded continuous function g on S. But
empirical processes, even empirical distribution functions as treated in Chapter 1 above, take
values in nonseparable metric spaces, and for an arbitrary bounded continuous g; g(�n) may
not be measurable. A new de�nition of convergence in law is needed to take care of this non-
measurability. The de�nition will involve the notion of upper integral. Let g be a real-valued,
not necessarily measurable function de�ned on a space X where (X;S; �) is a measure space.
Let R be the set [�1;1] of extended real numbers. Then the upper integral is de�ned by

s� gd� := inffs hd� : h � g; h measurable and R-valuedg,
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which will be unde�ned if there exists a measurable h � g with s hd� = 1�1 unde�ned,
unless there is also a measurable  � g with s  d� = �1, in which case s� gd� will also be
de�ned as �1. There always exists at least one measurable h � g, namely h � +1.

We will be dealing often with compositions of functions. If f is a function whose domain
includes the range of g then either f(g) or f � g will denote the function such that (f � g)(x) �
f(g(x)).

Now here is a de�nition of convergence in law, where only the limit variable necessarily has
a law:

De�nition. (J. Ho�mann-J�rgensen) Let (S; d) be any metric space. Let (
n;An; Qn) be
probability spaces for n = 0; 1; 2; � � � ; and Yn; n � 0, functions from 
n into S. Suppose that
Y0 takes values in some separable subset of S and is measurable for the Borel sets on its range.
Then Yn will be said to converge to Y0 in law as n ! 1, in symbols Yn)Y0, if for every
bounded continuous real-valued function g on S,

s� g(Yn)dQn ! s g(Y0)dQ0 as n!1:

For g bounded, s� g(Yn)dP is always de�ned and �nite. Then, here is a general de�nition
of when the central limit theorem for empirical measures holds with respect to uniform conver-
gence over a class F of functions. The metric space S will be the space `1(F) of all bounded
real-valued functions on F , with metric given by the supremum norm kHkF := supfjH(f)j :
f 2 Fg.
De�nition. Let (
;A; P ) be a probability space and F � L2(P ): Then F will be called a
Donsker class for P , or P -Donsker class, or be said to satisfy the central limit theorem (for
empirical measures) for P , if F is pregaussian for P and �n)GP in `1(F).

Later on, a number of rather large classes F of functions will be seen to be Donsker classes
for various laws P . The next few sections develop some of the needed theory.

3.2 Measurable cover functions

In the last section, convergence in law was de�ned in terms of upper integrals. The notion of
upper integral is related to that of measurable cover. Let (
;A; P ) be a probability space.
Then for a possibly non-measurable set A � 
, a set B is called a measurable cover of A if
A � B; B 2 A, and P (B) = inffP (C) : A � C; C measurableg. If B and C are measurable
covers of the same set A, then clearly so is B\C. It follows that B = C up to a set of measure
0, in other words P (B�C) = 0 where � denotes the symmetric di�erence, or equivalently
P (1B = 1C) = 1.

For any set A � 
 let P �(A) := inffP (B) : B measurable, A � Bg. Then for any
measurable cover B of A, clearly P �(A) = P (B).

Let L0 := L0(
;A; P;R) denote the set of all measurable functions from 
 into R. Then
L0 is a lattice: for any f; g 2 L0; f _ g := max(f; g) and f ^ g := min(f; g) are in L0.
But this L0 is not a vector space since we could have for example f = +1 and g = �1,
so f + g would be unde�ned.

The map y 7! tan�1 y is one-to-one from R onto [��=2; �=2]. Then a metric on R is de�ned
from the usual metric on [��=2; �=2] by �d(x; y) := j tan�1 x� tan�1 yj. On L0 we have the Ky
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Fan metric (RAP, Theorem 9.2.2) de�ned by

d(f; g) := inff" > 0 : P ( �d(f(x); g(x)) > ") � "g:

Then d(f; g) = 0 if and only if P (f = g) = 1.
For any set J � L0(
;A; P;R), a function f 2 L0 is called an essential in�mum of J , or

f := ess.inf J , i� for all j 2 J ; f � j a.s. and for any g 2 L0 such that g � j a.s. for all
j 2 J , we have g � f a.s. If f and g are two essential in�ma of the same set J , then clearly
f = g a.s. A set J of functions will be called a lower semilattice if for any f; g 2 J , we have
min(f; g) 2 J .

Theorem 3.2. For any probability space (
;A; P ) and class J � L0(
;A; P;R), an essential
in�mum of J exists. If for some function f : 
 7! R we have J = fj 2 L0 : j � f
everywhereg, then f� := ess.inf J can be chosen so that f� � f everywhere. Also, s f�dP and
E�f := s� fdP are both de�ned and equal if either of them is well-de�ned (possibly in�nite),
for example if f� is bounded below.

Here f� is called the measurable cover function of f . Recall that in Section 2.5, L(A)� was
the essential supremum of L(x) for x 2 A, and so, the essential in�mum of random variables
Y such that for each x 2 A, Y � L(x) a.s. - a di�erent, although related, notion. If f is real
valued and bounded above by some �nite valued measurable function then f� is a measurable
real-valued function. But whenever there exist non-measurable sets An#; with P �(An) � 1,
as for Lebesgue measure (e.g. RAP, Section 3.4, problem 2), let f := n on An nAn+1. Then f
is real valued but f� = +1 a.s.

The next two lemmas on measurable cover functions are basic.

Lemma 3.3. For any two functions f; g : 
 7! (�1;1], we have
(a) (f + g)� � f� + g� a.s., and
(b) (f � g)� � f� � g� whenever both sides are de�ned a.s.

Lemma 3.4. Let S be a vector space with a seminorm k:k. Then for any two functions X;Y
from 
 into S, kX + Y k� � (kXk+ kY k)� � kXk� + kY k� a.s. and kcXk� = jcjkXk� a.s. for
any real c.

Proof. The �rst inequality is clear, the second follows from Lemma 3.3 and the equation is
clear (for c = 0 and c 6= 0). �

Next, in some cases of independence, the upper-star operation can be distributed over
products or sums.

Lemma 3.5. Let (
j;Aj ; Pj); j = 1; � � � ; n; be any n probability spaces. Let fj be functions
from 
j into R. Suppose either
(a) fj � 0; j = 1; � � � ; n; or
(b) f1 � 1 and n = 2.

Then on the Cartesian product �n
j=1(
j ;Aj; Pj), if x := (x1; � � � ; xn) and we have f(x) :=

�n
j=1fj(xj), then f�(x) = �n

j=1f
�
j (xj) a.s., where 0:1 is set equal to 0.

(c) Or, if fj(xj) > �1 for all xj ; j = 1; � � � ; n; and g(x1; � � � ; xn) := f1(x1) + � � � + fn(xn),
then g�(x1; � � � ; xn) = f�1 (x1) + � � � + f�n(xn) a.s.
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For the next fact here is some notation: given two functions f; g and a �-algebra S on the
range of f , let (f; g)(x) := (f(x); g(x)) and f�1(S) := ff�1(A) : A 2 Sg.
Lemma 3.6. Let (
;A; P ) = �3

i=1(
i;Si; Pi) with coordinate projections �i: �i(x1; x2; x3)
:= xi; i = 1; 2; 3: Let S1 
S2 denote the product �-algebra on 
1 �
2. Then for any bounded
real function f on 
1�
3 and g(x1; x2; x3) := f(x1; x3), conditional expectations of g� satisfy

E(g�j(�1;�2)
�1(S1 
 S2)) = E(g�j��1(S1)) a.s. for P:

Lemma 3.7. Let X be a real-valued function on a probability space (
;A; P ) . Then for any
t 2 R,
(a) P �(X > t) = P (X� > t).
(b) For any " > 0; P �(X � t) � P (X� � t) � P �(X � t� ").

Let (
;A; P ) be a probability space. For a function f from 
 into [�1;1] let s� fdP :=
supfs gdP : g measurable, g � fg. Let f� be the essential supremum of all measurable
functions g � f . Then just as for f�; f� is well-de�ned up to a.s equality and s� fdP = s f�dP
whenever either side is de�ned, as in Theorem 3.2.

It's easy to check that f� = �((�f)�) and that s� fdP = �(s��fdP ). So the convergence
in law Yn)Y0 as de�ned in Section 3.1 implies that s� g(Yn)dQn ! s g(Y0)dQ0.

Next, here is a one-sided Tonelli-Fubini theorem for starred functions:

Theorem 3.8. Let (X;A; P ) � (Y;B; Q) be a product of two probability spaces. For a real-
valued function f � 0 on X � Y , de�ne f� with respect to P � Q. For each x 2 X let
(E�2f)(x) := s� f(x; y)dQ(y). Then

E�1E
�
2f(x; y) � s f�(x; y)d(P �Q)(x; y); (3.1)

where E�1 = E� with respect to P . Also, if Q is purely atomic, so that
P

j Q(fyjg) = 1 for
some yj 2 Y , and E2(�) := s � dQ, then

E�1E2f(X;Y ) � E�f(X;Y ) = E2E
�
1f(X;Y ): (3.2)

We also have a one-sided monotone convergence theorem with stars:

Theorem 3.9. Let (
;A; P ) be a probability space and let fj be real-valued functions on 

such that fj " f , i.e. fj(x) " f(x) for all x 2 
. If E�f1 > �1 then E�fj " E�f as j !1.

Note that there exist subsets Aj := A(j) of [0; 1] with outer measure ��(Aj) = 1 for all
j and Aj#; (RAP, Problem 3.4.2). Letting fj := 1A(j), we have fj#0, and E�fj = 1 for all
j, so that the monotone convergence theorem fails for E� for decreasing sequences. Next is a
Fatou lemma with stars.

Theorem 3.10. Let (
;A; P ) be a probability space and fj any nonnegative real-valued func-
tions on 
. Then

E� lim infj!1 fj � lim infj!1E
�fj:
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3.3 Almost uniform convergence and convergence in outer pro-

bability

In Section 3.1, the de�nition of convergence of laws was adapted to de�ne convergence in law
for random elements which may not have laws de�ned. In this section the same will be done
for convergence in probability and almost sure convergence.

Let (
;A; P ) be a probability space, (S; d) a metric space, and fn functions from 
 into
S. Then fn will be said to converge to f0 in outer probability if d(fn; f0)

� ! 0 in probability
as n!1, or equivalently, by Lemma 3.7, for every " > 0; P �fd(fn; f0) > "g ! 0 as n!1.
Also, fn is said to converge to f0 almost uniformly if as n!1; d(fn; f0)

� ! 0 almost surely.
The following is immediate:

Proposition 3.11. Almost uniform convergence always implies convergence in outer proba-
bility.

If fn are all measurable functions, then clearly convergence in outer probability is equivalent
to the usual convergence in probability, and almost uniform convergence to almost sure con-
vergence. Now some de�nitions will be given for Glivenko-Cantelli properties, which are laws
of large numbers for empirical measures.

De�nition. If (X;A; P ) is a probability space and F is a class of integrable real-valued
functions, F � L1(X;A;P ), then F will be called a strong (resp. weak) Glivenko-Cantelli class
for P i� as n!1; kPn � PkF ! 0 almost uniformly (resp. in outer probability).

In the following Proposition, part (C) is usually called \Egorov's theorem" for almost surely
convergent sequences of measurable functions (RAP, Theorem 7.5.1).

Proposition 3.12. Let (
;A; P ) be a probability space, (S; d) a metric space, and fn any
functions from 
 into S for n = 0; 1; � � � : Then the following are equivalent:
(A) fn ! f0 almost uniformly;
(B) For any " > 0; P �fsupn�m d(fn; f0) > "g#0 as m!1.
(C) For any � > 0 there is some B 2 A with P (B) > 1� � such that fn ! f0 uniformly on B.
(D) There exist measurable hn � d(fn; f0) with hn ! 0 a.s.

Example. In [0; 1] with Lebesgue measure P let A1 � A2 � � � � be sets with P �(An) = 1
and

T1
n=1An = ; (e.g. RAP, Section 3.4, problem 2; Cohn, 1980, p. 35). Then 1An ! 0

everywhere and, in that sense, almost surely, but not almost uniformly. Note also that 1An
doesn't converge to 0 in law as de�ned in Section 3.1. To avoid such pathology, almost uniform
convergence is helpful.

Proposition 3.13. Let (S; d) and (Y; e) be two metric spaces and (
;A; P ) a probability
space. Let fn be functions from 
 into S for n = 1; 2; � � � ; such that fn ! f0 in outer
probability as n ! 1. Assume that f0 has separable range and is measurable (for the Borel
�-algebra on S). Let g be a continuous function from S into Y . Then g(fn) ! g(f0) in outer
probability.

Note. If s G(f0)dP is de�ned for all bounded continuous real G (as it must be if fn)f0, by
de�nition) then the image measure P �f�10 is de�ned on all Borel subsets of S (RAP, Theorem
7.1.1). Such a law does have a separable support except perhaps in some set-theoretically
pathological cases (Appendix C).
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Lemma 3.14. Let (
;A; P ) be a probability space and fgng1n=0 a uniformly bounded sequence
of real-valued functions on 
 such that g0 is measurable. If gn ! g0 in outer probability then
lim supn!1 s� gndP � s g0dP:

On any metric space, the �-algebra will be the Borel �-algebra unless something is said to
the contrary.

Corollary 3.15. If fn are functions from a probability space into a metric space, fn ! f0 in
outer probability and f0 is measurable with separable range, then fn)f0.

Proof. Apply Proposition 3.13 to g = G for any bounded continuous G and Lemma 3.14. �

3.4 Perfect functions

For a function g de�ned on a set A let g[A] := fg(x) : x 2 Ag. It will be useful that under
some conditions on a measurable function g and general real-valued f; (f � g)� = f� � g. Here
are some equivalent conditions (cf. Andersen, 1985b, Sec. II.2):

Theorem 3.16. Let (X;A; P ) be a probability space, (Y;B) any measurable space, and g a
measurable function from X to Y . Let Q be the restriction of P �g�1 to B. For any real-valued
function f on Y , de�ne f� for Q. Then the following are equivalent:
(a) For any A 2 A there is a B 2 B with B � g[A] and Q(B) � P (A);
(b) For any A 2 A with P (A) > 0 there is a B 2 B with B � g[A] and Q(B) > 0;
(c) For every real function f on Y; (f � g)� = f� � g a.s.;
(d) For any D � Y; (1D � g)� = 1�D � g a.s.

Note. In (a) or (b), if the direct image g[A] 2 B, we could just set B := g[A]. But, for any
uncountable complete separable metric space Y , there exists a complete separable metric space
S (for example, a countable product N1 of copies of N) and a continuous function f from S
into Y such that f [B] is not a Borel set in Y (RAP, Theorem 13.2.1, Proposition 13.2.5). If f
is only required to be Borel measurable, then S can also be any uncountable complete metric
space (RAP, Theorem 13.1.1).

A function g satisfying any of the four conditions in Theorem 3.16 will be called perfect or
P-perfect. Coordinate projections on a product space are, as one would hope, perfect:

Proposition 3.17. Suppose A = X�Y; P is a product probability v�m, and g is the natural
projection of A onto Y . Then g is P -perfect.

Theorem 3.18. Let (
;A; P ) be a probability space and (S; d) a metric space. Suppose that
for n = 0; 1; � � � ; (Yn;Bn) is a measurable space, gn a perfect measurable function from 
 into
Yn, and fn a function from Yn into S, where f0 has separable range and is measurable. Let
Qn := P � g�1n on Bn and suppose fn � gn ! f0 � g0 in outer probability as n ! 1. Then
fn ) f0 as n!1 for fn on (Yn;Bn; Qn).

Here is a related example:

Proposition 3.19. Theorem 3.18 can fail without the hypothesis that gn be perfect.
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Proof. Let C � I := [0; 1] satisfy 0 = ��(C) < ��(C) = 1 for Lebesgue measure � (RAP,
Theorem 3.4.4). Let P = ��, giving a probability measure on the Borel sets of C (RAP,
Theorem 3.3.6). Let 
 = C; f0 � 0; Yn = I; fn := 1InC , and let gn be the identity from C
into Yn for all n. Then fn � gn � 0 for all n, so fn � gn ! f0 � g0 in outer probability (and in
any other sense). Let Bn be the Borel �-algebra on Yn = I for each n. Let G be the identity
from I into R. Then s�G(fn)dQn = s� fnd� = 1 for n � 1, while s G(f0)dQ0 = 0, so fn does
not converge to f0 in law. �

From Theorem 3.18, it follows that the gn in the last proof are not perfect, as can also be
seen directly, from condition (c) or (d) in Theorem 3.16.)

In Proposition 3.17, X�Y could be an arbitrary product probability space, but projection
is a rather special function. The following fact will say that all measurable functions on
reasonable domain spaces are perfect.

Recall that a metric space (S; d) is called universally measurable (u.m.) if for every law P
on the completion of S; S is measurable for the completion of P (RAP, Section 11.5). So any
complete metric space, or any Borel set in its completion, is u.m.

Theorem 3.20. Let (S; d) be a u.m. separable metric space. Let P be a probability measure
on the Borel �-algebra of S. Then any Borel measurable function g from S into a separable
metric space Y is perfect for P .

Note. In view of Appendix C below the hypothesis that S be separable is not very restrictive.

3.5 Almost surely convergent realizations

First let's recall a theorem of Skorohod (RAP, Theorem 11.7.2): if (S; d) is a complete separable
metric space, and Pn are laws on S converging to a law P0, then on some probability space
there exist S-valued measurable functions Xn such that L(Xn) = Pn for all n and Xn ! X0

almost surely. This section will give an extension of Skorohod's theorem to our current setup.
Having almost uniformly convergent realizations shows that the de�nition of convergence

in law for random elements is reasonable and is useful in some proofs on convergence in law.
Suppose fn ) f0 where fn are random elements, in other words functions not necessarily

measurable except for n = 0, de�ned on some probability spaces (
n; Qn) into a possibly
nonseparable metric space S. We want to �nd random elements Yn \having the same laws"
as fn for each n such that Yn ! Y0 almost surely or better, almost uniformly. At �rst look
it isn't clear what \having the same laws" should mean for random elements fn; n � 1, not
having laws de�ned on any non-trivial �-algebra . A way that turns out to work is to de�ne
Yn = fn � gn where gn are functions from some other probability space 
 with probability
measure Q into 
n such that each gn is measurable and Q � g�1n = Qn for each n. Thus the
argument of fn will have the same law Qn as before. It turns out moreover that the gn should
be not only measurable but perfect.

Before stating the theorem, here is an example to show that there may really be no way
to de�ne a �-algebra on S on which laws could be de�ned and yield an equivalence as in the
next theorem, even if S is a �nite set.

Example. Let (Xn;An; Qn) = ([0; 1];B; �) for all n (� = Lebesgue measure, B = Borel
�-algebra ). Take sets C(n) � [0; 1] with 0 = ��(C(n)) < ��(C(n)) = 1=n2 (RAP, Theorem
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3.4.4). Let S be the two-point space f0; 1g with usual metric. Then fn := 1C(n) ! 0 in law
and almost uniformly, but each \law" �n := Qn � f�1n is only de�ned on the trivial �-algebra
f;; Sg. The only larger �-algebra on S is 2S , but no �n for n � 1 is de�ned on 2S .

Theorem 3.21. Let (S; d) be any metric space, (Xn;An; Qn) any probability spaces, and fn
a function from Xn into S for each n = 0; 1; � � � : Suppose f0 has separable range S0 and
is measurable (for the Borel �-algebra on S0). Then fn ) f0 if and only if there exists a
probability space (
;S; Q) and perfect measurable functions gn from (
;S) to (Xn;An) for
each n = 0; 1; � � � ; such that Q � g�1n = Qn on An for each n and fn � gn ! f0 � g0 almost
uniformly as n!1.

Notes. Proposition 3.19 and the \if and only if" in Theorem 3.21 show that the hypothesis
that gn be perfect can't just be dropped from the Theorem. \If" follows from Proposition 3.11
and Theorem 3.18. \Only if" can be proved very much as in RAP (Theorem 11.7.2).

3.6 Conditions equivalent to convergence in law

Conditions equivalent to convergence of laws on separable metric spaces are given in the port-
manteau theorem (RAP, Theorem 11.1.1) and metrization theorem (RAP, Theorem 11.3.3).
Here, the conditions will be extended to general random elements for the theory being presented
in this chapter.

For any probability space (
;A; P ) and real-valued function f on 
 let E�f := s� fdP
and E�f := s� fdP . If (S; d) is a metric space and f is a real-valued function on S, recall
(RAP, Section 11.2) that the Lipschitz seminorm of f is de�ned by

kfkL := supfjf(x)� f(y)j=d(x; y) : x 6= yg

and f is called a Lipschitz function if kfkL < 1. The bounded Lipschitz norm is de�ned by
kfkBL := kfkL + kfk1 where kfk1 := supx jf(x)j. Then f is called a bounded Lipschitz
function if kfkBL <1, and k:kBL is a norm on the space of all such functions.

The extended portmanteau theorem about to be stated is an adaptation of RAP, Theorem
11.1.1 and some further facts based on the last section (Theorem 3.21), cf. Andersen and Dobri�c
(1987), Remark 2.13.

Theorem 3.22. Let (S; d) be any metric space. For n = 0; 1; 2; � � � ; let (Xn;An; Qn) be a
probability space and fn a function from Xn into S. Suppose f0 has separable range S0 and is
measurable. Let P := Q0 � f�10 on S. Then the following are equivalent:

(a) fn)f0;

(a0) lim supn!1E
�G(fn) � EG(f0) for all bounded continuous real-valued G on S;

(b) E�G(fn) ! EG(f0) as n!1 for every bounded Lipschitz function G on S;

(b0) (a0) holds for all bounded Lipschitz G on S;

(c) supfjE�G(fn)�EG(f0)j : kGkBL � 1g ! 0 as n!1;

(d) For any closed F � S; P (F ) � lim supn!1Q
�
n(fn 2 F );

(e) For any open U � S; P (U) � lim infn!1(Qn)�(fn 2 U);

(f) For any continuity set A of P in S; Q�n(fn 2 A) ! P (A) and (Qn)�(fn 2 A) ! P (A) as
n!1;
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(g) There exist a probability space (
;S; Q) and measurable functions gn from 
 into Xn and
hn from 
 into S such that the gn are perfect, Q � g�1n = Qn and Q � h�1n = P for all n, and
d(fn � gn; hn) ! 0 almost uniformly.

Moreover, (g) remains equivalent if any of the following changes are made in it: \almost
uniformly" can be replaced by \in outer probability"; we can take take hn = f0 � n for some
measurable functions n from 
 into X0, which can be taken to be perfect; and we can take n
to be all the same, n � 1 for all n.

It will be seen that convergence in law is also equivalent to convergence in some analogues
of the Prohorov and dual-bounded-Lipschitz metrics which metrize convergence of laws on
separable metric spaces as shown in RAP, Theorem 11.3.3. We will have analogues of metrics,
rather than actual metrics, because of the non-symmetry between the non-measurable random
elements fn and limiting measurable random variable f0.

De�nitions. Let (Xm;Am; Qm) be probability spaces, m = 0; 1, and (S; d) a metric space.
Let fm be functions from Xm into S; m = 0; 1; such that f0 is measurable and has separable
range. Let P := Q0 � f�10 . Then let

�(f1; f0) := supfjE�G(f1)�EG(f0)j : kGkBL � 1g; and

�(f1; f0) := inff" > 0 :

P (F ) � (Q1)�(f1 2 F ") + " for every non-empty closed set F � Sg:
Theorem 3.23. For any metric space (S; d), probability spaces (Xm;Am; Qm) and functions
fm from Xm into S, where f0 has separable range and is measurable, the following are equiv-
alent:
(i) fm)f0;
(ii) �(fm; f0) ! 0 as m!1;
(iii) �(fm; f0) ! 0 as m!1.

Next is a version of Theorem 3.23 where we have two indices.

Theorem 3.24. Let (S; d) be a metric space and (
;S; Q) a probability space. Suppose that
for each m;n = 1; 2; � � � ; fmn is a function from 
 into S, and f0 is a measurable function
from 
 into S with separable range. Then the following are equivalent:
(i) fm;n ) f0, i.e. for every bounded continuous real function G on S,

s�G(fm;n)dQ! s G(f0)dQ as m;n!1;

(ii) �(fmn; f0) ! 0 as m;n!1;
(iii) �(fmn; f0) ! 0 as m;n!1.

We have the following;

Theorem 3.25. Continuous mapping theorem. Under the conditions of Theorem 3.23, if
(T; e) is another metric space, G is a continuous function from S into T , and fm ) f0, then
G(fm) ) G(f0):

Proof. This follows directly from the de�nition of convergence in law ). �

We also have
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Theorem 3.26. Suppose fm; m � 0, are measurable random variables taking values in a sep-
arable metric space S, so that laws L(fm) exist on the Borel �-algebra of S. Then convergence
fm ) f0 is equivalent to convergence of the laws L(fm) ! L(f0) in the usual sense.

Proof. For any bounded continuous real-valued function G on S, the functions G(fm) are
measurable, so upper integrals reduce to integrals, and the result follows from the de�nitions.
�

3.7 Asymptotic equicontinuity and Donsker classes

Recall from Section 3.1 the de�nitions of the empirical measures Pn, empirical process �n,
pseudo-metric �P and the Gaussian process GP . Recall that a set F � L2(P ) is called pre-
gaussian if a GP process restricted to F exists whose sample functions f 7! GP (f)(!) are
(almost) all bounded and uniformly continuous for �P on F . Recall that such a GP process is
called coherent if in addition, its sample functions are prelinear on F as in Lemma 2.14.

Proposition 3.27. For any probability measure P and pregaussian set F � L2(P ), the sym-
metric convex hull sco(F) of F is also pregaussian and there exists a GP process de�ned on
the linear span of F and constant functions which is 0 on the constant functions and coherent
on sco(F).

Proof. A GP process is isonormal on the space L2(P ) for the semi-inner product (f; g)0;P :=
P (fg) � PfPg, and GP is 0 on constant functions. So Theorem 2.16 on isonormal processes
applies and gives the result. �

For a signed measure � and measurable function f such that s fd� is de�ned, let �(f) :=
s fd�.

A class F of functions will be said to satisfy the asymptotic equicontinuity condition for P
and a pseudometric � on F , or F 2 AEC(P; �) for short, if for every " > 0 there is a � > 0
and an n0 large enough such that for n � n0,

Pr�fsupfj�n(f � g)j : f; g 2 F ; �(f; g) < �g > "g < ":

Then F 2 AEC(P ) will mean F 2 AEC(P; �P ):

Theorem 3.28. Let F � L2(X;A; P ). Then the following are equivalent:
(I) F is a Donsker class for P , in other words F is P -pregaussian and �n)GP in `1(F);
(II) (a) F is totally bounded for �P and (b) F satis�es the asymptotic equicontinuity condition
for P , F 2 AEC(P );
(III) There is a pseudometric � on F such that F is totally bounded for � and F 2 AEC(P; �).

3.8 Unions of Donsker classes

The union of any two Donsker classes F and G is a Donsker class. This is not surprising: one
might think it was enough, given the asymptotic equicontinuity conditions for the separate
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classes, for a given " > 0, to take the larger of the two n0's and the smaller of the two �'s.
But it is not so easy as that. For example, F and G could both be �nite sets, with distinct
elements of F at distance, say, more than 0:2 apart for �P , and likewise for G, but there may
be some element of F very close to an element of G. So the equicontinuity condition on the
union won't just follow from the conditions on the separate families.

Theorem 3.29. (K. Alexander) Let (
;A; P ) be a probability space and let F1 and F2 be two
Donsker classes for P . Then F := F1 [ F2 is also a Donsker class for P .

3.9 Sequences of sets and functions

Theorem 3.30. Let (X;A; P ) be a probability space and fCmgm�1 a sequence of measurable
sets. If

1X
m=1

(P (Cm)(1 � P (Cm)))r <1 for some r <1; (3.3)

then the sequence fCmgm�1 is a Donsker class for P . Conversely, if the sets Cm are indepen-
dent for P , then the sequence is a Donsker class only if (3.3) holds.

Next, let's consider sequences of functions. For a probability space (A;A; P ) and f 2
L2(A;A; P ) let �2P (f) := s f2dP � (s fdP )2 (the variance of f). Here is a su�cient condition
for the Donsker property of a sequence ffmg which is easy to prove, yet turns out to be optimal
of its kind:

Theorem 3.31. If ffmgm�1 � L2(P ) and
P1

m=1 �
2
P (fm) < 1, then ffmgm�1 is a Donsker

class for P .

The following shows that Theorem 3.31, although it does not imply the �rst half of Theorem
3.30, is sharp in one sense:

Proposition 3.32. Let A := [0; 1] and P := U [0; 1] := Lebesgue measure on A. Let am > 0
satisfy

P1
m=1 am = +1. Then there is a sequence ffmg � L2(A;A; P ) with �2P (fm) � am for

all m where ffmg is not a Donsker class.

REFERENCES FOR CHAPTER 3

Alexander, K. S. (1987). The central limit theorem for empirical processes on Vapnik-
�Cervonenkis classes. Ann. Probab. 15, 178-203.

Andersen, Niels Trolle (1985a). The central limit theorem for non-separable valued func-
tions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 70, 445-455.

Andersen, N. T. (1985b). The calculus of non-measurable functions and sets. Various Publ.
Ser. no. 36, Matematisk Institut, Aarhus Universitet.

Andersen, N. T., and Dobri�c, V. (1987). The central limit theorem for stochastic processes.
Ann. Probab. 15, 164-177.

Andersen, N. T., and Dobri�c, V. (1988). The central limit theorem for stochastic processes
II. J. Theoret. Probab. 1, 287-303.

Bauer, H. (1981). Probability Theory and Elements of Measure Theory, 2d. ed. Academic
Press, London.

51



Blumberg, Henry (1935). The measurable boundaries of an arbitary function. Acta Math.
(Uppsala) 65, 263-282.

Cohn, D. L. (1980). Measure Theory. Birkh�auser, Boston.

Dudley, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces
and empirical measures on Euclidean spaces. Illinois J. Math. 10, 109-126.

Dudley, R. M. (1967). Measures on non-separable metric spaces. Illinois J. Math. 11,
449-453.

Dudley, R. M. (1968). Distances of probability measures and random variables. Ann.
Math. Statist. 39, 1563-1572.

Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6,
899-929; Correction 7 (1979) 909-911.

Dudley, R. M. (1981). Donsker classes of functions. In Statistics and Related Topics (Proc.
Symp. Ottawa, 1980), North-Holland, New York, 341-352.

Dudley, R. M. (1984). A course on empirical processes. �Ecole d'�et�e de probabilit�es de
St.-Flour, 1982. Lecture Notes in Math. (Springer) 1097, 1-142.

Dudley, R. M. (1985). An extended Wichura theorem, de�nitions of Donsker class, and
weighted empirical distributions. In Probability in Banach Spaces V (Proc. Conf. Medford,
1984), Lecture Notes in Math. (Springer) 1153, 141-178.

Dudley, R. M. (1990). Nonlinear functionals of empirical measures and the bootstrap. In
Probability in Banach Spaces 7, Proc. Conf. Oberwolfach, 1988, Progress in Probability 21,
Birkh�auser, Boston, 63-82.

Dudley, R. M. (1994). Metric marginal problems for set-valued or non-measurable variables.
Probability Theory and Related Fields 100, 175-189.

Dudley, R. M., and Philipp, Walter (1983). Invariance principles for sums of Banach space
valued random elements and empirical processes. Z. Wahrschinlichkeitstheorie verw. Gebiete
62, 509-552.

Eames, W., and May, L. E. (1967). Measurable cover functions. Canad. Math. Bull. 10,
519-523.

Er�sov, M. P. (1975). The Choquet theorem and stochastic equations. Analysis Math. 1,
259-271.

Gin�e, E., and J. Zinn (1986). Lectures on the central limit theorem for empirical pro-
cesses. In Probability and Banach Spaces, Proc. Conf. Zaragoza, 1985, Lecture Notes in Math.
(Springer) 1221, 50-113.

Gnedenko, B. V., and Kolmogorov, A. N. (1949). Limit Distributions for Sums of Indepen-
dent Random Variables. Moscow. Transl. and ed. by K. L. Chung, Addison-Wesley, Reading,
Mass., 1954, rev. ed. 1968.

Go�man, C., and Zink, R. E. (1960). Concerning the measurable boundaries of a real
function. Fund. Math. 48, 105-111.

Ho�mann-J�rgensen, J�rgen (1984). Stochastic processes on Polish spaces. Published
(1991): Various Publication Series no. 39, Matematisk Institut, Aarhus Universitet (278 pp.).

Ho�mann-J�rgensen, J�rgen (1985). The law of large numbers for non-measurable and
non-separable random elements. Ast�erisque 131, 299-356.

Luxemburg, W. A. J., and Zaanen, A. C. (1983). Riesz Spaces, vol. 2, North-Holland,
Amsterdam.

Pachl, Jan K. (1979). Two classes of measures. Colloq. Math. 42, 331-340.

Ryll-Nardzewski, C. (1953). On quasi-compact measures. Fund.

52



Math. 40, 125-130.
Sazonov, V. V. (1962). On perfect measures (in Russian). Izv. Akad. Nauk SSSR 26,

391-414.
Skorohod, Anatolii Vladimirovich (1956). Limit theorems for stochastic processes. Theor.

Probab. Appl. 1, 261-290.
Skorohod, A. V. (1976). On a representation of random variables. Theor. Probab. Appl.

21, 628-632 (English), 645-648 (Russian).
Tops�e, Flemming (1970). Topology and Measure. Lecture Notes in Math. (Springer) 133.
van der Vaart, Aad (1996). New Donsker classes. Ann. Probab. 24, 2128-2140.
Vulikh, B. Z. (1961). Introduction to the Theory of Partially Ordered Spaces (transl. by L.

F. Boron, 1967). Wolters-Noordho�, Groningen.
Wichura, Michael J. (1970). On the construction of almost uniformly convergent random

variables with given weakly convergent image laws. Ann. Math. Statist. 41, 284-291.

53



Chapter 4

Vapnik-�Cervonenkis combinatorics

This chapter will treat some classes of sets satisfying a combinatorial condition. In Chapter
6, it will be seen that under a mild measurability condition to be treated in Chapter 5, these
classes have the Donsker property, for all probability measures P on the sample space, and
satisfy a law of large numbers (Glivenko-Cantelli property) uniformly in P . Moreover, for either
of these limit-theorem properties of a class of sets (without assuming any measurability), the
Vapnik-�Cervonenkis property is necessary (Section 6.4).

The present chapter will be self-contained, not depending on anything earlier in these notes,
except in some examples.

4.1 Vapnik-�Cervonenkis classes

Let X be any set and C a collection of subsets of X. For A � X let CA := C u A := A u C :=
fC \ A : C 2 Cg. Let card(A) := jAj denote the cardinality (number of elements) of A and
2A := fB : B � Ag. Let �C(A) := jCAj. If A u C = 2A, then C is said to shatter A. If A is
�nite, then C shatters A if and only if �C(A) = 2jAj.

Let mC(n) := maxf�C(F ) : F � X; jF j = ng for n = 0; 1; :::, or if jXj < n let
mC(n) := mC(jXj). Then mC(n) � 2n for all n. Let

V (C) := inffn : mC(n) < 2ng; if this is �nite,

+1; if mC(n) = 2n for all n,

S(C) := supfn : mC(n) = 2ng;
�1; if C is empty.

Then S(C) � V (C) � 1, and S(C) is the largest cardinality of a set shattered by C, or +1
if arbitarily large �nite sets are shattered. So, V (C) is the smallest n such that no set of
cardinality n is shattered by C. If V (C) <1, or equivalently if S(C) < 1; C will be called a
Vapnik- �Cervonenkis class or VC class.

If X is �nite, with n elements, then clearly 2X is a VC class, with S(2X ) = n. Let

NC�k :=
Pk

j=0(
N
j ), where

(Nj ) := N !=(j!(N � j)!); j = 0; 1; :::; N;

0; j > N:
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Then NC�k is the number of combinations of N things, at most k at a time. (In an older
notation NCk := (Nk ).) \Pascal's triangle" of identities for binomial coe�cients extends to the

NC�k:

Proposition 4.1. NC�k = N�1C�k + N�1C�k�1 for k = 1; 2; � � � ; and N = 1; 2; � � � :

For a non-VC class C we have mC(n) = 2n for all n. For a VC class, the next fact,
which is fundamental in the Vapnik-�Cervonenkis theory, will imply that mC(n) only grows as
a polynomial rather than exponentially in n.

Theorem 4.2. Sauer's Lemma. If mC(n) > nC�k�1, where k � 1, then mC(k) = 2k. Hence
if S(C) <1, then mC(n) � nC�S(C) for all n.

For �xed k; nC�k is easily seen to be a polynomial in n of degree k, with leading term
nk=k!. Thus, the next fact is not far from optimal:

Proposition 4.3. For any nonnegative integers n and k with n � k + 2, nC�k � 1:5nk=k!.

Theorem 4.2 and Proposition 4.3 give mC(n) � 1:5nk=k! for n � k + 2 where k := S(C).

To see that Theorem 4.2 is sharp, let X be an in�nite set and C the collection of all subsets
of X with cardinality k. Then S(C) = k and the inequality in the second sentence of the
theorem becomes an equality for all n.

Let dens(C) be de�ned, following P. Assouad (1983), as

inffr > 0 : for some K <1; mC(n) � Knr for all n � 1g:

Then we have

Corollary 4.4. For any set X and C � 2X , dens(C) � S(C). Conversely if dens(C) < 1
then S(C) <1.

Note that S(C) can be determined by one large shattered set while dens(C) has to do with
the behavior of C on arbitrarily large �nite sets. For example if X is a set with card(X) = n
and C = 2X then S(C) = n while dens(C) = 0.

For any set X, it is immediate that if C � D � 2X then S(C) � S(D) and dens(C) �
dens(D).

The following is straightforward since for any set X, the map A 7! X nA is one-to-one from
2X onto itself, and for any A;B;C � X; A\B 6= C\B if and only if (X nA)\B 6= (X nC)\B:

Proposition 4.5. If X is any set, C � 2X and D := fX n A : A 2 Cg then for all B � X,
�C(B) = �D(B), so mC(n) = mD(n) for all n, S(D) = S(C) and dens(D) =dens(C).

4.2 Generating Vapnik-�Cervonenkis classes

Let's begin with some examples of non-VC classes for which some limit theorems for empirical
measures will fail.

First, let X = [0; 1] and let C be the class of all �nite subsets of X. Let P be the uniform
(Lebesgue) law on [0; 1]. Clearly, S(C) = +1, and C is not a VC class. Also, for any possible
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value of Pn, we will have Pn(A) = 1 for some A = fX1; � � � ; Xng 2 C while P (A) = 0. Thus
supA2C(Pn � P )(A) = 1 for all n, so C is not a Glivenko-Cantelli class for P , in other words

kPn � PkC := sup
A2C

j(Pn � P )(A)j

doesn't approach 0 as n ! 1 in any sense, e.g. in outer probability, since it is identically 1.
It follows that C is also not a Donsker class for P .

Note that all functions 1A for A 2 C equal 0 almost surely for P . Thus, the whole class
F := f1A : A 2 Cg reduces to the one point 0 in the space L2(P ) of equivalence classes
for equality almost everywhere of functions in L2(P ), that is, measurable, square-integrable
functions. Thus for purposes of empirical processes, functions equal a.s. P are not the same
and we need to deal with classes F � L2(P ) of actual real-valued functions, not equivalence
classes. Then, the integral s fd(Pn � P ) will be well-de�ned for any f 2 L2(P ). This integral
is linear in f and thus prelinear for f 2 F for any set F � L2(P ). For the empirical process
�n = n1=2(Pn � P ) we will not be taking versions or modi�cations as was done for Gaussian
processes (Appendix I).

Next, let C2 be the collection of all closed, convex subsets of R2 . Let S1 be the unit circle
f(x; y) : x2 + y2 = 1g. For any �nite subset F of S1, the convex polygon with vertices in F
(a singleton if jF j = 1, or a line segment if jF j = 2) is in C2 and its intersection with S1 is F .
Thus S(C) = +1 and C is not a VC class. Let P be the uniform law dP (�) = 2�=(2�) on S1.
Then the Glivenko-Cantelli and Donsker properties fail for P just as in the previous example.

Classes with S(C) �nite, in other words Vapnik-�Cervonenkis classes, can be formed in
various ways. Here is one. Let G be a collection of real-valued functions on a set X. Let

pos(g) := fx : g(x) > 0g; nn(g) := fx : g(x) � 0g; g 2 G;

pos(G) := fpos(g) : g 2 Gg; nn(G) := fnn(g) : g 2 Gg;
U(G) := pos(G) [ nn(G):

Theorem 4.6. Let H be an m-dimensional real vector space of functions on a set X, f any
real function on X, and H1 := ff + h : h 2 Hg. Then S(pos(H1)) = S(nn(H1)) = m. If H
contains the constants then also S(U(H1)) = m.

Examples. (I) Let H := Pd;k be the space of all polynomials of degree at most k on R
d .

Then for each d and k, H is a �nite-dimensional vector space of functions, so pos(H) is a
Vapnik-�Cervonenkis class. For k = 2, it follows speci�cally that the set of all ellipsoids in R

d

is included in a Vapnik-�Cervonenkis class and thus is one.
(II) Let X = R. Let H be the 1-dimensional space of linear functions f(x) = cx; x 2 R; c 2 R.
Then S(pos(H)) = S(nn(H)) = 1 by Theorem 4.6, but U(H) shatters f0; 1g. Since sets in
U(H) are convex (half-lines), it follows that S(U(H)) = 2. So the condition that H contains
the constants can't just be dropped from Theorem 4.6 for U(H).

Let X be a real vector space of dimension m. Let H be the space of all real a�ne functions
on X, in other words functions of the form h+c where h is real linear and c is any real constant.
Then H has dimension m+1 and pos(H) is the set of all open half-spaces of X. Letting f = 0
in Theorem 4.6 for this H gives a special case known as Radon's Theorem. On the other hand,
Theorem 4.6 for f = 0 with general X and H follows from Radon's theorem via the following
stability fact.
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Theorem 4.7. If X and Y are sets, F is a function from X into Y , C � 2Y , and F�1(C) :=
fF�1(A) : A 2 Cg, then S(F�1(C)) � S(C). If F is onto Y then S(F�1(C)) = S(C).

Now let X be any set and G a �nite-dimensional real vector space of real functions on X.
Then there is a natural map F : x 7! �x from X into the space of linear functions on G.
Then by Theorem 4.7 one could deduce Theorem 4.6 from its special case where X is an m-
or (m + 1)-dimensional real vector space and f and all functions in H are a�ne, so that sets
in pos(H1) are open half-spaces.

Next it will be seen that a bounded number of Boolean operations preserves the Vapnik-
�Cervonenkis property.

Theorem 4.8. Let X be a set, C � 2X , and for k = 1; 2; :::; let C(k) be the union of all
(Boolean) algebras generated by k or fewer elements of C. Then dens(C(k)) � k�dens(C), so if
S(C) <1 then S(C(k)) <1.

Note that a Boolean algebra generated by k sets can have as many as 22
k

elements, and 22
k

is
very large if k is at all large.

Vapnik-�Cervonenkis classes can be generated by combining Theorems 4.6 and 4.8. For
example, half-spaces in R

d form a VC class. Intersections of at most k half-spaces give convex
polytopes with at most k faces, so these form a VC class.

Remarks. Let X be an in�nite set, r = 1; 2; :::; and Cr the collection of all subsets of X with at

most r elements. Then clearly dens(Cr) = S(Cr) = r. It's easy to check that D := C(k)r consists
of all sets B such that either B or X n B has at most kr elements. Thus mD(n) � 2(nC�kr),
with mD(n) = 2(nC�kr) for n � 2kr + 1. So dens(D) = kr since nC�j is a polynomial in
n of degree j. Thus the inequality dens(C(k)) � k� dens(C) is sharp. But it does not always
hold for S(�) in place of dens(�): if C is the collection of open half-spaces in R

d ; d � 1, then
S(C) = d + 1 by Radon's theorem, while, taking for example the d half-spaces fxj > 0g for
j = 1; � � � ; d, we see that C(d) shatters a set of 2d points, one in each coordinate orthant, so
S(C(d)) � 2d > d(d+ 1) for d � 5.

Classes with V (C) = 0 or 1 are easily characterized:

Proposition 4.9. A class C of subsets of a set X has V (C) = 0, or equivalently S(C) = �1,
if and only if C is empty. Also, V (C) = 1, or equivalently S(C) = 0, if and only if C contains
exactly one set. Thus S(C) � 1 if and only if C contains at least two sets.

Here are two su�cient conditions for S(C) = 1:

Theorem 4.10. If C is a collection of at least two subsets of a set X, then S(C) = 1 if either

(a) C is linearly ordered by inclusion, or

(b) Any two sets in C are disjoint.

Section 4.4 will go more into detail about classes of index 1.

4.3 Maximal classes

Let C � A be classes of subsets of a set X. Then C will be called (A; n)-maximal if S(C) = n
and if C � D strictly and D � A, then S(D) > n. If A is the class 2X of all subsets of X, then
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C will be called n-maximal. If C is n-maximal, then clearly C is (A; n)-maximal for any A such
that C � A � 2X .

In view of Proposition 4.9, classes C with S(C) = i; i = �1 or 0, are empty or contain just
one set respectively, and so are always i-maximal. Thus n-maximality only becomes interesting
for n � 1.

Examples. 1. For any set X, let C consist of ; (the empty set) and all singletons fxg for
x 2 X. Then C is clearly 1-maximal.
2. Let X = R. Let LH consist of ;; R, and all left half-lines, closed (�1; x] or open (�1; x), for
x 2 R. In other words, LH is the collection of all subsets A � R such that whenever x < y 2 A
then also x 2 A. Then clearly S(LH) = 1 since for x < y and A 2 LH; A \ fx; yg 6= fyg. On
the other hand if any subset of R not in LH is adjoined, then some 2-element set is shattered,
so LH is 1-maximal.
3. Let X = R and let Co consist of all subintervals of R, namely ;; R; any closed or open, left
or right half-line, and any bounded interval, open or closed at either end. In other words Co
is the class of all convex subsets of R. Then S(Co) = 2, in fact Co shatters every 2-element
subset of R, while if x < y < z and A 2 Co, then A \ fx; y; zg 6= fx; zg. On the other hand if
any set not in Co is adjoined to it, its index becomes 3, so Co is 2-maximal.

Here is an existence theorem for maximal classes, easily provable with Zorn's lemma.

Theorem 4.11. Let X be a set and D � 2X . Suppose that C � D and S(C) = n. Then there
exists a (D; n)-maximal class B with C � B.

The following fact is straightforward:

Proposition 4.12. For any set X; Y � X, C � 2X , and CY := CuY; we have S(CY ) � S(C):

Recall that Z2 := f0; 1g with addition mod 2, in other words the usual addition except
that 1 + 1 = 0. For any set X, the group Z

X
2 of all functions from X into Z2, with the natural

addition (f + g)(x) := f(x) + g(x) in Z2, provides a group structure for the collection 2X of all
subsets of X. Addition of indicator functions mod 2 corresponds to the symmetric di�erence
A�B := (A n B) [ (B n A), so that 1A + 1B = 1A�B mod 2. For any �xed set A � X, the
translation 1B 7! 1A + 1B takes ZX2 one-to-one and onto itself. If the functions are restricted
to a subset Y � X, translation still takes ZY2 one-to-one and onto itself. For any A � X and
C � 2X , let A��C := fA�C : C 2 Cg. Then for any �nite F � X; C shatters F if and only
if A��C does. It follows that:

Proposition 4.13. For any �xed set A � X and class C � 2X , S(C) = S(A��C). Also, C is
n-maximal if and only if A��C is.

Next, we have:

Proposition 4.14. If C is an n-maximal class of subsets of a set X, and n � 1, then
S
A2C A =

X and
T
A2C A = ;.

On Z
X
2 = 2X there is a product topology coming from the discrete topology on Z2. The

product topology is compact by Tychono�'s theorem (RAP, Theorem 2.2.8).

Proposition 4.15. For any set X, any n-maximal class C � 2X is closed and so compact in
2X .
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A class C of subsets of a set X will be called complemented if X nA 2 C for every A 2 C.

Theorem 4.16. If S(C) = n; C � A strictly, and C is complemented, then C is not (A; n)-
maximal.

If F is a k-dimensional real vector space of real-valued functions on a set X containing the
constants and C is the collection U(F) of all sets fx : f(x) > 0g or fx : f(x) � 0g for all f 2 F
and real t, then S(C) = k by Theorem 4.6. Since C is complemented, it is never k-maximal.

Let X be any set and C := Ck the collection of all subsets of X with at most k elements.
Then clearly S(C) = k. Also, C is k-maximal since if A =2 C; A � X, then jAj > k and if
B is any subset of A with jBj = k + 1 then B is shattered by C [ fAg. For C = Ck we have
mC(n) � nC�k, which is the maximum possible value of mC(n) by Sauer's Lemma (Theorem
4.2). The following example shows that not all k-maximal classes have these values of mC(n):

Example. Let X = f1; 2; 3; 4g; G = ff4g; f1; 3g; f2; 3g; f3; 4g; f1; 2; 3g; f1; 2; 3; 4gg. Let C be
the complement of G in 2X . Then it can be checked that C is 2-maximal but jCj = 10 <

4C�2 = 11.

4.4 Classes of index 1

In this section the structure of classes C with S(C) = 1 will be treated. Recall for classes of
two or more sets, that disjoint classes and classes linearly ordered by inclusion have S(C) = 1
(Theorem 4.10). A common extension of these two kinds of classes is given by treelike partial
orderings, de�ned as follows.

A binary relation � on a set X will be called a quasi-order if it is transitive: x � y and
y � z imply x � z, and reexive: x � x for all x 2 X. The quasi-order is called a partial order
if also x � y and y � x imply x = y. For any set S, inclusion ( � ) is a partial order on 2S or
any subset of 2S .

Let � be a quasi-order on a set X. Then two elements x and y of X are called comparable
if at least one of x � y and y � x holds, or incomparable if neither holds. A quasi-order � on
X will be called fully comparable if any two elements of X are comparable. A fully comparable
partial order is called linear. A quasi-order � will be called sub-fully comparable if for any
y 2 X and Ly := fx : x � yg, the restriction of � to Ly is fully comparable. A sub-fully
comparable partial order will be called treelike.

Theorem 4.17. Let C � 2X contain at least two sets and satisfy, for any x 6= y in X,

A \ fx; yg = ; for some A 2 C: (4.1)

Then the following are equivalent:

(a) S(C) = 1;
(b) For every Y � X, the inclusion partial ordering of CY := Y u C is treelike;

(c) For every Y � X with jY j = 2, the partial ordering of CY := Y uC by inclusion is treelike.

Proposition 4.18. Let X be a set and A � 2X where ; 2 A and for any B and C in A,
B \ C 2 A. If C is (A; 1)-maximal and satis�es (4.1) for any x 6= y in X, then ; 2 C and
B \ C 2 C for any B and C in C.
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Proposition 4.19. Let X be a set and C a �nite class of subsets of X with S(C) = 1 such that
for any x 6= y in X, (4.1) holds. Let D := D(C) consist of ; and all intersections of nonempty
subclasses of C. Then S(D) = 1. For each non-empty set D 2 D there is a C := C(D) 2 D
such that C � D strictly (C 6= D) and if B is any set in D with B � D strictly, then B � C.

Proposition 4.20. Under the hypotheses of Proposition 4.19, the sets D n C(D) for distinct
non-empty D 2 D are all disjoint and are nonempty.

A graph is a nonempty set S together with a set E of unordered pairs fx; yg for some x 6= y
in S. Then S will be called the set of nodes and E the set of edges of the graph. The graph
(S;E) is called a tree if
(a) it is connected, in other words, for any x and y in S there is a �nite n and xi 2 S; i =
0; 1; :::; n; such that x0 = x; xn = y; and fxk�1; xkg 2 E for k = 1; :::; n.
(b) the graph is acyclic, which means that there is no cycle, where a cycle is a set of distinct
x1; :::; xn 2 S such that n � 3, and letting x0 := xn, fxk�1; xkg 2 E for k = 1; :::; n.

Theorem 4.21. (a) For m nodes, for any positive integer m, there exist connected graphs
with m� 1 edges.
(b) A connected graph with m nodes cannot have fewer than m� 1 edges.
(c) A connected graph with m nodes has exactly m� 1 edges if and only if it is a tree.

Let the class D in Propositions 4.19 and 4.20 form the nodes of a graph G whose edges are the
pairs fC(D);Dg for D 2 D; D 6= ;.
Proposition 4.22. The graph G is a tree.

Proposition 4.23. Let X be a �nite set. Let C be 1-maximal in X and suppose (4.1) holds
for all x 6= y in X. Then C = D(C) as de�ned in Proposition 4.19. The sets D n C(D) for
non-empty D 2 C are all the singletons fxg; x 2 X. If jXj = m then jCj = m+ 1.

Suppose in this paragraph that C is a class of two or more sets such that (4.1) holds with ;
replaced by fx; yg. Then the class of complements, N := fX nC : C 2 Cg satis�es the original
hypotheses of Theorem 4.17. If C is 1-maximal, so is N by Proposition 4.13. So Theorem
4.17 and Propositions 4.18 through 4.22 apply to N , and so does Proposition 4.23 if X is
�nite. Then, C itself has a \cotreelike" ordering, where for each C 2 C; fD 2 C : C � Dg is
linearly ordered by inclusion. Propositions 4.18 and 4.19 apply to C if ; is replaced by X and
intersections by unions; in Proposition 4.19, we will have an immediate successor D(C) � C
instead of a predecessor; and sets D(C) nC instead of D nC(D) in Propositions 4.20 and 4.23.
The resulting tree (Proposition 4.22) then branches out as sets become smaller rather than
larger.

Next will be several facts in the general case, i.e. without the hypothesis (4.1).

Theorem 4.24. Let X be any set and C any collection of subsets with S(C) = 1. Then for
any C 2 C, the collection CXnC := fB nC : B 2 Cg satis�es (4.1) for any x 6= y as a collection
of subsets of X n C. Likewise, CCn := fC n B : B 2 Cg satis�es (4.1) for any x 6= y as a
collection of subsets of C, S(CCn) � 1 and S(CXnC) � 1.

So, for an arbitrary class C with S(C) = 1, we have by Theorem 4.17 a treelike inclusion partial
ordering in one part X n C of X and a cotreelike ordering in the complementary part C, for
any C 2 C. If also X n C happens to be in C, both orderings are linear. To see how the two
orderings �t together in general, Proposition 4.13 gives:
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Corollary 4.25. Let C be any class of sets with S(C) = 1 and A 2 C. Let D := A��C: Then
S(D) = 1 and ; 2 D. If C is 1-maximal, so is D. Then Theorem 4.17, Proposition 4.18, and
if C is �nite, Propositions 4.19, 4.20, 4.22, and if X is �nite, 4.23, apply to D.

The last sentence in Proposition 4.23 has a converse and extension:

Proposition 4.26. Let X be �nite with m elements and C � 2X with S(C) = 1. Then C is
1-maximal if and only if jCj = m+ 1.

Now, m + 1 = mC�1, which is the maximum value of mC(m) for S(C) = 1 by Sauer's
Lemma (Theorem 4.2). The example at the end of Section 4.3 shows that Proposition 4.26 in
the form jCj = mC�k; k = 1; does not extend to k-maximality for k > 1:

Next it will be seen that 1-maximality can be relativized to subsets. For a set X, a subset
Y � X, and a class C � 2X , recall that CY := C u Y := fA \ Y : A 2 Cg.
Theorem 4.27. If C is 1-maximal and ; 6= Y � X, then CY is a 1-maximal class of subsets
of Y .

For any set X and C � 2X ; let x �C y i� x = y or y 2 SB2C B and for all A 2 C; y 2 A
implies x 2 A. Then �C is a quasi-order (as de�ned early in this section) but in general not
a partial order. The treelike partial orderings as in Theorem 4.17 were on collections of sets.
Now orderings will be de�ned on X.

Theorem 4.28. If S(C) = 1,
S
B2C B = X, and C satis�es (4.1) for all x 6= y, then �C is a

treelike quasi-order on X. If C is 1-maximal, then �C is a partial order. Conversely, for any
quasi-order � on a set X, let C := C� := fA � X : A is linearly quasi-ordered by � and x 2 A
whenever x � y 2 Ag. Then S(C) � 1. If � is a treelike partial order and X 6= ;, then C is
1-maximal.

Example. Let X = f1; 2; 3; 4; 5g and

G = f;; f1g; f5g; f2; 5g; f1; 2; 4g; f1; 2; 3; 4g; f1; 2; 3; 5g; f1; 2; 3; 4; 5gg:

Let C be the complement of G in 2X . Then it can be checked that C is 3-maximal but for
Y = f1; 2; 3; 4g, CY is not 3-maximal in Y . So in Theorem 4.27, \1-maximal" and Y 6= ;
cannot be replaced by \3-maximal" and \jY j � 3" respectively.

The next theorem is not in UCLT. Recall that a linearly ordered subset of a partially
ordered set is called a chain.

Theorem 4.29. Let C be a 1-maximal class of subsets of a set X containing ;.
(I) Then B 2 C if and only if both (a) B is a chain for �C and (b) if x �C y 2 B then x 2 B.
(II) If X is �nite, B 2 C if and only if B = ; or for some z 2 X, B = fx : x �C zg.

Proof. To prove \only if" in (I), (b) holds by de�nition of �C. To prove (a), supppose x; y 2 B
are not comparable for �C . By Theorem 4.27 applied to singletons Y , we have X = [C2CC.
Thus for some D 2 C, y 2 D and x =2 D, and for some E 2 C, x 2 E and y =2 E. So
C � f;;D;E;Bg shatters fx; yg, a contradiction. Thus (a) holds.

Conversely, suppose (a) and (b) hold. Suppose C [ fBg shatters some fx; yg. If x �C y
then C \ fx; yg 6= fyg for C 2 C or C = B, a contradiction. So x and y are not comparable
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for �C. Then C u fx; yg contains ;, fxg and fyg, and so not fx; yg. Also B \ fx; yg 6= fx; yg,
giving another contradiction. So S(C [ fBg) = 1 and since C is 1-maximal, B 2 C, proving
\if."

For (II), a B of the given form satis�es (b) clearly, and (a) holds because �C is treelike by
Theorem 4.28, so B 2 C by part (I). Conversely, if B 2 C it is a chain for �C by (I) so if it is
non-empty it has a largest element z and then B = fx : x �C zg by (a) and (b). �

4.5 Combining VC classes

Recalling the density as in Corollary 4.4, the following is clear:

Theorem 4.30. For any set X, if A � 2X and C � 2X then
dens(A [ C) = max(dens(A),dens(C)).

For the Vapnik-�Cervonenkis index we have instead:

Proposition 4.31. For any set X; A � 2X and C � 2X , S(A[ C) � S(A) + S(C) + 1. This
bound is best possible: for any nonnegative integers k and m there exist X; A and C � 2X with
S(A) = k; S(C) = m and S(A[ C) = k +m+ 1.

Let X be a set and C;D any two collections of subsets of X. Let

C u D := fC \D : C 2 C; D 2 Dg; C t D := fC [D : C 2 C; D 2 Dg:

If A is a class of subsets of another set Y let

C�A := fC �A : C 2 C; A 2 Ag:

Theorem 4.32. For any C � 2X and D � 2X or 2Y let k := dens(C) and m :=dens(D). Then
we have: dens(C �D) � k +m for � = u; t or �.

For the Vapnik-�Cervonenkis index the behavior of the � operations is not so simple. For
k;m = 0; 1; 2; :::; and � = t;u or � let �(k;m) := maxfS(C � D) : S(C) = k; S(D) = mg:
Here the maximum is taken where X and Y may be in�nite sets. Then we have:

Theorem 4.33. For any k = 0; 1; 2; � � � and m = 0; 1; 2; � � � ; and � = t; u or �, we have
�(k;m) <1.

Theorem 4.34. For any k;m = 0; 1; 2; :::; u(k;m) = t(k;m) = �(k;m).

Let S(k;m) be the common value of the quantities in Theorem 4.34. Theorem 4.33
can be improved as follows. For any nonnegative integers j; k let �(j; k) := supfr 2 N :
(rC�j)(rC�k) � 2rg: Then �(j; k) <1 for each j; k by Proposition 4.3 and we have:

Proposition 4.35. S(j; k) � �(j; k) for any j; k 2 N.

Can the values S(k;m) be computed? The next two theorems and proposition (not in UCLT)
will give some information.
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Theorem 4.36. Let X be a set, C;D � 2X , and C t D = 2X . Let A � X and suppose for all
B 2 C, either B � A or B � Ac. Then D shatters either A or Ac.

Proof. Supppose D doesn't shatter A. Then take H � A such that D\A 6= H for all D 2 D.
Take any E � Ac. Then E [ H = C [ D for some C 2 C and D 2 D. If C � Ac then
D \A = H, a contradiction. So C � A and D \Ac = E. Thus D shatters Ac. �

For any set Y recall that jY j denotes the number of elements of Y . Here is an upper bound
for S(1; k) that will turn out to be exact for k = 1; 2.

Theorem 4.37. For any k = 1; 2; � � � ; S(1; k) � 2k + 1.

Proof. Suppose jXj = 2k + 2; C t D = 2X , S(C) = 1, and S(D) = k. We can assume by
Theorem 4.11 that C is 1-maximal. Then [B2CB = X by Theorem 4.27 applied to singletons
Y . We have ; 2 C \ D. Thus by Theorem 4.17, C has a treelike partial ordering by inclusion,
which induces such a treelike partial ordering on X by Theorem 4.28. Let Y be the set of
elements of X having at least one predecessor for this ordering. Each y 2 Y has a smallest
predecessor f(y) =2 Y . For each B � Y , we have B = C [ D, C 2 C, D 2 D, where C = ;,
B = D since if y 2 C \ Y , f(y) 2 C n Y . So D shatters Y and Y has at most k elements.

Let r be the number of values of f , say t1; � � � ; tr. Then Y is decomposed into disjoint
subsets Y1; � � � ; Yr such that f = tj on Yj for each j. Let C := (Y [ ranf)c. Then jCj � 2.
Let nj := jYj j, j = 1; � � � ; r. Then

2k + 2 = jCj+Pr
j=1(nj + 1): (4.2)

It will be shown that there exist subsets E � C and I � f1; � � � ; rg such that

jEj+P
j2I(nj + 1) = k + 1: (4.3)

Let K be the largest possible value � k + 1 of the left side of (4.3). Suppose K � k. Then

K = jCj+P
j2J(nj + 1) (4.4)

for some J � f1; � � � ; rg since elements of C could be put into E one at a time. We then have
by (4.2) P

j =2J(nj + 1) = 2k + 2�K � k + 2: (4.5)

Let n0 be the smallest value of nj for j =2 J . Then n0 � jCj+ 1, or another j could be put in
I for a suitable E on the left side of (4.3), giving a larger K. Since each nj � k, there must
be at least two j =2 J by (4.5). Thus r � 2 + 2n0 � jY j � k, r � k � 2jCj, and by (4.2),

2k + 2� jCj =
Pr

j=1(nj + 1) � 2k � 2jCj
and jCj � �2, a contradiction, so K = k + 1 and (4.3) is proved.

Thus there is a set A � X with jAj = k + 1, A := E [ Sj2I Yj [ ftjg, with E and I
from (4.3). Let B 2 C. Then by Theorem 4.29(I)(a), either B � Yj [ ftjg for some j or B is
a singleton. Thus either B � A or B � Ac. So Theorem 4.36 applies and S(D) � k + 1, a
contradiction. �

For k = 1; 2; 3 we have, where the lower bound for k = 2 is due to L. Birg�e,
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Proposition 4.38. S(1; k) = 2k + 1 for k = 1; 2; 3.

Proof. By Theorem 4.37 we need to show S(1; k) � 2k + 1 for k = 1; 2; 3. For k = 1
let X := f1; 2; 3g, C := f;; f1g; f2g; f3gg, and D := f;; f1g; f2g; f2; 3gg. Then clearly
S(C) = 1, S(D) = 1, and S(C t D) = 3, so S(1; 1) � 3.

For k = 2 let X := f1; 2; 3; 4; 5g, C := f;; f1g; f2g; f3g; f4g; f4; 5gg, D := f;; f1g; f2g;
f3g; f5g; f1; 2g; f1; 3g; f1; 5g; f2; 3g; f2; 5g; f2; 3; 4g; f2; 3; 5g; f2; 3; 4; 5gg. Then one can check
that S(C) = 1, S(D) = 2, and C t D = 2X . So S(1; 2) � 5.

To show that S(1; 3) = 7, take the set X := f0; 1; 2; 3; 4; 5; 6g. We will �nd classes C � 2X

and E � 2X with S(C) = 1, S(E) = 3, and C t E = 2X . Sets fa; b; : : : ; dg will be denoted
ab � � � d, e.g. 1246 := f1; 2; 4; 6g.

Let C := f;; 0; 1; 12; 3; 34; 5; 56g. Then C has a treelike partial ordering by inclusion and
S(C) = 1.

A set with k elements is called a k-set. E will contain the following subsets of X: the 0-set
;; all 1-sets; all 2-sets except 12 and 34; all 3-sets not including 12 or 34; all 4-sets included
in 01234; and the 5-sets 01234 and 12346. Then E shatters some 3-sets, e.g. 246. To show
S(E) = 3 we need to show E shatters no 4-set. E shatters no 4-set containing 5 since there is
no set A in E with cardinality jAj � 4 containing 5.

A 4-set B � 01234 includes at least one of the pairs 12 or 34. By symmetry, suppose
12 � B. Each set C in E including 12 contains at least two of 0, 3 and 4, so jC \Bj � 3 and
C \B 6= 12. Thus E does not shatter B. It remains to consider 4-sets containing 6 and not 5.
There is no A 2 E including 06 with jAj � 4. Thus E does not shatter any 4-set including 06.
The sets 1236 and 1246 are not shattered by E because the subset 126 is not cut from them.
Likewise the sets 1346 and 2346 are not shattered because 346 is not cut from them. Thus
S(E) = 3.

To show C t E = 2X , clearly C t E contains all 0- and 1-sets and it is easy to check that it
contains all 2-sets and all 3-sets A not including 12 or 34. If A � 12 then A = 12 [ c where
122 C and c 2 E , and likewise for 34.

C t E contains X = 56 [ 01234, 012345 = 5 [ 01234, and 012346 = 0 [ 12346. Each other
6-set is the union of 56 2 C and a 4-set in E included in 01234.

A 5-set containing 5 and not 6 is the union of 5 2 C and a 4-set � 01234. A 5-set F
containing 6 and not 5 includes at least one of the pairs P1 = 12 or P2 = 34. If it includes
both pairs it is in E . If it includes just one pair Pj we have

(*) F = A [ (F n A); A 2 C; F n A 2 E ;
for A = Pj.

If a 5-set F � 56 includes a pair Pj then (*) follows likewise. Otherwise it holds for A = 56.
The remaining 5-set 01234 is in E .

A 4-set � 01234 is in E . A 4-set F containing 5 or 6 or both includes at most one pair Pj .
If it includes Pj , (*) holds for A = Pj . So suppose F includes neither pair Pj . If 56 � F then
(*) holds for A = 56. If 5 2 F and 6 =2 F then (*) holds for A = 5. The remaining case is
6 2 F and 5 =2 F . At least one of a = 0; 1 or 3 is in F and (*) holds for A = a. The proof of
the case k = 3 of Proposition 4.38 is complete. �

For classes satisfying stronger conditions, more is true:
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Theorem 4.39. Let X and Y be sets, C � 2X and D � 2Y . If C is linearly ordered by
inclusion, then S(C�D) � S(D) + 1.

Theorem 4.40. For any set X and C;D � 2X , if C is linearly ordered by inclusion, then
S(C �D) � S(D) + 1 for � = u or t.

Then by Theorem 4.10 and induction we have:

Corollary 4.41. Let Ci be classes of subsets of a set X and C := fTn
i=1Ci : Ci 2 Ci; i =

1; :::; ng, where each Ci is linearly ordered by inclusion. Then S(C) � n.

De�nition. For any set X and Vapnik-�Cervonenkis class C � 2X , C will be called bordered if
for some F � X, with jF j = S(C), and x 2 X nF , F is shattered by sets in C all containing x.

Theorem 4.42. Let Ci � 2X(i) be bordered Vapnik- �Cervonenkis classes for i = 1; 2. Then
S(C1�C2) � S(C1) + S(C2).

Theorem 4.42 extends by induction to any number of factors. One consequence is:

Corollary 4.43. In R let J be the set of all intervals, which may be open or closed, bounded
or unbounded on each side. In other words J is the set of all convex subsets of R. In R

m let
C be the collection of all rectangles parallel to the axes, C := f�m

i=1Ji : Ji 2 J ; i = 1; :::;mg.
Then S(C) = 2m. Let D be the set of all left half-lines (�1; x] or (�1; x) for x 2 R. Let
T := f�m

i=1Hi : Hi 2 D; i = 1; � � � ;mg, so T is the class of lower orthants parallel to the
given axes. Then S(C) = m.

Proposition 4.44. Let I be the set of all intervals in R. Let Y be any set and C � 2Y with
Y 2 C. Then in R � Y , S(J�C) � 2 + S(C).

Next is a necessary condition for a class C to be of index 1, not in UCLT. A chain of sets will
be a class of sets linearly ordered by inclusion. For any class D of sets let D0 := fAc : A 2 Dg.
Theorem 4.45. (Smoktunowicz) In a set X, let C � 2X and S(C) = 1.

(i) If ; 2 C then for some chains A and B, C � A u B.

(ii) In general, for some chains Ai; i = 1; 2; 3; 4;

C � (A1 uA2) t (A3 uA4)
0:

Proof. For (ii), for any A 2 C, C uAc and C0 uA are VC classes of index 1, containing ;, and

C � (C uAc) t ((C0 uA)0 uA):

Assuming (i), C0 uA � B3uB4 for some chains B3;B4 of subsets of A. Letting Aj := Bj tAc;
j = 3; 4, we have (C0 uA)0 uA � (A3 uA4)

0. So (i) implies (ii).

To prove (i), by Theorem 4.11 we can assume C is 1-maximal. Thus since ; 2 C, C has a
treelike partial ordering by inclusion by Theorem 4.17. First suppose X is �nite. By Theorem
4.28, take the treelike partial ordering of X induced by C.
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Any chain is included in a maximal chain (for inclusion), and in a �nite set of n elements,
a maximal chain is of the form

f;; fa1g; fa1; a2g; � � � ; fa1; � � � ; angg

and thus is equivalent to de�ning a linear ordering of the set, a1 < a2 < � � � < an: To de�ne
our two chains A, B we will thus de�ne two linear orderings <A; <B of X. This will be
done recursively as follows. Take the elements of X having no predecessors (there must be at
least one) and call them a1; � � � ; ak for some choice of indices. Let a1 <A a2 <A � � � <A ak;
ak <B ak�1 <B � � � <B a1.

Next, suppose aj has immediate successors aj1; � � � ; ajr. Let aj <A aj1 <A � � � <A ajr <A
aj+1 where \<A aj+1" is omitted if j = k. Also let aj <B ajr <B aj;r�1 <B � � � <B aj1 <B aj�1
where \<B aj�1" is omitted if j = 1. Iterating such de�nitions we get two linear orderings of
X, each de�ning a chain of sets as above, so we get chains A;B.

By Theorem 4.29, every element of C is a set of the form C := faj1 ; aj1j2 ; � � � ; a(m)

:= aj1j2���jmg where aj1 �C aj1j2 �C � � � �C a(m) and \�C" can be replaced by either <A or
<B. It can be checked easily that

C = fx 2 X : x �A a(m)g \ fx 2 X : x �B a(m)g:

Thus C is the intersection of a set in A and a set in B and the �nite case is done.
Now suppose X is in�nite, ; 2 C � 2X and S(C) = 1. Let H := fJ � X : J 6= ;; jJ j <

1g. For each J 2 H take chains PJi, i = 1; 2, such that C u J � PJ1 u PJ2. Let h be a
non-point ultra�lter of subsets of H, in other words:

(1) h is a non-empty collection of non-empty subsets of H.

(2) If A;B 2 h then A\B 2 h.
(3) If A 2 h and A � B � H then B 2 h.
(4) For all A � H; either A 2 h or Ac 2 h.

(5) For each J 2 H, fJg =2 h.
The �rst three conditions make h a �lter, the fourth an ultra�lter, and the �fth a non-point

ultra�lter. Non-point ultra�lters exist by the axiom of choice (RAP, Theorem 2.2.4 and the
statement after its proof).

Given any indexed family of non-empty sets fAJgJ2H, �J2HAJ is the set of all faJgJ2H
such that aJ 2 AJ for all J 2 H. For faJgJ2H; fbJgJ2H in �J2HAJ , let faJgJ2H �h fbJgJ2H
if and only if for some A 2 h, aJ = bJ for all J 2 A. Let limhAJ be the set of equivalence

classes of members of �J2HAJ for the relation �h. Let faJg(�)J2H be the equivalence class to
which faJgJ2H belongs.

If BJ is a class of subsets of AJ for each J 2 H, then for each element Z of limh BJ , where

Z = fBjg(�)J2H for some BJ 2 BJ for each J , de�ne a set EZ � limhAJ by faJg(�)J2H 2 EZ if and
only if for some A 2 h, aJ 2 BJ for all J 2 A. Let (lim)hBJ := fEZ : Z 2 limh BJg.

Let X := limh J , C := (lim)hC u J and for i = 1; 2 let P i := (lim)hPJi. To see that
each Pi is a chain of subsets of X , we can take i = 1. Let W;Z 2 limh PJ1, fBJgJ2H 2 W;
fCJgJ2H 2 Z. Let J := fJ 2 H : BJ � CJg. Then either J 2 h or J c 2 h. If J 2 h
then clearly EW � EZ . Otherwise, J c 2 h and since PJ1 is a chain for each J , CJ � BJ for all
J 2 J c and EZ � EW .

It is easy to check that C � P1 u P2. There is a natural 1-1 map i of X into X by

faJg(�)J2H 2 i(x) if and only if for some A 2 h, aJ = x for all J 2 A. So we can view X as a
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subset of X . Each Pj uX is a chain of subsets of X, and

C � C uX � (P 1 uX) u (P2 uX);

completing the proof. �

Section 4.4 describes the structure of classes C with S(C) = 1, but the structure of VC
classes with S(C) = k for k > 1 apparently is not known in general. Smoktunowicz (1997)
showed that the class L of lines in the plane, a VC class with S(L) = 2, cannot be obtained
from �nitely many VC classes of index 1 and �nitely many applications of the operations u, t
and '. Theorem 4.45 reduces the proof from \VC classes of index 1" to \chains."

4.6 Probability laws and independence

Let (X;A; P ) be a probability space. Recall the pseudo-metric dP (A;B) := P (A�B) on A,
where A�B := (A nB) [ (B nA). Recall also that for any (pseudo-) metric space (S; d) and
" > 0, D("; S; d) denotes the maximum number of points more than " apart (Appendix K).

De�nition. For a measurable space (X;A) and C � A let s(C) := inffw : there is a K =
K(w; C) <1 such that for every law P on A and 0 < " � 1; D("; C; dP ) � K"�wg.

This index s(C) turns out to equal the density:

Theorem 4.46. For any measurable space (X;A) and C � A, dens(C) = s(C).

In fact in this case the in�mum in the de�nition of s(C) is attained:

Theorem 4.47. (Haussler). For each m = 1; 2; � � � ; there is a Km <1 such that for any class
C with S(C) = m and any law P de�ned on a �-algebra including C, D("; C; dP ) � Km"

�m for
0 < " < 1:

For a proof see van der Vaart and Wellner (1996), pp. 137-140.

There is a notion of independence for sets without probability. To de�ne it, for any set X
and subset A � X let A1 := A and A�1 := X n A. Sets A1; :::; Am are called independent, or

independent as sets, if for every function s(�) from f1; :::;mg into f�1;+1g, Tm
j=1A

s(j)
j 6= ;.

Such intersections, when they are nonempty, are called atoms of the Boolean algebra generated
by A1; :::; Am. Thus for A1; :::; Am to be independent as sets means that the Boolean algebra
they generate has the maximum possible number, 2m, of atoms.

If A1; :::; Am are independent as sets, then one can de�ne a probability law on the algebra
they generate for which they are jointly independent in the usual probability sense and for
which P (Ai) = 1=2; i = 1; :::;m. For example, choose a point in each atom and put mass 1=2m

at each point chosen. Or, if desired, given any qi; 0 � qi � 1, one can de�ne a probability
measure Q for which the Ai are jointly independent and have Q(Ai) = qi; i = 1; :::; n:

For a set X and C � 2X let

I(C) := supfm : A1; :::; Am are independent as sets for some Ai 2 C;

i = 1; :::;mg:
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Theorem 4.48. For any set X, C � 2X , and n = 1; 2; :::; if S(C) � 2n then I(C) � n.
Conversely if I(C) � 2n then S(C) � n. So I(C) <1 if and only if S(C) <1. In both cases,
2n cannot be replaced by 2n � 1.

For any set X; C � 2X and Y � X, recall that CY := Y uC := fY \C : C 2 Cg. Let At(CjY )
be the set of atoms of the algebra of subsets of Y generated by CY , where in the cases to be
considered, CY will be �nite because C or Y is. Let �C(Y ) := jAt(CjY )j be the number of such
atoms. Let mY

C (n) := supf�A(Y ) : A � C; jAj � ng � 2n. Let

dens�(C) := inffs � 0 : for some C <1; mX
C (n) � Cns for all ng:

For any x 2 X let Cx := fA 2 C : x 2 Ag. Let C0Y := fCy : y 2 Y g.
Theorem 4.49. (Assouad) For any set X and A � C � 2X , with A �nite,
(a) �A(X) = �C

0

X (A).
(b) For n = 1; 2; :::; mX

C (n) = mC
0

X (n).
(c) S(C0X) = I(C).
(d) dens�(C) = dens(C0X) � I(C).

4.7 Vapnik-�Cervonenkis properties of classes of functions

The notion of VC class of sets has several extensions to classes of functions.

De�nitions. Let X be a set and F a class of real-valued functions on X. Let C � 2X . If f
is any real-valued function, each set ff > tg for t 2 R will be called a major set of f . The
class F will be called a major class for C if all the major sets of each f 2 F are in C. If C is a
Vapnik-�Cervonenkis class, then F will be called a VC major class (for C).

The subgraph of a real-valued function f will be the set f(x; t) 2 X � R : 0 � t �
f(x) or f(x) � t � 0g. If D is a class of subsets of X � R, and for each f 2 F , the subgraph
of f is in D, then F will be called a subgraph class for D. If D is a VC class in X � R then F
will be called a VC subgraph class.

The symmetric convex hull of F is the set of all functions
Pm

i=1 cifi for fi 2 F , ci 2 R,
any �nite m, and

Pm
i=1 jcij � 1. If 0 < M < 1, let H(F ;M) denote M times the symmetric

convex hull of F .
Let �Hs(F ;M) be the smallest class G of functions including H(F ;M) such that whenever

gn 2 G for all n and gn(x) ! g(x) as n!1 for all x, we have g 2 G.
A class F of functions such that F � �Hs(G;M) for some M <1 and a given G will be called

a VC subgraph hull class if G is a VC subgraph class, and a VC hull class if G = f1C : C 2 Cg
where C is a VC class of sets.

So there are at least four possible ways to extend the notion of VC class to classes of
functions. Some implications hold between these di�erent conditions, but no two of them
are equivalent. The next theorem deals with some of the easier cases of implication or non-
implication.

Theorem 4.50. Let F be a uniformly bounded class of nonnegative real-valued functions on
a set X. Then
(a) If F is the set of indicators of members of a VC class of sets, then F is also a VC major
class, a VC subgraph class, and a VC hull class.
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(b) If F is a VC major class then it is a VC hull class.
(c) There exist VC hull classes F which are not VC major.

(d) There exist VC subgraph classes F which are not VC major.

4.8 Classes of functions and dual density

For a metric space (S; d) and " > 0 D("; S; d), is de�ned as the maximum number of points
more than " apart (Appendix K). For a probability measure Q and 1 � p <1 we have the Lp

metric dp;Q(f; g) := (s jf�gjpdQ)1=p. For a class F � Lp(Q) let D(p)(";F ; Q) := D(";F ; dp;Q).
Let D(p)(";F) be the supremum of D(";F ; dp;Q) over all laws Q concentrated in �nite sets.

If F is a class of measurable real-valued functions on a measurable space (X;A), let
FF (x) := supf2F jf(x)j. Then a measurable function F will be called an envelope function
for F if and only if FF � F . If FF is measurable it will be called the envelope function of F .
For any law P on (X;A), F �F is an envelope function for F , which in general depends on P .

Given F , an envelope function F for it, " > 0 and 1 � p < 1, let D
(p)
F (";F ; Q) be the

supremum of m such that there exist f1; :::; fm 2 F for which s jfi � fjjpdQ > "p s F pdQ for
all i 6= j.

The next fact extends Theorem 4.47 to families of functions. See van der Vaart and Wellner
(1996), Theorem 2.6.7.

Theorem 4.51. Let 1 � p <1. Let (X;A; Q) be a probability space and F be a VC subgraph
class of measurable real-valued functions on X. Let F have an envelope F 2 Lp(X;A; Q) with
0 < s FdQ. Let C be the collection of subgraphs in X � R of functions in F . Then there is an
A <1 depending only on S(C) such that

D
(p)
F (";F ; Q) � A="pS(C) for 0 < " � 1: (4.6)

The following fact is a continuation of Theorem 4.50.

Theorem 4.52. Let F be a uniformly bounded class of functions on a set X.

(a) If F is a VC subgraph class then

For some r <1 and M <1; D(2)(";F) �M"�r for 0 < " < 1: (4.7)

(b) There exist classes F satisfying (4.7) which are not VC hull.

(c) There exist VC subgraph classes which are not VC hull.

It will be seen in Proposition 10.2 below that there are VC major (thus VC hull) classes
which do not satisfy (4.7) and so are not VC subgraph classes.

Problems on Chapter 4

1. Let C be the class of all unions of two intervals in R. Evaluate S(C). Hint: try it �rst
directly; if you like, look at the more general Problem 11.

2. If S(C) = 3 �nd the upper bounds for mC(n) given by Theorem 4.2 and by Proposition 4.3.
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3. Show that for dens(C) = 0, S(C), which is �nite by Corollary 4.4, can be arbitrarily large.
Hint: let C be �nite.

4. Find the smallest n such that there is a set X with jXj = n and C � 2X with S(C) = 1
where neither (a) nor (b) in Theorem 4.10 holds.

Hints on Problems 5-7: If C is a collection of convex sets in R
d and shatters a set F , then no

point in F is in the convex hull of the other points. Then, the convex hull of F is a polyhedron
of which each point of F is a vertex. In the plane, it's a polygon. To get a lower bound
S(C) � k it's enough to �nd one set of k elements that is shattered. Try the vertices of a
regular k-gon. To get upper bounds, use facts such as Theorem 4.6 and Proposition 4.35.

5. Let C be the set of all interiors of ellipses in R
2 , with arbitrary centers and semiaxes in any

two perpendicular directions. Give upper and lower bounds for S(C).

6. A half-plane in R
2 is a set of the form f(x; y) : ax + by � cg for real a; b; c with a and b

not both 0. De�ne a wedge as an intersection of two half-planes. Let C be the collection of all
wedges in R

2 . Show that S(C) � 5. Also �nd an upper bound for S(C).

7. Let C be the set of all interiors of triangles in R
2 . Show that S(C) � 7. Also give an upper

bound for S(C).

8. Show that the lower bounds for S(C) in problems 6 and 7 are the values of S(C). Hint: for
a convex polygon, the set F of vertices can be arranged in cyclic order, say clockwise around
the boundary of the polygon, v1; v2; :::; vn; v1: Show that if a half-plane J contains vi and vj
with i < j then it includes either fvi; vi+1; :::; vjg or fvj ; vj+1; :::; vn; v1; :::; vig. Thus �nd what
kind of set the intersection of J and F must be. From that, �nd what occurs if two or three
half-planes are intersected (or unioned, via complements).

9. In the example at the end of section 4.3, for each set A � X with 3 elements, �nd a speci�c
subset of A not in A u C.

10. Let F be the class of all probability distribution functions on R. Show that F is a VC
major class but not a VC subgraph class. Hint: show that the subgraphs of functions in F
shatter all sets f(xj ; yj)gnj=1 with x1 < � � � < xn and 0 < y1 < � � � < yn < 1.

11. Let C(j) be the class of all unions of j intervals in R for j = 1; 2; � � �. Show that S(C(j)) = 2j
for all j and that for any �nite set F � R with jF j = n we have �C(j)(F ) = nC�2j (the
largest possible value by Sauer's Lemma). Hints: one can take F = f1; 2; � � � ; ng. For A � F
and x; y 2 F let x =A y mean that A \ fx; yg = ; or fx; yg, otherwise x 6=A y. If A 6= ;
let j1 := j1(A) be the least element of A. If j1(A); � � � ; jk(A) are de�ned let jk+1(A) be
the least j > jk(A) such that j 6=A jk(A) and j � n, if there is such a j. Show that
there is a 1-1 correspondence between subsets A � F and �nite sequences (j1; j2; � � � ; jr) for
r = r(A) = 1; � � � ; n where r(;) := 0. Show that A 2 C(j) u F if and only if r(A) � 2j.
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Chapter 5

Measurability

Let A be the set of all possible empirical distribution functions F1 for one observation x 2 [0; 1],
namely F1(t) = 0 for t < x and F1(t) = 1 for t � x. We noted previously that A in the
supremum norm is non-separable: it is an uncountable set, in which any two points are at
a distance 1 apart. Thus A and all its subsets are closed. If x := X1 has a continuous
distribution such as the uniform distribution U [0; 1] on [0; 1], then x 7! (t 7! 1t�x) takes [0; 1]
onto A, but it is not continuous for the supremum norm. Also, it is not measurable for the
Borel �-algebra on the range space. So, in Chapter 3, functions f� and upper expectations E�

were used to get around measurability problems.

Here is a di�erent kind of example. It is related to the basic \ordinal triangle" counter-
example in integration theory, showing why measurability is needed in the Tonelli-Fubini the-
orem on cartesian product integrals. Let (
;�) be an uncountable well-ordered set such that
for each x 2 
, the initial segment Ix := fy : y � xg is countable. (In terms of ordinals, 
 is,
or is order-isomorphic to, the least uncountable ordinal.) Let S be the �-algebra of subsets of

 consisting of sets that are countable or have countable complement. Let P be the probability
measure on S which is 0 on countable sets and 1 on sets with countable complement. Then

s s 1y�xdP (y)dP (x) = 0 < s s 1y�xdP (x)dP (y) = 1:

Since all other conditions of the Tonelli-Fubini theorem hold, the function (x; y) 7! 1y�x must
not be measurable for the product �-algebra, even if S is replaced by any larger �-algebra of
subsets of 
 to which P can be extended. For example, according to the continuum hypothesis,
we could take 
 to be [0; 1] (where the well-ordering is unrelated to the usual ordering), and
P to be Lebesgue measure or any other nonatomic law on [0; 1].

Now, consider the class C of sets Ix for each x 2 
. Each of these sets is countable by
assumption. The sets are linearly ordered by inclusion since � is a linear ordering. Thus
S(C) = 1 by Theorem 4.10. But, C is not a weak or strong Glivenko-Cantelli class as de�ned
in Section 3.3 (still less a Donsker class), since for any possible X1; � � � ; Xn, a maximum x :=
max(X1; � � � ;Xn) for the well-ordering exists, so Pn(Ix) = 1 while P (Ix) = 0, so supA2C j(Pn�
P )(A)j � 1.

In sections 5.2 and 5.3, some measurability conditions will be developed, which will hold
for classes of sets encountered in practice. It will be seen in the next chapter that these
conditions, together with the Vapnik-�Cervonenkis or related properties, are enough to imply
Glivenko-Cantelli and Donsker properties.
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5.1 Su�ciency

Su�ciency is a concept from mathematical statistics. Suppose that a probability measure P
is known to be in a certain family P of laws and we have observed X1; :::;Xn i.i.d. (P ), but
nothing else is known about P . A statistic, T , which is a measurable function of X1; :::;Xn,
will roughly speaking be said to be su�cient for P if, given T , no further information about
X1; :::;Xn is useful in making decisions or inferences about P 2 P: A precise de�nition is given
below. In this section it will be seen that the empirical measure Pn is su�cient even when P
is the family of all probability measures on a measurable space.

Note that Pn is a symmetric function of the Xi in the sense that it is preserved by any
permutation of the indices 1; :::; n: Once Pn is given, knowing that the Xi were observed in a
certain order will not help in making inferences about P .

Here is the formal de�nition of su�ciency: let (Y;S) be a measurable space (a set Y and a
�-algebra S of subsets of Y ). Let Q be a set of probability laws on (Y;S). A sub-�-algebra B
of S is called su�cient for Q i� for every C 2 S there is some B-measurable function gC such
that for every Q 2 Q, the conditional probability

Q(CjB) = gC almost surely for Q: (5.1)

The essential point is that gC does not depend on Q in Q.

Most often, there will be some n > 1, a measurable space (X;A) and a family P of laws
on (X;A) such that Y is the n-fold Cartesian product Xn with the product �-algebra S = An

and Q = Pn := fP n : P 2 Pg, where P n is the n-fold Cartesian product P � P � � � � � P
(RAP, Theorem 4.4.6).

The meaning of su�ciency is clari�ed by the factorization theorem, to be stated next. A
family P of probability measures on a measurable space (S;B) is said to be dominated by a
�-�nite measure � if every P 2 P is absolutely continuous with respect to �. Then we have
the density (Radon-Nikodym derivative) dP=d� (RAP, Section 5.5).

If there is a nonatomic law on (X;A), the family P of all laws on (X;A) is not dominated.
Factorization is still useful in that case, in the proof of Theorem 5.3 below.

Theorem 5.1. (Factorization theorem). Let (S;B) be a measurable space, A a sub-�-algebra
of B, and P a family of probability measures on B, dominated by a �-�nite measure �. Then
A is su�cient for P if and only if there is a B-measurable function h � 0 such that for all
P 2 P, there is an A-measurable function fP with dP=d� = fPh almost everywhere for �. We
can take h 2 L1(S;B; �).

Given a statistic T , i.e. a measurable function, from S into Y for measurable spaces (S;B)
and (Y;F), let A := T�1(F) := fT�1(A) : A 2 Fg, a �-algebra. For a family Q of laws on
(S;B), T is called a su�cient statistic for Q i� A is su�cient for Q. If T is su�cient we can
write fP = gP � T for some F-measurable function gP by RAP, Theorem 4.2.8. Su�ciency,
de�ned in terms of conditional probabilities of measurable sets, can be extended to suitable
conditional expectations:

Theorem 5.2. Let A be su�cient for a family P of laws on a measurable space (S;B). Then
for any measurable real-valued function f on (S;B) which is integrable for each P 2 P, there
is an A-measurable function g such that g such that g = EP (f jA) a.s. for all P 2 P.
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Let � and � be two probability measures on the same measurable space (V;U). Take the
Lebesgue decomposition (RAP, Theorem 5.5.3) � = �ac+�s where �ac is absolutely continuous,
and �s is singular, with respect to �. Let A 2 U with �s(A) = �(V nA) = 0, so �ac(V nA) = 0.
Then the likelihood ratio R�=� is de�ned as the Radon-Nikodym derivative d�ac=d� on A and
+1 on V n A. By uniqueness of the Hahn decomposition of V for �s � � (RAP, Theorem
5.6.1), R�=� is de�ned up to equality (�+ �s)- and so (�+ �)-almost everywhere.

Theorem 5.3. For any family P of laws on a measurable space (S;B) and sub-�-algebra
A � B, A is su�cient for P if and only if for all P;Q 2 P, RQ=P can be taken to be A-
measurable, i.e. is equal (P +Q)-almost everywhere to an A-measurable function.

Suppose we observe X1; � � � ;Xn i.i.d. with law P or Q but we do not know which and want
to decide. Suppose we have no a priori reason to favor a choice of P or Q, only the data.
Then it is natural to evaluate the likelihood ratio RQn=Pn and choose Q if RQn=Pn > 1 and P
if RQn=Pn < 1, while if RQn=Pn = 1 we still have no basis to prefer P or Q. More generally,
decisions between P and Q can be made optimally in terms of minimizing error probabilities
or expected losses by way of the likelihood ratio RQ=P or RQn=Pn as appropriate (the Neyman-
Pearson Lemma, Lehmann, 1991, pp. 74, 125; Ferguson, 1967, Section 5.1). By Theorem 5.3,
if B is su�cient for Pn for some P � fP;Qg, then RQn=Pn is B-measurable. Speci�cally, if T
is a su�cient statistic, then by Theorem 5.3 and RAP, Theorem 4.2.8, RQn=Pn is a measurable
function of T . Thus, no information in (X1; � � � ;Xn) beyond T is helpful in choosing P or Q.
In this sense, the de�nition of su�ciency �ts with the informal notion of su�ciency given at
the beginning of the section.

It will be seen that empirical measures are su�cient in a sense to be de�ned. Let Sn be
the sub-�-algebra of An consisting of sets invariant under all permutations of the coordinates.

Theorem 5.4. Sn is su�cient for Pn := fP n : P 2 Pg where P is the set of all laws on
(X;A).

For example, if X has just two points, say X = f0; 1g, and S :=
Pn

i=1 xi, then Sn is the
smallest �-algebra for which S is measurable. In this case no �-algebra strictly smaller than
Sn is su�cient (Sn is \minimal su�cient").

For each B 2 A and x = (x1; :::; xn) 2 Xn, let

Pn(B)(x) :=
1

n

nX
j=1

1B(xj):

So Pn is the usual empirical measure, except that in this section, x 7! Pn(B)(x) is a measurable
function, or statistic, on a measurable space, rather than a probability space, since no particular
law P or P n has been speci�ed as yet. Here, Pn(B)(x) is just a function of B and x.

For a collection F of measurable functions on (Xn;An), let SF be the smallest �-algebra
making all functions in F measurable. Then F will be called su�cient if and only if SF is
su�cient.

Theorem 5.5. For any measurable space (X;A) and for each n = 1; 2; :::; the empirical mea-
sure Pn is su�cient for Pn where P is the set of all laws on (X;A). In other words the set
F of functions x 7! Pn(B)(x), for all B 2 A, is su�cient. In fact the �-algebra SF is exactly
Sn.
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For some subclasses C � A, the restriction of Pn to C may be su�cient, and handier than
the values of Pn on the whole �-algebra A. Recall that a class C included in a �-algebra A is
called a determining class if any two measures on A, equal and �nite on C, are equal on all of
A. If C generates the �-algebra A, C is not necessarily a determining class unless for example
it is an algebra (RAP, Theorem 3.2.7 and the example after it).

Su�ciency of Pn(A) for A 2 C can depend on n. Let X = f1; 2; 3; 4; 5g; A = 2X ; and
C = ff1; 2; 3g; f2; 3; 4g; f3; 4; 5gg. Then C is su�cient for n = 1, but not for n = 2 since for
example (�1 + �4)=2 � (�2 + �5)=2 on C. In this case C generates A but is not a determining
class.

Theorem 5.6. Let (X; d) be a separable metric space which is a Borel subset of its completion,
with Borel �-algebra. Suppose C = fCkg1k=1 is a countable determining class for A. Then for
each n = 1; 2; � � � ; the sequence fPn(Ck)g1k=1 is su�cient for the class Pn of all laws P n on
(Xn;An) where P 2 P, the class of all laws on (X;A).

In the real line R, the closed half-lines (�1; x] form a determining class. In other words,
as is well known, a probability measure P on the Borel �-algebra of R is uniquely determined
by its distribution function F (RAP, Theorem 3.2.6). It follows that the half-lines (�1; q] for
q rational are a determining class: for any real x, take rational qk # x, then F (qk) # F (x).
Thus we have:

Corollary 5.7. In R, the empirical distribution functions Fn(x) := Pn((�1; x]) are su�-
cient for the family Pn of all laws P n on R

n where P varies over all laws on the Borel �-algebra
in R.

5.2 Admissibility

Let F be a family of real-valued functions on a set X, measurable for a �-algebra A on X. Then
there is a natural function, called here the evaluation map, F �X 7! R given by (f; x) 7! f(x):
It turns out that for general F there may not exist any �-algebra of subsets of F for which the
evaluation map is jointly measurable. The possible existence of such a �-algebra and its uses
will be the subject of this section.

Let (X;B) be a measurable space. Then (X;B) will be called separable if B is generated
by some countable subclass C � B and B contains all singletons fxg; x 2 X. In this section
(X;B) will be assumed to be such a space. Let F be a collection of real-valued functions on X.
(The following de�nition is unrelated to the usage of \admissible" for estimators in statistics.)

De�nition. F is called admissible i� there is a �-algebra T of subsets of F such that the
evaluation map (f; x) 7! f(x) is jointly measurable from (F ; T ) � (X;B) (with product �-
algebra) to R with Borel sets. Then T will be called an admissible structure for F .

F will be called image admissible via (Y;S; T ) if (Y;S) is a measurable space and T is
a function from Y onto F such that the map (y; x) 7! T (y)(x) is jointly measurable from
(Y;S)� (X;B) with product �-algebra to R with Borel sets.

To apply these de�nitions to a family C of sets let F = f1A : A 2 Cg.
Remarks. For one example, let (K; d) be a compact metric space and let F be a set of
continuous real-valued functions on K, compact for the supremum norm. Then the functions
in F are uniformly equicontinuous on K by the Arzel�a-Ascoli theorem (RAP, 2.4.7). It follows
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that the map (f; x) 7! f(x) is jointly continuous for the supremum norm on f 2 F and d on
K. Since both spaces are separable metric spaces, the map is also jointly measurable, so that
F is admissible.

If a family F is admissible, then it is image admissible, taking T to be the identity. In regard
to the converse direction here is an example. Let X = [0; 1] with usual Borel �-algebra B. Let
(Y;S) be a countable product of copies of (X;B). For y = fyng1n=1 2 Y let T (y)(x) := 1J(x; y)
where J := f(x; y) : x = yn for some ng. Let C be the class of all countable subsets of X and F
the class of indicator functions of sets in C. Then it is easy to check that F is image admissible
via (Y;S; T ). If a �-algebra T is de�ned on F by setting T := fF � F : T�1(F ) 2 Sg then it
can be shown that T is not countably generated (Freedman, 1966, Lemma (5)) although S is.
This example shows how sometimes image admissibility may work better than admissibility.

Theorem 5.8. For any separable measurable space (X;B), there is a subset Y of [0; 1] and a
1-1 function M from X onto Y which is a measurable isomorphism (is measurable and has
measurable inverse) for the Borel �-algebra on Y .

Remark. Note that Y is not necessarily a measurable subset of [0; 1]. On the other hand if
(X;B) is given as a separable metric space which is a Borel subset of its completion, with Borel
�-algebra, then (X;B) is measurably isomorphic either to a countable set, with the �-algebra
of all its subsets, or to all of [0; 1] by the Borel isomorphism theorem (RAP, Theorem 13.1.1).

Let (X;B) be a separable measurable space where B is generated by a sequence fAig. By
taking the union of the �nite algebras generated by A1; :::; An for each n, we can and do take
A := fAigi�1 to be an algebra.

Let F0 be the class of all �nite sums
Pn

i=1 ci1Ai for rational ci 2 R and n = 1; 2; � � � : Then
\Borel classes" or \Banach classes" are de�ned as follows by trans�nite recursion (RAP, 1.3.2).
Let (
; <) be an uncountable well-ordered set such that for each � 2 
; f� 2 
 : � < �g is
countable. (Speci�cally, one can take 
 to be the set of all countable ordinals with their usual
ordering.) For any countable set A � 
; fy : y � x for some x 2 Ag is countable, so there is
a z 2 
 with x < z for all x 2 A. For each � 2 
 there is a next larger element called � + 1.
Let 0 be the smallest element of 
. For each � 2 
, given F�, let F�+1 be the set of all limits
of everywhere pointwise convergent sequences of functions in F�. If � 2 
 is not of the form
�+ 1 (� is a \limit ordinal"), � > 0 and F� is de�ned for all � < � let F� be the union of all
F� for � < �. Note that F� � F� whenever � < �. Let U :=

S
�2
F�.

Theorem 5.9. U is the set of all measurable real functions on X.

On admissibility there is the following main theorem:

Theorem 5.10. (Aumann). Let I := [0; 1] with usual Borel �-algebra. Given a separable
measurable space (X;B) and a class F of measurable real-valued functions on X, the following
are equivalent:
(i) F � F� for some � 2 
;
(ii) there is a jointly measurable function G : I�X 7! R such that for each f 2 F , f = G(t; �)
for some t 2 I;
(iii) there is a separable admissible structure for F ;
(iv) F is admissible;
(v) 2F is an admissible structure for F ;
(vi) F is image admissible via some (Y;S; T ).
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Remarks. The speci�c classes F� depend on the choice of the countable family A of gen-
erators, but condition (i) does not: if C is another countable set of generators of B with
corresponding classes G�, then for any � 2 
 there are � 2 
 and  2 
 with F� � G� and
G� � F .

For 0 � p < 1 and a probability law Q on (X;B) we have the space Lp(X;B; Q) of
measurable real-valued functions f on X such that s jf jpdQ <1, with the pseudo-metric

dp;Q(f; g) := (s jf � gjpdQ)1=p; 1 � p <1;

s jf � gjpdQ; 0 < p < 1;

inff" > 0 : Q(jf � gj > ") < "g; p = 0:

In admissible classes, dp;Q-open sets are measurable, as follows:

Theorem 5.11. Let (X;B) be a separable measurable space, 0 � p <1, and F � Lp(X;B; Q)
where F is admissible. Then if F is image admissible via (Y;S; T ), U � F and U is relatively
dp;Q-open in F , we have T�1(U) 2 S.

Corollary 5.12. If F � L1(X;B; Q) where (X;B) is a separable measurable space, and F is
image admissible via (Y;S; T ) then y 7! s T (y)dQ is S-measurable.

Proof. For any real u, ff : s fdQ > ug is open for d1;Q. �

If 1 � p < 1 and f; g 2 Lp(X;B; Q) let �p;Q(f; g) := dp;Q(f0;Q; g0;Q) where for h 2
L1(X;B; Q); h0;Q := h� R hdQ. Thus for �Q as de�ned in Section 3.1, �Q � �2;Q.

Corollary 5.13. If (X;B) is a separable measurable space, 1 � p < 1, F � Lp(X;B; Q), F
is image admissible via (Y;S; T ), S is separable, U � F and U is �p;Q-open, then T�1(U) 2 S.

5.3 Suslin properties, selection, and a counterexample

Here is another counterexample on measurability, to add to the two at the beginning of the
chapter. Let X = [0; 1] with Borel �-algebra and uniform (Lebesgue) probability measure
P := U [0; 1]. Let A be a non-Lebesgue measurable subset of [0; 1], e.g. RAP, Theorem 3.4.4.
Let C := ffxg : x 2 Ag. Then C is a collection of disjoint sets, so S(C) = 1 by Theorem 4.10.
Also C, being a class of singletons, is admissible, e.g. by Theorem 5.10(ii) with G(t; s) = 1 for
t = s, G(t; s) = 0 otherwise. But, kP1kC is non-measurable, being 1 if and only if X1 2 A,
and likewise any kPnkC and kPn � PkC is non-measurable. So some measurability condition
beyond admissibility is needed for kPn �PkF to be measurable. A su�cient condition will be
provided by Suslin properties, as follows.

A Polish space is a topological space metrizable as a complete separable metric space. A
separable measurable space (Y;S) will be called a Suslin space i� there is a Polish space X
and a Borel measurable map from X onto Y . If (Y;S) is a measurable space, a subset Z � Y
will be called a Suslin set i� it is a Suslin space with the relative �-algebra Z u S.

Given a measurable space (X;B) and M � X, M is called universally measurable or u.
m. i� for every probability law P on B, M is measurable for the completion of P , in other
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words for some A;B 2 B; A � M � B and P (A) = P (B). In a Polish space, all Suslin sets
are universally measurable (RAP, Theorems 13.2.1 and 13.2.6). A function f from X into Z,
where (Z;A) is a measurable space, will be called universally measurable or u. m. i� for each
set B 2 A, f�1(B) is universally measurable.

If (
;A) is a measurable space and F a set, then a real-valued function X : (f; !) 7!
X(f; !) will be called image admissible Suslin via (Y;S; T ) i� (Y;S) is a Suslin measurable
space, T is a function from Y onto F , and (y; !) 7! X(T (y); !) is jointly measurable on Y �
:
Equivalently, Y could be taken to be Polish with S its Borel �-algebra .

As the notation suggests, a main case of interest will be where F is a set of functions on

 and X(f; !) � f(!). Also, X or F will be called image admissible Suslin if X is image
admissible Suslin via some (Y;S; T ) as above.

Recall the notion of separable measurable space de�ned in the last section. Note that any
separable metric space with its Borel �-algebra is a separable measurable space, as follows
from RAP, Proposition 2.1.4. We have:

Theorem 5.14. A measurable space (X;B), where B is countably generated, is separable if
and only if it separates the points of X, so that for any x 6= y in X, there is some A 2 B
containing just one of x; y.

Theorem 5.15. Selection Theorem (Sainte-Beuve). Let (
;A) be any measurable space and
let X : F � 
 7! R be image admissible Suslin via (Y;S; T ). Then for any Borel set B � R,

�X(B) := f! : X(f; !) 2 B for some f 2 Fg
is u. m. in 
, and there is a u. m. function H from �X(B) into Y such that X(T (H(!)); !) 2 B
for all ! 2 �X(B).

Note. Here (
;A) need not be Suslin or even separable.

Some possibilities for the set B � R are the sets fx : x > tg or fx : jxj > tg for any real
t. These choices give:

Corollary 5.16. Let (f; !) 7! X(f; !) be real-valued and image admissible Suslin via some
(Y;S; T ). Then ! 7! supfX(f; !) : f 2 Fg and ! 7! supfjX(f; !)j : f 2 Fg are u. m.
functions.

The image admissible Suslin property is preserved by composing with a measurable function:

Theorem 5.17. Let X1; :::;Xk be image admissible Suslin real-valued functions on Fi�
; i =
1; :::; k, for one measurable space (
;A), via (Yi;Si; Ti); i = 1; :::; k. Let g be a Borel measurable
function from R

k into R. Then (!; f1; :::; fk) 7! g(X1(f1; !); :::;Xk(fk; !)) is image admissible
Suslin via some (Y;S; T ): Speci�cally, we can let Y = Y1 � ::: � Yk with product �-algebra
S = S1 
 :::
 Sk and let T (y1; :::; yk) := (T1(y1); :::; Tk(yk)).

Proof. Clearly (Y;S) is Suslin and the joint measurability holds. �

Next, here are examples showing that if the Suslin assumption on Y is removed from
Theorem 5.15 it may fail. Let (
; <) and the class C of countable initial segments Ix be as in
the second example at the beginning of this chapter. We can take 
 to be (in 1-1 correspondence

79



with) a subset of [0; 1], by the axiom of choice (or, by the continuum hypothesis, all of [0; 1]).
Here the ordering < has no relation to any usual structure on [0; 1]. Then C is admissible by
Theorem 5.10, since the collection all countable sets is of bounded Borel class: all �nite unions
of open intervals (q; r) with rational endpoints are in some F�, then all �nite sets are in F�+1
and all countable sets in F(�+1)+1 =: F�+2:

Let P be a law on 
 which is 0 on countable sets and 1 on sets with countable complement.
Such a law, on the �-algebra generated by singletons, exists on any uncountable set. Under the
continuum hypothesis with 
 = [0; 1] we can take P to be Lebesgue measure or any nonatomic
law.

Let P1 = �x; P2 = (�x + �y)=2 and Q1 = �z where x; y; z are coordinates on 
3 with law
P 3, so x; y and z are i.i.d. (P ). Then supA2C(P1 � Q1)(A) = 1 if and only if x < z. Thus as
seen at the beginning of this chapter, supA2C(P1 �Q1)(A) is non-measurable.

If we let B := f(x; y; z) : supA2C j(P2 �Q1)(A)j = 1g, it can be seen likewise that B must
not be measurable. So \Suslin" cannot simply be removed from Corollary 5.16 or Theorem
5.15.

Returning to positive results, an admissible structure can be put on spaces of closed sets.
Let (X; d) be a separable metric space and F0 the collection of all non-empty closed subsets
of X. Then F0 is admissible: there is a countable base for the topology of X, so for some �,
all �nite unions of sets in the base are in F�, so all open sets are in F�+1. Then all closed sets
are in F�+2 since any closed set F is a countable intersection of open sets

Un := fx : d(x; F ) := inf
y2F

d(x; y) < 1=ng:

The topology of X can be metrized by a metric d for which (X; d) is totally bounded (RAP,
Theorem 2.8.2). Assume d is such a metric. De�ne the Hausdor� metric hd by

hd(A;B) := maxfsup
x2A

d(x;B); sup
y2B

d(y;A)g

for any two closed sets A;B.
Since d is totally bounded, it's easily seen that (F0; hd) is separable, since the �nite subsets

of a countable dense set in X are dense in F0 for hd.
The Borel �-algebra of hd will be called an E�ros Borel structure on F0. (E�ros, 1965,

proved that for d totally bounded this Borel structure is unique.)

Proposition 5.18. For any separable metric space X with totally bounded metric d, the E�ros
Borel structure (of hd) is admissible on F0. Also, for any law P on the Borel sets of X, P (�)
is measurable for the E�ros Borel structure.

For families of functions, we have the following.

Theorem 5.19. (a) Let S be a topological space and F a family of bounded real functions on
S, equicontinuous at each point of S. Then (f; x) 7! f(x) is jointly continuous F � S 7! R,
with the supremum norm kfk1 := supx jf(x)j on F .
(b) If in addition F is separable for k:k1 and S is metrizable as a separable metric space
(S; d), then (f; x) 7! f(x) is jointly measurable for the Borel �-algebras of k:k1 on F and d
on S. Thus F is admissible. So is G, the collection of all subgraphs f(x; y) : 0 � y � f(x) or
f(x) � y � 0g for f 2 F .
(c) If, moreover, F with k:k1 distance and its Borel �-algebra is a Suslin set, then F and G
are image admissible Suslin.
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Strobl (1994, 1995) and Ziegler (1994, 1997a,b) have given special attention to measurability
issues for empirical processes.

Example (Adamski and Gaenssler). Let H � [0; 1] be a non-measurable set with ��(H) = 0
and ��(H) = 1 where � is Lebesgue measure (e.g. RAP, Theorem 3.4.4). Then for each Borel
set B � [0; 1], letting �(B\H) := ��(B\H) de�nes a countably additive probability measure
on the Borel subsets of H, as a metric space with the usual metric from R (RAP, Theorem
3.3.6). Likewise, �� gives a probability measure � on the Borel sets of Hc := [0; 1] n H.
Take the countable product of probability spaces (
; �) := �1n=1(An;Bn; �n) where for n odd,
An = H and �n = � while for n even, An = Hc and �n = �. Such a product of probability
spaces always exists, e.g. RAP, Theorem 8.2.2. Let Xn be the nth coordinate on 
, viewed
as a map from 
 into [0; 1]. Then each Xn is measurable and has law U [0; 1], the uniform
distribution on [0; 1]. Thus, the Xi are i.i.d. U [0; 1]. Let C be the collection of all �nite subsets
of H. Let Pn be the empirical measures de�ned by the given Xi. Then kPnkC � 1=2 for n
even and kPnkC � (n + 1)=(2n) for n odd. On the other hand if Xi are coordinates on a
countable product of copies of ([0; 1]; �), then kPnkC is non-measurable. This illustrates that
C is a pathological class of sets, but the pathology can be obscured if one doesn't use the
standard model.
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Chapter 6

Limit theorems for

Vapnik-�Cervonenkis and related

classes

6.1 Koltchinskii-Pollard entropy and Glivenko-Cantelli theo-

rems

For central limit theorems over Vapnik-�Cervonenkis and certain related classes some good
su�cient conditions were proved by Pollard (1982), using the following form of \entropy" or
\capacity".

Let (X;A) be a measurable space and F � L0(X;A), the space of all real-valued measurable
functions on X. Recall that FF (x) := supfjf(x)j : f 2 Fg (Section 4.8). Then FF (x) �
k�xkF . A measurable function F 2 L0(X;A) with F � FF will be called an envelope function
for F . If FF is A-measurable it will be called the envelope function of F . If a law P is given on
(X;A), then F �F for P will be called the envelope function of F for P , de�ned up to equality
P -a.s.

Let � be the set of all laws on X of the form n�1
Pn

j=1 �x(j) for some x(j) 2 X, j = 1; : : : ; n,
and n = 1; 2; : : :, where the x(j) need not be distinct. For � > 0, 0 < p <1, and  2 � recall
(Section 4.8) that if F is an envelope function of F ,

D
(p)
F (�;F ; ) := sup

�
m : for some f1; : : : ; fm 2 F ; and all i 6= j;

Z
jfi � fjjp d > �p

Z
F pd

�
: (6.1)

Let D
(p)
F (�;F) := sup2�D

(p)
F (�;F ; ) : Here D

(p)
F (�;F ; ) is a kind of packing number,

involving the envelope function F . The corresponding \entropy" will be the logarithm of D(p).
Such logarithms will appear in Section 6.3.

Let G := ff=F : f 2 Fg, where 0=0 is replaced by 0. Then jg(x)j � 1 for all g 2 G and
x 2 X. Given F , p, and  2 � let Q(B) :=

R
B F

pd= (F p), if  (F p) > 0. Then Q := Q

is a law and for 1 � p < 1, D
(p)
F (�;F ; ) = D (�;G; dp;Q) ; where (as de�ned in section 5.2)

dp;Q(f; g) := (s jf � gjp dQ)1=p :
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For example, if C is a collection of measurable sets, whose union is all of X, and F :=

f1A : A 2 Cg the envelope function is F � 1 and D
(p)
F (�;F ; ) = D(�;F ; dp;): The next few

results will connect D
(p)
F (�;F) with other ways of measuring the size of certain classes F . First

we have Vapnik-�Cervonenkis classes C of sets with dens(C) � S(C) < +1 (Corollary 4.4).

Theorem 6.1. If C � A, dens(C) < +1, 1 � p < 1, F 2 Lp(X;A; P ), F � 0, and
F := fF1A : A 2 Cg then for any w > dens(C) there is a K <1 such that

D
(p)
F (�;F) � K��pw; 0 < � � 1:

Next, here is a kind of converse to Theorem 6.1:

Proposition 6.2. Suppose 1 � p <1, F = f1B : B 2 Cg for some collection C of sets, F � 1,

and for some � with 0 < �p < 1=2, D
(p)
F (�;F) <1. Then dens(C) � S(C) <1.

Next let us consider families of functions of the form F = fFg : g 2 Gg where G is a family
of functions totally bounded in the supremum norm

kgksup := supx2X jg(x)j;
with the associated metric dsup(g; h) := kg � hksup and with kgksup � 1 for all g 2 G.

Proposition 6.3. For 1 � p <1 and 0 < " � 1 then for any such F ,

D
(p)
F (";F) � D (";G; dsup) :

Proof. If dsup(g; h) � � then for all x, jFg � Fhjp (x) � �pF (x)p, so the result follows from
the de�nition (6.1). �

Next we come to the Koltchinskii-Pollard method of symmetrization of empirical mea-
sures. Given n = 1; 2; : : :, let x1; : : : ; x2n be coordinates on

�
X2n;A2n; P 2n

�
, hence i.i.d. P. Let

�(1); : : : ; �(n) be random variables independent of each other and the xi with Pr(�(i) = 2i) =
Pr(�(i) = 2i� 1) = 1

2 , i = 1; : : : ; n. Let �(i) = 2i if �(i) = 2i� 1 and �(i) = 2i� 1 if �(i) = 2i.
Let x(i) := xi. Then the x(�(j)) are i.i.d. P. Let

P 0n := n�1
Pn

j=1 �x(�(j)); P 00n := n�1
Pn

j=1 �x(�(j));

� 0n := n1=2
�
P 0n � P

�
; � 00n := n1=2

�
P 00n � P

�
;

P 0
n := P 0n � P 00n ; �0n := n1=2P 0

n :

Note that P 00n = 2P2n � P 0n and that � 0n and � 00n are two independent copies of �n. Here is a
symmetrization fact:

Lemma 6.4. (Symmetrization) Let � > 0 and F � L2(X;A; P ) with s jf j2dP � �2 for all
f 2 F . Assume F is image admissible Suslin via some (Y;S; T ). Then for any � > 0

Pr
��0nF > �

	 � �
1� �2��2

�
Pr fk�nkF > 2�g :
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Some reverse martingale and submartingale properties of the empirical measures Pn will be
stated. Recall that Q(f) := s f dQ for any f 2 L1(Q), and that in de�ning empirical measures
Pn := 1

n

Pn
j=1 �Xj , the Xj are always (in these notes) taken as coordinates on a product of

copies of a probability space (X;A; P ), so that the underlying probability measure for Pn is
P n, a product of n copies of P .

The de�nitions of (reversed) (sub)martingale given e.g. in RAP, Sections 10.3 and 10.6, for
random variables Yn and �-algebras Bn, will be slightly extended here by allowing Yn to be
measurable for the completion of Bn.

Theorem 6.5. Let (X;A; P ) be a probability space, F � L1(P ), and Pn empirical measures
for P . Let Sn be the smallest �-algebra for which Pk(f) are measurable for all k � n and
f 2 L1(X;A; P ). Then: (a) For any f 2 F , fPn(f);Sngn�1 is a reversed martingale, in other
words

E (Pn�1(f)jSn) = Pn(f) a.s., if n � 2:

(b) (F. Strobl) Suppose that F has an envelope function F 2 L1(X;A; P ) and that for each n,
kPn � PkF is measurable for the completion of P n. Then (kPn � PkF ;Sn)n�1 is a reversed
submartingale, in other words

kPn � PkF � E(kPk � PkF jSn) a.s. for k � n.

Remark. kPn � PkF will be completion measurable if F is image admissible Suslin, by
Corollaries 5.16 and 5.12.

Here is a law of large numbers (generalized Glivenko-Cantelli theorem):

Theorem 6.6. Let (X;A; P ) be a probability space, F 2 L1(X;A; P ), and F a collection of
measurable functions on X having F as an envelope function. Suppose F is image admissible
Suslin via (Y;S; T ). Assume that

D
(1)
F (�;F) <1 for all � > 0: (6.2)

Then limn!1 kPn � PkF = 0 a.s.

Corollary 6.7. Let (X;A) be a measurable space and C � A where S(C) <1 and C is image
admissible Suslin. Then for any probability law P on A, we have

limn!1 supA2C j(Pn � P )(A)j = 0 a.s.

Proof. In Theorem 6.6, take F � 1 and apply Theorem 6.1 with p = 1. �

6.2 Vapnik-�Cervonenkis-Steele laws of large numbers.

Let (X;A; P ) be a probability space and C � A. Let fxngn�1 be coordinates in (X1;A1; P1)

so that xj are i.i.d. P . For certain classes C with S(C) = +1 one will have �C (fx1; : : : ; xng) <
2n with P n-probability converging to 1. For such classes, with su�cient measurability proper-
ties, a law of large numbers will still hold. Here a main result is as follows:
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Theorem 6.8. If (X;A; P ) is any probability space, C � A, and C is image admissible Suslin,
then the following are equivalent:

(a) kPn � PkC ! 0 a.s. as n!1;

(b) kPn � PkC ! 0 in probability as n!1;

(c) limn!1 n
�1E log �C (fx1; : : : ; xng) = 0.

For a �nite set F � X and collection C � 2X , let kC(F ) := S(C u F ):

Lemma 6.9. Under the hypotheses of Theorem 6.8, �C(x1; � � � ; xn) and kC (fx1; � � � ; xng) are
universally measurable.

The main step in Steele's proof uses Kingman's subadditive ergodic theorem (the equivalent
superadditive ergodic theorem is RAP, Theorem 10.7.1). To state it, here is some terminology.
Let N denote the set of nonnegative integers. A subadditive process is a doubly indexed set
fxmng0�m<n<1 of real random variables, m, n 2 N, m < n, such that

xkn � xkm + xmn whenever k < m < n: (6.3)

Let xnn := 0 for all n 2 N. If instead of (6.3),

xkn � xkm + xmn; k < m < n; (6.4)

then fxmng0�m<n is called superadditive.

A process which is both subadditive and superadditive is called additive and can clearly be
written as xkn =

P
k<j�n xj ; where xj := xj�1;j; i.e., one has just partial sums of a sequence

of random variables.

A subadditive process fxmng0�m<n de�ned on a probability space (
;B;Pr) will be called
stationary if there is a measure-preserving transformation V of 
 onto itself such that for any
integers 0 � m < n, xmn(V (!)) = xm+1;n+1(!). Recall that (f � g)(x) := f(g(x)). Let
V k := V � (V � (� � � � V ) � � �) to k terms. Then for k = 1; 2; � � � ; xmn � V k = xm+k;n+k. Let S
be the �-algebra of all B 2 B such that V �1(B) = B.

Another useful hypothesis for subadditive processes is:

For each n 2 N; Ejx0nj < +1; and � := infn�1Ex0n=n > �1: (6.5)

A �-algebra D � B will be called degenerate if Pr(D) = 0 or 1 for all D 2 D.

Theorem 6.10. (Kingman's subadditive ergodic theorem). Let fxmng0�m<n be a stationary

subadditive process satisfying (6.5). Then as n ! 1, x0n=n converges a.s. and in L1 to a
random variable y := limn!1 n

�1E (x0njS) with Ey = �. If S is degenerate, then y = � a.s.

Proof. RAP, Theorem 10.7.1 applies with fn there de�ned as �x0n. From near the end of
the proof (RAP, p. 296), we have Ey � Ex0n=n for all n and Ex0n=n ! Ey as n ! 1, so
Ey = �. �

To apply Theorem 6.10 in proving Theorem 6.8 we have:
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Theorem 6.11. Let (
; T ;Pr) be a probability space, (X;A) a measurable space, X1 a mea-
surable function from 
 into X, and V a measure-preserving transformation of 
 onto itself.
Let Xj := X1 � V j�1 for j = 2; 3; � � �. Let C be image admissible Suslin, ; 6= C � A. Then
each of the following is a stationary subadditive process satisfying (6.5):

(a) DCmn := supA2C

���Pm<i�n (1A(Xi)� P (A))
���;

(b) log �Cmn := log �C (fXm+1; : : : ;Xng);

(c) kCmn := kC (fXm+1; : : : ;Xng).

Proof. We have measurability by Corollary 5.16 in (a) and Lemma 6.9 in (b) and (c). Station-
arity clearly holds for the same V in each case. Subadditivity is clear in (a) and not di�cult
for (b) and (c). All three processes are nonnegative: in (b), C non-empty implies �C � 1, so
(6.5) holds. �

6.3 Pollard's central limit theorem

By way of the Koltchinskii-Pollard kind of entropy and law of large numbers (Section 6.1
above) the following can be proved:

Theorem 6.12. (Pollard) Let (X;A; P ) be a probability space and F � L2(X;A; P ). Let F be
image admissible Suslin via (Y;S; T ) and have an envelope function F 2 L2(X;A; P ). Suppose
that R 1

0

�
logD

(2)
F (x;F)

�1=2
dx <1: (6.6)

Then F is a Donsker class for P .

Here is a consequence:

Theorem 6.13. (Jain and Marcus). Let (K; d) be a compact metric space. Let C(K) be the
space of continuous real functions on K with supremum norm. Let X1; X2; : : : be i.i.d. random
variables in C(K). Suppose EX1(t) = 0 and EX1(t)

2 < 1 for all t 2 K. Assume that for
some random variable M with EM2 <1,

jX1(s)�X1(t)j (!) �M(!)d(s; t) for all ! and s; t 2 K:

Suppose that

s10 (logD(";K; d))1=2 d" <1:

Then the central limit theorem holds, in other words, in C(K),

L
�
n�1=2(X1 + � � �+Xn)

�
converges to some Gaussian law.

Remark. In the situation of Theorem 6.13, K may be given originally with a metric e. The
metric d may be chosen, perhaps as a function d = f(e), where f(x) may approach 0 slowly
as x # 0, e.g., f(x) = x" for " > 0 or f(x) = 1=max (j log xj; 2). Thus one can increase the
possibilities for obtaining the Lipschitz property of X1 with respect to d, so long as (6.6) holds
for d.
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Proposition 6.14. Let (X;A; P ) be a probability space. Suppose a class F of measurable

real-valued functions on X has an envelope function F 2 L2(X;A; P ). If D
(2)
F (�;F) < 1 for

all � > 0, then F is totally bounded in L2(X;A; P ).

Corollary 6.15. (Pollard). Let (X;A; P ) be a probability space, and let F be an image admis-
sible Suslin Vapnik- �Cervonenkis subgraph class of functions with envelope F 2 L2(X;A; P ).
Then F is a Donsker class for P .

Proof. This follows from Theorem 6.12 and Theorem 4.51 for p = 2. �

Corollary 6.16. Let (X;A; P ) be a probability space, F 2 L2(X;A; P ); and F = fF1C :
C 2 Cg where C is an image admissible Suslin Vapnik- �Cervonenkis class of sets. Then F is a
Donsker class for P .

Proof. Since F is measurable, the image admissible Suslin property of F follows from that of
C. By Theorem 6.1 for p = 2, (6.6) holds and Theorem 6.12 applies. �

6.4 Necessary conditions for limit theorems

Theorems 6.1 and 6.12 imply that every class C � A with S(C) < +1, and which is image
admissible Suslin, is a Donsker class, for an arbitrary law P on A. In this section it will be
seen that to obtain, for all P , such a central limit theorem (or even the pregaussian property),
for a class C of sets, the condition S(C) < +1 is necessary. Then it will be noted that some
measurability, beyond that of kPn � PkC , is needed to obtain even a law of large numbers for
S(C) < +1. Lastly, it will be seen that S(C) <1 is necessary so that kPn�PkC ! 0 in outer
probability as n!1, uniformly in P .

Theorem 6.17. Let (X;A) be a measurable space and C � A. Suppose that for all laws P on
A, f1A : A 2 Cg is a pregaussian class (as de�ned in Section 3.1). Then S(C) <1.

Remark. Now let us recall the example at the beginning of Chapter 5, where C is the
collection of all countable initial segments of an uncountable well-ordered set (X;<) and P is
a continuous law on some �-algebra A containing all countable subsets of X. Then S(C) = 1
but supA2C j(Pn�P )(A)j � 1 for all n. Thus the latter random variable is measurable. For this
class the weak law of large numbers, hence the strong law and central limit theorem, all fail as
badly as possible. This shows that in Theorem 6.6 and Corollary 6.7, the \image admissible
Suslin" condition cannot simply be removed, nor replaced by simple measurability of random
variables appearing in the statements of the results. Further, for all A 2 C, 1A = 0 a.s. P , so
vanishing a.s. (P ) even with S(C) = 1 does not imply a law of large numbers.

Remark. If X is a countably in�nite set and A = 2X , then for an arbitrary law P on A,
limn!1 supA2A j(Pn � P )(A)j = 0 a.s., but S(A) = +1, so the hypothesis of Theorem 6.17
cannot be weakened to a law of large numbers for all P .

Next it will be seen that the Vapnik-�Cervonenkis property is also necessary for a law of
large numbers to hold uniformly in P or that there exist an estimator of P based on X1; � � � ; Xn
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(which might or might not equal Pn) converging to P uniformly over C and uniformly in P .
Here are some de�nitions.

Let (X;B) be a measurable space. Let its n-fold Cartesian product be (Xn;Bn). Let P be
the class of all probability measures on (X;B). Let C � B be any collection of measurable sets.
A real-valued function Tn on Xn � C will be called a C-estimator if it is a stochastic process
indexed by C, in other words, for each A 2 C, x 7! Tn(x;A) is measurable on Xn.

A C-estimator Tn will be called an estimator if for each x, there is a probability measure �
on A which equals Tn(x; �) on C.

For any probability measure P on (X;B) and product law P n on (Xn;Bn), for x =
(X1; � � � ; Xn) so that Xi are i.i.d. (P ), we would like Tn to be a good approximation to P
with probability ! 1 as n!1. The goodness of the approximation will be measured by the
loss function L(Tn; P ) := kTn � PkC . From it we get the risk r(Tn; P; C) := EPL(Tn; P )�

where EP denotes expectation with respect to P n. For any class Q of laws, let r(Tn;Q; C) :=
supfr(Tn; P; C) : P 2 Qg, and let rn(Q; C) be the minimax risk, i.e. the in�mum of r(Tn;Q; C)
over all C-estimators Tn.

In �nding minimax risks for C-estimators we can assume Tn takes values in [0; 1] since
max(0;min(Tn; 1)) will clearly have risks no larger than those of Tn.

For any C and Q, clearly 0 � rn(Q; C) � 1 and rn is non-increasing in n. The following
theorem holds for C-estimators and so a fortiori for estimators, whose values are probability
measures. The following fact is mainly due to P. Assouad:

Theorem 6.18. Let P be the class of all probability measures on a sample space (X;B) and
C � B. If the minimax risk rn(P; C) < 1=2 for some n, then C is a Vapnik- �Cervonenkis class.

A corollary of Theorem 6.18, taking Tn = Pn, is:

Theorem 6.19. (Assouad) If (X;B) is a measurable space and C � B is a uniform Glivenko-
Cantelli class of sets, that is, supP EP kPn �Pk�C ! 0 as n!1, where the supremum is over
all probability laws on (X;B), then C is a Vapnik- �Cervonenkis class.

Now we'll see that the constant 1=2 in Theorem 6.18 is sharp:

Proposition 6.20. For the class P of all probability measures on a sample space (X;B) there
is always a B-estimator T , not depending on n or x, with r(T;P;B) � 1=2, so that for any
Q � P; C � B and n we have rn(Q; C) � 1=2. Moreover when (X;B) is the unit interval [0; 1]
with the Borel �-algebra, there is a class C which is not a Vapnik- �Cervonenkis class, and for
which T on C is given by a probability measure, so T is an estimator, not only a C-estimator.

Proof. A C-estimator T (not depending on n or x) is de�ned by T (x;A) � 1=2 for all
A 2 B....

Next, it will be seen that one of the hypotheses of Theorem 6.6, existence of an inte-
grable envelope function, is essentially necessary for a law of large numbers (Glivenko-Cantelli
property). This is related to the fact that that for i.i.d. real random variables Y1; � � � ; Yn; � � � ;
(Y1 + � � � Yn)=n converges a.s. to a �nite limit if and only if EjY1j <1 (RAP, Theorem 8.3.5).

Theorem 6.21. If (S;B; P ) is a probability space, F � L1(S;B; P ); kPkF < 1, and if F is
a strong Glivenko-Cantelli class for P , i.e. kPn � Pk�F ! 0 a.s., then F has an integrable
envelope function: EkP1k�F <1.
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Chapter 7

Metric Entropy, With Inclusion And

Bracketing

7.1 De�nitions and the Blum-DeHardt law of large numbers

De�nitions. Given a measurable space (A;A), let L0 (A;A) denote the set of all real-valued
A-measurable functions on A. Given f; g 2 L0 (A;A) let [f; g] :=

�
h 2 L0 (A;A) : f � h � g

	
(empty unless f � g). A set [f; g] will be called a bracket. Given a probability space (A;A; P ),

1 � q � 1, F � Lq(A;A; P ) with usual seminorm k�kq, and � > 0, let N
(q)
[ ] (�;F ; P ) denote the

smallest m such that for some f1; : : : ; fm and g1; � � � ; gm in Lq(A;A; P ), with kgi � fikq � �
for i = 1; � � � ;m,

F �
m[
i=1

[fi; gi] : (7.1)

Here logN
(q)
[ ] (�;F ; P ) will be called a metric entropy with bracketing .

Note that the fj and gj are not required to be in F . For example, if F is the set of
indicators of half-planes in R

2 , then f � h � g for f; g; h in F would require the boundary
lines of all three half-planes to be parallel. If instead we let f be the indicator of an intersection
of two half-planes and g that of a union, then there can be a non-degenerate set of h 2 F with
f � h � g.

Also note that an individual bracket [f; g] has the envelope function max(�f; g) =
max(jf j; jgj) and so if (7.1) holds, for some ", then F has an envelope function given by
max1�j�m max(�fj; gj). The set of all di�erences h�H for h and H in [f; g] has an envelope
function g � f . So, in this chapter, unlike the last, envelope functions will not be singled out
for special attention.

If F � Lr then for q � r � 1, F � Lq and

N
(q)
[ ] (�;F ; P ) � N

(r)
[ ] (�;F ; P ) for all � > 0: (7.2)

For r = 1, more is true. Let dsup(f; g) := supx j(f � g)(x)j, kfksup := dsup(f; 0). It is easily
seen using brackets [fj � �; fj + �] that for any law P ,

N
(1)
[ ] (2�;F ; P ) � D (�;F ; dsup) : (7.3)

93



Thus, for example, a set F of continuous functions, totally bounded in the usual supremum

norm with given bounds D (�;F ; dsup) will have the same bounds on all N
(q)
[ ] (2�;F ; P ), 1 �

q � 1.
If F consists of indicator functions of measurable sets then in �nding brackets [fi; gi] to

cover F , it is no loss to assume 0 � fi � gi � 1 for all i. Next, if C(i) := fx : fi(x) > 0g,
D(i) := fx : gi(x) = 1g, and fi � 1C � gi then

fi � 1C(i) � 1C � 1D(i) � gi:

So, [fi; gi] can be replaced by [1C(i); 1D(i)]. If C is a collection of measurable sets and � > 0,
let NI(�; C; P ) := inffm : for some C1; : : : ; Cm and D1; � � � ;Dm in A, for all C 2 C there is an
i with Ci � C � Di and P (Di n Ci) � �g. Here the I in NI indicates \inclusion." Then it
follows that

NI (�; C; P ) = N
(1)
[ ] (�;F ; P ) where F = f1C : C 2 Cg : (7.4)

We have the following law of large numbers:

Theorem 7.1. (Blum-DeHardt) Suppose F � L1(A;A; P ) and for all � > 0, N
(1)
[ ] (�;F ; P )

<1. Then F is a strong Glivenko-Cantelli class, that is,

lim
n!1

kPn � Pk�F = 0 a.s.

The su�cient condition in Theorem 7.1 is not necessary. In fact, the following holds.

Proposition 7.2. There is a probability space (A;A; P ) and a strong Glivenko-Cantelli class

F := f1C : C � Cg for P , where C � A is such that for all " < 1=2, we have N
(1)
[ ] (�;F ; P ) =

+1.

Proof. Let A = [0; 1] with P = U [0; 1] the uniform (Lebesgue) law. Let Cm := C(m) be
independent sets with P (Cm) = 1=m. One can show that C := fC(m)gm�1 has the stated
properties. �

On the other hand let C be the collection of all �nite subsets of [0; 1] with Lebesgue law P .
Then kPn � PkC � 1 6! 0 although 1A = 0 a.s. for all A 2 C. This shows that in Theorem 7.1,
NI <1 cannot be replaced by N (�;F ; dp) � 1 for any Lp distance dp.

A Banach space (S; k:k) has a dual space (S0; k:k0) of continuous linear forms f : S 7! R

with kfk0 := supfjf(x)j : x 2 S; kxk � 1g < 1 (RAP, Section 6.1). One way to apply
Theorem 7.1 is via the following:

Proposition 7.3. Let (S; k�k) be a separable Banach space and P a law on the Borel sets of
S such that

R kxk dP (x) < 1. Let F be the unit ball of the dual space S0, F := ff 2 S0 :

kfk0 � 1g. Then for every � > 0, N
(1)
[ ] (�;F ; P ) <1.

Corollary 7.4. (Mourier's strong law of large numbers) Let (S; k�k) be a separable Banach
space, P a law on S such that

R kxk dP (x) <1, and X1;X2; : : : i.i.d. P. Let Sn := X1 + � � �+
Xn. Then Sn=n converges a.s. in (S; k�k) to some x0 2 S.
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Corollary 7.5. If F � L1(A;A; P ) and f�x : x 2 Ag is separable for k�kF , then kPn � PkF
= kPn � Pk�F ! 0 a.s.

Proof. This follows from Corollary 7.4, since �nite linear combinations of �x; x 2 A, with
rational coe�cients, are dense in their completion for k:kF , a Banach space. �

The proof of Proposition 7.3 and Corollary 7.4 together from Theorem 7.1 is no shorter

than a direct proof. On the other hand if F =
n

1[0;t] : 0 < t < 1
o

and P is Lebesgue measure

on [0; 1] then Theorem 7.1 applies but Corollary 7.5 does not.

7.2 Central limit theorems with bracketing

In this section the bracketing will be in L2. The following main theorem will be stated. Then,

Corollary 7.7 gives a hypothesis on N
(1)
[ ] for uniformly bounded classes of functions.

Theorem 7.6. (M. Ossiander) Let (X;A; P ) be a probability space and let F � L2(X;A; P )
be such that Z 1

0

�
logN

(2)
[ ] (x;F ; P )

�1=2
dx <1:

Then F is a P -Donsker class.

Theorem 7.6 implies the following for L1 entropy with bracketing:

Corollary 7.7. Let (X;A; P ) be a probability space and F a uniformly bounded set of mea-
surable functions on X. Suppose that

Z 1

0

�
logN

(1)
[ ] (x2;F ; P )

�1=2
dx <1:

Then F is a Donsker class for P .

Proof. Suppose jf(x)j �M <1 for all f 2 F and x 2 X. Since multiplication by a constant
preserves the Donsker property (by Theorem 3.28), we can assume M = 1=2. Then for any
f; g 2 F and " > 0, jf � gj � 1 everywhere. So if s jf � gjdP � "2 then (s jf � gj2dP )1=2 � ".

So N
(2)
[ ] (";F ; P ) � N

(1)
[ ] ("2;F ; P ) and the result follows from Theorem 7.6. �

It will be seen in the next section that Corollary 7.7, and thus Theorem 7.6, are best
possible (provide a characterization of the Donsker property) in some cases.

7.3 The power set of a countable set: Borisov-Durst theorem

Let P be a law on the set N of nonnegative integers. The next theorem gives a criterion for
the Donsker property of the collection 2N of all subsets of N, for P , in terms of the numbers
pm := P (fmg) for m � 0. We also �nd that the su�cient condition given in Corollary 7.7 is
necessary for 2N. Recall NI as de�ned above Theorem 7.1.
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Theorem 7.8. The following are equivalent:
(a) 2N is a Donsker class for P ;

(b)
P

m p
1=2
m <1;

(c)
R 1
0

�
logNI

�
x2; 2N; P

��1=2
dx <1.

Recall the Remark after Theorem 6.17, which implies that if C = 2N then supA2C j(Pn �
P )(A)j ! 0 a.s., n!1, for any law P on C.
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Chapter 8

Approximation of functions and sets

8.1 Introduction: the Hausdor� metric

In this chapter upper and lower bounds will be stated for the metric entropies of various
concrete classes of functions on Euclidean spaces and sets in such spaces. Some metric entropies
with bracketing are treated, and some without. Metrics for functions are in Lp, 1 � p � 1.
For sets we use dP metrics dP (B;C) := P (B�C) or the Hausdor� metric, de�ned as follows.

For any metric space (S; d), x 2 S, and a non-empty B � S, let

d(x;B) := inf fd(x; y) : y 2 Bg :

For non-empty B;C � S the Hausdor� pseudo-metric is de�ned by

h(B;C) := max (supx2B d(x;C); supx2C d(x;B)) :

Then h is a metric on the collection of bounded, closed, non-empty sets. Let h(;; C) :=
h(C; ;) := +1 for C 6= ;, and h(;; ;) := 0.

On Rd we have the usual Euclidean metric d(x; y) := jx�yj where juj :=
�
u21 + � � �+ u2d

�1=2
,

u 2 R
d . For any set H � R

d�1 and function f from H into [0;1] let

Jf := J(f) :=
n
x 2 R

d : 0 � xd � f
�
x(d)

�
; x(d) 2 H

o

where x(d) := (x1; : : : ; xd�1). Then J(f) is the subgraph of f . For any other function g � 0 on
H, clearly h (Jf ; Jg) � dsup(f; g). Thus for any collection F of real functions � 0 on H, and
any � > 0, with D("; �; �) as de�ned in Appendix K,

D (�; fJf : f 2 Fg ; h) � D (�;F ; dsup) : (8.1)

If dsup(f; g) � � and j := max(f � �; 0), where g � 0, then 0 � j � g � f + �, so
Jj � Jg � Jf+�. If P is a law on H � [0;1[ having a density p with respect to Lebesgue
measure on R

d with p(x) �M <1 for all x, then

NI (2M�; fJf : f 2 Fg ; P ) � D (�;F ; dsup) : (8.2)

In the converse direction there are corresponding estimates for Lipschitz functions. Recall
that kfkL := supx6=y jf(x)� f(y)j = jx� yj. Then we have:
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Lemma 8.1. If kfkL � K and kgkL � K on H � R
d�1 , with f � 0 and g � 0, then

h (Jf ; Jg) � min(1; 1=K)dsup(f; g)=2 .

Proof. Let t := dsup(f; g). Let 0 < s < t. By symmetry, assume that for some x 2 H,
f(x) � g(x)+s. Then for any y 2 H, either jx�yj � s=(2K) or g(y) � g(x)+s=2 � f(x)�s=2.
In either case, if z � g(y) then jhx; f(x)i � hy; zij � min(1; 1=K)s=2. Letting s " t, the result
follows. �

Recall that a bounded number of Boolean operations preserve the Vapnik-�Cervonenkis
property (Theorem 4.7). The same holds for classes of sets satisfying bounds on metric entropy
(with inclusion). For any families Cj of subsets of a set X, extending the notation in Section
4.5, let

ukj=1Cj := f\kj=1Aj : Aj 2 Cj for all jg;
tkj=1Cj := f[kj=1Aj : Aj 2 Cj for all jg:

Theorem 8.2. Let (X;A; P ) be a probability space and Cj � A for j = 1; � � � ; k. Let C0 :=
ukj=1Cj. Let f1j(�) := logNI(�; Cj ; P ), f2j(�) := logD(�; Cj ; dP ) for j = 0; 1; � � � ; k. If for
i = 1 or 2, there are a  > 0 and constants M1; � � � ;Mk such that fij(�) �Mj�

� for 0 < � < 1
and j = 1; � � � ; k, then the same holds for j = 0. The statements also hold for i = 1 or 2 for
C0 := tkj=1Cj.

8.2 Spaces of di�erentiable functions and sets with di�eren-

tiable boundaries

For any � > 0, spaces of functions will be de�ned having \bounded derivatives through order
�". If � is the largest integer < �, the functions will have partial derivatives through order �
bounded, and the derivatives of order � will satisfy a uniform H�older condition of order ���.
Still more speci�cally: for x := (x1; : : : ; xd) 2 R

d and p = (p1; : : : ; pd) 2 N
d (where N is the set

of nonnegative integers) let [p] := p1 + � � �+ pd,

xp := xp11 x
p2
2 � � � xpdd ; Dp := @[p]=@xp11 � � � @xpdd :

For a function f on an open set U � R
d having all partial derivatives Dpf of orders [p] � �

de�ned everywhere on U , let

kfk� := kfk�;U := max[p]�� sup fjDpf(x)j : x 2 Ug

+ max[p]=� supx6=y; x;y2U

n
jDpf(x)�Dpf(y)j = jx� yj���

o
:

Here if 0 < � � 1, so � = 0, D0f := D(0;0;���;0)f := f . Let Id denote the unit cube fx 2 R
d :

0 � xj � 1, j = 1; : : : ; dg, and x(d) := (x1; : : : ; xd�1) ; x 2 R
d . Let F � R

d be a closed set
which is the closure of its interior U . Let F�;K(F ) denote the set of all continuous f : F 7! R

with kfk�;U � K. For � = 1, F1;K(F ) is the set of bounded Lipschitz functions f on F with
max(kfksup; kfkL) � K. Then recalling the bounded Lipschitz norm kfkBL := kfkL+kfksup
we have

ff : kfkBL � Kg � F1;K(F ) � ff : kfkBL � 2Kg:
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Let G�;K;d := F�;K
�
Id
�
. Let C(�;K; d) be the collection of all sets

Jf = J(f) =
n
x 2 Id : 0 � xd � f

�
x(d)

�o
; f 2 G�;K;d�1; f � 0:

If g and h and two functions de�ned for (small enough) y > 0, then g � h (as y # 0) means
that

0 < lim inf
y#0

(g=h)(y) � lim sup
y#0

(g=h)(y) < +1:

Clearly, if f 2 G�;K;d and [p] < � then Dpf 2 G��[p];K;d. Let Bd := fx 2 R
d : jxj < 1g and

let Bd = fx 2 R
d : jxj � 1g be the open and closed unit balls respectively in R

d . Here are
some bounds on metric entropies, which by Ossiander's theorem (7.6) will give that if � > d=2;
G�;K;d is a Donsker class for any law P , and C(�;K; d + 1) is for laws with bounded densities.

Theorem 8.3. For 0 < K <1, 0 < � <1 and d � 1, as � # 0

logD (�;G�;K;d; dsup) � ��d=�:

For some T := T (�;K; d), any law P on Id, 1 � r � 1 and 0 < � < 1,

logN
(r)
[ ] (�;G�;K;d; P ) � T��d=�; and

logD (�; C(�;K; d + 1); h) � T��d=�:

If Q is a law on Id+1 having a density with respect to Lebesgue measure bounded by M ,
then for some M1 = M1(M;d;K; �),

logNI(�; C(�;K; d + 1); Q) � M1�
�d=�; 0 < � � 1:

The same statements all hold for Bd in place of Id and so F�;K(Bd) in place of G�;K;d, with
possibly larger constants T and M1.

Notes For � � 1, in the statement about h, the order ��d=� is precise, see Corollary 8.7.

The statement about N
(r)
[ ] for r = 1 implies that G�;K;d is a Glivenko-Cantelli class for any

� > 0; K <1 and d, by the Blum-DeHardt theorem 7.1.

Next, some lower bounds for metric entropies in the L1 norm will be given. For a collection
F � L1(A;A; P ), we have the L1 distance d1;P (f; g) := P (jf � gj).
Theorem 8.4. Let P be a law on Id having a density with respect to Lebesgue measure bounded

below by  > 0. Then for some C = C(; �;K; d) > 0, and 1 � r � 1, N
(r)
[ ] (�;G�;K;d; P ) �

N
(1)
[ ] (�;G�;K;d; P ) � D (�;G�;K;d; d1;P ) � exp

�
C��d=�

�
for � small enough, and if d � 2, for

small enough � > 0; and M := C(; �;K; d � 1);

NI (�; C(�;K; d); P ) � D (�; C(�;K; d); dP ) � exp
�
M��(d�1)=�

�
:

In the proof, the following combinatorial fact is used:
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Lemma 8.5. Let B be a set with n elements, n = 0; 1; � � �. Then there exist subsets Ei � B,
i = 1; : : : ; k, where k � en=6, such that for i 6= j, the symmetric di�erence Ei�Ej has at least
n=5 elements.

To get lower bounds for the Hausdor� metric, the following will help:

Lemma 8.6. If � � 1 and f; g 2 G�;K;d, then h (Jf ; Jg) � dsup(f; g)=(2 max(1;Kd)).

Corollary 8.7. If � � 1 and d = 1; 2; � � � ; then as � # 0,

logD (�; C (�;K; d + 1) ; h) � ��d=�:

Remark. For m = 1; 2; � � � ; let Id be decomposed into a grid of md sub-cubes of side 1=m.
Let E be the set of centers of the cubes. For any A � Id let B � E be the set of centers of the
cubes in the grid that A intersects. Then h(A;B) � d1=2=(2m), which includes the possibility
that A = B = ;. For 0 < � < 1 there is a least m = 1; 2; � � � such that d1=2=m � �, namely
m = dd1=2=�e. It follows that

D
�
�; 2I

d
; h
�

� 2(1+d1=2=�)
d

:

Hence for � < d=(d+1), Corollary 8.7 cannot hold, nor can the upper bound for h in Theorem
8.3 be sharp.

The classes C(�;K; d) considered so far contain sets with at faces except for one curved
face. There are at least two ways to form more general classes of sets with piecewise di�eren-
tiable boundaries, still satisfying the bounds in Theorem 8.3. One is to take a bounded number
of Boolean operations. Let v1; � � � ; vk be non-zero vectors in R

d where d � 2. For constants
c1; � � � ; ck let Hj := fx 2 R

d : (x; vj) = cjg, a hyperplane. Let �j map each x 2 R
d to its

nearest point in Hj, �j(x) := x� ((x; vj)� cj)vj=jvj j2: Let Tj be a cube in Hj and �;K > 0.
Let fj be a linear transformation taking Tj onto Id�1. For g 2 G�;K;d�1 with g � 0, let

Jj(g) := fx 2 R
d : �j(x) 2 Tj ; cj � (vj ; x) � cj + g(fj(�j(x)))g:

Let
Cj := Cj(�;K; vj ; cj) := fJj(g) : g 2 G�;K;d�1g:

Then Theorem 8.3 implies that if C is a compact set in R
d (e.g., a cube) including all sets in

Cj, and P is a law on C having bounded density with respect to Lebesgue measure �, then for
some Mj <1,

logD(�; Cj ; dP ) � logNI(�; Cj ; P ) � Mj�
(1�d)=�:

We then have by Theorem 8.2 the following:

Theorem 8.8. Let d � 2 and let C0 := ukj=1Cj or C0 := tkj=1Cj, for Cj as just de�ned.
Then for some M <1,

logD(�; C0; dP ) � logNI(�; C0; P ) � M�(1�d)=�:
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By intersections or unions of k sets in classes Cj (with k depending on d), one can obtain
sets with smooth boundaries (through order �) such as ellipsoids. One can also get more
general sets, since, e.g. for � > 1, the minimum or maximum of two functions in G�;K;d need
not have �rst derivatives everywhere and then will not be in G;�;d for any  > 1 and � <1.

Recall that a C1 real-valued function on an open set on R
d is one such that the partial

derivatives Dpf exist for all p 2 N
d and are continuous. For functions f := (f1; � � � ; fk) into

R
k , for f to be C1 means that each fj is. Another way to generate sets with boundaries

di�erentiable of order � is as follows. The unit sphere Sd�1 := fx 2 R
d : jxj = 1g is a C1

manifold, speci�cally as follows. Sd�1 is the union of two sets A := fx 2 Sd�1 : x1 > �1=2g
and C := fx 2 Sd�1 : x1 < 1=2g. There is a 1-1, C1 function  from fx 2 R

d�1 : jxj < 9=8g
into R

d , with derivative matrix f@ i=@xjgd;d�1i=1;j=1 of maximum rank d � 1 everywhere, such

that  takes Bd�1 := fx 2 R
d�1 : jxj < 1g onto A. Let �(y) := (� 1(y);  2(y); � � � ;  d(y)):

Then the above statements for  and A also hold for � and C.

For 0 < �;K < 1 let F�;K(Sd�1) be the set of functions h : Sd�1 7! R such that for
Bd�1 := fx 2 R

d�1 : jxj � 1g, h� and h�� 2 F�;K(Bd�1), recalling that f�g(y) := f(g(y)).

Let F (d)
�;K(Sd�1) be the set of functions h = (h1; � � � ; hd) such that hj 2 F�;K(Sd�1) for each

j = 1; � � � ; d.

Two continuous functions F;G from one topological space X to another, Y , are called
homotopic i� there exists a jointly continuous function H from X � [0; 1] into Y such that
H(�; 0) � F and H(�; 1) � G. H is then called a homotopy of F and G. Let I(F ) be the
set of all y 2 Y , not in the range of F , such that among mappings of X into Y n fyg, F is not
homotopic to any constant map G(x) � z 6= y.

For a function F let R(F ) := ran(F ) := range(F ) and C(F ) := I(F ) [R(F ).

For example, if F is the identity from Sd�1 onto itself in R
d , then I(F ) = fy : jyj < 1g

by well known facts in algebraic topology, e. g. Eilenberg and Steenrod (1952, Chapter 11,
Theorem 3.1).

Let I(d; �;K) := fI(F ) : F 2 F (d)
�;K(Sd�1)g and K(d; �;K) := fC(F ) : F 2

F (d)
�;K(Sd�1)g. Then I(d; �;K) is a collection of open sets and K(d; �;K) of compact sets

each of which, in a sense, have boundaries di�erentiable of order �. (For functions F that are
not one-to-one, the boundaries may not be di�erentiable in some other senses.) For K(d; �;K)
and to some extent for I(d; �;K) there are bounds as for other classes of sets with � times
di�erentiable boundaries (Theorem 8.8):

Theorem 8.9. For each d = 2; 3; � � �, K � 1 and � � 1,

(a) there is a constant Hd;�;K <1 such that for 0 < � � 1; and the Hausdor� metric h,

logD(�;K(d; �;K); h) � Hd;�;K=�
(d�1)=�:

(b) For any � <1 there is a there is a constant Ad;�;K;� <1 such that for any law P on R
d

having density with respect to �d bounded above by �, for 0 < � � 1,

max(logNI(�;K(d; �;K); P ); log NI(�; I(d; �;K); P )) �

Ad;�;K;�=�
(d�1)=�:
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Corollary 8.10. For any law P on R
d ; d � 2, having bounded density with respect to Lebesgue

measure, and K <1,
(a) (Tze-Gong Sun and R. Pyke) I(d; �;K) is a Donsker class for P if � > d� 1.

(b) I(d; �;K) is a Glivenko-Cantelli class for P whenever � � 1.

8.3 Lower layers

A set B � R
d is called a lower layer if and only if for all x = (x1; : : : ; xd) 2 B and y =

(y1; : : : ; yd) with yj � xj for j = 1; : : : ; d, we have y 2 B. Let LLd denote the collection of all
non-empty lower layers in R

d with non-empty complement. Let ; be the empty set and

LLd;1 :=
n
L \ Id : L 2 LLd; L \ Id 6= ;

o
:

Let � := �dI denote Lebesgue measure on Id. Recall that f � g means f=g ! 1. The size of
LLd;1 will be bounded �rst when d = 1 and 2. Let dxe be the smallest integer � x.

Theorem 8.11. For d = 1;

D (�;LL1;1; h) = D (�;LL1; d�) = NI (�;LL1;1; �) = d1=�e:

For d = 2, any m = 1; 2; � � �, and 0 < t < 21=2=m, we have

max
�
NI

�
2=m;LL2; �2I

�
;D

�
21=2=m;LL2;1; h

��
�
 

2m� 2

m� 1

!
� D (t;LL2;1; h) :

For 0 < � � 1, NI
�
�;LL2;1; �2I

� � 42=� and

D (�;LL2;1; h) � exp
��

21=2 log 4
�
=�
�
:

8.4 Metric entropy of classes of convex sets

Let Cd denote the class of all non-empty closed convex subsets of the open unit ball B(0; 1) :=
fx: jxj < 1g in R

d . Let � be the uniform Lebesgue measure on R
d . Upper and lower bounds

will be given for the metric entropy of Cd for the metric d� and for the Hausdor� metric h.

Theorem 8.12. (E. M. Bron�stein) For each d � 2 we have

logD(�; Cd; d�) � logD(�; Cd; h) � �(1�d)=2 as � # 0:

The proof of Bron�stein's theorem is very long. A natural idea is to approximate convex sets
by polyhedra. Polyhedra can be di�cult to approximate because of sharp edges and vertices.
Moreover it turns out that sometimes convex sets are approximated by non-convex polyhedra.
One of Bron�stein's main ideas is to use the transformation B 7! B1 where B1 := fy : jx�yj <
1 for some x 2 Bg. It can be shown that B 7! B1 is an isometry for the Hausdor� metric.

102



A set B1 has a boundary no more curved than a sphere of radius 1. The sets B1 can thus be
approximated by polyhedra more easily than the original sets B can.

Remark. For d = 1, C1 is just the class of subintervals of the open interval (�1; 1). Then it's
rather easy to see that

D(�; C1; d�) � D(�; C1; h) � ��2:

From Bron�stein's theorem one can prove:

Corollary 8.13. In R
d , for d � 2, if P is a law whose restriction to B(0; 1) has a bounded

density f with respect to Lebesgue measure, then
(a) logNI(�; Cd; P ) = O(�(1�d)=2) as � # 0:
(b) (E. Bolthausen) For d = 2, C2 is a Donsker class for P .
(c) For any d, Cd is a Glivenko-Cantelli class.
(d) If also f � v on B(0; 1) for some constant v > 0, then

logNI(�; Cd; P ) � �(1�d)=2 as � # 0:
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Chapter 9

Sums in General Banach Spaces and

Invariance Principles

Let (S; k�k) be a Banach space (in general non-separable). A subset F of the unit balln
f 2 S0 : kfk0 � 1

o
is called a norming subset if and only if ksk = supf2F jf(s)j for all s 2 S.

The whole unit ball in S0 is always a norming subset by the Hahn-Banach theorem (RAP,
Corollary 6.1.5).

Conversely, given any set F , let S := `1(F) be the set of all bounded real functions on F ,
with the supremum norm

ksk = kskF := supf2F js(f)j ; s 2 S:

Then the natural map f 7! (s 7! s(f)) takes F one-to-one onto a norming subset of S0.
So, limit theorems for empirical measures, uniformly over a class F of functions, can be

viewed as limit theorems in a Banach space S with norm k�kF . Conversely, limit theorems in a
general Banach space S with norm k�k can be viewed as limit theorems for empirical measures
on S, uniformly over a class F of functions, such as the unit ball of S0, since for f 2 S0 and
x1; : : : ; xn 2 S, (�x1 + � � � + �xn) (f) = f (x1 + � � � + xn).

Suppose that Xj are i.i.d. real random variables with mean 0 and variance 1. Let Sn :=P
j�nXj . One form of \invariance principle" will say that on some probability space, there exist

such Xj and also i.i.d. N(0,1) variables Y1; Y2; � � � ; with Tn :=
P

j�n Yj , such that as n!1,

maxk�n jSk�Tkj=n1=2 ! 0 in probability. Since Tn=n
1=2 also has a N(0; 1) distribution for each

n, the invariance principle implies that Sn=n
1=2 is close to Tn=n

1=2, which implies the central
limit theorem. Although it is not as obvious, central limit theorems generally imply invariance
principles. The phrase \invariance principle" means that such quantities as maxk�n jSkj=n1=2
have an asymptotic distribution as n ! 1, invariant under the choice of L(X1) with mean
0 and variance 1. Section 9.3 treats invariance principles for variables with �nite-dimensional
values. Then the main result of the chapter will be Theorem 9.4, saying that the Donsker
property is equivalent to an invariance principle for empirical processes.

9.1 Independent random elements and partial sums

We need a notion of independence for functions which may not be measurable. Let (Aj ;Aj; Pj),
j = 1; 2; : : :, be probability spaces, and form a product

Qn
j=1 (Aj ;Aj; Pj) = (B;B; P ) with
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points x := fxjgnj=1. If Xj are functions on B of the form Xj = hj (xj), j = 1; : : : ; n, where
each hj is a function on Aj (not necessarily measurable) then we call Xj independent random
elements. If the hj are measurable this implies independence in the usual sense.

[A set of lemmas about independent random elements is omitted.]

9.2 A CLT implies measurability in separable normed spaces

Here \CLT" abbreviates \central limit theorem." If Fn is an empirical distribution function,
Pr (Fn 2 A) need not be de�ned if A is complete and discrete, hence Borel, for the (non-
separable) supremum norm. Thus the variables Xj := �x(j) �P need not be Borel measurable
in general for a norm k:kC or k:kF . But in separable Banach spaces one usually assumes that
variables are Borel measurable. It will be seen here that in a separable normed space, a form
of central limit theorem can hold only if X1 is measurable. If this holds in R

1 it extends easily
to separable normed spaces.

De�ne the inner measure Pr�(B) := sup fPr(C) : C � Bg and let

f� := � ((�f)�) = ess. sup fg : g � f; g measurableg :

Theorem 9.1. Let (A;A; P ) be a probability space, xn coordinates on (A1;A1; P1), n =
1; 2; � � �. Let h : A ! R (where h is not assumed measurable), Xi := h (xi). Let Sn :=
X1 + � � �+Xn. If for all t,

limn!1Pr�
�
Sn=n

1=2 � t
�

= limn!1 Pr�
�
Sn=n

1=2 � t
�

= N(0; 1) ((�1; t]) ;

then h is measurable for the completion of P , so that Xi are measurable, EXi = 0 and EX2
i = 1.

For the measurable case we need the following converse of the usual 1-dimensional central
limit theorem.

Theorem 9.2. Let X1; X2; : : :, be i.i.d. real random variables and Sn := X1 + : : :+Xn. If the
law of Sn=n

1=2 converges to N(0; 1) as n!1 then EX1 = 0 and EX2
1 = 1.

Corollary 9.3. Suppose (S; j�j) is a separable normed space and Xn = h (xn) where xn are
independent, identically distributed random variables with values in some measurable space
(A;A) and h is any function from A into S (not assumed measurable).

Suppose Yn are i.i.d. Gaussian variables in S with mean 0 and

limn!1 n
�1=2

���Pj�nXj � Yj
���� = 0 (9.1)

in probability. Then the Xj are completion measurable for the Borel �-algebra on S.

9.3 A �nite-dimensional invariance principle

This section, with no details given here, treats the special case of the theorem in the next
section where F is a �nite set, and is used in the proof of that theorem. Note that any �nite
set of L2 functions is a Donsker class.
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9.4 Invariance principles for empirical processes

Recall the notion of coherent GP process (Section 3.1). Let (A;A; P ) be a probability space
and F � L2(A;A; P ). Let 
 be the product of ([0; 1];B; �), where B is the Borel �-algebra,
� = Lebesgue measure, and a countable product of copies of (A;A; P ), with coordinates xi.
Then F will be called a functional Donsker class for P i� it is pregaussian for P and there are
independent coherent GP processes Yj(f; !), f 2 F , ! 2 
, such that f 7! Yj(f; !) is bounded
and �P -uniformly continuous for each j and almost all !, and such that in outer probability,

n�1=2 maxm�n
Pm

j=1 �xj � P � Yj

F
! 0: (9.2)

Recalling the notion of Donsker class (as de�ned in Section 3.1), we have an equivalence:

Theorem 9.4. Given any probability space (A;A; P ) and F � L2(A;A; P ), F is a functional
Donsker class if and only if it is a Donsker class.
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Chapter 10

Universal and uniform central limit

theorems

In this chapter we look at cases where a class F of measurable functions is a Donsker class for
all probability laws on the underlying space (universal Donsker classes) and such classes where
convergence in the central limit theorem holds uniformly in P (uniform Donsker classes).

10.1 Universal Donsker classes

Let X be a set and A a �-algebra of subsets of X. Then a class F of measurable functions
on X will be called a universal Donsker class if it is a P -Donsker class for every probability
measure P on (X;A).

Recall that every universal Donsker class of sets is a Vapnik-Cervonenkis class (Theorem
6.17), and the converse holds under measurability conditions (Corollary 6.16).

For a real-valued function f let diam(f) := supf�inff . The following says that a universal
Donsker class is uniformly bounded up to additive constants:

Proposition 10.1. If F is a universal Donsker class, then

sup
f2F

diam(f) <1:

A function h on F will be said to ignore additive constants if h(f) = h(f + c) whenever
f 2 F , c is a constant and f + c 2 F . Recall (Section 3.1) that a GP process on F is called
coherent if each sample function GP (�)(!) is prelinear, bounded and uniformly continuous on
F with respect to �P . Here F is P -pregaussian if and only if a coherent GP process on it exists
(Theorem 3.1). If Z is a coherent GP process then if f and f + c are both in F for a constant
c, we have �P (f; f + c) = 0 so Z(f) = Z(f + c) and Z(�)(!) ignores additive constants for all
!. Such a Z can be consistently extended to the set F +R of all functions f + c, f 2 F , c 2 R,
letting Z(f + c) = Z(f). Then Z is a coherent GP process on F + R, so F + R is pregaussian.

Next, suppose F is a Donsker class for P . Then each function Pn � P ignores additive
constants on F and is well de�ned on F + R. If �P (f + c; g + d) < � for some f; g 2 F ,
constants c; d and � > 0, then �P (f; g) < �. Since the total boundedness for �P and asymptotic
equicontinuity condition both extend directly from F to F + R, it follows by Theorem 3.28
that F + R is a Donsker class for P . Thus if F is a universal Donsker class, so is F + R.
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For a given law P , any subset of a Donsker class for P is also a P -Donsker class, e.g. by
asymptotic equicontinuity (Theorem 3.28), so any subset of a universal Donsker class is also a
universal Donsker class. If c(�) is any real-valued function on F , then F is a universal Donsker
class if and only if G := ff � c(f) : f 2 Fg is. Taking c(f) := inf f , we obtain from any
class F of bounded functions a class G of nonnegative functions such that G is Donsker for a
given P , or universal Donsker, if and only if F has the same property. If F and G are universal
Donsker classes then G is uniformly bounded by Proposition 10.1.

Since multiplication by a positive constant is easily seen to preserve the Donsker property,
in �nding conditions for a class to be universal Donsker it will be enough to consider classes
F of functions f with 0 � f � 1.

The Vapnik-�Cervonenkis properties of classes of functions treated in Sections 4.7 and 4.8
(VC subgraph, VC major, VC hull) will all be seen to imply the universal Donsker property for
uniformly bounded classes of functions. So the relations among these di�erent VC properties
are of interest here. Recall (Section 4.8) that D(p)(";F ; Q) is the largest m such that for some
f1; � � � ; fm 2 F ; s jfi � fjjpdQ > "p for all i 6= j. Also, D(2)(";F) is the supremum over all
laws Q with �nite support of D(2)(";F ; Q).

The following is related to Theorem 4.52.

Proposition 10.2. There exist uniformly bounded VC major (thus VC hull) classes which do
not satisfy (4.7), thus are not VC subgraph classes.

If

s10 (logD(2)(";F))1=2d" <1; (10.1)

as in Theorem 6.12 for F � 1, then F will be said to satisfy Pollard's entropy condition.

Theorem 10.3. If F is a uniformly bounded, image admissible Suslin class of measurable
functions and satis�es Pollard's entropy condition then F is a universal Donsker class.

Corollary 10.4. A uniformly bounded, image admissible Suslin VC subgraph class is a uni-
versal Donsker class.

Proof. This follows from Theorems 4.52 and 10.3. �

Specializing further, the set of indicators of an image admissible Suslin VC class of sets is
a universal Donsker class (Corollary 6.16 for F = 1).

For a class F of real-valued functions on a set X, recall from Section 4.7 the class H(F ;M)
which is M times the symmetric convex hull of F , and Hs(F ;M) which is the closure of
H(F ;M) for sequential pointwise convergence. Note that for any uniformly bounded class F
of measurable functions for a �-algebra A and any law Q de�ned on A, H(F ;M) is dense in
Hs(F ;M) for the L2(Q) distance (or any Lp(Q) distance, 1 � p <1).

Theorem 10.5. If F is a Donsker class for a law P such that F has an envelope function in
L2(P ), or a universal Donsker class, then for any M < 1 Hs(F ;M) is a P -Donsker (resp.
universal Donsker) class.

By Theorem 10.3 above, for any � > 0, if logD(2)(";F) = O(1="2��) as "#0, and if F
satis�es a measurability condition (speci�cally, if F is image admissible Suslin) then F is a
universal Donsker class. In the converse direction we have:
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Theorem 10.6. For a uniformly bounded class F to be a universal Donsker class it is neces-
sary that

logD(2)(";F) = O("�2) as "#0:

Theorem 10.6 is optimal, as the following shows:

Proposition 10.7. There exists a universal Donsker class E such that

lim inf�#0 �
2 logD(2)(�; E) > 0:

Proof. Let Aj := A(j) be disjoint, nonempty measurable sets for j = 1; 2; � � �. Let k � k2 be
the `2 norm, kxk2 = (

P
j x

2
j )
1=2 for x = fxjg1j=1. Let

E :=
nP

j xj1A(j) : kxk2 � 1
o
:

(So, E is an ellipsoid with center 0 and semiaxes 1A(j).) The proof that E has the stated
properties is omitted. �

Proposition 10.8. There is a uniformly bounded class F of measurable functions, which is
not a universal Donsker class, such that

logD(2)(";F) � 2

"2 log(1=")
as "#0:

Proof. Let Bj := B(j) be disjoint nonempty measurable sets. Recall that Lx :=
max(1; log x). Let �j := 1=(jLj)1=2; j � 1, and

F = fP1j=1 xj1B(j) : xj = ��j for all jg:

Take c such that
P1

j=1 pj = 1, where pj := c(�j=LLj)
2. Take a probability measure P with

P (Bj) = pj for all j. The rest of the proof is omitted. �

Theorems 10.3 and 10.6 show that Pollard's entropy condition (10.1) comes close to char-
acterizing the universal Donsker property, but Propositions 10.7 and 10.8 show that there is
no characterization of the universal Donsker property in terms of D(2).

10.2 Metric entropy of convex hulls in Hilbert space

Let H be a real Hilbert space and for any subset B of H let co(B) be its convex hull,

co(B) := fPk
j=1 tjxj : tj � 0;

Pk
j=1 tj = 1; xj 2 B; k = 1; 2; � � �g:

Recall that D(";B) is the maximum number of points in B more than " apart.
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Theorem 10.9. Suppose that B is an in�nite subset of a Hilbert space H, kxk � 1 for all
x 2 B and that for some K <1 and 0 <  <1, we have D(";B) � K"� for 0 < " � 1. Let
s := 2=(2 + ). Then for any t > s, there are constants C1 and C2, which depend only on
K;  and t, such that

D("; co(B)) � C1 exp(C2"
�t) for 0 < " � 1:

Note van der Vaart and Wellner (1996), Theorem 2.6.9, and Carl (1997) give the sharper
bound with t = s.

Example. The exponent 2=(2 + ) in Theorem 10.9 is sharp for the following set B.
Let fengn�1 be an orthonormal basis of H and for 0 <  < 1 let B := fn�1=engn�1 [
f�n�1=engn�1:

Recall the de�nitions of D(2) from Section 4.8 and Hs from after Corollary 10.4.

Corollary 10.10. If G is a uniformly bounded class of measurable functions and for some
K <1 and 0 <  <1, D(2)(";G) � K"� for 0 < " < 1, then for any t > r := 2=(2 + ),
and for the constants Ci = Ci(2K; ; t), i = 1; 2; of Theorem 10.9,

D(2)(";Hs(G; 1)) � C1 exp(C2"
�t) for 0 < " < 1:

Now, recall the notions of VC subgraph and VC subgraph hull class from Section 4.7.

Corollary 10.11. If G is a uniformly bounded VC subgraph class and M < 1 then the VC
subgraph hull class Hs(G;M) satis�es Pollard's entropy condition (10.1).

Proof. Let MG := fMg : g 2 Gg. Then MG is a uniformly bounded VC subgraph class.
By Theorem 4.52(a), MG satis�es the hypothesis of Corollary 10.10, so r < 2 and we can take
t < 2: �

Remark. It follows by Theorem 6.12 that for a uniformly bounded VC subgraph class G, if
F � Hs(G;M) and F satis�es the image admissible Suslin measurability condition, then F is
a universal Donsker class. This also follows from Corollary 10.4 and Theorem 10.5.

Example. Let C be the set of all intervals (a; b] for 0 � a � b � 1. Let G be the set of all real
functions f on [0; 1] such that jf(x)j � 1=2 for all x, jf(x) � f(y)j � jx� yj for 0 < x; y < 1,
and f(x) = 0 for x � 0 or x � 1. Each f in G has total variation at most 2 (at most 1 on the
open interval 0 < x < 1 and 1=2 at each endpoint 0; 1). By the Jordan decomposition we have,
for each f 2 G, f = g�h where g and h are both nondecreasing functions, 0 for x � 0. Then g
and h have equal total variations � 1 and G � Hs(C; 2) by the proof of Theorem 4.50(b). Let
P be Lebesgue measure on [0; 1]. By Theorem 8.4, and since (s jf j2dP )1=2 � s jf jdP , there is
a c > 0 such that D(2)(";G) � ec=" as " # 0 (consider laws with �nite support which approach
P ). Since S(C) = 2, the exponent  can be taken as 2 by Corollary 4.4 and Haussler's Theorem
4.47. Thus t in Corollary 10.10 can be any number > 1, and we saw above that it cannot be
< 1 in this case, so again the exponent is sharp.

112



10.3 Uniform Donsker classes

A class F of measurable functions on a measurable space (X;A) is a uniform Donsker class
if it is a universal Donsker class and the convergence in law of �n to GP is also uniform
in P . To formulate this notion precisely we will follow Gin�e and Zinn (1991) in using the
dual-bounded-Lipschitz metric � as de�ned just before Theorem 3.23.

Let P(X) be the set of all probability measures on (X;A) and let Pf (X) be the set of all
laws in P(X) with �nite support. For � > 0, a class F of measurable real-valued functions on
X and a pseudo-metric d on F let

F 0(�; d) := ff � g : f; g 2 F ; d(f; g) � �g:

De�nitions. A class F is uniformly pregaussian if it is pregaussian for all P 2 P(X), and if,
for a coherent version of GP for each P , we have both

supP2P(X)EkGP kF <1

and
lim�#0 supP2P(X)EkGP kF 0(�;�P ) = 0:

The class F is �nitely uniformly pregaussian if the same holds with Pf (X) in place of P(X).
The class F is a uniform Donsker class if it is uniformly pregaussian and

limn!1 supP2P(X) �F (�n; GP ) = 0

where �F is the dual-bounded-Lipschitz metric � based on k � kF as in Section 3.6.

Gin�e and Zinn (1991) proved:

Theorem. Let (X;A) be a measurable space and F a class of real-valued measurable functions
on X. Then F is a uniform Donsker class if and only if it is �nitely uniformly pregaussian and
thus, if and only if it is uniformly pregaussian.

The theorem is a very useful characterization since it's easier to check the �nitely uniformly
pregaussian property than to check the uniform Donsker property directly.

A uniform Donsker class is clearly a universal Donsker class. Thus it is uniformly bounded
up to additive constants (Proposition 10.1).

Gin�e and Zinn show (as a corollary of their Proposition 3.1) that the hypotheses of Theorem
10.3 (Pollard's entropy condition (10.1), together with suitable boundedness and measurability)
actually imply that F is uniformly Donsker. Thus most of the examples of universal Donsker
classes treated in Sections 10.1 and 10.2 are uniformly Donsker. An exception is the \ellipsoid"
universal Donsker class of Proposition 10.7.

Some uniform Donsker classes of functions on R will be de�ned. For any function f from
R into R and 0 < p <1 the p-variation of f is de�ned by

vp(f) := supf
nX
j=1

jf(xj)� f(xj�1)jp :

�1 < x0 < x1 < � � � < xn < +1; n = 1; 2; � � �g:
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For p = 1 this is the ordinary total variation.

Theorem (Dudley, 1992). For each M <1 and p with 0 < p < 2, the class F := ff : R 7!
R; vp(f) �Mg is a uniform Donsker class.
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Chapter 11

The two-sample case, the bootstrap

and con�dence sets

11.1 The two-sample case

Let X1; � � � ;Xm; � � � ; Y1; � � � ; Yn; � � � ; be some random variables taking values in a set A where
(A;A) is a measurable space. Thus (X1; � � � ; Xm) and (Y1; � � � ; Yn) are \samples," of which we
have two. Let

Pm :=
1

m

mX
i=1

�Xi ; Qn :=
1

n

nX
j=1

�Yj :

The object of two-sample tests in statistics is to decide whether Pm and Qn are empirical
measures from the same, but unknown, law (probability measure) on (A;A). Since P is
unknown, we cannot directly compare Pm or Qn to it by forming m1=2(Pm�P ) or n1=2(Qn�P ).
Instead, Pm and Qn can be compared to each other, setting

�m;n :=
� mn

m+ n

�1=2
(Pm �Qn):

The basic hypothesis will be that there are two laws P;Q on (A;A) and a product of two
countable products of copies of (A;A) with factor laws P and Q respectively, namely

(
;D;Pr) = (
1;B1;Pr1)� (
2;B2;Pr2)

where

(
1;B1;Pr1) =
1Y
i=1

(Ai;A; P ); (
2;B2;Pr2) =
1Y
j=1

(Bj ;A; Q);

and each Ai and Bj is a copy of A. On these products let Xi be the Ai coordinate and Yj the
Bj coordinate. If P is a class of laws on (A;A), the (P) null hypothesis is that in addition,
P = Q 2 P. A class F of measurable functions on (A;A) will be called a P-universal Donsker
class if it is a P -Donsker class for every P 2 P.

Theorem 11.1. Suppose F is a P-universal Donsker class of functions on (A;A). Then for
each P 2 P, under the (P) null hypothesis, �m;n ) GP as m;n!1.
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The classical two-sample situation is the special case where A = R; A is the Borel �-
algebra, F is the set of all indicator functions of half-lines (�1; x], and P is the set of all
continuous (nonatomic) laws on R. Thus m1=2(Pm �P )((�1; x]) = m1=2(Fm �F )(x) where
F is the distribution function of P and Fm an empirical distribution function. Here F is a
universal Donsker class by any of several previous results, for example Corollary 6.16, and
GP (1(�1;x]) = yF (x) where y is the Brownian bridge. (Actually, F is a uniform Donsker class.)
Since F is continuous, it takes all values in the open interval (0; 1), y0 � y1 � 0, and yt ! 0
as t # 0 or t " 1. Thus the distribution of supx yF (x) and supx jyF (x)j and the joint distribution
of (infx yF (x); supx yF (x)) do not depend on F , for P 2 P. Let Fm and Gn be independent

empirical distribution functions for the same F . Let Hmn := (mn=(m+ n))1=2(Fm � Gn):
By Theorems 3.23 and 3.26, which extend straightforwardly to limits as m;n ! 1, the
distributions of the supremum, supremum of absolute value, and supremum minus in�mum of
Hmn converge to those of the same functionals for yt. Thus we get:

Corollary 11.2. If Fm and Gn are independent empirical distribution functions for a contin-
uous distribution on R, then for any u > 0,
(a) limm;n!1 P (supxHmn(x) > u) = exp(�2u2);
(b) limm;n!1 P (supx jHmn(x)j > u) = 2

P1
k=1(�1)k�1 exp(�2k2u2);

(c) limm;n!1 P (supxHmn(x)� infyHmn(y) > u) = 2
P1

k=1(4k
2u2 � 1) exp(�2k2u2):

Proof. The distributions of the given functionals of the Brownian bridge yt are given in
RAP, Propositions 12.3.3, 12.3.4, and 12.3.6. All three are continuous in u for u > 0. Thus
convergence follows from RAP, Theorem 9.3.6. �

11.2 A bootstrap central limit theorem in probability

Iterating the operation by which we get an empirical measure Pn from a law P , we form the
bootstrap empirical measure PB

n by sampling n independent points whose distribution is the
empirical measure Pn. The bootstrap was �rst introduced in nonparametric statistics, where
the law P is unknown and we want to make inferences about it from the observed Pn. This
can be done by way of bootstrap central limit theorems, which say that under some conditions,
n1=2(PB

n � Pn) behaves like n1=2(Pn � P ) and both behave like GP .
Let (S;S; P ) be a probability space and F a class of real-valued measurable functions on

S. Let as usual X1; X2; � � � ; be coordinates on a countable product of copies of (S;S; P ). Then
let XB

n1; � � � ;XB
nn be independent with distribution Pn. Let

PB
n :=

1

n

nX
j=1

�XB
nj
:

Then PB
n will be called a bootstrap empirical measure.

A statistician has a data set, represented by a �xed Pn, and estimates the distribution
of PB

n by repeated resampling from the same Pn. So we are interested not so much in the
unconditional distribution of PB

n as Pn varies, but rather in the conditional distribution of PB
n

given Pn or (X1; � � � ; Xn). Let �Bn := n1=2(PB
n � Pn).

The limit theorems will be formulated in terms of dual-bounded-Lipschitz \metric" � of
Section 3.6, which metrizes convergence in distribution for not necessarily measurable random
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elements of a possibly nonseparable metric space (S; d), to a limit which is a measurable random
variable with separable range. Let �F be the � distance where d is the metric de�ned by the
norm k � kF .

De�nition. Let (S;S; P ) be a probability space and F a class of measurable real-valued
functions on S. Then the bootstrap central limit theorem holds in probability (respectively,
almost surely) for P and F if and only if F is pregaussian for P and �F (�Bn ; GP ), conditional
on X1; � � � ;Xn, converges to 0 in outer probability (resp., almost uniformly) as n!1.

In other words, the bootstrap central limit theorem holds in probability if and only if for
any " > 0 there is an n0 large enough so that for any n � n0, there is a set A of values
of X(n) := (X1; � � � ;Xn) with P n(A) < " such that if X(n) =2 A, and �Bn (X(n))(�) is �Bn
conditional on X(n), we have �F (�Bn (X(n))(�); GP ) < ":

A main bootstrap limit theorem will be stated.

Theorem 11.3. (Gin�e and Zinn) Let (X;A; P ) be any probability space. Then the bootstrap
central limit theorem holds in probability for P and F if F is a Donsker class for P .

Remarks Gin�e and Zinn (1990), see also Gin�e (1997), also proved \only if" under a measura-
bility condition, and proved a corresponding almost sure form of the theorem where F has an
L2 envelope up to additive constants.

The proof of Theorem 11.3 is quite long. This will be illustrated just by giving the lemmas
and other theorems used in its proof, without their proofs. EB ; P rB and LB will denote the
conditional expectation, probability and law given the sample X(n) := (X1; � � � ;Xn). Given
the sample, �Bn has only �nitely many possible values.

First, a �nite-dimensional bootstrap central limit theorem is needed.

Theorem 11.4. Let X1;X2; � � � be i.i.d. random variables with values in R
d and let XB

n;i; i =

1; � � � ; n, be i.i.d. (Pn), where Pn := 1
n

Pn
j=1 �Xj . Let Xn := 1

n

Pn
j=1Xj. Assume that

EjX1j2 < 1. Let C be the covariance matrix of X1, Crs := E(X1rX1s) � E(X1r)E(X1s).
Then for the usual convergence of laws in R

d , almost surely as n!1,

LB(n�1=2
Pn

j=1(X
B
n;j �Xn)) ! N(0; C): (11.1)

Next is a desymmetrization fact:

Lemma 11.5. Let T be a set and for any real-valued function f on T let kfkT :=
supt2T jf(t)j. Let X and Y be two stochastic processes indexed by t 2 T de�ned on a probability
space (
� 
0;S 
 S 0; P � P 0), where X(t)(!; !0) depends only on ! 2 
 and Y (t)(!; !0) only
on !0 2 
0. Then
(a) for any s > 0 and any u > 0 such that supt2T PrfjY (t)j � ug < 1, we have

Pr�(kXkT > s) � Pr�fkX � Y kT > s� ug=[1 � sup
t2T

Pr�fjY (t)j � ug]:

(b) If � > supt2T E(Y (t)2) then for any s > 0,

P �(kXkT > s) � 2Pr�(kX � Y kT > s� (2�)1=2):
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Now "i will denote i.i.d. Rademacher variables, i.e. variables with the distribution P ("i =
1) = P ("i = �1) = 1=2, de�ned on a probability space (
";S"; P") which we can take as [0; 1]
with Lebesgue measure. We also take the product of (
";S"; P") with the probability space on
which other random variables and elements are de�ned.

Next, some hypotheses will be given for later reference.

Let (S;S; P ) be a probability space and (Sn;Sn; P n) a Cartesian product of n copies
of (S;S; P ): Let F � L2(S;S; P ). Let "1; � � � ; "n be i.i.d. Rademacher variables de�ned
on a probability space (
0;A; P 0): Then take the probability space

(Sn � 
0;Sn 
A; P n � P 0): (11.2)

References to (11.2) will also be to the preceding paragraph.

Here is another fact on symmetrization and desymmetrization.

Lemma 11.6. Under (11.2), for any t > 0 and n = 1; 2; � � � ;
(a) Pr� (kPn

i=1 "if(Xi)kF > t) � 2 maxk�n Pr�
�
kPk

i=1 f(Xi)kF > t=2
�

.

(b) Suppose that �2 := supf2F s(f � Pf)2dP < 1. Then for t > 21=2�n1=2 and all n =
1; 2; � � �,

Ct := Pr� (kPn
i=1(f(Xi)� Pf)kF > t)

� 4Pr�
n
kPn

i=1 "if(Xi)kF > (t� (2n)1=2�)=2
o
:

Next, we have some consequences or forms of Jensen's inequality.

Lemma 11.7. (a) Let (S;S; P ) be a probability space and F � L1(S;S; P ). Then kEfkF �
Ekfk�F .

(b) On a product space (A;A; P )� (A;A; Q) let X and Y be coordinate functions. Let F be a
class of real-valued measurable functions on (A;A). If Qf = 0 for all f 2 F , then

E�kf(X)kF � E�kf(X) + f(Y )kF : (11.3)

The following lemma and theorem are known as Ho�mann-J�rgensen inequalities, see
Ho�mann-J�rgensen (1974, p. 164).

Lemma 11.8. Let X1; � � � ;Xn be coordinates on a product probability space (Sn;Sn;�n
j=1Pj).

Let F be a class of measurable real-valued functions on (S;S). Let Sk(f) :=
Pk

j=1 f(Xj) for
k = 1; � � � ; n. Then for any s > 0 and t > 0,

Pr (maxk�n kSk(f)k�F > 3t+ s)

� (P fmaxk�n kSkk�F > tg)2 + P (maxj�n kXjk�F > s) : (11.4)
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Theorem 11.9. Let 0 < p < 1, n = 1; 2; � � �, let X1; � � � ;Xn be coordinates on a product
probability space (Sn;Sn;�n

j=1Pj). Let F be a class of measurable real-valued functions on
(S;S) such that for i = 1; � � � ; n, E(kf(Xi)k�pF ) <1. Let

u := inf
n
t > 0 : Pr

h
maxk�n

Pk
i=1 f(Xi)

�
F
> t
i
� 1=(2 � 4p)

o
:

Then

Emaxk�n
�Pk

i=1 f(Xi)
�p
F

�
� 2 � 4pE(maxj�n(kf(Xj)k�F )p) + 2(4u)p:

Next is another symmetrization-desymmetrization inequality.

Lemma 11.10. Under (11.2),

1
2E
�kPn

j=1 "j(f(Xj)� Pf)kF � E�kPn
j=1(f(Xj)� Pf)kF

� 2E�kPn
j=1 "j(f(Xj)� Pf)kF ; (11.5)

which also holds if the Pf in the last expression is deleted.

Next will be some Poissonization facts. Recall that any real-valued stochastic process
X(t); t 2 T , indexed by a set T , has a law PX de�ned on the space R

T of all real-valued
functions on T , on the smallest �-algebra for which the coordinate projections f 7! f(t) are
measurable for each t 2 T . The process is called centered if EX(t) = 0 for all t 2 T . Recall
that Y has a Poisson distribution with parameter � > 0 if and only if P (Y = k) = e���k=k!
for k = 1; 2; � � � :

Lemma 11.11. Let T be any set. For each i = 1; � � � ; n, let X(i) := Xi be a centered, real-
valued stochastic process indexed by T . Let Xi;j; j = 1; 2; � � � ; be independent copies of Xi, taken
as coordinates on a product, say A, of copies of (RT ; PX(i)). Let Ni := N(i); i = 1; 2; � � � ;
be i.i.d. Poisson variables with parameter � = 1, de�ned on a probability space (
0; P 0), and
take the product of this space with A, so that N1; N2; � � � are independent of Xi;j. Let kfkT :=
supt2T jf(t)j and x ^ y := min(x; y). Then

E�k
nX
i=1

XikT � e

e� 1
E�k

nX
i=1

N(i)X
j=1

Xi;jkT : (11.6)

For any two �nite signed measures � and � on the Borel sets of a separable Banach space
B recall that the convolution � � � is de�ned by (� � �)(A) := s �(A � x)d�(x) for any
Borel set A. Here convolution is commutative and associative. For any �nite signed measure
� on B and k = 1; 2; � � � ; let �k be the kth convolution power � � � � � � � to k factors. Let
e� := exp(�) :=

P1
k=0 �

k=k!. Let �0 := �0. If � � 0 let Pois(�) := e��(B)e�. If � and � are
two �nite measures on B it is straightforward to check that Pois(�+ �) = Pois(�)�Pois(�). If
X is a measurable function from a probability space (
;S; P ) into a measurable space (S;A),
recall that the law of X is the image measure L(X) := P � X�1 on A. For any c > 0 and
x 2 B, Pois(c�x) = L(Ncx) where Nc is a Poisson random variable with parameter c.
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If L(Xi;j) = �i for j = 1; 2; � � � and Ni := N(i) are Poisson with parameter 1, where all
Xi;j and Nr are jointly independent, i; r = 1; � � � ; k; j = 1; 2; � � �, then by induction on k,

L
�Pk

i=1

PN(i)
j=1 Xi;j

�
= Pois

�Pk
r=1 �r

�
:

If Xi are random variables with values in a separable Banach space with EXi = 0 for each
i = 1; � � � ; n, then the depoissonization inequality (11.6) gives

Ek
nX
j=1

Xjk � e

e� 1

Z
kxk dPois

0
@ nX
j=1

L(Xj)

1
A : (11.7)

Here is another depoissonization inequality.

Lemma 11.12. Let (B; k:k) be a normed space. For each n = 1; 2; � � � ; let v1; � � � ; vn be n
distinct points of B and v := (v1 + � � � vn)=n. Let V1; � � � ; Vn be i.i.d. B-valued random
variables with Pr(Vi = vj) = 1=n for i; j = 1; � � � ; n. Let N1; � � � ; Nn be Poisson variables with
parameter 1. Let all Vi and Nj be jointly independent. Then

Ek
nX
j=1

(Vj � v)k � e

e� 1
Ek

nX
j=1

(Nj � 1)(vj � v)k: (11.8)

The next fact is about triangular arrays with i.i.d. summands.

Theorem 11.13. Let (T; d) be a totally bounded pseudo-metric space. For each n = 1; 2; � � �,
suppose given a product of n copies of a probability space, 
n

n := (
n;An; P
(n))n: For each

n, let Yn be a measurable real-valued function on 
n. For ! := f!jgnj=1 2 
n let Xn;j(!) :=
Yn(!j). Thus Xn;j are i.i.d. copies of Yn. Suppose that each Yn has bounded sample paths a.s.
Assume that
(i) For all t in a dense subset D � T for d and for all � > 0,

limn!1 nPr�fjXn;1(t)j > �n1=2g = 0; (11.9)

(ii) For any � > 0, supt2T PrfjYn(t)j > �n1=2g ! 0 as n!1, and
(iii) for all " > 0, as � # 0,

lim supn!1 Pr�
n
n�1=2 supd(s;t)�� j

Pn
i=1Xn;i(t)�EXn;i(t)

�Xn;i(s) +EXn;i(s)j > "
o
! 0:

Then for any  > 0,

limn!1 nPr�
n
kXn;1kT > n1=2

o
= 0: (11.10)

If the hypotheses only hold along a subsequence nk, then the conclusion also holds along the
subsequence.

Next will be a characterization of Donsker classes, in which the asymptotic equicontinuity
condition (Theorem 3.28) is put into symmetrized forms. For a class F of functions let

F 0� := F� := ff � g : f; g 2 F ; �P (f; g) < �g:
Let k � k�;F := k � kG where G := F 0�.
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Theorem 11.14. Let (X;A; P ) be a probability space and F a class of functions included
in L2(X;A; P ). Assume (11.2), so that "i are i.i.d. Rademacher functions, independent of
X1;X2; � � �. Suppose that for each x 2 X,

Fc(x) := supf2F jf(x)� Pf j <1: (11.11)

Then the following are equivalent:
(a) F is a Donsker class for P ;
(b) F is totally bounded for �P and for any " > 0, as � ! 0,

lim supn!1Pr�
n
n�1=2kPn

i=1 "i(f(Xi)� Pf)k�;F > "
o
! 0:

(c) (F ; �P ) is totally bounded and as � ! 0,

lim supn!1 n
�1=2E�kPn

i=1 "i(f(Xi)� Pf)k�;F ! 0;

(d) (F ; �P ) is totally bounded and for �n := n1=2(Pn�P ), as � ! 0, lim supn!1E
�k�nk�;F !

0.

In proving (c) the following will be helpful.

Lemma 11.15. Let �i, i = 1; 2; � � �, be i.i.d. nonnegative random variables such that

M := supt>0 t
2 Prf�i > tg <1: (11.12)

Then, for all r such that 0 < r < 2,

supn n
�r=2Emax1�i�n �

r
i <1: (11.13)

Next, Theorem 11.14 extends to multipliers other than Rademacher variables. For any real
random variable Y let

�2;1(Y ) :=

Z 1
0

[Pr(jY j > t)]1=2dt:

Then �2;1(Y ) <1 implies E(Y 2) <1, and for any � > 0, EjY j2+� <1 implies �2;1(Y ) <1.

Lemma 11.16. Let (
;S; P ) be a probability space and F � L1(P ). Assume the usual hy-
potheses (11.2) and that furthermore, by another product space, there are i.i.d. symmetric real
random variables �i := �(i) independent of the Xj and "j. Then for integers 0 � m < n <1
we have

n�1=2(Ej�1j)E�kPn
i=1 "if(Xi)kF � n�1=2E�kPn

i=1 �if(Xi)kF
� mn�1=2(E�kf(X1)kF )E(maxi�n j�ij) (11.14)

+ �2;1(�1) maxm<k�n k
�1=2E�kPk

i=m+1 "if(Xi)kF :
If the variables �i have E�1 = 0 but are not necessarily symmetric, then (11.14) holds with the
following changes: Ej�1j at the left is replaced by Ej�1 � �2j=2, the �rst summand on the right
is multiplied by 2 and the second by 3.

Next, here is a characterization of Donsker classes in terms of multipliers �i.
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Theorem 11.17. Let F be a class such that hypotheses (11.2) hold and ff�Pf : f 2 Fg has
a �nite envelope function (11.11). Let �j be i.i.d. centered real random variables, independent
of X1;X2; � � �, speci�cally, de�ned on a di�erent factor of a product probability space, such that
Ej�1j > 0 and �2;1(�1) < 1. Then F is Donsker for P if and only if both (F ; �P ) is totally
bounded and

lim supn!1E
�
n
n�1=2kPn

i=1 �i(f(Xi)� Pf)k�;F
o

= 0: (11.15)

11.3 Other aspects of the bootstrap

B. Efron (1979) invented the bootstrap and by now there is a very large literature about it.
This section will address some aspects of the application of the Gin�e-Zinn theorems. These
do not cover the entire �eld by any means. For example, some statistics of interest, such as
max(X1; � � � ;Xn), are not averages 1

n(f(X1) + : : : f(Xn)) as f ranges over a class F .
Some bootstrap limit theorems are stated in probability, and others for almost sure con-

vergence. To compare their usefulness, �rst note that almost sure convergence is not always
preferable to convergence in probability:

Example. Let Xn be a sequence of real-valued random variables converging to some X0 in
probability but not almost surely. Then some subsequences Xnk converge to X0 almost surely.
Suppose this occurs whenever nk � k2 for all k. Let Yn := X2k for 2k � n < 2k+1 where
k = 0; 1; � � �. Then Yn ! X0 almost surely, but in a sense, Xn ! X0 faster although it only
converges in probability.

Another point is that almost sure convergence is applicable in statistics when inferences
will be made from data sets with increasing values of n, in other words, in the part of statistics
called sequential analysis. But suppose one has a �xed value of the sample size n, as has
generally been the case with the bootstrap. Then the probability of an error of a given size, for
a given n, which relates to convergence in probability, may be more relevant than the question
of what would happen for values of n!1, as in almost sure convergence.

The rest of this section will be devoted to con�dence sets. A basic example of a con�dence
set is a con�dence interval. As an example, suppose X1; � � � ;Xn are i.i.d. with distribution
N(�; �2) where �2 is known but � is not. Then X := (X1 + � � � + Xn)=n has a distribution
N(�; �2=n). Thus

P (X � �� 1:96�=n1=2)
:
= :025

:
= P (X � �+ 1:96�=n1=2):

So we have 95 percent con�dence that the unknown � belongs to the interval [X � 1:96�=n1=2;
X + 1:96�=n1=2], which is then called a 95% con�dence interval for �.

Next, suppose X1; � � � ;Xn are i.i.d. in R
k with a normal (Gaussian) distribution N(�; �2I)

where I is the identity matrix. Suppose � > 0 and M� = M�(k) is such that N(0; I)fx : jxj �
M�g = �. Then n1=2(X � �)=� has distribution N(0; I) so P (jX � �j � M��=n

1=2) = �:
Thus, the ball with center X and radius M��=n

1=2 is called a 100(1 � �)% con�dence set for
the unknown �.

When the distribution of the Xi is not necessarily normal, but has �nite variance, then the
distribution of X will be approximately normal by the central limit theorem for n large, so we
get some approximate con�dence sets.
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Now let's extend these ideas to the bootstrap. Let X1; � � � ;Xn be i.i.d. from an otherwise
unknown distribution P . Let Pn be the empirical measure formed from X1; � � � ; Xn. Let F be
a universal Donsker class (Section 10.1). Then we know from the Gin�e-Zinn theorem in the last
section that �Bn and �n have asymptotically the same distribution on F . By repeated resam-
pling, given a small � > 0 such as � = :05, one can �nd M = M(�) such that approximately
Pr(k�Bn kF > M)

:
= �. Then

fQ : kQ� PnkF � M=n1=2g

is an approximate 100(1 � �)% con�dence set for P .
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Chapter 12

Classes of Sets or Functions Too

Large for Central Limit Theorems

12.1 Universal lower bounds.

This chapter is primarily about asymptotic lower bounds for kPn � PkF on certain classes F
of functions, as treated in Chapter 8, mainly classes of indicators of sets. Section 12.2 will give
some upper bounds which indicate the sharpness of some of the lower bounds. Section 12.4
gives some relatively di�cult lower bounds on classes such as the convex sets in R

3 and lower
layers in R

2 : In preparation for this, Section 12.3 treats Poissonization and random \stopping
sets" analogous to stopping times. The present section gives lower bounds in some cases which
hold not only with probability converging to 1, but for all possible Pn: De�nitions are as in
Sections 3.1 and 8.2, with P := U(Id) = �d = Lebesgue measure on Id: Speci�cally, recall the
classes G(�;K; d) := G�;K;d of functions on the unit cube Id � R

d with derivatives through
�th order bounded by K, and the related families C(�;K; d) of sets, both de�ned early in
Section 8.2.

Theorem 12.1. (Bakhvalov) For P = U(Id), any d = 1; 2; : : : and � > 0; there is a  =
(d; �) > 0 such that for all n = 1; 2; � � �, and all possible values of Pn; we have kPn �
PkG(�;1;d) � n��=d:

Remarks. When � < d=2; this shows that G(�;K; d); K > 0; is not a Donsker class. For
� > d=2 the lower bound in Theorem 12.1 is not useful, since it is smaller than the average
size of kPn � PkG(�;1;d), which is at least of order n�1=2: even for one function f not constant

a.e. P; Ej(Pn � P )(f)j � cn�1=2 for some c > 0:

Theorem 12.1 gives information about accuracy of possible methods of numerical integra-
tion in several dimensions, or \cubature," using the values of a function f 2 G(�;K; d) at
just n points chosen in advance (actually, one has the same lower bound even if one can use
any partial derivatives of f at the n points). It was in this connection that Bakhvalov (1959)
proved the theorem.

Theorem 12.2. For P = U(Id), any K > 0 and 0 < � < d � 1 there is a � = �(�;K; d) > 0
such that for all n = 1; 2; � � � and all possible values of Pn; kPn � PkC(�;K;d) > �n��=(d�1+�):
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Remark. Since �=(d� 1 +�) < 1=2 for � < d� 1; the classes C(�;K; d) are then not Donsker
classes. For � > d � 1; C(�;K; d) is a Donsker class by Theorem 8.3 and Corollary 7.7. For
� = d� 1; it is not a Donsker class (Theorem 12.10 below).

Theorem 12.3. (W. Schmidt) Let d = 2; 3; � � �. For the collection Cd of closed convex subsets
of a bounded non-empty open set U in R

d there is a constant b := b(d; U) > 0 such that for
P = Lebesgue measure normalized on U; and all Pn;

supfj(Pn � P )(C)j : C 2 Cdg � bn�2=(d+1):

Thus for d � 4; Cd is not a Donsker class for P: If d = 3 it is not either, see Dudley (1982).
C2 is a Donsker class for �2 on I2 by Theorem 8.12 and Corollary 7.7.

12.2 An upper bound.

Here, using metric entropy with bracketing NI as in Section 7.1, is an upper bound for k�nkC :=
supB2C j�n(B)j which applies in many cases where the hypotheses of Corollary 7.7 fail. Let
(X;A; Q) be a probability space, �n := n1=2(Qn �Q); and recall NI as de�ned before (7.4).

Theorem 12.4. Let C � A, 1 � � < 1; � > 2=(� + 1) and � := (� � 1)=(2� + 2): If for
some K <1; NI("; C; Q) � exp(K"��); 0 < " � 1; then

lim
n!1

Pr �fk�nkC > n�(log n)�g = 0:

Remarks. The classes C = C(�;M; d) satisfy the hypothesis of Theorem 12.4 for � = (d �
1)=� � 1; i.e. � � d � 1; by the last inequality in Theorem 8.3. Then � = 1

2 � �
d�1+� : Thus

Theorem 12.2 shows that the exponent � is sharp for � > 1: Conversely, Theorem 12.4 shows
that the exponent on n in Theorem 12.2 cannot be improved. In Theorem 12.4 we cannot take
� < 1; for then � < 0; which is impossible even for a single set, C = fCg; with 0 < P (C) < 1:

12.3 Poissonization and random sets.

Section 12.4 will give some lower bounds k�nkC � f(n) with probability converging to 1 as
n ! 1 where f is a product of powers of logarithms or iterated logarithms. Such an f has
the following property. A real-valued function f de�ned for large enough x > 0 is called slowly
varying (in the sense of Karamata) i� for every c > 0; f(cx)=f(x) ! 1 as x! +1:

Lemma 12.5. If f is continuous and slowly varying then for every " > 0 there is a � = �(") >

0 such that whenever x > 1=� and j1� y
x j < � we have

���1� f(y)
f(x)

��� < ":

Recall the Poisson law Pc on N with parameter c � 0; so that Pc(k) := e�cck=k! for
k = 0; 1; � � �. Given a probability space (X;A; P ); let Uc be a Poisson point process on (X;A)
with intensity measure cP: That is, for any disjoint A1; � � � ; Am in A; Uc(Aj) are independent
random variables, j = 1; � � � ;m; and for any A 2 A; Uc(A)(�) has law PcP (A):

Let Yc(A) := (Uc� cP )(A); A 2 A: Then Yc has mean 0 on all A and still has independent
values on disjoint sets.

Let x(1); x(2); � � � be coordinates for the product space (X1;A1; P1): For c > 0 let n(c)
be a random variable with law Pc; independent of the x(i): Then for Pn := n�1(�x(1) + � � � +
�x(n)); n � 1; P0 := 0 we have:
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Lemma 12.6. The process Zc := n(c)Pn(c) is a Poisson process with intensity measure cP:

From here on, the version Uc � Zc will be used. Thus for each !; Uc(�)(!) is a countably
additive integer-valued measure of total mass Uc(X)(!) = n(c)(!): Then

Yc = n(c)Pn(c) � cP = n(c)(Pn(c) � P ) + (n(c)� c)P;

Yc=c
1=2 = (n(c)=c)1=2�n(c) + (n(c)� c)c�1=2P: (12.1)

The following says that the empirical process �n is asymptotically \as large" as a corre-
sponding Poisson process.

Lemma 12.7. Let (X;A; P ) be a probability space and C � A: Assume that for each n and
constant t; supA2C j(Pn�tP )(A)j is measurable. Let f be a continuous, slowly varying function
such that as x! +1; f(x) ! +1. For b > 0 let

g(b) := lim inf
x!+1

Prfsup
A2C

jYx(A)j � bf(x)x1=2g:

Then for any a < b;

lim inf
n!1

Prfsup
A2C

j�n(A)j � af(n)g � g(b):

Next, the Poisson process's independence property on disjoint sets will be extended to
suitable random sets. Let (X;A) be a measurable space, and (
;B;Pr) a probability space. A
collection fBA : A 2 Ag of sub-�-algebras of B will be called a �ltration if BA � BB whenever
A � B inA. A stochastic process Y indexed by A, (A;!) 7! Y (A)(!), will be called adapted to
fBA : A 2 Ag if for every A 2 A, Y (A)(�) is BA measurable. Then the process and �ltration will
be written fY (A);BAgA2A. A stochastic process Y : hA;!i ! Y (A)(!); A 2 A; ! 2 
; will
be said to have independent pieces i� for any disjoint A1; � � � ; Am 2 A; Y (Aj) are independent,
j = 1; � � � ;m; and Y (A1[A2) = Y (A1)+Y (A2) almost surely. Clearly each Yc has independent
pieces. If in addition the process is adapted to a �ltration fBA : A 2 Ag, the process
fY (A);BAgA2A will be said to have independent pieces i� for any disjoint sets A1; � � � ; An

in A, the random variables Y (A2); � � � ; Y (An) and any random variable measurable for the
�-algebra BA1 are jointly independent.

For example, for any C 2 A let BC be the smallest �-algebra for which every Y (A)(�) is
measurable for A � C; A 2 A: This is clearly a �ltration, and the smallest �ltration to which
Y is adapted.

A function G from 
 into A will be called a stopping set for a �ltration fBA : A 2 Ag i�
for all C 2 A; f! : G(!) � Cg 2 BC : Given a stopping set G(�); let BG be the �-algebra of all
sets B 2 B such that for every C 2 A; B \ fG � Cg 2 BC : (Note that if G is not a stopping
set, then 
 62 BG; so BG would not be a �-algebra.) If G(!) � H 2 A then it is easy to check
that G is a stopping set and BG = BH :
Lemma 12.8. Suppose fY (A);BAgA2A has independent pieces and for all ! 2 
, G(!) 2 A,
A(!) 2 A and E(!) 2 A.

Assume that:

(i) G(�) is a stopping set;

(ii) For all !; G(!) is disjoint from A(!) and from E(!);
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(iii) G(!), A(!) and E(!) each have just countably many possible values G(j) := Gj 2 A,
C(i) := Ci 2 A and D(j) := Dj 2 A respectively;

(iv) For all i; j, fA(�) = Cig 2 BG and fE(�) = Djg 2 BG:
Then the conditional probability law (joint distribution) of Y (A) and Y (E) given BG satis-

�es

Lf(Y (A); Y (E))jBGg =
X
i;j

1fA(�)=C(i);E(�)=D(j)gL(Y (Ci); Y (Dj))

where L(Y (Ci); Y (Dj)) is the unconditional joint distribution of Y (Ci) and Y (Dj). If this
unconditional distribution is the same for all i; j, then (Y (A); Y (E)) is independent of BG.

Here is another fact about stopping sets, which corresponds to a known fact about non-
negative real-valued stopping times or Markov times (e.g. RAP, Lemma 12.2.5):

Lemma 12.9. If G and H are stopping sets and G � H then BG � BH .

Proof. For any measurable set D and A 2 BG, we have

A \ fH � Dg = (A \ fG � Dg) \ fH � Dg 2 BD:
� .

12.4 Lower bounds in borderline cases.

Recall the classes C(�;K; d) of subgraphs of functions with bounded derivatives through order
� in R

d , de�ned in Section 8.2. We had lower bounds for Pn�P on C(�;K; d) in Theorem 12.2
which imply that for � < d� 1; k�nkC(�;K;d) !1 surely as n!1: For � > d� 1; C(�;K; d)
is a Donsker class by Theorem 8.3 and Corollary 7.7, so k�nkC(�;K;d) is bounded in probability.
Thus � = d � 1 is a borderline case. Other such cases are given by the class LL2 of lower
layers in R

2 (Section 8.3) and the class C3 of convex sets in R
3 (Section 8.4), for �d = Lebesgue

measure on the unit cube Id; where I := [0; 1].
Any lower layer A has a closure A which is also a lower layer, with �d(A nA) = 0, where in

the present case d = 2. It is easily seen that suprema of our processes over all lower layers are
equal to suprema over closed lower layers, so it will be enough to consider closed lower layers.
Let LL2 be the class of all closed lower layers in R

2 .
Let P = �d and c > 0. Recall the centered Poisson process Yc from Section 12.3. Let

Nc := Uc � Vc where Uc and Vc are independent Poisson processes, each with intensity
measure cP . Equivalently, we could take Uc and Vc to be centered. The following lower bound
holds for all the above borderline cases:

Theorem 12.10. For any K > 0 and � > 0 there is a  = (d;K; �) > 0 such that

lim
x!+1

Pr
n
kYxkC > (x log x)1=2(log log x)���1=2

o
= 1

and

lim
n!1

Pr
n
k�nkC > (log n)1=2(log log n)���1=2

o
= 1

where C = C(d� 1;K; d); d � 2; or C = LL2; or C = C3:
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A larger lower bound with probability close to 1, of order (log n)3=4 has been found in the
lower layer case (C = LL2; d = 2). Shor (1986) �rst showed that EkYxkC > x1=2(log x)3=4 for
some  > 0 and x large enough. Shor's lower bound also applies to C(1;K; 2) by a 45� rotation
as in Section 8.3. For an upper bound with a 3=4 power of the log also for convex subsets of a
�xed bounded set in R

3 see Talagrand (1994, Theorem 1.6).

To see that the supremum of Nc; Yc or an empirical process �n over LL2 is measurable,
note �rst for Pn that for each F � f1; : : : ; ng and each !; there is a smallest, closed lower
layer LF (!) containing the xj for j 2 F; with LF (!) := ; for F = ;. For any c > 0; ! 7!
(Pn� cP ) (LF (!))(!) is measurable. The supremum of Pn� cP over LL2; as the maximum of
these 2n measurable functions, is measurable. Letting n = n(c) as in Lemma 12.6 and (12.1)
then shows supfYc(A) : A 2 LL2g is measurable. Likewise, there is a largest, open lower layer
not containing xj for any j 2 F , so supfjYc(A)j : A 2 LL2g and supfj�n(A)j : A 2 LL2g are
measurable.

For Nc, taking non-centered Poisson processes Uc and Vc, their numbers of points m(!)
and n(!) are measurable, as are the m-tuple and n-tuple of points occurring in each. For each
i = 0; 1; � � � ;m and k = 0; 1; � � � ; n, it is a measurable event that there exists a lower layer
containing exactly i of the m points and k of the n, and so the supremum of Nc over all lower
layers, as a measurable function of the indicators of these �nitely many events, is measurable.

Theorem 12.11. For every " > 0 there is a � > 0 such that for the uniform distribution P
on the unit square I2, and n large enough,

Pr
�
supfj�n(A)j : A 2 LL2g � �(log n)3=4

�
� 1� ",

and the same holds for C(1; 2; 2) in place of LL2. Also, �n can be replaced by Nc=c
1=2 or Yc=c

1=2

if log n is replaced by log c, for c large enough.

Remark. The order (log n)3=4 of the lower bound is best possible, as there is an upper bound
in expectation of the same order, see Rhee and Talagrand (1988), Leighton and Shor (1989),
and Co�man and Shor (1991).
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APPENDIX A. DIFFERENTIATING UNDER AN INTEGRAL SIGN

There are various su�cient conditions for the equation

d

dt

Z
f(x; t)d�(x) =

Z
@f(x; t)

@t
d�(x):

Here x 2 X, where (X;S; �) is a measure space, and t is real-valued. The derivatives with
respect to t will be taken at some point t = t0. The function f will be de�ned for x 2 X
and t in an interval J containing t0 in its interior. We assume that @f=@t exists at t = t0 for
�-almost all x.

For interchanging two integrals, there is a standard theorem, the Tonelli-Fubini theorem
(e.g. RAP, Theorem 4.4.5). But for interchanging a derivative and an integral there is appar-
ently not such a handy single theorem.

One su�cient condition is that the di�erence-quotients [f(x; t0 + h) � f(x; t0)]=h for h
small enough are dominated in absolute value by some �-integrable function. Details of other
su�cient conditions are omitted.
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APPENDIX B. MULTINOMIAL DISTRIBUTIONS

[classical properties of multinomial probabilities]

APPENDIX C. MEASURES ON NONSEPARABLE METRIC SPACES

Let (S; d) be a metric space. Under fairly general conditions, to be given, any probability
measure on the Borel sets will be concentrated in a separable subspace.

The problem reduces to one about discrete spaces. An open cover of S will be a family
fU�g�2I of open subsets U� of S, where I is any set, here called an index set, such that
S =

S
�2I U�. An open cover fV�g�2J of S, with some index set J , will be called a re�nement

of fU�g�2I i� for all � 2 J there exists an � 2 I with V� � U�. An open cover fV�g�2I will
be called �-discrete if I is the union of a sequence of sets In such that for each n and � 6= �
in In; U� and U� are disjoint. Recall that the ball B(x; r) is de�ned as fy 2 S : d(x; y) < rg.
For two sets A;B we have d(A;B) := inffd(x; y) : x 2 A; y 2 Bg, and d(y;B) := d(fyg; B)
for a point y.
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C.1 Theorem. For any metric space (S; d), any open cover fU�g�2I of S has an open �-
discrete re�nement.

Cardinal numbers are de�ned in RAP, in the last part of Appendix A (as smallest ordinals
with given cardinality). A cardinal number � is said to be measurable if for a set S of cardinality
�, there exists a probability measure P de�ned on all subsets of S which is nonatomic, in other
words P (fxg) = 0 for all x 2 S. If there is no such P; � is said to be of measure 0.

The continuum hypothesis implies that the cardinality c of the continuum (that is, of [0; 1])
is of measure 0 (RAP, Appendix C).

The separability character of a metric space is the smallest cardinality of a dense subset.
We have:

C.2 Theorem. Let (S; d) be a metric space. Let P be a probability measure on the �-algebra
of Borel sets, generated by the open sets. Then either there is a separable subspace T with
P (T ) = 1, or the separability character � of S is measurable.

It is consistent with the usual axioms of set theory (including the axiom of choice) that there
are no measurable cardinals, in other words all cardinals are of measure 0, e.g. Drake (1974,
pp. 67-68, 177-178). It is apparently unknown whether existence of measurable cardinals is
consistent (Drake, 1974, pp. 185-186). So, for practical purposes, a probability measure de�ned
on the Borel sets of a metric space is always concentrated in some separable subspace.

Here is another fact giving separability:

C.3 Theorem. Let f be a Borel measurable function from a separable metric space S into a
metric space T . Then, assuming the continuum hypothesis, f has separable range.
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APPENDIX D. AN EXTENSION OF LUSIN'S THEOREM

Lusin's theorem says that for any measurable real-valued function f , on [0; 1] with Lebesgue
measure � for example, and " > 0, there is a set A with �(A) < " such that restricted to the
complement of A; f is continuous. Here [0; 1] can be replaced by any normal topological space
and � by any �nite measure � which is closed regular, meaning that for each Borel measurable
set B; �(B) = supf�(F ) : F closed, F � Bg (RAP, Theorem 7.5.2). Recall that any �nite
Borel measure on a metric space is closed regular (RAP, Theorem 7.1.3).

Proofs of Lusin's theorem are often based on Egorov's theorem (RAP, Theorem 7.5.1),
which says that if measurable functions fn from a �nite measure space to a metric space
converge pointwise, then for any " > 0 there is a set of measure less than " outside of which
the fn converge uniformly.
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Here, the aim will be to extend Lusin's theorem to functions having values in any separable
metric space. The proof of Lusin's theorem in RAP, however, also relied on the Tietze-Urysohn
extension theorem, which says that a continuous real-valued function on a closed subset of a
normal space can be extended to be continuous on the whole space. Such an extension may
not exist for some range spaces: for example, the identity from f0; 1g onto itself doesn't extend
to a continuous function from [0; 1] onto f0; 1g, in fact there is no such function since [0; 1] is
connected.

It turns out, however, that the Tietze-Urysohn extension and Egorov's theorem are both
unnecessary in proving Lusin's theorem.

D.1 Theorem. Let (X;T ) be a topological space and � a �nite, closed regular measure de�ned
on the Borel sets of X. Let f be a Borel measurable function from x into S where (S; d) is a
separable metric space. Then for any " > 0 there is a closed set F with �(X nF ) < " such that
f restricted to F is continuous.

Proof. Let fsngn�1 be a countable dense set in S. For m = 1; 2; :::; and any x 2 X, let
fm(x) = sn for the least n such that d(f(x); sn) < 1=m. Then fm is measurable and de�ned
on all of X. For each m, let n(m) be large enough so that

�fx : d(f(x); sn) � 1=m for all n � n(m)g � 1=2m:

For n = 1; :::; n(m), take a closed set Fmn � f�1m fsng with

�(f�1m fsng n Fmn) <
1

2mn(m)

by closed regularity. For each �xed m, the sets Fmn are disjoint for di�erent values of n. Let

Fm :=
Sn(m)
n=1 Fmn. Then fm is continuous on Fm. By choice of n(m) and Fmn, �(Fm) >

1� 2=2m.
Since d(fm; f) < 1=m everywhere, clearly fm ! f uniformly (so Egorov's theorem is not

needed). For r = 1; 2; :::; let Hr :=
T1
m=r Fm. Then Hr is closed and �(Hr) � 1 � 4=2r . Take

r large enough so that 4=2r < ". Then f restricted to Hr is continuous as the uniform limit of
continuous functions fm on Hr � Fm; m � r, so we can let F = Hr to �nish the proof. �
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APPENDIX E. BOCHNER AND PETTIS INTEGRALS

Let (X;A; �) be a measure space and (S; k:k) a separable Banach space. A function f
from X into S will be called simple or �-simple if it is of the form f =

Pk
i=1 1Aiyi for some

yi 2 S; k < 1 and measurable Ai with �(Ai) < 1. For a simple function, the Bochner
integral is de�ned by

s f d� :=
Pk

i=1 �(Ai)yi 2 S:
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E.1 Theorem. The Bochner integral is well-de�ned for �-simple functions, the �-simple
functions form a real vector space, and for any �-simple functions f; g and real constant c,
s cf + g d� = c s f d�+ s g d�.

Proof. These facts are proved just as they are for real-valued functions (RAP, Proposition
4.1.4). �

For any measurable function g from X into S, where measurability is de�ned for the Borel
�-algebra generated by the open sets of S, x 7! kg(x)k is a measurable, nonnegative real-valued
function on S.

E.2 Lemma. For any two �-simple functions f and g from X into S, k s fd�k � s kfkd�
and k s f d�� s g d�k � s kf � gk d�.

Let L1(X;A; �; S) := L1(X;�; S) be the space of all measurable functions f from X into S
such that s kfk d� <1: By the triangle inequality, it's easily seen that L1(X;A; �; S) is a vec-
tor space. Also, all �-simple functions belong to L1(X;A; �; S). De�ne k:k1 on L1(X;A; �; S)
by kfk1 := s kfk d�: It is easily seen that k:k1 is a seminorm on L1(X;A; �; S). On the vector
space of �-simple functions, the Bochner integral is linear (by Theorem E.1) and continuous
(also Lipschitz) for k:k1 by Lemma E.2.

E.3 Theorem. For any separable Banach space (S; k:k) and any measure space (X;A; �),
the �-simple functions are dense in L1(X;A; �; S) for k:k1 and the Bochner integral extends
uniquely to a linear, real-valued function on L1(X;A; �; S), continuous for k:k1.

So the Bochner integral is well-de�ned for a function f if and only if f is in L1(X;A; �; S).
A function from X into S will be called Bochner integrable if and only if it belongs to
L1(X;A; �; S). The extension of the Bochner integral to L1(X;A; �; S) will also be written as
s � d�. Thus Theorem E.3 implies that

s cf + g d� = c s f d�+ s g d�
for any Bochner integrable functions f; g and real constant c. Also, by taking limits in Lemma
E.2 it follows that

k s f d�k � s kfk d�
for any Bochner integrable function f .

Although monotone convergence is not de�ned in general Banach spaces, a form of domi-
nated convergence holds:

E.4 Theorem. Let (X;A; �) be a measure space. Let fn be measurable functions from X into
a Banach space S such that for all n, kfnk � g where g is an integrable real-valued function.
Suppose fn converge almost everywhere to a function f . Then f is Bochner integrable and
k s fn � f d�k � s kfn � fk d� ! 0 as n!1.

A Bochner integral s g d� = s f d� can be de�ned when g is only de�ned almost everywhere
for �, f is Bochner integrable and g = f where g is de�ned, just as for real-valued functions
(RAP, Section 4.3). It's easy to check that when S = R, the Bochner integral equals the usual
Lebesgue integral.

A Tonelli-Fubini theorem holds for the Bochner integral:
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E.5 Theorem. Let (X;A; �) and (Y;B; �) be �-�nite measure spaces. Let f be a measurable
function from X�Y into a Banach space S such that s kf(x; y)kd�(x)d�(y) <1: Then for �-
almost all x, f(x; �) is Bochner integrable from Y into S; for �-almost all y, f(�; y) is Bochner
integrable from X into S, and

s fd(�� �) = s s f(x; y)d�(x)d�(y) = s s f(x; y)d�(y)d�(x):

Now let (S;T ) be any topological vector space, in other words S is a real vector space, T
is a topology on S, and the operation (c; f; g) 7! cf + g is jointly continuous from R � S � S
into S. Then the dual space S0 is the set of all continuous linear functions from S into R. Let
(X;A; �) be a measure space. Then a function f from X into S is called Pettis integrable with
Pettis integral y 2 S if and only if for every t 2 S0, s t(f) d� is de�ned and �nite and equals
t(y).

The Pettis integral is also due to Gelfand and Dunford and might be called the Gelfand-
Dunford-Pettis integral. The Pettis integral may lack interest unless S0 separates points of S,
as is true for normed linear spaces by the Hahn-Banach theorem (RAP, Corollary 6.1.5).

E.6 Theorem. For any measure space (X;A; �) and separable Banach space (S; k:k), each
Bochner integrable function f from X into S is also Pettis integrable, and the values of the
integrals are the same.

Proof. The equation t(s f d�) = s t(f) d� is easily seen to hold for simple functions and then,
by Theorem E.3, for Bochner integrable functions. �

Example. A function can be Pettis integrable without being Bochner integrable. Let H be a
separable, in�nite-dimensional Hilbert space with orthonormal basis feng. Let �(f = nen) :=
�(f = �nen) := pn := n�7=4, and f = 0 otherwise. Then s kfk d� = 2

P
n n
�3=4 = +1,

so f is not Bochner integrable. On the other hand for any xn with
P

n x
2
n < 1 we have

jP 2nxnpnj � (
P
x2n)1=22(

P
n�3=2)1=2 <1 and by symmetry the Pettis integral of f is 0.

Example. The Tonelli-Fubini theorem, which holds for the Bochner integral (Theorem E.5),
can fail for the Pettis integral. Let H be an in�nite-dimensional Hilbert space and let �i;j be
orthonormal for all positive integers i and j. Let U(x; y) := 2i�i;j for (j � 1)=2i � x < j=2i

and 2�i � y < 21�i; j = 1; :::; 2i; and 0 elsewhere. Then it can be checked that U is Pettis
integrable on [0; 1]� [0; 1] for Lebesgue measure but is not integrable with respect to y for �xed
x.
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APPENDIX F

NON-EXISTENCE OF TYPES OF LINEAR FORMS

ON SOME SPACES

Recall that a real vector space V with a topology T is called a topological vector space if
addition is jointly continuous from V � V to V for T , and scalar multiplication (c; v) 7! cv is
jointly continuous from R�V into V for T on V and the usual topology on R. If d is a metric on
V , then (V; d) is called a metric linear space i� it is a topological vector space for the topology
of d. Recall that for a given �-algebra A of measurable sets, in our case the Borel �-algebra, a
universally measurable set is one measurable for the completion of every probability measure
on A (RAP, Section 11.5). The universally measurable sets form a �-algebra, and a function
f is called universally measurable if for every Borel set B in its range, f�1(B) is universally
measurable. Thus any Borel measurable function is universally measurable.

F.1 Theorem. Let (E; d) be a complete metric real linear space. Let u be a universally
measurable linear form: E 7! R. Then u is continuous.

Note that Theorem F.1 fails if the completeness assumption is omitted: let H be an in�nite-
dimensional Hilbert space and let hn be an in�nite orthonormal sequence in H. Let E be the
set of all �nite linear combinations of the hn. Then there exists a linear form u on E with
u(hn) = n for all n, and u is Borel measurable on E but not continuous.

F.2 Proposition. For 0 < p < 1 there are no non-zero continuous real linear forms on Lp[0; 1]
for the metric �p(f; g) :=

R 1
0 jf � gjp(t)dt and so, no Borel or universally measurable such

forms.
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APPENDIX G
SEPARATION OF ANALYTIC SETS; BOREL INJECTIONS

Recall that a Polish space is a topological space S metrizable by a metric for which S
is complete and separable. Also, in any topological space X, the �-algebra of Borel sets is
generated by the open sets. Two disjoint subsets A;C of X are said to be separated by Borel
sets if there is a Borel set B � X such that A � B and C � XnB. Recall that a set A in a Polish
space Y is called analytic i� there is another Polish space X, a Borel subset B of X, and a Borel
measurable function f from B into Y such that A = f [B] := ff(x) : x 2 Bg (e.g. RAP,
Section 13.2). Equivalently, we can take f to be continuous and/or B = X and/or X = N

1 ,
where N is the set of nonnegative integers with discrete topology and N1 the Cartesian product
of an in�nite sequence of copies of N, with product topology (RAP, Theorem 13.2.1).

G.1 Theorem (Separation theorem for analytic sets). Let X be a Polish space. Then
any disjoint analytic subsets A;C of X can be separated by Borel sets.

G.2 Lemma. If X is a Polish space and Aj ; j = 1; 2; :::; are analytic in X, then
S1
j=1Aj is

analytic.

G.3 Corollary. If X is a Polish space and Aj ; j = 1; 2; :::; are disjoint analytic subsets of X,
then there exist disjoint Borel sets Bj such that Aj � Bj for all j.

G.4 Theorem. Let S be a Polish space, Y a separable metric space and A a Borel subset of
S. Let f be a 1-1, Borel measurable function from A into Y . Then the range f [A] is a Borel
subset of Y , and f�1 is a Borel measurable function from f [A] onto A.
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APPENDIX H. YOUNG-ORLICZ SPACES

A convex, increasing function g from [0;1) onto itself will be called a Young-Orlicz modulus.
Then g is continuous since it is increasing and onto. Let (X;S; �) be a measure space and g
a Young-Orlicz modulus. Let Lg(X;S; �) be the set of all real-valued measurable functions f
on X such that

kfkg := inffc > 0 : s g(jf(x)j=c)d�(x) � 1g < 1:

Let Lg be the set of equivalence classes of functions in Lg(X;S; �) for equality almost every-
where (�). By monotone convergence, we have

H.1 Proposition. For any Young-Orlicz modulus g and any f 2 Lg(X;S; �), if 0 < c :=
kfkg < +1, we have s(g(jf j=c))d� = 1, in other words the in�mum in the de�nition of kfkg
is attained. Also, kfkg = 0 if and only if f = 0 almost everywhere for �.

Next, we have

H.2 Lemma. For any Young-Orlicz modulus g, and any measurable functions fn, if jfnj " jf j,
then kfnkg " kfkg � +1.

Next is a fact stating that (not surprisingly) convergence in k �kg norm implies convergence
in measure (or probability):
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H.3 Lemma. For any Young-Orlicz modulus g, and any " > 0, there is a � > 0 such that if
kfkg � �, then �(jf j > ") < ":

H.4 Theorem. For any measure space (X;S; �), Lg(X;S; �) is a Banach space.

Let � be a Young-Orlicz modulus. Then it has one-sided derivatives as follows (RAP,
Corollary 6.3.3): �(x) := �0(x+) := limy#x(�(y)� �(x))=(y � x) exists for all x � 0, and

�(x�) := �0(x�) := lim
y"x

(�(x)� �(y))=(x � y)

exists for all x > 0. As the notation suggests, for each x > 0, �(x�) � limy"x �(y), and
� is a nondecreasing function on [0;1). Thus, �(x�) = �(x) except for at most countably
many values of x, where � may have jumps with �(x) > �(x�). On any bounded interval,
where � is bounded, � is Lipschitz and so absolutely continuous. Thus since �(0) = 0 we have
�(x) = sx0 �(u)du for any x > 0 (e.g. Rudin, 1974, Theorem 8.18). For any x > 0, �(x) > 0
since � is strictly increasing.

If � is unbounded, for 0 � y < 1 let  (y) := � (y) := inffx � 0 : �(x) � yg. Then
 (0) = 0 and  is nondecreasing. Let 	(y) := sy0  (t)dt. Then 	 is convex and 	0 =  
except on the at most countable set where  has jumps. Thus for each y > 0 we have  (y) > 0
and 	 is also strictly increasing.

For any nondecreasing function f from [0;1) into itself, it's easily seen that for any x > 0
and u > 0, f (u) � x if and only if f(t) < u for all t < x. It follows that (f ) (x) = f(x�)
for all x > 0. Since a change in � or  on a countable set (of its jumps) doesn't change its
inde�nite integral � or 	 respectively, the relation between � and 	 is symmetric.

A Young-Orlicz modulus � such that � is unbounded and �(x)#0 as x#0 will be called an
Orlicz modulus. Then  is also unbounded and  (y) > 0 for all y > 0, so 	 is also an Orlicz
modulus. In that case � and 	 will be called dual Orlicz moduli. For such moduli we have a
basic inequality due to W. H. Young:

H.5 Theorem (W. H. Young). Let �;	 be any two dual Young-Orlicz moduli from [0;1)
onto itself. Then for any x; y � 0 we have

xy � �(x) + 	(y);

with equality if x > 0 and y = �(x�).

One of the main uses of Theorem H.5 is to prove an extension of the Rogers-H�older in-
equality to Young-Orlicz spaces:

H.6 Theorem. Let � and 	 be dual Orlicz moduli, and for a measure space (X;S; �) let
f 2 L�(X;S; �) and g 2 L	(X;S; �). Then fg 2 L1(X;S; �) and s jfgjd� � 2kfk�kgk	.

Proof. By homogeneity we can assume kfk� = kgk	 = 1. Then applying Proposition H.1
with c = 1 and Theorem H.5 we get s jfgjd�(x) � 2 and the conclusion follows. �
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APPENDIX I

MODIFICATIONS AND VERSIONS OF ISONORMAL PROCESSES

Let T be any set and (
;A; P ) a probability space. Recall that a real-valued stochastic
process indexed by T is a function (t; !) 7! Xt(!) from T �
 into R such that for each t 2 T ,
Xt(�) is measurable from 
 into R. A modi�cation of the process is another stochastic process
Yt de�ned for the same T and 
 such that for each t, we have P (Xt = Yt) = 1. A version
of the process Xt is a process Zt; t 2 T , for the same T but de�ned on a possibly di�erent
probability space (
1;B; Q) such that Xt and Zt have the same laws, i.e. for each �nite subset
F of T , L(fXtgt2F ) = L(fZtgt2F ). Clearly, any modi�cation of a process is also a version of
the process, but a version, even if on the same probability space, may not be a modi�cation.
For example, for an isonormal process L on a Hilbert space H, the process M(x) := L(�x)
is a version, but not a modi�cation, of L.

One may take a version or modi�cation of a process in order to get better properties such
as continuity. It turns out that for the isonormal process on subsets of Hilbert space, what can
be done with a version can also be done by a modi�cation, as follows.

I.1 Theorem. Let L be an isonormal process restricted to a subset C of Hilbert space. For
each of the following properties, if there exists a version M of L with the property, there also
is a modi�cation N with the property. For each !, x 7!M(x)(!) for x 2 C is:
(a) bounded (b) uniformly continuous.
Also, if there is a version with (a) and another with (b) then there is a modi�cation N(�) having
both properties.

APPENDIX J. INEQUALITIES

This appendix collects several inequalities bounding the probabilities that random variables,
and speci�cally sums of independent random variables, are large. In UCLT, these inequalities
are given in Section 1.3 and are frequently referred to in proofs. In these notes, since so few
proofs are given, the inequalities play a smaller role.

Many of the inequalities follow from a basic one of S. Bern�stein and P. L. Chebyshev:

J.1. Theorem. For any real random variable X and t 2 R,

PrfX � tg � infu�0 e
�tuEeuX :

For any independent real random variables X1; � � � ;Xn, let Sn := X1 + � � �+Xn:

J.2 Bern�stein's inequality. Let X1;X2; � � � ; Xn be independent real random variables with
mean 0. Let 0 < M <1 and suppose that jXj j �M almost surely for j = 1; � � � ; n: Let �2j =
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var(Xj) and �2n := var(Sn) = �21 + � � � + �2n: Then for any K > 0,

PrfjSnj � Kn1=2g � 2 � exp(�nK2=(2�2n + 2Mn1=2K=3)):

Note that in Bern�stein's inequality, for �xed K and M , if Xi are i.i.d. with variance �2,
then as n!1, the bound approaches the normal bound 2 exp(�K2=(2�2)), as given in RAP,
Lemma 12.1.6. Moreover, this is true even if M := Mn !1 as n!1 while K stays constant,
provided that Mn=n

1=2 ! 0.
Next, let s1; s2; � � � ; be i.i.d. variables with P (si = 1) = P (si = �1) = 1=2: Such variables

are called \Rademacher" variables. We have the following inequality:

J.3 Proposition (Hoe�ding). For any t � 0 and real aj;

PrfPn
j=1 ajsj � tg � exp(�t2=(2Pn

j=1 a
2
j )):

Here are some remarks on Proposition J.3. Let Y1; Y2; � � � ; be independent variables
which are symmetric, in other words Yj has the same distribution as �Yj for all j. Let si
be Rademacher variables independent of each other and of all the Yj. Then the sequence
fsjYjgfj�1g has the same distribution as fYjgfj�1g. Thus to bound the probability thatPn

j=1 Yj > K, for example, we can consider the conditional probability for each Y1; � � � ; Yn;
PrfPn

j=1 sjYj > KjY1; � � � ; Yng � exp(�K2=(2
Pn

j=1 Y
2
j ))

by J.3. Then to bound the original probability, integrating over the distribution of the Yj, one
just needs to have bounds on the distribution of

Pn
j=1 Y

2
j , which may simplify the problem

considerably.
The Bern�stein inequality (J.2) used variances as well as bounds for centered variables. The

following inequalities, also due to Hoe�ding, use only bounds. They are essentially the best
that can be obtained, under their hypotheses, by the moment generating function technique.

J.4 Theorem (Hoe�ding). Let X1; � � � ;Xn be independent variables with 0 � Xj � 1 for all
j. Let X := (X1 + � � � +Xn)=n and � := EX. Then for 0 < t < 1� �,

PrfX � � � tg �
(�

�

�+ t

��+t � 1� �

1� �� t

�1���t)n

� e�nt
2g(�) � e�2nt

2

;

where
g(�) := (1� 2�)�1 log((1 � �)=�) for 0 < � < 1=2; or

:= 1=(2�(1 � �)) for 1=2 � � � 1:

Remarks. For t > 1 � �, Pr(X � � > t) � Pr(X > 1) = 0. For t < 0, the given probability
would generally be of the order of 1=2 or larger, so no small bound for it would be expected.

For the empirical measure Pn, if A is a �xed measurable set, nPn(A) is a binomial random
variable, and in a multinomial distribution, each ni has a binomial distribution. So we will
have need of some inequalities for binomial probabilities, de�ned by

B(k; n; p) :=
P

0�j�k(nj )pjqn�j; 0 � q := 1� p � 1;
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E(k; n; p) :=
P

k�j�n(nj )pjqn�j:

Here k is usually, but not necessarily, an integer. Thus, in n independent trials with probability
p of success on each trial, so that q is the probability of failure, B(k; n; p) is the probability of
at most k successes and E(k; n; p) is the probability of at least k successes.

J.5 Cherno�-Okamoto inequalities. We have

E(k; n; p) �
�
np

k

�k � nq

n� k

�n�k
if k � np;

B(k; n; p) � exp(�(np� k)2=(2npq)) if k � np � n=2:

Proof. These facts follow directly from the Hoe�ding inequality J.4. For the second one, note
that B(k; n; p) = E(n� k; n; 1� p) and apply the g(�) case with � = 1� p. �

J.6 Proposition. E(k; n; p) � (np=k)k ek�np if k � np:

The next inequality is for the special value p = 1=2:

J.7 Proposition. If k � n=2 then 2nB(k; n; 1=2) � (ne=k)k:

A form of Stirling's formula with error bounds is:

J.8 Theorem. For n = 1; 2; � � � ; e1=(12n+1) � n!(e=n)n(2�n)�1=2 � e1=12n:

Proof. See Feller (1968), vol. 1, Section II.9, p. 54. �

For any real x let x+ := max(x; 0). A Poisson random variable z with parameter m has
the distribution given by Pr(z = k) = e�mmk=k! for each nonnegative integer k.

J.9 Lemma. For any Poisson variable z with parameter m � 1,

E(z �m)+ � m1=2=8:

In the following two facts, let X1;X2; � � � ; Xn be independent random variables with values
in a separable normed space S with norm k:k. Let Sj := X1 + � � �+Xj for j = 1; � � � ; n.

J.10 Ottaviani's inequality. If for some � > 0 and c with 0 < c < 1, we have P (kSn�Sjk >
�) � c for all j = 1; � � � ; n, then

Pfmax
j�n

kSjk � 2�g � P (kSnk � �)=(1 � c):

Proof. The proof in RAP, 9.7.2, for S = R
k , works for any separable normed S. Here

(x; y) 7! kx� yk is measurable: S � S 7! R by RAP, Proposition 4.1.7. �

When the random variables Xj are symmetric, there is a simpler inequality:

J.11 P. L�evy's inequality. Given a probability space (
; P ) and a countable set Y; let
X1; X2; : : : ; be stochastic processes de�ned on 
 indexed by Y; in other words for each j and
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y 2 Y; Xj(y)(�) is a random variable on 
: For any bounded function f on Y let kfkY :=
supfjf(y)j : y 2 Y g: Suppose that the processes Xj are independent with kXjkY <1 a.s., and
symmetric, in other words for each j; the random variables f�Xj(y) : y 2 Y g have the same
joint distribution as fXj(y) : y 2 Y g: Let Sn := X1 + � � �+Xn: Then for each n; and M > 0;

P (maxj�n kSjkY > M) � 2P (kSnkY > M) :

Note. The norm on a separable Banach space (X; k �k) can always be written in the form k �kY
for Y countable, via the Hahn-Banach theorem (apply RAP, Corollary 6.1.5, to a countable
dense set in the unit ball of X to get a countable norming subset Y in the dualX 0 of X; although
X 0 may not be separable). On the other hand, the above Lemma applies to some nonseparable
Banach spaces: the space of all bounded functions on an in�nite Y with supremum norm is
itself nonseparable.
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APPENDIX K. METRIC ENTROPY AND CAPACITY

The word \entropy" is applied to several concepts in mathematics. What they have in
common is apparently that they give some measure of the size or complexity of some set or
transformation and that their de�nitions involve logarithms. Beyond this rather super�cial
resemblance, there are major di�erences. What are here called \metric entropy" and \metric
capacity" are measures of the size of a metric space, which must be totally bounded (have
compact completion) in order for the metric entropy or capacity to be �nite. Metric entropy will
provide a useful general technique for dealing with classes of sets or functions in general spaces,
as opposed to Markov (or martingale) methods. The latter methods apply, as in Chapter 1,
when the sample space is R and the class C of sets is the class of half-lines (�1; x]; x 2 R, so
that C with its ordering by inclusion is isomorphic to R with its usual ordering.

Let (S; d) be a metric space and A a subset of S. Let " > 0: A set F � S (not necessarily
included in A) is called an "-net for A if and only if for each x 2 A, there is a y 2 F with
d(x; y) � ". Let N(";A; S; d) denote the minimal number of points in an "-net in S for A.

For any set C � S, de�ne the diameter of C by

diamC := supfd(x; y) : x; y 2 Cg:
Let N("; C; d) be the smallest n such that C is the union of n sets of diameter at most 2".

Let D(";A; d) denote the largest n such that there is a subset F � A with F having n
members and d(x; y) > " whenever x 6= y for x and y in F .

The three quantities just de�ned are related by the following inequalities:

K.1 Theorem. For any " > 0 and set A in a metric space S with metric d,

D(2";A; d) � N(";A; d) � N(";A; S; d) � N(";A;A; d) � D(";A; d):

Proof. The �rst inequality holds since a set of diameter 2" can contain at most one of a set
of points more than 2" apart. The next holds because any ball B(x; ") := fy : d(x; y) � "g
is a set of diameter at most 2". The third inequality holds since requiring centers to be in A
is more restrictive. The last holds because a set F of points more than " apart, with maximal
cardinality, must be an "-net, since otherwise there would be a point more than " away from
each point of F , which could be adjoined to F , a contradiction unless F is in�nite, but then
the inequality holds trivially. �

It follows that as "#0, when all the functions in the Theorem go to 1 unless S is a �nite
set, they have the same asymptotic behavior up to a factor of 2 in ". So it will be convenient
to choose one of the four and make statements about it, which will then yield corresponding
results for the others. The choice is somewhat arbitrary. Here are some considerations that
bear on the choice.

The �nite set of points, whether more than " apart or forming an "-net, are often useful,
as opposed to the sets in the de�nition of N(";A; d): The quantity N(";A; S; d) depends not
only on A but on the larger space S. Many workers, possibly for these reasons, have preferred
N(";A;A; d). But the latter may decrease when the set A increases. For example, let A be the
surface of a sphere of radius " around 0 in a Euclidean space S and let B := A [ f0g. Then
N(";B;B; d) = 1 < N(";A;A; d). This was the reason, apparently, that Kolmogorov chose to
use N(";A; d).
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I have chosen to adopt D(";A; d) as basic. It depends only on A, not on the larger space
S, and is nondecreasing in A. If D(";A; d) = n, then there are n points which are more than
" apart and at the same time form an "-net.

Now, the "-entropy of the metric space (A; d) is de�ned as H(";A; d) := logN(";A; d), and
the "-capacity as logD(";A; d). Some other authors take logarithms to the base 2, by analogy
with information-theoretic entropy. In these notes logarithms will be taken to the usual base
e, which �ts for example with bounds coming from moment generating functions as in the next
section, and with Gaussian measures as in Chapter 2. There are a number of interesting sets
of functions where N(";A; d) is of the order of magnitude exp("�r) as "#0, for some power
r > 0, so that the "-entropy, and likewise the "-capacity, have the simpler order "�r. But in
other cases below, D(";A; d) is itself of the order of a power of 1=".
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