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Preface

A �rst version of these lecture notes was prepared for a graduate course given
at the University of Copenhagen 1995{96. Visits to the University of Aarhus
at the Centre for Mathematical Physics and Stochastics during the autumn
of 1998 and at the Stochastic Centre, Chalmers University of Technology and
the University of Gothenburg in early 1999, made it possible to prepare the
version presented here.

In some respects the notes represent a modern version of the lecture notes
Jacobsen [10] and deal with the time dynamics of point processes. The fo-
cus is on canonical marked point processes (MPP's) (equivalently, MPP's on
�ltered probablity spaces with the �ltration that generated by the process it-
self), and their use in the study of piecewise deterministic processes (PDP's),
notably piecewise deterministic Markov processes (PDMP's). This approach
conforms with the author's attitude that all understanding of MPP's stems
from an understanding of the canonical setup! Nevertheless, MPP's adapted
to more general �ltrations are also discussed, and some of the main structural
di�erences between the canonical and other setups are pointed out.

The MPP part of the notes (Chapters 1 to 5) constructs MPP's from the
regular conditional distributions generating jump times, respectively marks,
given the past history. Compensators and compensating measures are then
de�ned, it is shown (in the canonical case) that the compensating measure
determines the distribution of the MPP, and the basic martingales character-
izing the compensators are derived. A martingale representation theorem is
also given, together with a form of Itô's formula for MPP's. The �nal general
result presents a simple necessary and suÆcient condition for local absolute
continuity between the distributions of two di�erent MPP's.

Among the examples discussed are Markov chains (homogeneous and non-
homogeneous) viewed as MPP's. Chapter 6 shows how to generalize this to
PDMP's, where the basic theory is developed from scratch and the Markov
property established through a key lemma already used heavily for the MPP
theory. In a certain sense, a PDP is nothing but a process adapted to the
�ltration generated by a MPP. For the process to be Markov (homogeneous
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or non-homogeneous) a special structure is of course required, as discussed
in Chapter 6, but once that structure is present, martingale properties, Itô's
formula, likelihood processes etc. for PDMP's, are immediately available
from the MPP theory.

Most of the results presented in these notes are certainly well known.
Perhaps though, some of the proofs and the approach used to develop parts
of the theory is di�erent from what has been seen elsewhere.

The notes are intended for courses at graduate to post-doc level. They are
still in a somewhat preliminary form, e.g. with some proofs only sketched,
and doubtless contain a number of typographical and other errors.

The short bibliography at the end of the notes mentions only some of the
most important references on counting processes, marked point processes and
piecewise deterministic Markov processes. Most of the items are monographs
including several only parts of which are directly relevant for the subject
matter of the notes. For detailed bibliographies, see Last and Brandt [16]
(MPP's) and Davis [8] (PDMP's).

I am very grateful for the hospitality and �ne working conditions I enjoyed
while visiting MaPhySto in Aarhus and the Stochastic Centre in Gothenburg.
Special thanks are due to Jacob Krabbe Pedersen from the Department of
Theoretical Statistics at the University of Aarhus, who voluntarily under-
took the huge task of converting the handwritten manuscript of the original
Copenhagen notes into LATEX.

Copenhagen, July 1999
Martin Jacobsen



Chapter 1

Simple and marked point

processes

1.1 The de�nition of SPP's and MPP's

Let (
;F ; P ) be a probability space: 
 a non-empty set, the sample space,
F a ��algebra of subsets of 
 and P a probability measure on F :

De�nition 1.1.1 A simple point process (SPP for short) is a sequence T =
(Tn)n�1 of R+�valued random variables de�ned on (
;F ; P ) such that

(i) P (T1 � T2 � � � �) = 1;

(ii) P (Tn < Tn+1; Tn <1) = P (Tn <1) (n � 1) ;

(iii) P
�
lim
n!1

Tn =1
�
= 1:

Notation. The intervals referring to the time axis are denoted as follows:
R0 = [0;1[ ; R+ = ]0;1[ ; R 0 = [0;1] ; R+ = ]0;1] : The corresponding
Borel ��algebras are written B0; B+; B0; B+:

Thus, a SPP is an almost surely increasing sequence of strictly positive,
possibly in�nite random variables, strictly increasing as long as they are �nite
and with almost sure limit 1: The interpretation is that the Tn mark the
occurrence in time of some event, the n'th occurrence happening at time Tn
if Tn <1 and less than n events occurring altogether (on the time axis R0)
if Tn =1: By the de�nition, no event can happen at time 0; nevertheless we
shall mostly use R0 (rather than R+) as time axis.
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8 CHAPTER 1. SIMPLE AND MARKED POINT PROCESSES

The condition (iii) in De�nition 1.1.1 is important. It is equivalent to the
statement that only �nitely many events can occur in any �nite time interval.
The more general class of SPP's obtained by retaining only (i) and (ii) from
De�nition 1.1.1 is the class of simple point processes with explosion. It will
be denoted SPPex and will be discussed further in Section 2.1 below.

Introducing the sequence space

K =
n
(tn)n�1 2 R

N

+ : t1 � t2 � � � � " 1; tn < tn+1 if tn <1
o

together with the ��algebra K generated by the coordinate projections
T Æn (t1; t2; : : :) = tn (n � 1) ; we may view the SPP T as a (K;K)�valued
random variable, de�ned P�a.s. The distribution of T is the probability
T (P ) on (K;K) obtained by transformation,

T (P ) (B) = P f! : T (!) 2 Bg (B 2 K) :

Similarly, introducing

K =
n
(tn)n�1 2 R

N

+ : t1 � t2 � � � � ; tn < tn+1 if tn <1
o

with K the ��algebra generated by the coordinate projections on K; the
distribution of a SPPex, T , is the transformed probability T (P ) on

�
K;K

�
:

Note that K =
n
(tn) 2 K : lim

n!1
tn =1

o
:

Now suppose also given a measurable space (E; E) ; the mark space. Ad-
join to E the irrelevant mark r; write E = E [ frg and let E = � (E ; frg)
denote the ��algebra of subsets of E generated by the measurable subsets
of E and the singleton frg :

De�nition 1.1.2 A marked point process (MPP for short) with mark space
E; is a double sequence (T ;Y) =

�
(Tn)n�1 ; (Yn)n�1

�
of R+�valued random

variables Tn and E�valued random variables Yn de�ned on (
;F ; P ) such
that T = (Tn) is a SPP and

(i) P (Yn 2 E; Tn <1) = P (Tn <1) ;

(ii) P (Yn = r; Tn =1) = P (Tn =1) :

Thus, as in De�nition 1.1.1 we have a sequence of time points marking
the occurrence of events, but now these events may be of di�erent types,
with the type (or name or label) of the n'th event denoted by the n'th mark,
Yn: Note that the irrelevant mark appears only for events that never occur.
It was introduced only in order to have Yn always de�ned for all n:
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A MPP (T ;Y) may be viewed as a (KE;KE)�valued random variable,
where

KE =
n
((tn) ; (yn)) 2 R

N

+ � E
N
: (tn) 2 K; yn 2 E i� tn <1

o
with KE the ��algebra of subsets of KE generated by the coordinate pro-
jections T Æn ((tk) ; (yk)) = tn; Y

Æ
n ((tk) ; (yk)) = yn: The distribution of (T ;Y)

is then the transformed probability (T ;Y) (P ) on (KE;KE) :
MPP's with explosion are introduced in the obvious manner as

�
KE;KE

�
�

valued random variables, where

KE =
n
((tn) ; (yn)) 2 R

N

+ � E
N
: (tn) 2 K; yn 2 E i� tn <1

o
with KE the ��algebra generated by the projections onKE: The distribution
of a MPPex

�
T ;Y

�
is of course the probability

�
T ;Y

�
(P ) on

�
KE;KE

�
:

1.2 Counting processes and counting measures

Let T = (Tn)n�1 be a SPP and de�ne the counting process (CP) associated
with T as N = (Nt)t�0 ; where

Nt =
1X
n=1

1(Tn�t): (1.1)

Thus Nt counts the number of events in the time interval [0; t] with N0 � 0:
Clearly each Nt is a N0�valued random variable. Also, for P�a.a. ! the
sample path t! Nt (!) belongs to the space W of counting process paths,

W =
�
w 2 NR00 : w(0) = 0; w is right-continuous, increasing,

�w(t) = 0 or 1 for all tg :

Notation. N0 denotes the non-negative integers N [ f0g. We also write
N 0 = N [ f1g ; N = N [ f1g :

If t! f(t) is a cadlag-function (right-continuous with left limits) such as
any w 2 W , �f is the function of discontinuities for f; �f(t) = f(t)�f(t�):

Note that it is the assumption that the Tn be strictly increasing as long
as they are �nite (De�nition 1.1.1 (ii)), that ensures that t ! Nt increases
only in jumps of size 1:

On W de�ne the canonical counting process NÆ = (NÆ
t )t�0 by N

Æ
t (w) =

w(t); so in factNÆ : W !W is just the identity, and letH = � (NÆ
t )t�0 be the
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smallest ��algebra of subsets of W such that all NÆ
t are measurable. Then

we may view N de�ned by (1.1) as a (W;H)�valued random variable with
distributionQ = N(P ) the probability on (W;H) obtained by transformation
of P:

Note that T is easily recovered from N since a.s.

Tn = inf ft � 0 : Nt = ng ;
(Tn � t) = (Nt � n) ;

(1.2)

where here as elsewhere we de�ne inf ; =1: Thus we have shown that any
SPP may be identi�ed with its associated CP.

The discussion above could also be carried out for T a SPPex, only now
Nt = 1 can occur with probability > 0; and W should be replaced by the

space W of paths w 2 N
R0

0 that otherwise satisfy the conditions already
imposed on w 2 W:

We have seen that a SPP can be identi�ed with a counting process. In a
similar fashion, a MPP (T ;Y) = ((Tn) ; (Yn)) can be identi�ed with a random
counting measure (RCM) �; viz.

� =
X

n2N:Tn<1

"(Tn;Yn): (1.3)

Here "(Tn;Yn) (!) = "(Tn(!);Yn(!)) is the measure on the product space (R0 �E;
B0 
 E) attaching unit mass to the point (Tn (!) ; Yn (!)) and identically 0
elsewhere. Thus, for P�a.a. !; � (!) is a discrete counting measure on
(R0 � E;B0 
 E) ; i.e. � (!) is a positive ���nite measure such that

� (!;C) 2 N 0 (C 2 B0 
 E);
� (!; f0g � E) = 0;
� (!; ftg � E) � 1 (t � 0) ;
� (!; [0; t]� E) <1 (t � 0) :

The identity

�(C) =
1X
n=1

1C (Tn; Yn) (C 2 B0 
 E)

shows that for all measurable C; �(C) is a N 0�valued random variable.
We shall denote byM the space of discrete counting measures on (R0�E;

B0
E). Elements inM are denoted m and we write �Æ for the identity map
on M: For C 2 B0 
 E ; �Æ(C) denotes the function m ! m(C) from M to
N 0:

On M we use the ��algebra H = � (�Æ(C))C2B0
E ; the smallest � �
algebra such that all �Æ(C) are measurable. Thus, with � the RCM above,
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� becomes an a.s. de�ned (M;H)�valued random variable. Its distribution
is the probability Q = �(P ) on (M;H) :

It is also possible to describe (T ;Y) through a family of counting pro-
cesses: for A 2 E de�ne N(A) = (Nt(A))t�0 by

Nt(A) =
1X
n=1

1(Tn�t;Yn2A)

so Nt(A) counts the number of events on [0; t] matching a mark belonging to
the set A: Note that

Nt(A) = � ([0; t]� A) :

The total number of events on [0; t] is denoted N t;

N t = Nt(E) =
1X
n=1

1(Tn�t);

(cf. (1.1)) and N is the counting process
�
N t

�
t�0

:

It is easily veri�ed that H = � (Nt(A))t�0;A2E :
We shall now show how the Tn and Yn may be recovered in a measurable

fashion from � (or rather, the counting processes N (A)). Clearly

Tn = inf
�
t � 0 : N t = n

	
;

(Tn � t) =
�
N t � n

�
;

(1.4)

cf. (1.2). It is more tricky to �nd the Yn; however using the right-continuity
of counting processes one �nds that

(Yn 2 A) =
1[

K0=1

1\
K=K0

1[
k=1

�
N (k�1)=2K = n� 1; Nk=2K(A)�N(k�1)=2K (A) = 1

�
;

showing that if � is a random variable, so is Yn: Note however that without
some further structure on (E; E) it may not be possible to compute Yn (!)
from �(!): It is possible if e.g. either all singletons fyg 2 E or more generally
if E separates points in the sense that for all y 6= y0 2 E there exists A 2 E
such that y 2 A; y0 2 Ac: With this kind of structure imposed on (E; E) ; we
have seen that any MPP may be identi�ed with its associated RCM.

If E (and E) is uncountable, it is much more convenient to identify (T ;Y)
with the RCM � rather dthan the collection (N(A))A2E : If however E is at
most countably in�nite with E comprising all subsets of E; it is enough to
keep track of just Ny := Nfyg for all y 2 E since N(A) =

P
y2AN

y:

It is of course possible to identify MPP'
exs with suitable exploding RCM's

where N t =1 is possible. We shall not go into the details.
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Chapter 2

Construction of SPP's and

MPP's

2.1 Creating SPP's

We shall construct SPP's by constructing probabilities on the sequence space
(K;K), see Section 1.1. We shall call a probability on (K;K) a canonical SPP.
Through the bimeasurable bijection ' : (K;K)! (W;H) given by (cf. (1.1),
(1.2))

NÆ
t (' (t1; t2; : : :)) =

1X
n=1

1[0;tn](t) ((t1; t2; : : :) 2 K) ;

T Æn
�
'�1(w)

�
= inf ft � 0 : NÆ

t (w) = ng (w 2 W ); (2.1)

we at the same time obtain a construction of canonical counting processes,
i.e. probabilities on (W;H) :

The reader is reminded that if (Di;Di) for i = 1; 2 are measurable spaces,
a Markov kernel or transition probability from (D1;D1) to (D2;D2) is a map
p : D1 �D2 ! [0; 1] such that

(i) x1 ! px1 (A2) is D1 �measurable for all A2 2 D2;
(ii) A2 ! px1 (A2) is a probability on (D2;D2) for all x1 2 D1:

Markov kernels in particular serve as regular conditional probabilities.
The idea underlying the construction of the distribution of a SPP T =

(Tn) is to start by specifying the marginal distribution of T1 and then, succes-
sively for each n 2 N ; the conditional distribution of Tn+1 given (T1; : : : ; Tn) :
More precisely, let

K(n) = f(t1; : : : ; tn) : 0 < t1 � � � � � tn � 1; tk < tk+1 if tk <1g

13



14 CHAPTER 2. CONSTRUCTION OF SPP'S AND MPP'S

be the space of n�sequences that can appear as the �rst n coordinates of
an element in K; equipped with the ��algebra K(n) spanned by the coordi-
nate projections (equivalently, the trace on K(n) of the n�dimensional Borel
��algebra).

Assume given a probability P (0) on R+ and also for every n 2 N , a Markov
kernel P (n) from

�
K(n);K(n)

�
to
�
R+;B+

�
:

Notation. Write zn for a typical point (t1; : : : ; tn) 2 K(n) and T
Æ

n for the
projection T

Æ

n ((tk)) = tn on K:

Theorem 2.1.1 (a) For every choice of the probability P (0) and the Markov
kernels P (n) for n � 1 satisfying

P (n)
zn (]tn;1]) = 1 if tn <1

P
(n)
zn (f1g) = 1 if tn =1;

(2.2)

there is a unique probability R on the sequence space
�
K;K

�
allowing explo-

sions, such that T
Æ

1(R) = P (0) and for every n � 1; zn 2 K(n); the probability

P (n)
zn (�) is a regular conditional distribution of T

Æ

n+1 given
�
T
Æ

1; : : : ; T
Æ

n

�
= zn:

(b) R de�nes a canonical SPP R, i.e. R (K) = 1 with R the restriction
to K of R; if and only if

R
�
lim
n!1

T
Æ

n =1
�
= 1: (2.3)

We shall not give the proof here. The theorem follows easily from the Kol-
mogorov consistency theorem by showing consistency of the �nite-dimensional
distributions, cf. the expression (2.8) below, which refers to the MPP case.

Remark 2.1.1 It should be clear that (2.2) ensures that the sequence
�
T
Æ

n

�
is increasing a.s., strictly increasing as long as T

Æ

n is �nite. And it is also
clear that (2.3) is exactly the condition ensuring that no explosion occurs.

Note that several choices of Markov kernels may lead to the same R:
subject only to the measurability conditions, P

(n)
zn may be changed arbitrarily

for zn 2 B(n) 2 K(n) provided R
�
(T Æ1 ; : : : T

Æ
n) 2 B

(n)
�
= 0:

While arbitrary choices of P (n) for n � 0 lead to possibly exploding SPP's,
there is no simple characterization of the P (n) that result in genuine SPP's.
Indeed, it may be extremely diÆcult to decide whether a canonical SPPex

is a true SPP or not. This stability problem will be discussed on various
occasions later in these notes.



2.1. CREATING SPP'S 15

Notation. We shall often describe the P
(n)
zn through their survivor func-

tions P zn;

P zn(t) = P (n)
zn (]t;1]) :

By (2.2), P
(n)

zn (t) = 1 for t � tn if tn < 1; so it suÆces to give P
(n)

zn (t) for

t � tn; imposing the value 1 for t = tn <1:

Example 2.1.1 The dead process is the canonical SPP with no jumps in
�nite time: R (T Æ1 =1) = 1: It is completely speci�ed by the requirement
P (0) = "1 while the choice of P (n) for n � 1 is immaterial, cf. the remarks
following Theorem 2.1.1.

Example 2.1.2 The canonical Poisson process (SPP version) is the prob-
ability R that makes the waiting times V Æ

n := T Æn � T Æn�1 for n � 1 (with
T Æ0 � 0) independent and identically distributed (iid), exponential with some
rate � > 0: Thus

P
(0)
(t) = e��t (t � 0);

P
(n)

zn (t) = e��(t�tn) (t � tn):

The corresponding probability Q = �(R) on (W;H) makes NÆ into a
homogeneous Poisson process with parameter �: for s < t; NÆ

t �NÆ
s is inde-

pendent of (NÆ
u)u�s and

Q (NÆ
t �NÆ

s = n) =
(� (t� s))n

n!
e��(t�s) (n 2 N0) :

This familiar fact will appear as a consequence of Examples 3.8.1 and 3.8.3
below.

The dead process may be viewed as the Poisson process with parameter
� = 0:

Example 2.1.3 A canonical renewal process is a canonical SPP such that
the waiting times V Æ

n are iid. If G is the survivor function for the waiting
time distribution,

P
(0)
(t) = G(t) (t � 0);

P
(n)

zn (t) = G (t� tn) (t � tn):

The Poisson process is in particular a renewal process. That renewal pro-
cesses do not explode is of course a consequence of the simple fact that if
Un > 0 for n � 1 are iid random variables, then

P
Un =1 a.s.
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Example 2.1.4 Suppose the waiting times V Æ
n are independent, V Æ

n exponen-
tial at rate �n�1 � 0: Thus

P
(0)
(t) = e��0t (t � 0);

P
(n)

zn (t) = e��n(t�tn) (t � tn):

If �n = 0 for some n � 0 and n0 is the smallest such n; precisely n0 jumps
occur and T Æn0+1 =1 a.s.

With this example explosion may be possible and either happens with prob-
ability 0 (and we have a SPP) or with probability 1 (and we have a gen-
uine SPPex). Stability (no explosion) occurs i�

P
n�1EV

Æ
n = 1; i.e. i�P

n�0 �
�1
n =1 (with 1=0 =1).

The canonical counting process corresponding to a SPP or SPPex as de-
scribed here, is a continuous time, homogeneous Markov chain, moving from
state 0 to state 1; from 1 to 2 etc. The process NÆ + 1 is what is commonly
called a birth process.

(For a general construction of time-homogeneous Markov chains, see Ex-
ample 2.2.3 below).

2.2 Creating MPP's

The construction of MPP's (T ;Y) with mark space (E; E) consists in the
construction of canonical MPP's, i.e. probabilities R on the sequence space
(K(E);K (E)) ; cf. Section 1.1. If E separates points, (see p. 11), the
bimeasurable bijection ' : (K(E);K (E))! (M;H) given by

' (t1; t2; : : : ; y1; y2; : : :) =
X

n:tn<1

"(tn;yn)

and
T Æn
�
'�1m

�
= inf ft : m ([0; t]) = ng (m 2 M; n 2 N) ; (2.4)

�
Y Æ
n Æ '

�1 2 A
�
= (2.5)

1[
K0=1

1\
K=K0

1[
k=1

�
N
Æ

(k�1)=2K = n� 1; NÆ
k=2K (A)�NÆ

(k�1)=2K (A) = 1
�

for n 2 N ; A 2 E ; where NÆ
t (�

Æ; A) = �Æ ([0; t]� A) ; N
Æ

t = NÆ
t (E); provides

a construction of a canonical random counting measure by transformation,
yielding the probability '(R) on (M;H) :
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The idea behind the construction of a MPP is to start with the marginal
distribution of the �rst jump time T1 and then successively specify the con-
ditional distribution of Tn+1 given (T1; : : : ; Tn;Y1; : : : ; Yn) and of Yn+1 given
(T1; : : : ; Tn; Tn+1;Y1; : : : ; Yn) : Formally, let

K(n)(E) = f(t1; : : : ; tn; y1; : : : ; yn) : 0 < t1 � � � � � tn � 1; tk < tk+1

and yk 2 E if tk <1g

denote the space of �nite sequences of n timepoints and n marks that form
the beginning of sequences in K(E); equipped with the ��algebra K(n)(E)
spanned by the coordinate projections (equivalently the trace on K(n)(E) of
the product ��algebra Bn 
 En): Similarly, for n 2 N0 de�ne

J (n)(E) = f(t1; : : : ; tn; t; y1; : : : ; yn) : (t1; : : : ; tn; y1; : : : ; yn) 2 K
(n)(E);

tn � t with tn < t if tn <1g

equipped with the obvious ��algebra J (n)(E):
Assume given a probability P (0) on R+ and, for every n 2 N , a Markov

kernel P (n) from
�
K(n)(E);K(n) (E)

�
to
�
R+;B+

�
; as well as, for every n 2

N0 , a Markov kernel �(n) from
�
J (n)(E);J (n) (E)

�
to
�
E; E

�
:

Notation. Write zn for a typical point (t1; : : : ; tn; y1; : : : ; yn) 2 K(n)(E)
and (zn; t) or zn; t for a typical point (t1; : : : ; tn; t; y1; : : : ; yn) 2 J

(n)(E): Also
we write T

Æ

n ((tk; yk)) = tn and Y
Æ

n ((tk; yk)) = yn for coordinate projections
on K(E):

Theorem 2.2.1 (a) For every choice of the probability P (0) and the Markov
kernels P (n) for n � 1; �(n) for n � 0 satisfying

P
(n)
zn (]tn;1]) = 1 if tn <1

P
(n)
zn (f1g) = 1 if tn =1;

�
(n)
zn;t (E) = 1 if t <1;

�
(n)
zn;t (frg) = 1 if t =1;

(2.6)

there is a unique probability R on the sequence space
�
K(E);K(E)

�
allowing

explosions, such that T
Æ

1(Q) = P (0) and for every n � 1; zn 2 K(n)(E);

the probability P
(n)
zn (�) is a regular conditional distribution of T

Æ

n+1 given�
T
Æ

1; : : : ; T
Æ

n;Y
Æ

1; : : : ; Y
Æ

n

�
= zn; and for every n � 0; (zn; t) 2 J (n)(E);

the probability �
(n)
zn;t (�) is a regular conditional distribution of Y

Æ

n+1 given�
T
Æ

1; : : : ; T
Æ

n; T
Æ

n+1;Y
Æ

1; : : : ; Y
Æ

n;
�
= (zn; t):
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(b) R de�nes a canonical MPP R, i.e. R (K(E)) = 1 with R the restric-
tion to K(E) of R; if and only if

R
�
lim
n!1

T
Æ

n =1
�
= 1: (2.7)

Similar remarks apply to this result as those given after Theorem 2.1.1.
The proof is based on the Kolmogorov consistency theorem working with
�nite-dimensional distributions, which have the following appearance: for
n 2 N , C(n) 2 K(n)(E);

R
�
Zn 2 C

(n)
�
= (2.8)R

R0

P (0) (dt1)
R
E

�
(0)
t1 (dy1) � � �

R
R0

P (n�1)
zn�1

(dtn)
R
E

�
(n�1)
zn�1;tn�1

(dyn) 1C(n) (zn) :

Notation. As in the SPP case we shall write P
(n)

zn (t) = P
(n)
zn (]t;1]) ; c.f.

p.15.

Example 2.2.1 Suppose E = f1; : : : ; rg is �nite with r � 2; and let E be
the ��algebra of all subsets of E: De�ne

P
(0)
(t) = e��t (t � 0); P

(n)

zn (t) = e��(t�tn) (t � tn);

�
(n)
zn;t (fyg) = py (y 2 E)

for some � > 0 and some probability function (py)y2E (i.e. py � 0;
P

E py =
1). In other words, the waiting times between jumps are iid exponential, the
Y Æ
n are iid (py) and the sequences (T Æn) and (Y

Æ
n ) are independent. The result-

ing probability R on (K(E);K(E)) is the canonical Poisson process with mark
space E and parameter vector (�y)y2E where �y = �py: If Q = �(R) is the
corresponding canonical RCM one �nds, that under Q; the counting process
NÆ;y := NÆ (fyg) is Poisson �y; and that the NÆ;y are mutually stochastically
independent. (For a proof, see Example 3.8.3). Note that by Example 2.1.2,
N
Æ
is Poisson �:

Example 2.2.2 Suppose (Xn)n2N0 is a stochastic process in discrete time
with state space (G;G) (each Xn is a G�measurable, G�valued random vari-
able). The distribution of (Xn) conditionally on X0 = x0 for an arbitrary
x0 2 G; may be viewed as the MPP with mark space (G;G) generated by the

Markov kernels P
(n)
znjx0

= "n+1 and

�(n)
zn;tjx0

(A) = P (Xn+1 2 A jX0 = x0; (X1; : : : ; Xn) = zn ) :
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It is one of the main purposes of these notes to construct piecewise deter-
ministic processes (PDP's) from MPP's and to use MPP theory to discuss
the properties of the PDP's. We now brie
y outline how the connection
arises.

Suppose X = (Xt)t�0 is a stochastic process de�ned on some probability
space with a state space (G;G) which is a topological space equipped with its
Borel ��algebra. Assume further that X is right-continuous and piecewise
continuous with only �nitely many discontinuities (jumps) on any �nite time
interval. Then a MPP is easily constructed from X by letting Tn be the
time of the n'th jump, and de�ning Yn = XTn (if Tn < 1) to be the state
reached by X at the time of the n'th jump. In general it is of course not
possible to reconstruct X from the MPP, but if further structure is imposed
the reconstruction can be done in a natural way, i.e. such that knowledge
about the MPP on [0; t] yields (Xs)0�s�t for any t: suppose that the initial
value x0 = X0 of X is non-random and that for every n 2 N0 there is a
suitably measurable function f

(n)
znjx0

(t) of zn and t and the initial state x0
such that

Xt = f
(Nt)
Ztjx0

(t) (2.9)

where Zt :=
�
T1; : : : ; TNT

;Y1; : : : ; YNT

�
: Thus, until the time of the �rst

jump, Xt = f
(0)
jx0
(t) is a deterministic function of x0 and t; between the �rst

and second jump, Xt is a function of x0; t and T1; Y1 etc. The functions
f (n) provide algorithms for computing X between jumps, based on the past
history of the process. Note that the fact that Yn = XTn on (Tn <1)
translates into the boundary condition

f
(n)
znjx0

(tn) = yn:

We shall more formally call a process X of the form (2.9) piecewise deter-

ministic. It is a piecewise continuous process if all t! f
(n)
zn (t) are continuous

on [tn;1[ ; a step process (or piecewise constant process) if f
(n)
zn (t) = yn and

a piecewise linear process with slope � if f
(n)
zn (t) = yn + �(t � tn) for some

constant � not depending on n:

Example 2.2.3 We shall outline the MPP description of time-homogeneous
Mar-kov chains in continuous time. That what follows is a construction of
such chains is well known but will follow in any case from Theorem 6.1.1.
Let X = (Xt)t�0 be a homogeneous Markov chain with an at most countably
in�nite state space E with E the ��algebra of all subsets. In accordance
with traditional notation we write i; j; ik for elements of E rather than e.g.
y; yk: Assume that X0 � i0 2 E is non-random (alternatively, look at X
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conditionally on X0) and that X has only �nitely many jumps in �nite time
intervals. The distribution of the chain is completely speci�ed by the initial
state i0 and the transition probabilities (not depending on i0)

pij (t) = P (Xs+t = j jXs = i) = P (Xs+t = j j(Xu)u�s; Xs = i)

for any s; t; i; j and also by i0 and the transition intensities

qij :=lim
t!0

1

t
(pij(t)� Æij) ;

where Æij = 1 if i = j and = 0 otherwise. The transition probabilities form
a semigroup, P (s+ t) = P (s)P (t) for s; t � 0 with P (0) = I; where P (t) =
(pij (t))i;j2E is the transition matrix for time intervals of length t and I = (Æij)
is the E�E identity matrix. The qij satisfy �i := �qii � 0; qij � 0 for i 6= j
and

P
j qij = 0 for all i:

X is a step process as described above, i.e. X is given by (2.9) with, for
zn = (t1; : : : ; tn; i1; : : : ; in) ;

f
(n)
znji0

(t) = in;

letting Tn be the time of the n'th jump of X and Yn = XTn on (Tn < 1):
Then the distribution of the MPP ((Tn) ; (Yn)) is determined by the Markov

kernels P
(n)
�ji0
; �

(n)
�ji0

given by

P
(0)

ji0 (t) = e��i0 t; P
(n)

znji0 (t) = e��in (t�tn) (t � tn); (2.10)

�
(n)
zn;tji0

(A) =
X

j2Anin

qinj
�in

; (2.11)

corresponding to the well known fact that for minimal jump chains with sta-
tionary transitions, conditionally on the past the waiting time to the next
jump is exponential at rate �in ; where in is the present state, while the jump
itself is governed by the intensities qinj in the manner described.

Note that if �i = 0; the state i is absorbing as is seen from (2.10): once
the chain enters state i; it remains there forever. In particular the de�nition
of �

(n)
zn;tji0

if �in = 0 (in which case (2.11) does not make sense) is therefore
immaterial.



Chapter 3

Compensators and martingales

3.1 Hazard measures

Let P be a probability on
�
R+;B+

�
with survivor function P: Thus P(t) =

P (]t;1]) and P(t�) = P ([t;1]) : Also write �P(t) := P (ftg) with in par-
ticular �P(1) := P (f1g) :

De�nition 3.1.1 The hazard measure for P is the positive measure � on
(R+ ;B+) with � � P and

d�

dP
(t) =

(
1

P(t�)
if P(t�) > 0;

0 otherwise.
(3.1)

Formally, the Radon-Nikodym derivative is with respect to the restriction
to R+ of P rather than P itself. By the de�nition of �;

�(B) =

Z
B

1

P(s�)
P (ds)

for all B 2 B+ as follows from the observation that

P
��
t > 0 : P(t�) = 0

	�
= 0; (3.2)

i.e. the de�nition of d�=dP(t) when P(t�) = 0 is immaterial. (With ty as
de�ned in (3.3) below,the set appearing in (3.2) is = ; if ty =1; =

�
ty;1

�
if ty <1 and �P

�
ty
�
= 0; =

�
ty;1

�
if ty <1 and �P

�
ty
�
> 0).

The reader is reminded about the standard more informal de�nition of
hazard measure: if U is a R+�valued random variable, then the hazard
measure for the distribution of U is given by

� ([t; t + dt[) = P (t � U < t+ dt jU � t) ;

21
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i.e. if U is the timepoint at which some event occurs, � measures the risk of
that event happening now or in the immediate future given that it has not
occurred yet.

If P has density f with respect to Lebesgue measure, � has density u
where u(t) = f(t)=P(t) if P(t) > 0: The function u is then called the hazard
function for P:

De�ne
ty := inf

�
t > 0 : P(t) = 0

	
; (3.3)

the termination point for P. Note that because P(0) = 1; ty > 0. Further,
ty = 1 i� P(t) > 0 for all t 2 R+ and if ty < 1 always P(ty) = 0 and
in addition either �P

�
ty
�
> 0; or �P

�
ty
�
= 0 and P(ty � ") > 0 for all

0 < " < ty: Also �
��
ty;1

��
= 0 because of our de�nition (3.1) { but that

need of course not hold with other de�nitions of � beyond ty:
The basic properties of hazard measures are summarized in the next result

where ��(t) := � (ftg) :

Theorem 3.1.1 Let � be the hazard measure for some probability P on�
R+;B+

�
: Then

(i) � is locally �nite at 0: � (]0; t]) <1 for t > 0 suÆciently small;

(ii) � (]0; t]) <1 if t < ty;

(iii) ��(t) � 1 for all t 2 R0 , ��(t) < 1 for all t < ty;

(iv) ��
�
ty
�
= 1 i� ty <1 and �P

�
ty
�
> 0;

(v) if �P
�
ty
�
> 0; then �

��
0; ty

��
< 1 if ty < 1 and � (R+) < 1 if

ty =1;

(vi) if �P
�
ty
�
= 0; then �

��
0; ty

��
=1 whether ty is �nite or not.

If conversely � is a positive, possibly in�nite measure on (R+ ;B+), locally
�nite at 0 as in (i) above with �� (t) � 1 for all t 2 R+ , then � is the hazard
measure for a uniquely determined probability P on

�
R+;B+

�
in the following

sense: the termination point ty for P is

ty = inf ft > 0 : �� (t) = 1 or � (]0; t]) =1g (3.4)

and the survivor function P for P is given by the product integral

P(t) =

� Q
0<s�t (1� � (ds)) if t < ty;

0 if t � ty:
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Note. The product integral is described in detail below, see (3.6).
Proof. If P (t�) > 0 then � (]0; t]) �

R
]0;t]

1
P(t�)

P(ds) < 1; proving (i), (ii)

and (v). (iii) and (iv) follow from ��(t) = �P(t)=P(t�) if P(t�) > 0: To
prove (vi), note that P

��
t; ty
��
# 0 as t " ty and then de�ne t0 = 0 and

recursively choose tk such that P
��
tk; t

y
��
� 1

2
P
��
tk�1; t

y
��
: Then tk " t

y and
hence

�
��
0; ty

��
=

1X
k=1

� ([tk�1; tk[)

=
1X
k=1

Z
[tk�1;tk[

1

P(s�)
P (ds)

�
1X
k=1

P ([tk�1; tk[)

P ([tk�1; ty[)

where the assumption �P(ty) = 0 has been used in the last step. But the
series in the last line diverges since each term is � 1

2
:

For the proof of the last part of the proposition we focus on two cases,
noting that the de�nition of ty is certainly the only possible in view of
(iv) and (vi): suppose �rst that P has a continuous density f on

�
0; ty

�
:

Then � (dt) = u(t) dt where u(t) = f(t)=P(t) = �
�
logP(t)

�0
forcing P(t) =

exp
�
�
R t
0
u(s) ds

�
= exp (�� (]0; t])) for t < ty: Suppose next that P is dis-

crete in the special sense that there is a �nite or in�nite strictly increasing
sequence 0 < t1 < t2 < � � � < 1 such that all �P (tk) > 0 and

P
�P (tk) +

�P (1) = 1: Then ��(tk) = �P (tk) =P(tk�) = 1�P(tk)=P(tk�1) and conse-
quently P(tk) =

Qk
j=1 (1��� (tj)) resulting in P(t) =

Q
0<s�t (1���(s)) :

The following immediate consequence of Theorem 3.1.1 will be used later:

Corollary 3.1.2 If U is a R+�valued random variable with hazard measure
�; then

P (� (]0; U ] \ R+) <1) = 1: (3.5)

The last part of the proof of Proposition 3.1.1 gives two instances of how
the product integral

P(t) =
Y

0<s�t

(1� � (ds)) (3.6)

should be interpreted. It may be shown more generally that if P is continuous
(�P (t) = 0 for all t 2 R+), then

P(t) = exp (�� (]0; t])) ;
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and if P is discrete (there is an at most countably in�nite subset Bd of R+

such that P(R+nBd) = 0), then

P(t) =
Y

0<s�t

(1���(s))

with only the factors 1���(s) for s 2 Bd contributing to the continuous time
product. For general P; suppose � is a given hazard measure and compute ty

by (3.4). To recover P it suÆces to �nd P(t) for t < ty: Consider � restricted
to
�
0; ty

�
and split � into its continuous and discrete parts, � = �c + �d;

where for Borel sets B �
�
0; ty

�
; �d(B) =

P
t2B\Bd

��(t) writing Bd =�
t 2
�
0; ty

�
: ��(t) > 0

	
: Then the claim is that

P(t) = exp (��c (]0; t]))
Y

0<s�t

�
1���d(s)

�
: (3.7)

The idea behind the proof is essentially to identify �c and �d with hazard
measures, one of which must have termination point ty: One then exploits
that if U c; Ud are independent random variables with hazard measures �c; �d

(so that since U c has a continuous distribution and Ud a discrete distribution,

P (U c > t) = exp (��c (]0; t])) ; P
�
Ud > t

�
=
Y

0<s�t

�
1���d(s)

�
),

then U := min
�
U c; Ud

�
; which trivially has survivor function P as in (3.7),

has hazard measure � = �c + �d by Proposition 3.1.3 (ii) below.

Example 3.1.1 (i) � � 0 is the hazard measure for the probability "1
with point mass 1 at 1:

(ii) � = �` where � > 0 and ` denotes Lebesgue measure, is the hazard
measure for the exponential distribution with rate �; i.e. P(t) = e��t.

(iii) � =
P1

n=1 p "n where 0 < p < 1; is the hazard measure for the geometric
distribution on N given by �P (n) = p (1� p)n�1 for n 2 N .

Hazard measures have some further nice properties, that we quote without
proofs.

Proposition 3.1.3 (i) If P has hazard measure � and t0 > 0 is such
that P(t0) > 0; then the hazard measure for the conditional probability
P (� j]t0;1]) is the restriction to ]t0;1[ of �:
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(ii) If U1; U2 are R+�valued and independent random variables with dis-
tributions P1;P2 and hazard measures �1; �2 respectively, then provided
�P1(t)�P2(t) = 0 for all t > 0; the distribution of U := min (U1; U2)
has hazard measure � = �1 + �2:

The assumption in (ii) that P1;P2 do not have atoms in common on R+

is essential for the assertion to be valid.
For the proof of Proposition 3.1.3 and other proofs omitted here, one may

use the techniques discussed in Appendix A.

3.2 Adapted and predictable processes

We shall in most of this chapter be dealing with canonical counting processes
and canonical random counting measures, i.e. probabilities on the spaces
(W;H) and (M;H) respectively, cf. Sections 2.1 and 2.2. Recall that any
such probability may be viewed as a SPP, respectively a MPP through the
following de�nition of the sequence of jump times (�n) on W;

�n = inf ft > 0 : NÆ
t = ng (n 2 N);

see (2.1), and the following de�nition of the sequence of jump times (�n) and
marks (�n) on M;

�n = inf
n
t > 0 : N

Æ

t = n
o

(n 2 N);

(�n 2 A) =
1[

K0=1

1\
K=K0

1[
k=1

�
N
Æ

(k�1)=2K = n� 1; NÆ
k=2K(A)�NÆ

(k�1)=2K (A) = 1
�

(3.8)
for n 2 N ; A 2 E ; see (2.4), (2.5). In order to be able to identify the exact
value of �n from (3.8), we assume from now on that E separates point, cf. p.
11. Otherwise the notation used throughout is

NÆ(w) = w; NÆ
t (w) = w(t) (w 2 W; t � 0);

and
�Æ (m) = m; �Æ (C;m) = m(C)

for m 2 M; C 2 B0 
 E ; while N
Æ

t : M ! N0 and N
Æ

t (A) : M ! N0 (for
A 2 E) are de�ned by

N
Æ

t (m) =
1X
n=1

1(�n�t) (m)
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NÆ
t (A;m) =

1X
n=1

1(�n�t;�n2A) (m) = �Æ ([0; t]� A;m)

for m 2 M; and where we write e.g. NÆ
t (A;m) rather than NÆ

t (A)(m):
Finally we de�ne

�n =

�
(� 1; : : : ; �n) on W;

(� 1; : : : ; �n; �1; : : : ; �n) on M
(3.9)

as well as

�t =

�
�NÆ

t
;

�NÆ
t
;

�t� =

(
�NÆ

t�
;

�NÆ
t�
;

(3.10)

with the convention that on (NÆ
t = 0) ; resp.

�
N
Æ

t = 0
�
; �t � 0 (the impor-

tant thing is that �0 should be something non-informative and if viewed as a
random variable, should generate the trivial ��algebra, � (�0) = f;;Wg or
f;;Mg). Note that �t summarizes the jump times and marks occurring in
[0; t] ; �t� those occurring in [0; t[ :

The fundamental �ltration on (W;H) is (Ht)t�0 where

Ht = �
�
(NÆ

s )0�s�t
�

is the smallest ��algebra such that allNÆ
s for s � t are measurable. Similarly

the fundamental �ltration on (M;H) is (Ht)t�0 where

Ht = �
�
(NÆ

s (A))0�s�t;A2E

�
:

For t = 0 we get the trivial ��algebra,

H0 =

�
f;;Wg
f;;Mg :

Note that if E 0 � E generates E (the ��algebra � (E 0) generated by the sets
in E 0 is E itself) with E 2 E 0 and E 0 is closed under the formation of �nite

intersections, A1 \ A2 2 E 0 if A1; A2 2 E 0; then Ht = �
�
(NÆ

s (A))0�s�t;A2E 0
�
:

A process X = (Xt)t�0 with state space (G;G) de�ned on W or M is
a family of G�valued random varaibles. The process is measurable if the

mapping (t; w)
�
! Xt(w); respectively (t;m)

�
! Xt (m) ; is measurable from

(R0 �W;B0 
H) ; respectively (R0 �M;B0 
H) ; to (G;G) : X is adapted
if it is measurable and each Xt is Ht�measurable; X is predictable (or
previsible) if X0 is constant (i.e. H0�measurable) and if � restricted to
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(R+ �W;B+ 
H) ; or (R+ �M;B+ 
H), is measurable with respect to
the predictable ��algebra P. Here P is generated by the subsets

]t;1[�H (t � 0; H 2 Ht)

of R+�W or R+�M: Recall that any Rd�valued process X = (Xt)t�0 which
is left-continuous and adapted is predictable. (See Appendix B for a more
general discussion of the concepts from process theory introduced here).

The following useful result characterizes Ht and adapted and predictable
processes and also shows that the �ltration (Ht) is right-continuous. Recall
the de�nitions (3.9), (3.10) of �n; �t and �t�:

Proposition 3.2.1 (a) Consider the space (W;H) :

(i) A set H � W belongs to Ht i� for every n 2 N0 there exists
Bn 2 Bn

+ \ ]0; t]n such that

H \ (NÆ
t = n) = (�n 2 Bn; �n+1 > t) :

(ii) For every t � 0; Ht+ = Ht where Ht+ :=
T

">0Ht+":

(iii) A real-valued process X = (Xt)t�0 is adapted i� for every n 2 N0

there exists a measurable function (zn; t)! f
(n)
zn (t) from Rn

+ � R 0

to R such that identically on W and for all t 2 R0 ;

Xt = f
(NÆ

t )
�t

(t):

(iv) A real-valued process X = (Xt)t�0 is predictable i� for every n 2

N0 there exists a measurable function (zn; t)! f
(n)
zn (t) from Rn

+ �
R 0 to R such that identically on W and for all t 2 R0

Xt = f
(NÆ

t�)
�t�

(t): (3.11)

(b) Consider the space (M;H) :

(i) A set H � M belongs to Ht i� for every n 2 N0 there exists
Cn 2 (Bn

+ 
 E
n) \ (]0; t]n � En) such that

H \
�
N
Æ

t = n
�
= (�n 2 Cn; �n+1 > t) : (3.12)

(ii) For every t � 0; Ht+ = Ht where Ht+ :=
T

">0Ht+":
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(iii) A real-valued process X = (Xt)t�0 is adapted i� for every n 2 N0

there exists a measurable function (zn; t) ! f (n)
zn (t) from (Rn

+ �
En)� R 0 to R such that identically on M and for all t 2 R0

Xt = f
(NÆ

t )
�t

(t): (3.13)

(iv) A real-valued process X = (Xt)t�0 is predictable i� for every n 2

N0 there exists a measurable function (zn; t)! f
(n)
zn (t) from (Rn

+�
En)� R 0 to R such that identically on M and for all t 2 R0

Xt = f
(NÆ

t�)
�t�

(t): (3.14)

Remark 3.2.1 The description of adapted processes merely states (apart
from measurability properties) that a process is adapted i� its value at t can
be computed from the number of jumps on [0; t] and the timepoints and marks
for these jumps. In particular, an adapted R�valued process on e.g. (M;H)
is piecewise deterministic, cf. (2.9). For a process to be predictable, to �nd
its value at t it suÆces to know the number of jumps just before t, their
location and the marks.

Example 3.2.1 On (W;H) ; the counting process NÆ is adapted but not pre-
dictable. Similarly, on (M;H) the counting processes NÆ(A) are adapted for
all A 2 E ; but not predictable except for A = ;: To see the latter, �x A 6= ;;
t > 0 and just note that there is m 2 M with NÆ

t (m;A) = 0 and a di�erentem with NÆ
t� (em;A) = 0; NÆ

t (em;A) = 1 (the �rst jump for em occurs at time t;
resulting in a mark in A); but were NÆ(A) predictable, by Proposition 3.2.1,
NÆ
t (m;A) = NÆ

t (em;A):
As an example of the representation (3.13), note that on (M;H) ; NÆ

t (A)
has the representation (3.13) with

f (n)
zn (t) =

nX
k=1

1A (yk)

where, as usual, zn = (t1; : : : ; tn; y1; : : : ; yn) :

Proof. (Proposition 3.2.1). We just prove (b).
(i). To show that all H 2 Ht have the representation (3.12), it suf-

�ces to show that (3.12) holds for the members of the Ht�generating class
((NÆ

s (A) = l))l2N0 ;s�t;A2E : But�
NÆ
s (A) = l; N

Æ

t = n
�
=

 
nX

k=1

1(�k�s;�k2A) = l; �n � t < �n+1

!
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so (3.12) holds with

Cn =

(
zn :

nX
k=1

1]0;s]�A (tk; yk) = l; tn � t

)
:

Suppose conversely thatH �M satis�es (3.12) for all n: SinceH =
S1

n=0H\�
N
Æ

t = n
�
; H 2 Ht follows if we show H \

�
N
Æ

t = n
�
2 Ht: But for that, by

(3.12), it suÆces to show that

(�n 2 Cn; �n+1 > t) 2 Ht

for Cn of the form

Cn = fzn : tk � s; yk 2 Ag (3.15)

for 1 � k � n; s � t; A 2 E ; since these sets generate
�
Bn
+ 
 E

n
�
\

(]0; t]n � En) : But with Cn given by (3.15), use a variation of (3.8) to verify
that

(�n 2 Cn; �n+1 > t) = (� k � s; �n+1 > t) \
1[

K0=1

1\
K=K0

2K[
j=1

�
N
Æ

(j�1)s=2K = k � 1; NÆ
js=2K (A)�NÆ

(j�1)s=2K (A) = 1
�

which clearly is a set in Ht:
(ii). We must show that Ht+ � Ht: So suppose that H 2 Ht+; i.e. that

H 2 Ht+ 1
k
for all k 2 N : By (i), for every n; k there is Cn;k �

�
0; t+ 1

k

�n
�En

measurable such that

H \
�
N
Æ

t+ 1
k
= n

�
=
�
�n 2 Cn;k; �n+1 > t + 1

k

�
: (3.16)

Now consider the set of m 2 M belonging to the set (3.16) for k suÆciently
large. Because t ! N

Æ

t is right-continuous and piecewise constant and be-
cause m 2

�
�n+1 > t + 1

k

�
for k suÆciently large i� m 2 (�n+1 > t) ; this

leads to the identity

H \
�
N
Æ

t = n
�
=

 
�n 2

1[
K0=1

1\
k=K0

Cn;k

!
\ (�n+1 > t) :

But since Cn;k is a measurable subset of
�
0; t+ 1

k

�n
� En;

S1
K0=1

T1
k=K0

Cn;k

is a measurable subset of ]0; t]n�En; hence (3.12) holds and by (i), H 2 Ht:
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(iii). Let X be a R�valued, adapted process. Writing X = X+ � X�;
the di�erence between the positive and negative part of X; it is seen that to
establish (3.13) it is enough to consider X � 0: Further, writing

Xt (m) = lim
K!1

1X
k=0

k

2K
1( k

2K
�X< k+1

2K
) (t;m)

it is clear that it suÆces to consider adapted X of the form

Xt (m) = 1D (t;m) (3.17)

for some D 2 B0 
H; i.e. D has the property that

Dt := fm : (t;m) 2 Dg 2 Ht

for all t. But by (i), for every n 2 N0 ; t � 0;

Dt \
�
N
Æ

t = n
�
= (�n 2 Cn;t; �n+1 > t)

for some Cn;t 2 Bn
+ 
 E

n and it follows that (3.13) holds with

f (n)
zn (t) = 1Cn;t (zn) :

It remains to show that f (n) is a measurable function of (zn; t) : But since X
is measurable, so is

(t;m)! Xt(m)1(NÆ
t=n) (m) = f

(n)
�n(m) (t)

and the assertion follows easily.
For the converse, suppose that X is given by (3.13) with all (zn; t) !

f
(n)
zn (t) measurable. It is immediately checked that X is then measurable,
and it remains to see that Xt is Ht�measurable. For this, the standard
approximation techniques imply that it suÆces to consider f (n) of the form

f (n)
zn (t) = 1Cn(zn)1[sn;1[(t)

for some Cn 2 Bn
+ 
 E

n; sn � 0: But then, for every n;

Xt1(NÆ
t=n) = 1(�n2Cn)1(�n�t<�n+1)1[sn;1[(t)

which is Ht�measurable by (i).
(iv). Arguing as in the proof of (iii), to prove that any predictable X has

the form (3.14), it suÆces to consider

Xt(m) = 1D (t;m)



3.2. ADAPTED AND PREDICTABLE PROCESSES 31

for D 2 P: Since the desired representation holds trivially for D = R+ �M;
it here suÆces to consider D of the form

D = ]s;1[�H (s > 0; H 2 Hs) ; (3.18)

since these sets form a class closed under the formation of �nite intersections
that generate P:

Since H 2 Hs; (3.12) holds and consequently, if D is given by (3.18), for
t � 0;

Xt = 1]s;1[(t)1H

= 1]s;1[(t)
1X
n=0

1(NÆ
t�=n)

nX
k=0

1(�k2Ck;�k+1>s)

using that when t > s; N
Æ

t� � N
Æ

s: Thus (3.13) holds with

f (n)
zn (s) = 1]s;1[(t)

 
n�1X
k=0

1Ck (zk) 1]s;1[ (tk+1) + 1Cn (zn)

!
:

Finally, let X be given by (3.14) and let us show that X is predictable.
Clearly X0 is constant on M; hence H0�measurable. To show that X is
P�measurable on R+ �M it suÆces to consider f (n) of the form

f (n)
zn (t) = 1Cn (zn) 1]sn;1[(t)

for some Cn 2 Bn
+ 
 E

n; sn � 0: We need

Dn :=
n
(t;m) : t > 0; Xt (m) = 1; N

Æ

t�(m) = n
o
2 P

and �nd, using sn;j;K := sn + j2�K to approximate the value of t > s, that

Dn =
1[

K0=1

1\
K=K0

1[
j=0

]sn;j;K; sn;j+1;K]�
�
�n 2 Bn; N

Æ

sn;j;K
= n

�
which is in P because

�
�n 2 Bn; N

Æ

sn;j;K
= n

�
2 Hsn;j;K and the interval

]sn;j;K; sn;j+1;K] is open to the left.

Proposition 3.2.1 has the following intuitively obvious and very useful
consequence: conditioning on Ht is the same as conditioning on the number
of jumps on [0; t] ; their location in time and their associated marks. More
formally we have
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Corollary 3.2.2 If Q is a probability on (M;H) (or (W;H)) and U is a
R�valued random variable with E jU j <1; then

E (U jHt ) =
1X
n=0

1(NÆ
t=n)E (U j�n; �n+1 > t) : (3.19)

Note. E (U j�n; �n+1 > t) is the conditional expectation of U given the
random variables �n and 1(�n+1>t) considered on the set (�n+1 > t) only.

Proof. By its de�nition E (U j�n; �n+1 > t) is a measurable function of �n
and 1(�n+1>t); evaluated on the set (�n+1 > t) only where the indicator is 1;
cf. (3.20) below. Thus we may write

1(NÆ
t=n)E (U j�n; �n+1 > t) = 1(NÆ

t=n)'n (�n)

and (3.13) shows that the n'th term in (3.19) is Ht�measurable for all n:
Next, let H 2 Ht and use (3.12) and the de�nition of E (U j�n; �n+1 > t) to
obtain Z

H

1X
n=0

1(NÆ
t=n)E (U j�n; �n+1 > t) dP

=
1X
n=0

Z
(�n2Cn;�n+1>t)

E (U j�n; �n+1 > t) dP

=
1X
n=0

Z
(�n2Cn;�n+1>t)

U dP

=

Z
H

U dP:

Remark 3.2.2 The usefulness of the result comes from the construction of
SPP's and MPP's which makes it natural to work with the conditional expec-
tations on the right of (3.19). Note that on (�n+1 > t) ;

E (U j�n; �n+1 > t) =
E
�
U1(�n+1>t) j�n

�
Q (�n+1 > t j�n )

=
1

P
(n)

�n
(t)
E
�
U1(�n+1>t) j�n

�
:

(3.20)
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3.3 Compensators and compensating measures

Let Q be a probability on (W;H) determined by the sequence
�
P (n)

�
of

Markov kernels, see Theorem 2.1.1. Write �
(n)
zn for the hazard measure for

P
(n)
zn ; cf. Section 3.1 so that

d�
(n)
zn

dP
(n)
zn

=
1

P
(n)

zn (t�)

when P
(n)

zn (t�) > 0:

De�nition 3.3.1 The compensator for Q is the process �Æ = (�Æt )t�0 on
(W;H) given by

�Æt =

NÆ
tX

n=0

�
(n)
�n

(]�n; �n+1 ^ t]) : (3.21)

Note that only for the last term, n = NÆ
t ; is �n+1 ^ t = t:

Clearly, for all w 2 W; t! �Æt (w) is � 0; 0 at time 0; increasing and right-
continuous. The ambiguity in the choice of the Markov kernels (see p.14)

translates into the following ambiguity about the compensator: if
� eP (n)

�
is

another sequence of Markov kernels generating Q with resulting compensatore�Æ; then �Æ and e�Æ are Q�indistinguishable, i.e.
Q
\
t�0

�e�Æt = �Æt

�
= 1: (3.22)

As it stands �Æt can take the value 1: However, by (3.5) it follows that

Q
\
t�0

(�Æt <1) = 1:

Another important property of the compensator, see Theorem 3.1.1 (iii), is
that

Q
\
t�0

(��Æt � 1) = 1: (3.23)

The de�nition of what corresponds to the compensator for a probability
Q on (M;H) is more involved.

Let
�
P (n); �(n)

�
be the sequences of Markov kernels generatingQ:We start

by de�ning the total compensator as the process �
Æ
=
�
�
Æ

t

�
t�0

on (M;H)

given by

�
Æ

t =

N
Æ
tX

n=0

�
(n)
�n

(]�n; �n+1 ^ t]) (3.24)
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with �
(n)
zn the hazard measure for P

(n)
zn : This de�nition mimics (3.21) and �

Æ

has the same properties as �Æ in the CP-case as listed above. In particular,
for Q�a.a. m; the right-continuous function t ! �

Æ

t (m) de�nes a positive
measure �

Æ
(dt;m) on R0 with �

Æ
(f0g ; m) = �

Æ

0(m) = 0, �
Æ
([0; t] ; m) =

�
Æ

t (m) <1 for all t and ��
Æ

t (m) = �
Æ
(ftg ; m) � 1 for all t:

For A 2 E we de�ne the Q�compensator for the CP NÆ(A) as the process
�Æ(A) given by

�Æt (A) =

Z
]0;t]

�
(NÆ

s�)
�s�;s

(A) �
Æ
(ds): (3.25)

De�nition 3.3.2 The compensating measure for Q is the random, non-
negative, Q�a.s. ���nite measure LÆ on R0 � E given by

LÆ(C) =

Z
R0

Z
E

1C(s; y) �
(NÆ

s�)
�s�;s

(dy) �
Æ
(ds) (C 2 B0 
 E) :

That LÆ is a random measure as described in the de�nition means of
course that for Q�a.a. m; C ! LÆ (C;m) is a positive, ���nite measure on
B0 
 E :

Note that

�Æt (A) = LÆ ([0; t]� A) ; �
Æ

t = LÆ ([0; t]� E) :

An essential property of compensators is presented in

Proposition 3.3.1 (a) The compensator �Æ for a probability Q on (W;H)
is predictable.

(b) The compensators �Æ(A) for the counting processes NÆ(A) under a
probability Q on (M;H) are predictable for all A 2 E :

Proof. We prove (a), which is good enough to pinpoint the critical part of
the argument. Keeping Proposition 3.2.1 (aiv) in mind, on

�
NÆ
t� = n

�
where

either NÆ
t = n or NÆ

t = n + 1;

�Æt =
n�1X
k=0

�
(k)
�k

(]� k; �k+1]) + �
(n)
�n

(]�n; t]) (3.26)

if NÆ
t = n; and

�Æt =
nX

k=0

�
(k)
�k

(]�k; �k+1]) + �
(n+1)
�n+1

(]�n+1; t])
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if NÆ
t = n + 1: But in this latter case, �n+1 = t and it is seen that the

expression (3.26) still holds and thus also the representation (3.11).

It is critically important that it is possible to reconstruct the Markov
kernels generating a probability Q from the compensators: consider �rst the
CP case. Then using (3.21) one �nds that for any n; zn = (t1; : : : ; tn) ;

�(n)zn (]tn; t]) = �Æt (w)� �Æt (w)

for any w 2
�
NÆ
t� = n; �n = zn

�
: Similarly, in the MPP case, cf. (3.24), for

any n; zn = (t1; : : : ; tn; y1; : : : ; yn) ;

�(n)zn (]tn; t]) = �
Æ

t (m)� �
Æ

t (m) (3.27)

for any m 2
�
N
Æ

t� = n; �n = zn

�
: To extract the kernels �

(n)
zn;t is more elabo-

rate and based on the fact, obvious from (3.25), that the measure �Æ (dt; A)
on R0 determined from the right-continuous process t! �Æt (A) is absolutely
continuous with respect to the measure �

Æ
(dt) with Radon-Nikodym deriva-

tive
d�Æ(A)

d�
Æ (t) = �

(NÆ
t�)

�t�;t
(A):

Thus

�
(n)
zn;t(A) =

d�Æ(A)

d�
Æ (t;m) (3.28)

for any m 2
�
N
Æ

t� = n; �n = zn

�
: The only problem here is that the Radon-

Nikodym derivative is determined for �
Æ
(dt;m)�a.a t only, with an excep-

tionel set depending on A and m; so care is needed to obtain e.g. that �
(n)
zn;t

is always a probability.
Even though the Markov kernels are obtainable from the compensators, it

is just conceivable that two di�erent Q's might have the same compensators.
That this is not the case follows from the next result which informally stated
shows that compensators characterize probabilities on (W;H) or (M;H) :

Theorem 3.3.2 (a) Suppose �Æ is the compensator for some probability
Q on (W;H) : Then that Q is uniquely determined.

(b) Suppose LÆ is the compensating measure for some probability Q on
(M;H) : Then that Q is uniquely determined.

Proof. We just consider (b). Suppose that Q 6= eQ are two probabilities on

(M;H) with compensating measures LÆ; eLÆ: Since Q 6= eQ there is a smallest
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n 2 N such that theQ�distribution of �n is di�erent from the eQ�distribution
of �n: De�ne

Cn�1 = fzn�1 : the conditional Q� distribution of (�n; �n) given
�n�1 = zn�1 is di�erent from the corresponding

conditional eQ� distribution g :

By the de�nition of n; Q
�
�n�1 2 Cn�1

�
= eQ ��n�1 2 Cn�1

�
> 0; while by

the de�nition of Cn�1; the compensating measures LÆ; eLÆ for Q;fQ satisfy
that LÆ (m) 6= eLÆ (m) for all m such that �n�1 (m) 2 Cn�1: Thus L

Æ is

not eQ�indistinguishable from eLÆ and hence, cf. (3.22), LÆ cannot be a

compensating measure for eQ:
Example 3.3.1 Suppose Q on W makes NÆ Poisson �; see Example 2.1.2.
Then the hazard measure for P

(n)
zn is the restriction to ]tn;1[ of � times

Lebesgue measure. Thus
�Æt = �t;

in particular the compensator is deterministic.

Example 3.3.2 Suppose Q on W makes NÆ a renewal process with waiting
time distribution with hazard measure �; see Example 2.1.3. Then

�Æt =

NÆ
tX

n=0

� (]0; �n+1 ^ t� �n]) :

If in particular the waiting time distribution is absolutely continuous with
hazard function u; then

�Æt =

Z t

0

u
�
s� �NÆ

s

�
ds: (3.29)

Example 3.3.3 Suppose E is �nite and let Q be the canonical RCM with
the Markov kernels described in Example 2.2.1, i.e. the Poisson process with
mark space E and parameter vector (�y)y2E : Then

�Æt (A) = t
X
y2A

�y

and
LÆ = `
 �

where ` is Lebesgue measure and � is the measure on E given by �(A) =P
A �y:
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We shall conclude this section with a key lemma that will prove immensely
useful in the future. For s � 0; de�ne the shift �s mapping W; respectively
M; into itself, by

(�sN
Æ)t =

�
NÆ
t �NÆ

s if t � s
0 if t < s;

�s�
Æ = �Æ (� \ (]s;1[� E)) :

Thus �s only contains the points from the original process that belong strictly
after time s: Writing (�n;s)n�1 ;

�
�n;s
�
n�1

for the sequence of jump times and

marks determining �s; we have for instance in the MPP case that

�n;s = � k+n; �n;s = �k+n

on
�
N
Æ

s = k
�
:

Similarly, for k0 2 N de�ne #k0 = ��k0 as the map #k0 : (� k0 <1)! W
or M given by

(#k0N
Æ)t =

�
NÆ
t �NÆ

�k0
if t � �k0

0 if t < �k0 ;
#k0�

Æ = �Æ (� \ (]�k0 ;1[� E)) :

Lemma 3.3.3 (a) Let Q be a probability on (W;H) with compensator �Æ;
generated by the Markov kernels P (n):

(i) The conditional distribution of �sN
Æ given NÆ

s = k; �k = zk for
an arbitrary k 2 N0 ; zk = (t1; : : : ; tk) 2 K(k) with tk � s is the

probability eQ = eQjk;zk on (W;H) generated by the Markov kernelseP (n)
jk;zk

given by eP (0)
jk;zk

= P (k)
zk

(� j]s;1] )eP (n)eznjk;zk = P (k+n)
join(zk;ezk) (n � 1) ;

where for ezn = �et1; : : : ;etn� 2 K(n) with et1 > s;

join (zk; ezn) = �t1; : : : ; tk;et1; : : : ;etn� :
(ii) The conditional distribution of #k0N

Æ given �k0 = zk0 for an ar-
bitrary zk0 = (t1; : : : ; tk0) 2 K(k0) with tk0 < 1 is the probabilityeQ = eQjk0;zk0 on (W;H) generated by the Markov kernels eP (n)

jk0;zk0
given by eP (0)

jk0;zk0
= P (k0)

zk0eP (n)

eznjk0;zk0 = P
(k0+n)

join(zk0 ;ezk0) (n � 1) ;
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where for ezn = �et1; : : : ;etn� 2 K(n) with et1 > tk0;

join (zk0 ; ezn) = �t1; : : : ; tk0 ;et1; : : : ;etn� :
(b) Let Q be a probability on (M;H) ; generated by the Markov kernels�

P (n)
�
;
�
�(n)

�
:

(i) The conditional distribution of �s�
Æ given N s = k; �k = zk for

an arbitrary k 2 N0 ; zk = (t1; : : : ; tk; y1; : : : ; yk) 2 K(k)(E) with

tk � s is the probability eQ = eQjk;zk on (M;H) generated by the

Markov kernels ~P
(n)
jk;zk

; ~�
(n)
jk;zk

given by

eP (0)
jk;zk

= P (k)
zk

(� j]s;1]) ;

eP (n)
eznjk;zk = P

(k+n)
join(zk;ezn) (n � 1) ;

e�(n)
~zn;tjk;zk

= �
(k+n)
join(zk;ezn);t

�
n � 0; t > etn�

where for ezn = �et1; : : : ;etn; ey1; : : : ; eyn� 2 K(n)(E) with et1 > s;

join (zk; ezn) = �t1; : : : ; tk;et1; : : : ;etn; y1; : : : ; yk; ey1; : : : eyn� :
(ii) The conditional distribution of #k0�

Æ given �k0 = zk0 for an ar-
bitrary zk0 = (t1; : : : ; tk0; y1; : : : ; yk0) 2 K(k0)(E) with tk0 < 1 is

the probability eQ = eQjk0;zk0 on (M;H) generated by the Markov

kernels ~P
(n)

jk0;zk0
; ~�

(n)

jk0;zk0
given by

eP (0)

jk0;zk0
= P (k0)

zk0
;

eP (n)

eznjk0;zk0 = P
(k0+n)

join(zk0 ;ezn) (n � 1) ;

e�(n)

~zn;tjk0;zk0
= �

(k0+n)

join(zk0 ;ezn);t
�
n � 0; t > etn�

where for ezn = �et1; : : : ;etn; ey1; : : : ; eyn� 2 K(n)(E) with et1 > tk0 ;

join (zk0 ; ezn) = �t1; : : : ; tk0;et1; : : : ;etn; y1; : : : ; yk0; ey1; : : : eyn� :
Note. By Corollary 3.2.2, the conditional probabilities described in (ai)

and (bi) simply determine the conditional distribution of �s given Hs.

Proof. We only outline the proof. The expressions for eP (0)
jk;zk

in (ai), (bi)

follow immediately from Corollary 3.2.2 and (3.20). The remaining assertions
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are consequences of the fact that conditining �rst on e.g. the �rst k jump
times and marks, and then, within that conditioning, also on the times and
marks for the next n jumps, is the same as conditioning from the start on
the k + n �rst jump times and marks.

The formulation we have given of Lemma 3.3.3 uses the Markov kernels to
desribe the conditional distributions of �s and #k0: Alternatively they may be
described using compensators and compensating measures and here, using
Proposition 3.1.3 (i), it is seen e.g. that if Q is a probability on (M;H)
with compensating measure LÆ; then the conditional distribution of �s given
N
Æ

s = k; �k = zk has a compensating measure LÆjk;zk which is the restriction of

LÆ to [s;1[ in the following sense: for any m0 2 M such that N s (m0) = k;
�k (m0) = zk;

LÆjk;zk (m;C) = LÆ (cross (m0; m) ; C \ (]s;1[� E))

for arbitrary m 2 M; C 2 B0 
 E ; where cross (m0; m) 2 M is obtained by
using m0 on [0; s]� E; m on ]s;1[� E; i.e.

cross (m0; m) = m0 (� \ [0; s]� E) +m (� \ ]s;1[� E) :

We have in this section only discussed compensators for CP's and RCM's
that do not explode (see p.9). The de�nitions carry over verbatim to pro-
cesses with explosion (adding e.g. the requirement LÆ ([�1;1[� E) � 0

with �1 = inf
n
t : N

Æ

t =1
o
the time of explosion). One may then show

that in fact �1 = inf
n
t : �

Æ

t =1
o
a.s. which yields a (useless) criterion for

deciding whether explosions are possible or not.
A more useful criterion for explosion in terms of compensators is the

following: let Q be a probability on (M;H) (no explosions) and let eQ be a
probability on

�
M;H

�
; the space of exploding discrete counting measures m

(i.e. N
Æ

t (m) = m ([0; t]� E) =1 is possible). Let Q have total compensator

�
Æ
; eQ have total compensator e�Æ: Finally, for m; em 2 M writeem � m

if for all t;
N
Æ

t (em) � N
Æ

t (m) :

Proposition 3.3.4 Assume that �
Æ
and e�Æ are continuous. A suÆcient

condition for eQ to be non-exploding is thate�Æt (em)� e�Æs (em) � �
Æ

t (m)� �
Æ

s(m) (3.30)

for all s � t and all em � m with N
Æ

t (em) = N
Æ

s (em) = N
Æ

t (m) = N
Æ

s(m):
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Proof. An outline of the proof: let eP (n)ezn and P
(n)
zn denote the Markov kernels

generating the jump times for eQ and Q respectively. (3.30) implies that for
any n and any ezn = (et1; : : : ;etn; ey1; : : : ; eyn); zn = (t1; : : : ; tn; y1; : : : ; yn) withetk � tk for k = 1; : : : ; n; the distribution eP (n)ezn is stochastically larger than

P
(n)
zn ; i.e. eP (n)

ezn (t) � P
(n)

zn (t) (3.31)

for all t � tn: (For this one needs the continuity of the total compensators:
because of this assumption, in terms of hazard measures (3.31) reads

exp
�
�e�(n)ezn

��etn; t��� � exp
�
��(n)ezn (]tn; t])

�
which follows easily from (3.30)). But by a coupling construction it is then

possible to de�ne on some probability space, random sequences
�eTn; eYn� and

(Tn; Yn) of two sets of jump times and marks such that e� :=
P

n:eTn<1 "( eTn;eYn)
has distribution eQ; � :=

P
n:Tn<1

"(Tn;Yn) has distribution Q; and for every

n; eTn � Tn: Since by assumption � does not explode, neither does e�:
A quite useful consequence of this result is presented in Corollary 3.4.4

in the next section.

3.4 Intensity processes

We shall in this section discuss the case where compensators can be repre-
sented as ordinary Lebesgue integrals.

De�nition 3.4.1 (a) Let Q be a probability on (W;H) with compensator
�Æ: A predictable process �Æ � 0 is an intensity process for Q if Q�a.s.

�Æt =

Z t

0

�Æs ds (t � 0) :

(b) Let Q be a probability on (M;H) with compensating measure LÆ:

(i) Let A 2 E : A predictable process �Æ(A) � 0 is an intensity process
for the counting process NÆ(A) under Q if Q�a.s.

�Æt (A) =

Z t

0

�Æs(A) ds (t � 0) :
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(ii) If for arbitrary A 2 E there is an intensity process �Æ(A) for
NÆ(A) under Q such that Q�a.s. A! �Æt (A) is a positive measure
on (E; E) for all t; then the collection (�Æ(A))A2E is an intensity
measure for Q:

(iii) If � is a positive, ���nite measure on (E; E) and if �Æ =
�
�Æ

y�
y2E

is a collection of predictable processes �Æ
y

� 0 such that Q�a.s.

�Æt (A) =

Z t

0

Z
A

�Æ
y

s � (dy) ds (t � 0; A 2 E) ;

then �Æ is a ��intensity process for Q:

Note that we have demanded that all intensities be predictable. It is per-
fectly possible to work with intensities that are adapted but not predictable
and still give predictable (since adapted and continuous) compensators by
integration, cf. Proposition 3.4.2. However, in some contexts (see Propo-
sition 3.4.3 and Theorem 4.0.2 below) it is essential to have the intensities
predictable.

The requirement in (biii) stipulates that the compensating measure LÆ

for Q should have a density with respect to `
�: LÆ (dt; dy) = �yt dt � (dy) :

Of course if �Æ is a ��intensity for Q; then (�Æ(A))A2E is an intensity
measure for Q; where

�Æt (A) =

Z
A

�Æ
y

t � (dy) ;

and each �Æ(A) de�ned this way is an intensity process for NÆ(A):

The following result gives suÆcient conditions for existence of intensities.
Recall the de�nition p.22 of hazard functions.

Proposition 3.4.1 (a) Let Q be a probability on (W;H) determined by the

Markov kernels P (n): Assume that Q�a.s. for every n; P
(n)
�n

is abso-
lutely continuous with respect to Lebesgue measure with hazard function
u(n)�n

: Then

�Æt = u
(NÆ

t�)
�t�

(t) (3.32)

is an intensity process for Q:

(b) Let Q be a probability on (M;H) determined by the Markov kernels
P (n) and �(n):
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(i) Assume that Q�a.s. for every n; P
(n)
�n

is absolutely continuous

with respect to Lebesgue measure with hazard function u
(n)
�n
: Then

(�Æ(A))A2E is an intensity measure for Q; where

�Æt (A) = u
(NÆ

t�)
�t�

(t)�
(NÆ

t�)
�t�;t

(A): (3.33)

(ii) If in addition to the assumption in (i), it also holds that there is a
positive, ���nite measure � on (E; E) such that Q�a.s. for every

n and Lebesgue-a.a. t; �
(n)
�n;t

is absolutely continuous with respect

to � with density p
(n)
�n;t
; then

�
�Æ

y�
y2E

is a ��intensity for Q; where

�Æ
y

t = u
(NÆ

t�)
�t�

(t)p
(NÆ

t�)
�t�;t

(y): (3.34)

Proof. The predictability of the intensity processes is ensured by the left-
limits N

Æ

t�; �t� appearing in the expressions. Everything else follows from
the de�nitions of the compensators and the fact that

�
(n)
�n
(dt) = u

(n)
�n
(t) dt:

Example 3.4.1 The canonical Poisson counting process with parameter �
has intensity process

�Æt � �;

cf. Example 3.3.1.

Example 3.4.2 For the renewal process (Example 3.3.2), if the waiting time
distribution has hazard function u;

�Æt = u
�
t� �NÆ

t�

�
is an intensity process. Note that the compensator �Æt =

R t
0
�Æs ds is the same

as that given by (3.29), but that the integrand in (3.29) is not predictable.

Example 3.4.3 Consider the �nite-dimensional Poisson process from Ex-
ample 3.3.3. Then the deterministic quantities

�Æ
y

t � �y

de�ne a �0�intensity process, where �0 is counting measure on E:
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The following description is perhaps the one most often associated with
the concept of (non-predictable) intensity processes.

Proposition 3.4.2 (a) Let Q be a probability on (W;H) and assume that
Q has an intensity process �Æ given by (3.32) such that Q�a.s. all
limits from the right, �Æt+ = lim

h#0;h>0
�Æt+h exist. Then for all t; Q�a.s.

�Æt+ = lim
h#0;h>0

1

h
Q
�
NÆ
t+h �NÆ

t � 1 jHt

�
:

(b) Let Q be a probability on (M;H) ; let A 2 E and assume that NÆ(A)
has intensity process �Æ(A) given by (3.33) such that Q�a.s. all limits
from the right, �Æt+(A) = lim

h#0;h>0
�Æt+h(A) exist. Then for all t; Q�a.s.

�Æt+(A) = lim
h#0;h>0

1

h
Q
�
N
Æ

t+h �N
Æ

t � 1; �1;t 2 A jHt

�
:

Proof. Recall from p.37 that �1;t is the mark for the �rst jump on ]t;1] :
The proof is now based on Lemma 3.3.3 and follows by explicit calculations
that we show in the MPP case:

1

h
Q
�
N
Æ

t+h �N
Æ

t � 1; �1;t 2 A jHt

�
=

1

h

Z t+h

t

u
(NÆ

t )
�t

(s)�
(NÆ

t )
�t;s

(A) ds

! �Æt+(A):

Remark 3.4.1 Proposition 3.4.2 shows in what sense it is possible to build
a model (SPP or MPP) from intensities of the form that speci�es (approxi-
mately) the probability of a certain event happening in the near future, con-
ditionally on the entire past: as we have seen, it is sometimes possible to
interpret these kind of intensities as genuine intensity processes, in which
case we have a SPP or MPP. There is of course always the usual problem
with explosions, but other than that the importance of the result lies in the
fact that from an intuitive understanding of the phenomenon one wants to
describe, one can often argue the form of the intensities given by limits as
in Proposition 3.4.2. That this may lead to a complete speci�cation of the
model is certainly a non-trivial observation!
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Warning. In the literature one may often �nd alternative expressions for
e.g. the counting process intensities �Æt+ such as

lim
h#0

1

h
Q
�
NÆ
t+h �NÆ

t = 1 jHt

�
; lim

h#0

1

h
E
�
NÆ
t+h �NÆ

t jHt

�
:

Although often valid, these expressions are not valid in general (for the second
version, not even if all ENÆ

s <1). Something like

lim
h#0

1

h
Q
�
NÆ
t+h �NÆ

t � 2 jHt

�
= 0;

is required, but this may fail (although the examples may appear arti�cial).

The right limit intensities in Proposition 3.4.2 are typically not pre-
dictable. They must never be used in expressions such as (4.7) below. Also
the next result will not in general hold for right limit intensities.

Proposition 3.4.3 (a) Let Q be a probability on (W;H) with intensity
process given by (3.32). Then for all n � 1;

Q
�
�Æ�n > 0; �n <1

�
= Q (�n <1) :

(b) Let Q be a probability on (M;H) with ��intensity process given by
(3.34). Then for all n � 1;

Q
�
�Æ

�n

�n > 0; �n <1
�
= Q (�n <1) :

Proof. (b). By explicit calculation

Q
�
�Æ

�n

�n = 0; �n <1
�

= Q
�
u
(n�1)
�n�1

(�n) p
(n�1)
�n�1;�n

(�n) = 0; �n <1
�

= E1(�n�1<1)

Z
]�n�1;1[

P
(n�1)
�n�1

(dt)

Z
E

�
(n�1)
�n�1;t

(dy) 1C (t; y)

where

C =
n
(t; y) : u

(n�1)
�n�1

(t) p
(n�1)
�n�1;t

(y) = 0
o
:

Since

P
(n�1)
�n�1

(dt) = u
(n�1)
�n�1

(t)P
(n�1)

�n�1
(t) dt; �

(n�1)
�n�1;t

(dy) = p
(n�1)
�n�1;t

(y) � (dy)
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by assumption, it is clear that

Q
�
�Æ

�n

�n = 0; �n <1
�
= 0:

Let Q; eQ be probabilities on (M;H) and
�
M;H

�
respectively (i.e. eQ

allows explosions) such that the Markov kernels P
(n)
zn ; eP (n)ezn generating the

jump times are absolutely continuous with hazard functions u(n)zn ; eu(n)ezn : Let
also �

Æ
; e�Æ denote the total intensity processes,

�
Æ

t = u
(NÆ

t�)
�t�

; e�Æt = eu(NÆ
t�)

�t�
:

Corollary 3.4.4 A suÆcient condition for eQ to be non-exploding is that

e�Æt (em) � �
Æ

t (m)

for all t � 0 and all em;m 2 M with em � m; N
Æ

t (em) = N
Æ

t (m):

The proof is obvious from Proposition 3.3.4. See p.39 for the meaning of
the `inequality' em � m:

Example 3.4.4 If eQ is such that there exists constants an � 0 with
P

1=an =

1 and e�Æt � aNÆ
t
everywhere on M for every t; then eQ is non-exploding, cf.

p.16.

3.5 The basic martingales

In this section we shall characterize compensators and compensating mea-
sures through certain martingale properties. The main results provide Doob-
Meyer decompositions of the counting process NÆ on (W;H) and the counting
processes NÆ(A) on (M;H): these counting processes are Ht�adapted and
increasing, hence they are trivially local submartingales and representable as
a local martingale plus an increasing, predictable process, 0 at time 0: As we
shall see, the increasing, predictable process is simply the compensator.

The fact that the increasing, predictable process in the Doob-Meyer de-
composition is unique (when assumed to equal 0 at time 0) in our setup
amounts to Proposition 3.5.1 below.

Recall that a R 0�valued map de�ned on (W;H) or (M;H) is a stopping
time provided (� < t) 2 Ht for all t; (equivalently, since the �ltration is right
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continuous, (� � t) 2 Ht for all t). The pre-� ��algebra H� is the collection
fH 2 H : H \ (� < t) 2 Ht for all tg = fH 2 H : H \ (� � t) 2 Ht for all tg
of measurable sets. In particular each �n is a stopping time, and as may easily
be veri�ed, H�n is the ��algebra generated by �n:

Let Q be a probability on (W;H) or (M;H). A local Q�martingale is
a real-valued, Ht�adapted process M = (Mt)t�0, such that each M�n :=�
M�n^t

�
t�0

is a true martingale { still with respect to the �ltration (Ht) {

for some increasing sequence (�n) of stopping times with �n " 1 Q�a.s.
The sequence (�n) is called a reducing sequence and we write that M is a
local Q�martingale (�n) : By far the most important reducing sequence is
the sequence (�n) of jump times. (See Appendix B for a general discussion
of stopping times, local martingales and the optional sampling theorem.)

Proposition 3.5.1 Suppose M is a right-continuous, Ht�predictable local
Q�martingale on (W;H) or (M;H) : Then M is constant,

Q
\
t�0

(Mt =M0) = 1:

Proof. Suppose �rst that M is a right-continuous, predictable martingale.
By optional sampling, which applies only because M is right-continuous, for
any t;

EM�1^t = EM0 =M0

since M0 is a constant random variable, being H0�measurable. But since
M is predictable, by Proposition 3.2.1 there is a Borel function f such that
M�1^t = f (� 1 ^ t) and thus

f(0) = f(t)P
(0)
(t) +

Z
]0;t]

f(s)P (0) (ds) :

From this follows by di�erentiation with respect to P (0) (see Appendix A),
that f is constant and so, M is constant on [0; � 1] : Again by optional sam-
pling, E

�
M�n+1^t jH�n^t

�
= M�n^t: But the conditional expectation on the

left is

1(�n�t)E
�
M�n+1^t jH�n

�
+ 1(�n>t)E

�
M�n+1^t jHt

�
= 1(�n�t)E

�
M�n+1^t j�n

�
+ 1(�n>t)Mt

and so, by the same argument using the Markov kernel P
(n)
�n

instead of P (0);
one �nds that M is constant on ]�n; �n+1] and equal to M�n: It follows im-
mediately that M �M0:
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Let now M be a right-continuous and predictable local Q�martingale
with reducing sequence (�n) : We claim that for each n the martingale M�n

is in fact predictable and from this the assertion follows from what has been
proved already: for each n we have M�n � M0 a.s. and since �n " 1 a.s.
also M �M0 a.s.

It remains to show that if X is a right-continuous and predictable R �
valued process and � is a stopping time, then X� is predictable. But

X�
t = Xt1(��t) +X�1(�<t)

and here the �rst term on the right de�nes a predictable process since X and
the left-continuous indicator process

�
1(��t)

�
t�0

are predictable. The second

term is predictable since the process
�
X�1(�<t)

�
t�0

is left-continuous and for
all t;

X�1(�<t) = lim
K!1

1X
k=1

X k

2K
^t1( k�1

2K
^t��< k

2K
^t)

is Ht�measurable.

Remark 3.5.1 The result is peculiar to the point process setup: Brownian
motion is the most famous example of a continuous martingale which is not
constant! The assumption that M be right-continuous is also important: it is
easy to �nd cadlag (in particular right-continuous) martingales M that are
not constant, and such that Q (Mt =Mt�) = 1 for all t: But then (Mt�) is a
left-continuous, hence predictable martingale, which is non-constant.

Theorem 3.5.2 (a) Let Q be a probability on (W;H) with compensator
�Æ: Then MÆ := NÆ � �Æ is a local Q�martingale (�n) and �Æ is, up
to Q�indistinguishability, the unique right-continuous Ht�predictable
process, 0 at time 0; such thatMÆ is a Q�local martingale. A suÆcient
condition for MÆ to be a Q�martingale is that ENÆ

t <1 for all t:

(b) Let Q be a probability on (M;H) with compensating measure LÆ and
compensators �Æ(A); �Æt (A) = LÆ ([0; t]� A) : Then, for any A 2 E ;
MÆ(A) := NÆ(A)��Æ(A) is a local Q�martingale (�n) and �

Æ(A) is, up
to Q�indistinguishability, the unique right-continuous Ht�predictable
process, 0 at time 0; such that MÆ(A) is a Q�local martingale. A
suÆcient condition for MÆ(A) to be a Q�martingale is that ENÆ

t (A) <
1 for all t:

Proof. The proof relies on a technique that will be used also on several
occasions in the sequel, and is therefore here presented in detail. We consider
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the more diÆcult case (b) only and will start by showing that MÆ(A) is a
Q�martingale if ENÆ

t (A) <1 for all t:
The idea is to argue that for this it suÆces to prove that

ENÆ
�1^t

(A) = E�Æ�1^t(A); (3.35)

for all probabilities Q on (M;H) ; where of course �Æ(A) is the compensator
for the Q considered, and then verify (3.35) by explicit calculation. (Note
that since 0 � NÆ

�1^t
(A) � 1 the expectation on the left is trivially �nite for

all Q; in particular it follows from (3.35) that �Æ�1^t(A) is Q�integrable for
all Q and all t and A).

We claim �rst that from Lemma 3.3.3 (b) and (3.35) it follows that for
all n 2 N0 and all t � 0,

E
�
NÆ
�n+1^t

(A)�NÆ
�n^t(A) j�n

�
= E

�
�Æ�n+1^t

(A)� �Æ�n^t(A) j�n
�
: (3.36)

This identity is obvious on (�n > t) and on (�n � t) is just (3.35) applied to
the conditional distribution of the shifted process #n�

Æ; see Lemma 3.3.3.
It is an immediate consquence of (3.35) and (3.36) that for all Q; A; and

all n and t;
ENÆ

�n^t(A) = E�Æ�n^t(A)

with both expectations �nite since NÆ
�n^t(A) � n: Let n " 1 and use mono-

tone convergence to deduce that for all Q; A; and all t;

ENÆ
t (A) = E�Æt (A); (3.37)

whether the expectatons are �nite or not. Finally, assuming that ENÆ
t (A) <

1 for all t it follows �rst for s < t that E (NÆ
t (A) jHs ) < 1 Q�a.s. and

then from Lemma 3.3.3 (b) and (3.37) applied to the conditional distribution
of �s�

Æ given Hs; that

E (NÆ
t (A)�NÆ

s (A) jHs ) = E (�Æt (A)� �Æs(A) jHs )

which by rearrangement of the terms, that are all �nite, results in the desired
martingale property

E (MÆ
t (A) jHs ) =MÆ

s (A):

It remains to establish (3.35). But

ENÆ
�1^t

(A) = Q (� 1 � t; �1 2 A)

=

Z
]0;t]

�(0)
s (A)P (0)(ds);
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while

E�Æ�1^t(A) = E

Z
]0;�1^t]

�(0)
s (A) �(0) (ds)

= P
(0)
(t)

Z
]0;t]

�(0)
s (A) �(0) (ds)

+

Z
]0;t]

�Z
]0;u]

�(0)
s (A) �(0) (ds)

�
P (0)(du)

and (3.35) follows by partial integration, cf. Appendix A.
That �Æ(A) is the only predictable process, 0 at time 0; such thatNÆ(A)�

�Æ(A) is a local Q�martingale follows immediately from Proposition 3.5.1:

if also NÆ(A) � e�Æ is a local martingale, where e�Æ is predictable and 0 at

time 0; then �Æ(A)� e�Æ is a predictable local martingale, 0 at time 0; hence
identically equal to 0:

The remaining assertion of the theorem, that MÆ(A) is always a local
Q�martingale (�n) ; is easy to verify: the distribution Qn of the stopped
RCM �Æ�n := �Æ(� \ [0; � Æn]�E) obviously has compensating measure LÆ�n =
LÆ(� \ [0; � Æn]�E); (the Markov kernels P n;(k); �n;(k) generating Qn are those
of Q for k � n; while P n;(n+1) = "1), and since EnN

Æ
t (A) � n < 1;

by what has been proved above, MÆ�n(A); which is Qn�indistinguishable
from MÆ(A); is a Qn�martingale for all n, equivalently MÆ(A) is a local
Q�martingale (�n).

Some of the other important martingales arising directly from the com-
pensators are presented in the next result. Note that the result does not hold
in the form presented here without the assumption about continuity of �Æ

and �
Æ
:

Proposition 3.5.3 (a) Let Q be a probability on (W;H) with continuous
compensator �Æ: Then MÆ2 � �Æ is a local Q�martingale (�n), which
is a Q�martingale if ENÆ

t <1 for all t:

(b) Let Q be a probability on (M;H) with compensators �Æ(A) and con-
tinuous total compensator �

Æ
:

(i) For every A 2 E ; MÆ2 (A)� �Æ(A) is a local Q�martingale (�n) ;
which is a Q�martingale if ENÆ

t (A) <1 for all t:

(ii) For every A;A0 2 E with A \ A0 = ;; MÆ(A)MÆ(A0) is a local
Q�martingale (�n) which is a Q�martingale if ENÆ

t (A) < 1;
ENÆ

t (A
0) <1 for all t:
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Proof. Note for (b) that all �Æ(A) are continuous when �
Æ
is. Otherwise

the technique from the proof of Theorem 3.5.2 is used, i.e. for the two parts
of the Proposition it is argued that it suÆces to show that for all Q; A;A0

and t;

EMÆ2

�1^t
= E�Æ�1^t;

EMÆ2

�1^t
(A) = E�Æ�1^t(A); EMÆ

�1^t
(A)MÆ

�1^t
(A0) = 0

respectively. These identities are then veri�ed directly through straightfor-
ward calculations leading to some not so straightforward partial integrations.

It is important to point out one step in the argument: to show e.g. in (b)
that MÆ2(A) � �Æ(A) is a martingale if all ENÆ

t (A) < 1 one must deduce
that

EMÆ2

t (A) = E�Æt (A) (3.38)

for all t when knowing that

EMÆ2

�n^t(A) = E�Æ�n^t(A) (3.39)

for all t and n: (Since we know from Theorem 3.5.2 that E�Æt (A) = ENÆ
t (A) it

follows in particular from (3.38) that EMÆ2

t (A) <1 as is certainly required
for the martingale assertion). To deduce (3.38) from (3.39), use Fatou's
lemma and monotone convergence to obtain

EMÆ2

t (A) = E lim inf
n!1

MÆ2

�n^t(A)

� lim inf
n!1

EMÆ2

�n^t(A) (3.40)

= lim
n!1

E�Æ�n^t(A)

= E�Æt (A)

< 1:

But with MÆ(A) a martingale and MÆ2

t (A) integrable for all t; MÆ2(A) is a
submartingale and in particular, by optional sampling,

EMÆ2

t (A) � EMÆ2

�n^t(A) = E�Æ�n^t

for all n; t: Letting n " 1 gives EMÆ2

t (A) � E�Æt which combined with the
inequality (3.40) yields (3.38).

Note, as is relevant for the proof of (bii), that the argument above implies
that allMÆ

t (A)M
Æ
t (A

0) are integrable if ENÆ
t (A) and EN

Æ
t (A

0) are both �nite
for all t:
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Remark 3.5.2 For (bi) it suÆces to assume that �Æ(A) is continuous, and
for (bii) that �(�Æ(A)�Æ(A0)) � 0. Without these assumptions it is still

possible to �nd in (bi) a predictable, increasing process e�Æ such thatMÆ2(A)�e�Æ is a local martingale, and in (bii) a predictable process �; 0 at time 0;
such that MÆ(A)MÆ(A0)�� is a local martingale, see Section 3.8 below.

3.6 Stochastic integrals and martingales

Let Q be a probability on (M;H) with compensating measure LÆ (for the
results in this section it is natural to consider canonical CP's as a special case
of canonical RCM's). We shall �rst discuss stochastic integrals with respect
to �Æ and LÆ and then use them to arrive at the martingale representation
theorem, Theorem 3.6.1 below.

The integrands are functions of m 2 M; t � 0 and y 2 E: A typical
integrand is denoted S where (m; t; y)! Syt (m) is assumed to be R�valued
and measurable (with respect to the Borel ��algebra on R and the product
��algebra H 
 B0 
 E on M� R0 � E). Often we shall think of S as a
family (Sy)y2E of processes Sy = (Syt )t�0 and then refer to S as a 
ow of
processes. Particularly important are predictable 
ows which are 
ows with
each Sy predictable.

The stochastic integral

NÆ(S) = (NÆ
t (S))t�0 ; NÆ

t (S) :=

Z
]0;t]�E

Sys �
Æ (ds; dy)

is always well de�ned as a R�valued process, and the stochastic intgral is
just a �nite sum,

NÆ
t (S) =

1X
n=1
�n<1

S�n�n :

If each Sy is adapted, also NÆ(S) is adapted.
The stochastic integral

�Æ(S) = (�Æt (S))t�0 ; �Æt (S) (m) :=

Z
]0;t]�E

Sys (m) LÆ (m; ds; dy)

is always well de�ned if S � 0 (or S � 0) as a R0�valued process (respectively
a process with values in [�1; 0]) with the integral an ordinary Lebesgue-
Stieltjes integral for each m. If S � 0; in order for �Æ(S) to be Q�a.s. �nite,
i.e.

Q
\
t�0

(�Æt (S) <1) = 1;
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it suÆces that

Q
\
t�0

�
sup

s�t;y2E
Sys <1

�
= 1:

For arbitrary S; write S = S+�S� where S+ = S_0; S� = �S^0 and de�ne
�Æ(S) = �Æ(S+) � �Æ(S�) whenever �Æ(S+) or �Æ(S�) is Q�a.s. �nite. In
particular �Æ(S) is well de�ned with

Q
\
t�0

(j�Æt (S)j <1) = 1

provided

Q
\
t�0

�
sup

s�t;y2E
jSys j <1

�
= 1:

If �Æ(S) is well de�ned, it is an adapted process if each Sy is adapted and
a predictable process if S is a predictable 
ow.

Note. If discussing counting processes there is of course no need for
predictable 
ows: S is just a predictable process.

Suppose �Æ(S) is well de�ned and then de�ne the process MÆ(S) by

MÆ
t (S) = NÆ

t (S)� �Æt (S): (3.41)

Theorem 3.6.1 Let Q be a probability on (W;H) or (M;H) :

(i) SupposeM is a right-continuous local Q�martingale. Then there exists
a predictable 
ow S = (Sy) such that

Mt =M0 +MÆ
t (S): (3.42)

(ii) If S � 0 is a predictable 
ow, then

(1) MÆ(S) given by (3.41) is a local Q�martingale (�n) if for all n �
1; t � 0;

ENÆ
�n^t(S) <1;

(2) MÆ(S) given by (3.41) is a Q�martingale if for all t � 0;

ENÆ
t (S) <1:

(iii) If S is a predictable 
ow, then
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(1) MÆ(S) given by (3.41) is a local Q�martingale (�n) if for all n �
1; t � 0;

ENÆ
�n^t(jSj) <1;

(2) MÆ(S) given by (3.41) is a Q�martingale if for all t � 0;

ENÆ
t (jSj) <1:

Proof. We outline the main parts of the proof and note �rst that (iii) follows
trivially from (ii). We start with the proof of

(ii). By the technique introduced in the proof of Theorem 3.5.2, it suÆces
to prove that

E

Z
]0;�1^t]�E

Sys �
Æ (ds; dy) = E

Z
]0;�1^t]�E

Sys L
Æ (ds; dy) (3.43)

for all t and all Q; with LÆ the compensating for Q: By Proposition 3.2.1
(biv) there is a function f (s; y) ; jointly measurable in s and y; such that

Sys = f (s; y) on
�
N
Æ

s� = 0
�
: Thus (3.43) reduces to

E1(�1�t)f (� 1; �1) = E

Z
]0;�1^t]

�(0) (ds)

Z
E

�(0)
s (dy) f (s; y)

or Z
]0;t]

P (0) (ds)

Z
E

�(0)
s (dy) f (s; y)

= P
(0)

(t)

Z
]0;t]

�(0) (ds)

Z
E

�(0)
s (dy) f (s; y)

+

Z
]0;t]

P (0) (du)

Z
]0;u]

�(0) (ds)

Z
E

�(0)
s (dy) f (s; y) :

This you verify directly by partial integration or di�erentiation with respect
to P (0) (see Appendix A).

An alternative way of proving (ii) is to start with 
ows S of the form

Sys = 1H01]s0;1[ (s) 1A0 (y) (3.44)

where s0 � 0; H0 2 Hs0; A0 2 E ; and then extend to all S � 0 by standard
arguments. For S of the form (3.44) the (local) martingale property ofMÆ (S)
follows from that of MÆ (A0) :

(i). Suppose just that M is a right-continuous true Q�martingale. Be-
cause M is adapted we can write

Mt = f
(n)
�n

(t) on
�
N
Æ

t = n
�

(3.45)
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for all n; t; cf. Proposition 3.2.1 (biii). By optional sampling

E
�
M�n+1^t �M�n j�n

�
= 0 on (�n � t) ;

an identity which using (3.45) we may write

P
(n)

�n
(t)
�
f
(n)
�n

(t)� f
(n)
�n

(�n)
�

+
R
]�n;t]

P
(n)
�n

(ds)
R
E
�
(n)
�n;s

(dy)
�
f
(n+1)
join(�n;(s;y))

(s)� f
(n)
�n

(�n)
�
= 0

(3.46)

on (�n � t) ; where join (�n; (s; y)) = (� 1; : : : ; �n; s; �1; : : : ; �n; y) :
We want to �nd S such that (3.42) holds. Since each Sy is predictable

we may write

Sys = g(n)�n
(s; y) on

�
N
Æ

s� = n
�

so that on (�n < t) we have that

MÆ
�n+1^t

(S)�MÆ
�n (S)

=

(
�
R
]�n;t]

�
(n)
�n

(ds)
R
E
�
(n)
�n;s

(dy) g
(n)
�n

(s; y)

g
(n)
�n

�
�n+1; �n+1

�
�
R
]�n;�n+1]

�
(n)
�n

(ds)
R
E
�
(n)
�n;s

(dy) g
(n)
�n

(s; y)

with the top expression valid if t < �n+1; that on the bottom if t � �n+1:
But also on (�n < t) ;

M�n+1^t �M�n =

(
f
(n)
�n

(t)� f
(n)
�n

(�n) if t < �n+1;

f
(n+1)
�n+1

(�n+1)� f
(n)
�n

(�n) if t � �n+1;

and it is seen that MÆ (S) � M if for all n; t; y on (�n < t) it holds that

�
R

]�n;t]
�
(n)
�n

(ds)
R
E
�
(n)
�n;s

(dy) g
(n)
�n

(s; y) = f
(n)
�n

(t)� f
(n)
�n

(�n) ;

g
(n)
�n

(t; y)�
R

]�n;t]
�
(n)
�n

(ds)
R
E
�
(n)
�n;s

(dy) g
(n)
�n

(s; y) = f
(n+1)
join(�n;(t;y))

(t)� f
(n)
�n

(�n)

or that

�
R

]�n;t]
�
(n)
�n

(ds)
R
E
�
(n)
�n;s

(dy) g
(n)
�n

(s; y) = f
(n)
�n

(t)� f
(n)
�n

(�n) (3.47)

and
g
(n)
�n

(t; y) = f
(n+1)
join(�n;(t;y))

(t)� f
(n)
�n

(t) ; (3.48)

where equation (3.48) de�nes g
(n)
�n
: But from (3.46) it follows that t! f(t) :=

f
(n)
�n

(t) is di�erentiable with respect to P := P
(n)
�n

and by the di�erentiation
rule

DP (F1F2) (t) = (DPF1) (t)F2(t) + F1(t�) (DPF2) (t);
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(see Appendix A), (3.46) implies that

� (f (t)� f (�n))+P (t�)DPf(t) = �

Z
E

�
(n)
�n;t

(dy)
�
f
(n+1)
join(�n;(t;y))

(t)� f (�n)
�
;

or equivalently, using (3.48)

P (t�)DPf(t) = �

Z
E

�
(n)
�n;t

(dy) g
(n)
�n

(t; y) : (3.49)

From (3.46) we see in particular that f(t) is right-continuous for t � �n; and
since both sides of (3.47) vanish as t # �n; with the left hand side obviously
di�erentiable with resect to P; to prove (3.47) it suÆces to show that

DPf(t) = DP

�
�

Z
]�n;t]

�
(n)
�n

(ds)

Z
E

�
(n)
�n;s

(dy) g
(n)
�n

(s; y)

�
:

But recalling the de�nition (3.1) of hazard measures, it is seen that this is
precisely (3.49).

Remark 3.6.1 It is often important to be able to show that a local martin-
gale is a martingale. The conditions in Theorem 3.6.1 (iib) and (iiib) are
suÆcient for this but far from necessary.

We shall conclude this section by quoting some important identities in-
volving the socalled quadratic characteristics and cross characteristics for
(local) martingales.

Suppose M is a Q�martingale with EM2
t < 1 for all t: Then M2 is a

submartingale and by the Doob-Meyer decomposition theorem,

M2 = local martingale + A

where A is predictable, cadlag, increasing, 0 at time 0: A is in general process
theory called the quadratic characteristic for M and is denoted hMi (not to
be confused with the quadratic variation process [M ]).

More generally, if M1;M2 are two martingales with second moments, the
cross characteristic between M1;M2 is the process

hM1;M2i :=
1
4
(hM1 +M2i � hM1 �M2i) : (3.50)

For us, with Theorem 3.6.1 available, we need only �nd the quadratic
characteristics for the stochastic integrals MÆ(S): So let Q be a probability
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on (M;H)and let S; eS be predictable 
ows such that the stochastic integrals

�Æ (S2) ;�Æ
�eS2

�
are well de�ned, and de�ne

hMÆ(S)i = �Æ
�
S2
�
;D

MÆ(S);MÆ(eS)E = �Æ
�
S eS� :

(Note that these de�nitions conform with (3.50)).

Proposition 3.6.2 Assume that �
Æ
is continuous. Assume also that for all

n and t;
sup

s�t;y2E;m2M

��S�y�n^s(m)
�� <1 (3.51)

where S� = S or = eS: Then
MÆ

�
S2
�
� hMÆ(S)i ; MÆ(S)MÆ

�eS�� DMÆ (S) ;MÆ
�eS�E (3.52)

are local Q�martingales (�n) :
If instead of (3.51)

EN
Æ

t <1; sup
s�t;y2E;m2M

��S�ys (m)
�� <1

holds for all n and t; then the local martingales in (3.52) are Q�martingales.

For the proof, a critical step is to verify by explicit calculation that for
all Q;

EMÆ2

�1^t
(S) = E�Æ�1^t

�
S2
�
; EMÆ

�1^t
(S)MÆ

�1^t
(eS) = E�Æ�1^t

�
S eS� :

Note that Proposition 3.5.3 corresponds to the special case Syt = 1A (y) ;eSyt = 1A0 (y) :
The integrabilitry conditions imposed above are not the most general

available.

3.7 Compensators and �ltrations

We have so far exclusively discussed compensators and compensating mea-
sures for canonical CP's and RCM's, i.e. probabilities on (W;H) and (M;H)
respectively. Both concepts make perfect sense for CP's and RCM's de�ned
on arbitrary �ltered spaces, but they are de�ned through martingale prop-
erties rather than using quantities directly related to the distribution of the
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process. Working on canonical spaces it is the probability Q that decides
the structure of the compensators, hence the terminology `Q�compensator'
used earlier. On general spaces it is the �ltration that matters, hence we
shall write `Ft�compensator' below.

Suppose that � is a RCM de�ned on (
;F ; P ) and let (F�
t )t�0 be the

�ltration generated by �; F�
t = � (Ns(A))0�s�t;A2E ; where as usual Ns(A) =

� ([0; s]� A) : In particular the �ltration (F�
t ) is right-continuous. Also, let

Q = �(P ) be the distribution of � and let LÆ be the compensating measure
for Q:

The initial important point to make is that all results about Q and LÆ

carry over to results about �; the �ltration (F�
t ) and the positive random

measure L := LÆ Æ �: Thus e.g. �(A) = (�t(A))t�0 is F
�
t �predictable for all

A 2 E ; where �t(A) = L ([0; t]� A) ; and also

(i) for all A 2 E ; M(A) := N(A) � �(A) is a F�
t �local martingale (Tn)

(where of course Tn = inf
�
t : N t = n

	
);

(ii) up to P�indistinguishability, �(A) is the unique F�
t �predictable pro-

cess e�; 0 at time 0; such that M(A) is a F�
t �local martingale.

Note also that any F�
t �predictable, right-continuous F

�
t �local martin-

gale is constant.
We shall now discuss CP's and RCM's de�ned on �ltered spaces (
;F ;Ft;

P ): It will always be assumed that the �ltration (Ft) is right-continuous.
Let N be an adapted counting process de�ned on (
;F ;Ft; P ) : In par-

ticular FN
t � Ft for all t; where

�
FN
t

�
is the �ltration generated by N;

FN
t = � (Ns)0�s�t : We shall call � the Ft�compensator for N if �0 = 0

P�a.s., � is increasing, right-continuous, Ft�predictable and satis�es that
M := N�� is a Ft�local martingale. This compensator exists and is unique
by the Doob-Meyer decomposition theorem. Note that by the preceding dis-
cussion the FN

t �compensator for N; as just de�ned for arbitrary �ltrations,
is �Æ ÆN; where �Æ is the compensator for the distribution Q = N(P ) of N:

Similarly, if � is an adapted random counting measure on (
;F ;Ft; P ),
(so in particular F�

t � Ft for all t) the Ft�compensating measure for � is
the positive random measure L with L (f0g � E) = 0 P�a.s. such that for
all A 2 E ; �(A); where �t(A) = L ([0; t]� A) ; de�nes a right-continuous
F�
t �predictable process, necessarily increasing, such that M(A) := N(A)�

�(A) is a Ft�local martingale. Thus, as a special case of this de�nition, the
F�
t �compensating measure is LÆ Æ � with LÆ the compensating measure for

Q = �(P ):

Note. If L is a positive random measure such that all �(A) are Ft �
predictable we shall say that L is Ft�predictable.
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In general compensators and compensating measures depend of course on
the �ltration. Furthermore, and this is an important point, while e.g. we
know that the F�

t �compensating measure for a RCM � determines the dis-
tribution Q of �; it is not in general true that the Ft�compensating measure
for � determines Q (and of course, much less will it determine P ). This
also applies to canonical processes: if Q is a probability on (M;H) with
compensating measure LÆ; the Ht�compensator for the counting process
NÆ(A) is �Æ(A); but �Æ(A) does not determine the distribution of NÆ(A) {
marginals of compensating measures do not determine the distribution of the
corresponding marginals of the RCM.

To elaborate further on this point, let Q be a probability on (M;H) with
compensating measure LÆ: The Ht�compensator for the counting process
N
Æ
is �

Æ
;

�
Æ

t =

N
Æ
tX

n=0

�
(n)
�n

(]�n; �n+1 ^ t])

while the HN
Æ

t �compensator for N
Æ
is

�N
Æ

t =

N
Æ
tX

n=0

�
(n)

�n
(]�n; �n+1 ^ t])

where �n = (� 1; : : : ; �n) and �
(n)

�n
is the hazard measure for the conditional

Q�distribution of �n+1 given �n; a conditional distribution typically di�erent

from P
(n)
�n
: And typically it is impossible to obtain �N

Æ

(and the distribution

of N
Æ
) from knowledge of �

Æ
alone { to achieve this complete knowledge of

LÆ may be required.
In one important fairly obvious case one can say that a Ft�compensating

measure determines the distribution of a RCM �:

Proposition 3.7.1 Let � be an adapted RCM on (
;F ;Ft; P ) with Ft�
compensating measure L: If L is F�

t �predictable, then L = LÆ Æ � up to P�
indistinguishability, where LÆ is the compensating measure for the distribu-
tion Q = �(P ) of �:

Proof. By de�nition, for all A; M(A) = N(A)��(A) is a Ft�local martin-
gale. If we can show that in fact M(A) is a Ft�local martingale (Tn) ; since
each Tn is a F

�
t �stopping time, we have thatM(A) is a F�

t �local martingale
and the assertion follows from the discussion at the beginning of this section.
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Thus, let
�eTn� be a reducing sequence for M(A) (so each eTn is a Ft �

stopping time) and note �rst that since each Tk is a Ft�stopping time, for ev-

ery n and k; M
eTn^Tk is a Ft�martingale. In particular, since E

���M eTn^Tk^t(A)
���

= E
���N eTn^Tk^t(A)� � eTn^Tk^t(A)

��� <1 for all t and 0 � N eTn^Tk^t(A) � k we

see that E� eTn^Tk^t(A) <1 for all t and thus, for s < t; F 2 Fs;Z
F

�
N eTn^Tk^t(A)�N eTn^Tk^s(A)

�
dP =

Z
F

�
� eTn^Tk^t(A)� � eTn^Tk^s(A)

�
dP

(3.53)

as is seen writing down the martingale property forM
eTn^Tk(A) and rearrang-

ing the terms. Let now n " 1 and use monotone convergence to obtainZ
F

(NTk^t(A)�NTk^s(A)) dP =

Z
F

(�Tk^t(A)� �Tk^s(A)) dP: (3.54)

Since NTk^t(A) � k; this equation for s = 0; F = 
 shows that all �Tk^t(A)
are integrable. It is therefore safe to rearrange the terms in (3.54) and it is
then clear that MTk(A) is a Ft�martingale for all k:

Example 3.7.1 Let N be a counting process on (
;F ; P ) and let U � 0 be a
F�measurable random variable. N is a Cox process if conditionally on U =
�; N is homogeneous Poisson (�) : The distribution of N is thus a mixture of
Poisson process distributions and by explicit calculation of the Markov kernels
P

(n)
zn generating the distribution of N; one �nds that the FN

t �compensator is
�N
t =

R t
0
�Ns ds with F

N
t �predictable intensity process

�Nt =

R
R0
P (d�) e��t�Nt�+1R

R0
P (d�) e��t�Nt�

with P the distribution of the U: This unlovely expression for �N of course
serves to describe the unlovely distribution of N: By contrast, de�ning Ft =
�
�
U;FN

t

�
(in particular U is F0�measurable) the Ft�compensator � for N

is
�t = Ut

which describes the conditional distribution of N given U only, and does not
contain any information whatever about the distribution of U:

In Section 5.5 below we shall discuss some of the basic models in survival
analysis. These are partially speci�ed in the sense that only parts of the
F�
t �compensating measure for a RCM � is given. As will be seen, this
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applies in particular to models for right-censored survival data, where hardly
ever the compensators for censorings are described.

Even though there is not a general mechanism for determining compen-
sators using Markov kernels as we did in the canonical case, it is possi-
ble to give a prescription for certain �ltrations: let � be a RCM and let
0 = a0 < a1 < a2 < � � � be given timepoints with ak " 1 and ak = 1 al-
lowed. Let Ak for k � 1 be given ��algebras, increasing with k; and consider
the �ltration (Ft) given by

Ft = � (Ak;F
�
t ) (t 2 [ak; ak+1[ ; k 2 N0) :

Then the restriction to any interval [ak; ak+1[ of the Ft�compensating mea-
sure for � is found as the restriction of the F�

t �compensating measure with
respect to the conditional probability P (� jFak ) :

3.8 Itô's formula for MPP's

LetQ be a probability on (M;H) and letX be an adapted R�valued process.
Itô's formula shows that X can be decomposed as a sum of a predictable
process and a local martingale. Uniqueness of the decomposition is achieved
when the initial values of the terms are �xed.

By Proposition 3.2.1,

Xt = f
(NÆ

t )
�t

(t): (3.55)

Recall that X is piecewise continuous if all f
(n)
zn (t) are continuous functions

of t � tn; and de�ne Xc; the continuous part of X as

Xc
t = Xt �

X
0<s�t

�Xs:

Note that X can only have discontinuities at the timepoints �n:

Theorem 3.8.1 (Itô's formula). Suppose that �
Æ
is continuous and let X

be an adapted R�valued process which is piecewise continuous. Then

Xt = X0 + Ut +MÆ
t (S) (t � 0); (3.56)

where S = (Sy) is the predictable 
ow

Syt = f
(NÆ

t�+1)
join(�t�;(t;y))

� f
(NÆ

t�)
�t�

(t);

and where U is continuous and predictable. Subject to U0 = 0; MÆ
0 (S) = 0

a.s., the processes U and the local Q�martingale MÆ(S) are unique up to
Q�indistinguishability.
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Proof. By (3.55), X is cadlag and the process �X of jumps is well de�ned.
Now identify �X and �MÆ(S): since �

Æ
is continuous,

�MÆ
t (S) = S

�
N
Æ
t

t �N
Æ

t (3.57)

while

�Xt = �Xt�N
Æ

t

=

�
f
(NÆ

t )
�t

(t)� f
(NÆ

t�)
�t�

(t)

�
�N

Æ

t

=

�
f
(NÆ

t�+1)
join

�
�t�;

�
t;Y

N
Æ
t

�� � f
(NÆ

t�)
�t�

(t)

�
�N

Æ

t :

Thus (3.56) holds with

Syt = f
(NÆ

t�+1)
join(�t�;(t;y))

� f
(NÆ

t�)
�t�

(t);

which is a predictable 
ow, and

Ut = Xt �X0 �MÆ
t (S) = Xc

t + �Æt (S) (3.58)

which is continuous and adapted, hence predictable.
The uniqueness of the representation (3.56) is immediate from Proposition

3.5.1.

Remark 3.8.1 There is a general decomposition of any adapted, R�valued
process, but in general U will not be continuous, perhaps not even cadlag.

The proof of the theorem yields the decomposition in explicit form, but this
is typically too unwieldy to use in practice. Instead, with X cadlag and piece-
wise continuous as required in the theorem, one �nds S by directly identifying

�Xt = S
�
N
Æ
t

t �N
Æ

t ; cf. (3.57) and then using (3.58) to �nd U .

Example 3.8.1 Let Q be the canonical Poisson process on (W;H) with pa-
rameter � > 0: Fix n0 2 N and de�ne

Xt = 1(NÆ
t =n0):

Since
�Xt =

�
1(NÆ

t�=n0�1) � 1(NÆ
t�=n0)

�
�NÆ

t

we obtain
Xt = Ut +MÆ

t (S)
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with
St = 1(NÆ

t�=n0�1) � 1(NÆ
t�=n0)

and, since X is a step process with X0 � 0 so that Xc � 0;

Ut =

Z t

0

�
1(NÆ

s�=n0�1) � 1(NÆ
s�=n0)

�
�ds

=

Z t

0

�
1(NÆ

s=n0�1) � 1(NÆ
s=n0)

�
�ds:

Since jSj � 1; by Theorem 3.6.1 (iii2) MÆ(S) is a Q�martingale and thus

pn0(t) := EXt = EUt =

Z t

0

(pn0�1(s)� pn0(s))�ds; (3.59)

a formula valid for n0 � 1; t � 0: But we know from Example 2.1.2 that
p0(t) = Q (� 1 > t) = e��t; and since (3.59) shows that

p0n0(t) = � (pn0�1(t)� pn0(t)) ; pn0(0) = 0

for n0 � 1; by induction or otherwise the well known formula

pn(t) =
(�t)n

n!
e��t

follows.

Example 3.8.2 We can use Itô's formula to establish that if Q is a proba-
bility on (M;H) and �

Æ
is continuous, then X =MÆ2(A)��Æ(A) is a local

Q�martingale (�n) (Proposition 3.5.3): �rst, it is easily checked that

�Xt =
�
2MÆ

t�(A) + 1
�
1�

�
N
Æ
t2A

��N Æ

t

and so (3.56) holds with

Syt =
�
2MÆ

t�(A) + 1
�
1A(y): (3.60)

To show that X is a local martingale we must �rst show that U � 0; where,
cf. (3.58),

Ut = Xc
t +

Z t

0

Z
E

Sys �
(NÆ

s�)
�s�

(dy) �
Æ
(ds):

But if �
Æ
(ds) = �

Æ

s ds; by di�erentiation between jumps in the de�ning ex-
pression for X,

_Xc
t :=

d
dt
Xc

t = 2MÆ
t (A) (��

Æ
t (A))� �Æt (A)
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where �Æ(A) (ds) = �
(NÆ

s)
�s

(A) ds: Using (3.60) it now follows that the contin-

uous process U satis�es _Ut = 0; hence U � 0:
Using Theorem 3.6.1 (iii1) it is an easy matter to show that X is a local

martingale:

NÆ
�n^t (jSj) �

Z
]0;�n^t]

�
2
�
N
Æ

�n^t + �
Æ

�n^t

�
+ 1
�
N
Æ
(ds)

�
�
2
�
n + �

Æ

�n^t

�
+ 1
�
n

and since E�
Æ

�n^t = EN
Æ

�n^t � n < 1 it follows that ENÆ
�n^t (jSj) < 1:

But the condition in Theorem 3.6.1 (iii2) is too weak to give that X is a
Q�martingale when EN

Æ

t <1 for all t; as was shown in Proposition 3.5.3.
By similar reasoning one may show that MÆ(A)MÆ(A0) is a local martin-

gale when A \ A0 = ; (Proposition 3.5.3).

Example 3.8.3 Let Q be the probability on (M;H) determined by

P
(0)

(t) = e��t; P
(n)

zn (t) = e��(t�tn) (n � 1; t � tn);

�
(n)
zn;t(A) = �(A) (n � 0; A 2 E)

where � > 0 and � is a probability on (E; E) ; cf. Example 3.3.3 above.
Thus, under Q; the waiting times (�n � �n�1)n�1 are i.i.d. exponential �; the
marks (�n)n�1 are i.i.d with distribution �; and the sequences (�n) and (�n)
are independent.

We shall show that for any r 2 N ; and any A1; : : : ; Ar 2 E mutually
disjoint, under Q the counting processes (NÆ(Aj))1�j�r are independent, ho-
mogeneous Poisson processes with intensities �j := ��(Aj) for j = 1; : : : ; r:

We shall show this by showing that for any s < t; the increments (NÆ
t (Aj)

� NÆ
s (Aj))1�j�r are independent of Hs and also mutually independent with

NÆ
t (Aj)�NÆ

s (Aj) following a Poisson distribution with parameter �j(t� s):
And this in turn will be shown by showing that for all (u1; : : : ; ur) 2 Rr ;

Mt := exp

 
i

rX
j=1

ujN
Æ
t (Aj)� t

rX
j=1

�j
�
eiuj � 1

�!
is a C�valued Q�martingale: the martingale property E (Mt jHs ) = Ms is
easily rewritten as

E

 
exp

 
i

rX
j=1

(NÆ
t (Aj)�NÆ

s (Aj))

!
jHs

!

= exp

 
(t� s)

rX
j=1

�j
�
eiuj � 1

�!
;



64 CHAPTER 3. COMPENSATORS AND MARTINGALES

which is precisely to say, (when (u1; : : : ; ur) varies) that the joint character-
istic function of (NÆ

t (Aj)�NÆ
s (Aj))1�j�r given Hs is that of r inedependent

Poisson random variables with parameters (�j (t� s))1�j�r :
We use Itô's formula to show that M is a martingale. Because

�Mt =Mt�

 
rX

j=1

1Aj

�
�NÆ

t

� �
eiuj � 1

�!
�N

Æ

t ;

we have the representation

Mt = 1 + Ut +MÆ
t (S)

with U continuous, U0 = 0 and

Syt =Mt�

rX
j=1

1Aj(y)
�
eiuj � 1

�
:

We now show that U � 0 by verifying that between jumps _Ut :=
d
dt
Ut = 0:

But clearly, since NÆ(S) is constant between jumps,

_Ut = _Mt + _�Æt (S):

By computation, if t 2 ]�n�1; �n[ for some n; writing c =
Pr

j=1 �j (e
iuj � 1) ;

_Mt = �cMt

while

_�Æt (S) =
d

dt

Z t

0

Z
E

Sys � (dy)�ds

= �

Z
E

Syt � (dy)

= �Mt

rX
j=1

� (Aj)
�
eiuj � 1

�
= cMt

(using that between jumps, Mt� =Mt).
Thus U � 0 and Mt = 1 + MÆ

t (S): It remains to verify that M is a
Q�martingale, and this follows from Theorem 3.6.1 (iii2) if we show that
ENÆ

t (jSj) <1 for all t: But

jSyt j = e�ct;

so ENÆ
t (jSj) = e�ctEN

Æ

t = e�ct�t <1:
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In the version of Itô's formula given above, Theorem 3.8.1, it was assumed
in particular that the total compensator �

Æ
should be continuous. We shall

by two examples show how a martingale decomposition may be obtained
when this assumption is not ful�lled.

Example 3.8.4 Let Q be a probability on (W;H) with compensator �Æ that
need not be continuous. If �Æ is continuous, we know from Proposition 3.5.3
that MÆ2 ��Æ is a local Q�martingale, but it was also noted that if �Æ is not
continuous, this is no longer true. We are thus, for general �Æ; looking fore� right-continuous and predictable, 0 at time 0, such that MÆ2 � e� is a local
martingale, i.e. we also need S predictable such that

MÆ2 � e� = NÆ(S)� �Æ(S): (3.61)

In particular X :=MÆ2 �NÆ(S) must be predictable, and this fact is used to
identify S: (It is no longer as in the proof of Theorem 3.8.1 and the preceding
examples, a matter of simply identifying the jumps ofMÆ2 occurring when NÆ

jumps, with those of NÆ(S): Note that the two processes NÆ and �Æ may share
discontinuities, but that it is also possible that one of them is continuous, the
other discontinuous at a certain point).

If �NÆ
t = 0 we have

Xt =
�
MÆ

t� ���Æt
�2
�NÆ

t�(S)

while if �NÆ
t = 1;

Xt =
�
MÆ

t� + 1���Æt
�2
�NÆ

t�(S)� St:

If X is to be predictable the two expressions must be the same, i.e. we must
have

St = 1 + 2
�
MÆ

t� ���Æt
�
:

With S determined, e� is of course found from (3.61), but a simpler ex-

pression is available by showing that e� is di�erentiable with respect to �Æ

and �nding D�Æ
e�: (For a discussion of di�erentiability and the results used

below, see Appendix A).
We have D�Æ�

Æ(S) = S: To �nd D�ÆX; �x t and for a given K �nd k 2 N

such that tK = k�1
2K

< t � k
2K

= etK: The task is to compute (for �Æ�a.a. t),

lim
K!1

X
�etK��X (tK)

�Æ
�etK�� �Æ (tK)
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and there are two cases, (i) �NÆ
t = 0; (ii) �NÆ

t = 1 and ��Æt > 0: (Because
the limit is only wanted for �Æ�a.a. t we may ignore the case �NÆ

t = 1 and
��Æt = 0). In case (i) one �nds that the limit is

lim
K!1

�
MÆetK +MÆ

tK

��
MÆetK �MÆ

tK

�
�Æ
�etK�� �Æ (tK)

= �
�
2MÆ

t� ���Æt
�

since for K suÆciently large, MÆetK = MÆ
tK
�
�
�Æ
�etK�� �Æ (tK)

�
: A simi-

lar argument in case (ii) results in the same limit and verifying the other
requirements for di�erentiability, one ends up with

D�ÆXt = �
�
2MÆ

t� ���Æt
�
:

Thus

D�Æ
e�t = D�ÆXt + St

= 1���Æt

and, using the results from Appendix A,

e�t =

Z
]0;t]

D�Æ
e�s d�

Æ
s = �Æt �

X
0<s�t

(��Æs)
2 :

Example 3.8.5 Let Q be a probability on (M;H) with compensating mea-
sure LÆ: Let A;A0 2 E and look for a decomposition of MÆ(A)MÆ(A0); i.e.

we want e� right-continuous and predictable, 0 at time 0; and a predictable

ow (Sy) such that

MÆ
t (A)M

Æ
t (A

0) = e�t +NÆ(S)� �Æ(S):

From Proposition 3.5.3 we know that if �
Æ
is continuous, e� = �Æ(A) if

A = A0 and e� � 0 if A\A0 = ;: Here we do not assume that �
Æ
is continuous.

We �nd S by using that X := MÆ(A)MÆ(A0) � NÆ(S) is predictable. If
�N

Æ

t = 0;

Xt =
�
MÆ

t�(A)���Æt (A)
� �
MÆ

t�(A
0)���Æt (A

0)
�
�NÆ

t�(S);

while if �N
Æ

t = 1;

Xt =
�
MÆ

t�(A) + 1A (�t)���Æt (A)
� �
MÆ

t�(A
0) + 1A0 (�t)���Æt (A

0)
�

�NÆ
t�(S)� S

�t
t
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where we write �t = �NÆ
t
: Predictability of X forces the two expressions to be

identical, hence

Syt = 1A\A0(y) + 1A(y)
�
MÆ

t�(A
0)���Æt (A

0)
�
+ 1A0(y)

�
MÆ

t�(A)���Æt (A)
�
:

(3.62)

As in the previous Example 3.8.4, we identify e� through its derivative
D�

Æe� = D�
ÆX +D�

Æ�Æ(S): Here

D�
Æ�Æt (S) =

Z
E

Syt �t (dy) ; (3.63)

where �t is short for �
(NÆ

t�)
�t�;t

; and by computations along the same lines as

those in Example 3.8.4, treating the cases �N
Æ

t = 0 and �N
Æ

t = 1; ��
Æ

t > 0
separately one �nds

D�
ÆXt = �MÆ

t�(A)�t(A
0)�MÆ

t�(A
0)�t(A) + ��

Æ

t�t(A)�t(A
0):

Thus, recalling (3.62), (3.63)

D�
Æe�t = D�

ÆXt +D�
ÆLÆt (S) = �t (A \ A

0)���
Æ

t�t(A)�t(A
0)

so �nally,

e�t =

Z
]0;t]

D�
Æe�s d�

Æ

s = �Æt (A \ A
0)�

X
0<s�t

��Æs(A)��
Æ
s(A

0):
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Chapter 4

Likelihood processes

In this short chapter we derive the likelihood function corresponding to ob-
serving a CP or RCM completely on a �nite time interval [0; t] : In statistical
terms, one would suppose given a family of distributions for the point pro-
cess, choose a reference measure from the family and de�ne the likelihood
function as the Radon-Nikodym derivative between the distribution of the
process observed on [0; t] under an arbitrary measure from the family and
under the reference measure. The essence is therefore to be able to �nd the
relevant Radon-Nikodym derivatives between two di�erent distributions of
the process on [0; t] :

Let Q; eQ be two probability measures on (W;H) or (M;H) ; and let for

t � 0; Qt; eQt denote the restrictions of Q; eQ to Ht:

De�nition 4.0.1 eQ is locally absolutely continuous with respect to Q ifeQt � Qt for all t 2 R0 :

If eQ is locally absolutely continuous with respect to Q; we write eQt �loc

Qt and de�ne the likelihood process L = (Lt)t�0 by

Lt :=
d eQt

dQt

: (4.1)

Since H0 is the trivial ��algebra, L0 � 1: Otherwise each Lt is Ht �
measurable, � 0 Q�a.s. and

eQ(H) = eQt(H) =

Z
H

Lt dQt =

Z
H

Lt dQ (t 2 R0 ; H 2 Ht) : (4.2)

With EQ denoting expectation with respect to Q; it follows in particular
that

EQLt = 1 (t 2 R0) :

69
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If s < t and H 2 Hs � Ht, it follows from (4.2) thatZ
H

Ls dQ =

Z
H

Lt dQ;

in other words, L is a Q�martingale which, since the �ltration (Ht) is right-
continuous, has a cadlag version. In the sequel we shall always assume L to
be cadlag.

Since L � 0, L1 := lim
t!1

Lt exists Q�a.s. and by Fatou's lemma EQL1 �

1: The reader is reminded that the Lebesgue decomposition of eQ with respect
to Q (on all of H) is eQ = L1 �Q+ �

where L1 �Q is the bounded measure (L1 �Q) (H) =
R
H
L1 dQ on H; and

where � is a bounded positive measure on H with Q ? � (i.e. there is a

set H0 2 H such that Q(H0) = 1; �(H0) = 0). In particular, eQ ? Q i�

Q (L1 = 0) = 1; and eQ � Q i� EQL1 = 1; this latter condition also being
equivalent to the condition that L be uniformly integrable with respect to Q:

Before stating the main result, we need one more concept: if P and eP are
probabilities on R+; we write eP �loc P if

(i) ePR+ � PR+ , the subscript denoting restriction to R+ (from R+);

(ii) P (]t;1]) > 0 whenever eP (]t;1]) > 0:

Note that if ty; ~ty are the termination points for P; eP (see p.22) the last

condition is equivalent to the condition ~ty � ty: Note also that eP �loc P

if eP � P (on all of R+) while it is possible to have ePR+ � PR+ withouteP �loc P: if eP = "1; ePR+ � PR+ for any P since ePR+ is the null measure,

but eP�loc P i� P (]t;1]) > 0 for all t 2 R0 :

If eP�loc P; we write

deP
dP

(t) =
dePR+
dPR+

(t) (t 2 R+) :

We shall as usual denote by P (n); �(n) the Markov kernels generating Q

and of course write eP (n); e�(n) for those generating eQ: P (n)

zn and eP (n)

zn are the

survivor functions for P
(n)
zn and eP (n)

zn :

Theorem 4.0.2 (a) Let Q; eQ be probabilities on (W;H) : In order thateQ �loc Q it is suÆcient that eP (0) �loc P
(0) and that for every n 2 N
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there exists an exceptional set Bnull

n 2 Bn
+ with Q

�
�n 2 B

null

n

�
= 0 such

that eP (n)
zn �loc P

(n)
zn for all zn = (t1; : : : ; tn) =2 Bnull

n with 0 < t1 < � � � <
tn:

If this condition for eQ�loc Q is satis�ed, the cadlag Q�martingale L
is up to Q�indistinguishability given by

Lt =

0@ NÆ
tY

n=1

d eP (n�1)
�n�1

dP (n�1)
�n�1

(�n)

1A eP (NÆ
t )

�t
(t)

P
(NÆ

t )

�t
(t)

(t 2 R0) :

(b) Let Q; eQ be probabilities on (M;H) : In order that eQ �loc Q it is

suÆcient that eP (0) �loc P
(0) and (i) for every n 2 N there exists an

exceptional set Cnull

n 2 Bn
+ 
 En with Q

�
�n 2 C

null

n

�
= 0 such thateP (n)

zn �loc P
(n)
zn for all zn = (t1; : : : ; tn; y1; : : : ; yn) =2 Cnull

n with 0 < t1 <
� � � < tn; and (ii) for every n 2 N0 there exists an exceptional set Dnull

n 2

Bn+1
+ 
 En with Q

�
(�n; �n+1) 2 Dnull

n

�
= 0 such that e�(n)

zn;t � �
(n)
zn;t for

all (zn; t) = (t1; : : : ; tn; t; y1; : : : ; yn) =2 D
null

n with 0 < t1 < � � � < tn < t:

If this condition for eQ�loc Q is satis�ed, the cadlag Q�martingale L
is up to Q�indistinguishability given by

Lt =

0@ N
Æ
tY

n=1

d eP (n�1)
�n�1

dP
(n�1)
�n�1

(�n)
de�(n�1)

�n�1;�n

d�
(n�1)
�n�1;�n

(�n)

1A eP (NÆ
t)

�t
(t)

P
(NÆ

t)
�t

(t)
(t 2 R0) :

Proof. We just give the proof of (b). For n 2 N ; let eRn; Rn denote the

distribution of �n under eQ and Q respectively, restricted to (�n <1) so that

e.g. eRn is a subprobability on Rn
+ with

eRn(Cn) = eQ (�n 2 Cn; �n <1)
�
Cn 2 B

n
+ 
 E

n
�
:

Because
� eP (n)

zn

�
R+

�
�
P

(n)
zn

�
R+

and e�(n)
zn;t � �

(n)
zn;t (for almost all zn and

(zn; t)) it follows that eRn � Rn and

d eRn

dRn

(zn) =
nY

k=1

 
d eP (k�1)

zk�1

dP
(k�1)
k�1

(tk)
de�(k�1)

zk�1;tk

d�
(k�1)
zk�1;tk

(yk)

!
(4.3)

for Rn�a.a. zn 2 Rn
+ � En:



72 CHAPTER 4. LIKELIHOOD PROCESSES

We want to show that for t 2 R+ ; H 2 Ht;

eQ(H) =

Z
H

Lt dQ

and recalling the representation of sets in Ht; Proposition 3.2.1 (bi), and

writing H =
S1

n=0H \
�
N
Æ

t = n
�
; this follows if we show

eQ (�n 2 Cn; �n+1 > t) =

Z
(�n2Cn;�n+1>t)

Lt dQ

where H \
�
N
Æ

t = n
�
= (�n 2 Cn; �n+1 > t) : But

eQ (�n 2 Cn; �n+1 > t) =

Z
(�n2Cn)

eP (n)

�n
(t) d eQ

=

Z
Cn

eP (n)

zn (t)
eRn(dzn)

=

Z
Cn

eP (n)

zn (t)
d eRn

dRn

(zn)Rn(dzn)

=

Z
(�n2Cn)

eP (n)

�n
(t)
d eRn

dRn
(�n) dQ:

De�ne Hn =

�eP (n)

�n
(t) > 0

�
: Then the last integral above is the same as the

integral over the set (�n 2 Cn) \Hn and since by the assumption eP (n)
�n

�loc

P
(n)
�n

we have P
(n)

�n
(t) > 0 on Hn; the domain of integration may be replaced

by
�
�n 2 Cn; P

(n)

�n
(t) > 0

�
\Hn; and the integral may be written

Z
�
�n2Cn;�n+1>t;P

(n)
�n

(t)>0
�
\Hn

eP (n)

�n
(t)

P
(n)

�n
(t)

d eRn

dRn
(�n) dQ

as is seen by conditioning on �n in this last integral. But by the de�nition of

Hn and the appearance of the factor eP (n)

�n
(t) in the integrand, this is the same

as the integral over
�
�n 2 Cn; �n+1 > t; P

(n)

�n
(t) > 0

�
; and �nally, because

Q
�
�n+1 > t; P

(n)

�n
(t) = 0

�
= EQ1�P (n)

�n
(t)=0

�P (n)

�n
(t) = 0;
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we may as well integrate over (�n 2 Cn; �n+1 > t) = H \
�
N
Æ

t = n
�
and we

have arrived at the identity

eQ�H \
�
N
Æ

t = n
��

=

Z
H\(NÆ

t=n)

eP (n)

�n
(t)

P
(n)

�n
(t)

d eRn

dRn

(�n) dQ:

Using (4.3), the assertion of the theorem follows immediately.

Remark 4.0.2 It may be shown that the suÆcient conditions for eQ�loc Q
as given in (a), (b) are in fact also necessary. The perhaps most peculiar

condition, viz. that eP (n)
zn �loc P

(n)
zn rather than just

� eP (n)
zn

�
R+

�
�
P

(n)
zn

�
R+

was certainly used in the proof, and that it is necessary may be seen from
the following CP example: suppose eQ is the distribution of the dead process
while under Q, � 1 is bounded by 1 say. Then eP (0)

R+
� P

(0)
R+

trivially since eP (0)
R+

is the null measure, eP (0) �loc P
(0) does not hold and for t � 1 it does not

hold either that eQt � Qt since Qt (� 1 � t) = 1; eQt (� 1 � t) = 0:

It is in general possible to express the formula for Lt in terms of com-
pensators or compensating measures. We shall see how this may be done in
some special cases.

Consider �rst the CP case and assume that the compensators e�Æ;�Æ undereQ;Q have predictable intensities,

e�Æt = Z t

0

e�Æs ds; �Æt =

Z t

0

�Æs ds

with e�Æs = eu(NÆ
s�)

�s�
(s); �Æs = u

(NÆ
s�)

�s�
(s)

where eu(n)zn (u
(n)
zn ) is the hazard function for eP (n)

zn (P
(n)
zn ), cf. Proposition 3.4.1

(a). If eQ�loc Q we have

d eP (k�1)
�k�1

dP
(k�1)
�k�1

(�k) =
eu(k�1)
�k�1

(�k) exp
�
�
R �k
�k�1

eu(k�1)
�k�1

(s) ds
�

u
(k�1)
�k�1

(�k) exp
�
�
R �k
�k�1

u
(k�1)
�k�1

(s) ds
� ; (4.4)

eP (NÆ
t )

�t
(t)

P
(NÆ

t )

�t
(t)

= exp

 
�

Z t

�NÆt

�eu(NÆ
s�)

�s�
(s)� u

(NÆ
s�)

�s�
(s)

�
ds

!
(4.5)



74 CHAPTER 4. LIKELIHOOD PROCESSES

and it follows that

Lt = exp
�
�e�Æt + �Æt

� NÆ
tY

n=1

e�Æ�n
�Æ�n

: (4.6)

Similarly, if eQ;Q have compensating measures eLÆ; LÆ with ��intensities
(Proposition 3.4.1 (bii), the same � for eQ and Q),

e�Æyt = eu(NÆ
t�)

�t�
(t) ep(NÆ

t�)
�t�;t

(y) ; e�Æyt = u
(NÆ

t�)
�t�

(t) p
(NÆ

t�)
�t�;t

(y)

we still have analogues of (4.4), (4.5) and in addition

de�(k�1)
�k�1;�k

d�
(k�1)
�k�1;�k

(�k) =
ep(k�1)
�k�1;�k

(�k)

p
(k�1)
�k�1;�k

(�k)

and it follows that

Lt = exp
�
�e�Æt + �

Æ

t

� N
Æ
tY

n=1

e�Æ�n�n

�Æ
�n

�n

: (4.7)

The derivation of (4.6) and (4.7) shows that it is the predictable intensities
that must enter into the expressions: it is the preceding intensity that �res
the next jump. Using the right-continuous intensities of Proposition 3.4.2
would drastically change the expressions and yield non-sensical results.

We quote a particular case of (4.7), important for statistical applications.

Here eQ is the important measure, while the particular Q displayed serves
only as a convenient reference. Recall Examples 3.3.3 and 3.8.3.

Corollary 4.0.3 On (M;H) let Q be the Poisson process with compensating
measure LÆ = `
�; where � is a bounded positive measure on (E; E) with

� := �(E) > 0: If eQ has predictable ��intensity
�e�Æyt � ; then eQ�loc Q and

Lt = exp
�
�e�Æt + �t

� N
Æ
tY

n=1

e�Æ�n�n :

Proof. With Q Poisson, all P
(n)
zn have Lebesgue densities that are > 0

on ]tn;1[ and have termination point 1: By assumption also all eP (n)
zn have

Lebesgue densities and hence eP (n)
zn �loc P

(n)
zn : Because Q has ��intensity

process �Æ
y

t � 1 for all t; y; the assumptions about eQ imply also that e�(n)
zn;t �
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�
(n)
zn;t always. Thus eQ �loc Q by Theorem 4.0.2 and the expression for Lt

emerges as a special case of (4.7).

The conditions for local absolute continuity in Theorem 4.0.2 were ex-
pressed in terms of the Markov kernels generating Q and eQ: It is natural to
ask for conditions expressed in terms of the compensating measures instead
and such conditions exist in the literature, but there does not appear to be
an easy translation between the two sets of conditions.

Example 4.0.6 Let Q be an arbitrary probability on (W;H) and let eQ be

the canonical dead process. Then eQ �loc Q if (and only if) P
(0)

(t) > 0 for
all t (P (0) has termination point 1), and in that case

Lt =
1

P
(0)
(t)

1(NÆ
t =0): (4.8)

Example 4.0.7 If Q; eQ are probabilities on (W;H) ; Q is Poisson (�) where

� > 0; eQ is Poisson
�e�� ; then eQ�loc Q and

Lt = e�(
e���)t

 e�
�

!NÆ
t

:

Note that on H; eQ ? Q if e� 6= � since by the strong law of large numberseQ� lim
t!1

1
t
NÆ
t = e�� = 1 and Q

�
lim
t!1

1
t
NÆ
t = �

�
= 1:

Example 4.0.8 Recall the description in Example 2.2.3 of time-homogeneous
Markov chains on an at most countably in�nite state space E: On (M;H)
the chain XÆ is de�ned by

XÆ
t = �NÆ

t

with XÆ
0 � i0; a given state in E: Suppose that under Q; XÆ is Markov with

transition intensities (qij) and that under eQ; XÆ is Markov with transition

intensities (eqij) : Then eQ �loc Q if whenever eqij > 0 for i 6= j also qij > 0;
and in that case

Lt = exp

�
�

Z t

0

�e�XÆ
s
� �XÆ

s

�
ds

� Y
(i;j):i6=j

�eqij
qij

�NÆij

t

where �i = �qii; e�i = �eqii and
NÆij

t =
X
0<s�t

1(XÆ
s�=i;XÆ

s=j) =

Z
]0;t]

1(XÆ
s�=i) dN

Æj

s
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for i 6= j is the number of jumps from i to j on [0; t] ; writing NÆj = NÆ (fjg)
for the number of jumps with mark j; i.e. the number of jumps XÆ makes
into the state j:

If eQ�loc Q; L is a Q�martingale, hence has a representation

Lt = 1 +MÆ(S);

cf. Theorem 3.6.1. If L is of the form (4.7), identifying the jumps of L one
�nds that the predictable 
ow S is given by

Syt = Lt�

 e�yt
�yt
� 1

!
:

Suppose Q; eQ are as in Example 4.0.6. If, say, P (0) has termination
point 1; the expression (4.8) for Lt still makes sense Q�a.s. for all t (since

Q (NÆ
t = 0) = 0 for t � 1), but eQ ? Q and L is certainly not aQ�martingale,

not even a Q�local martingale (since Q
T

t�1 (Lt = 0) = 1).
It is also possible to obtain expressions of the form (4.7) for instance,

that are Q�local martingales but not Q�martingales: if eQ corresponds to
a MPPex (a MPP with explosion possible, see p.9) but the conditions on
the Markov kernels from Theorem 4.0.2 are satis�ed, then L is a Q�local
martingale (�n) (because at the time of the n'th jump explosion has not
yet occurred, and the conditions for local absolute continuity between the
processes stopped at �n are obviously satis�ed), but if eQ (�1 � t) > 0
(with �1 = lim

n!1
�n the time of explosion), then EQLt < 1 so L is not a

Q�martingale.
In principle this observation may be used to test for explosions: suppose

L is given by (4.7) but that one does not know whether eQ may explode or
not. Then the condition EQLt = 1 for all t forces the Q�local martingale L

to be a true martingale and eQ cannot explode in �nite time.



Chapter 5

Examples of models

5.1 Independent point processes

Let r 2 N with r � 2 and consider r given MPP's, each viewed as a RCM
�i with mark space (Ei; E i), 1 � i � r; all de�ned on the same probability
space (
;F ; P ) : In particular �i may correspond to a SPP, in which case Ei

is a one point set and �i may be thought of as a counting process.
Let (T i

n)n�1 denote the sequence of jump times for �i and (Y i
n)n�1 the

sequence of marks, so Y i
n 2 E

i
= Ei [ fOg ; where O is the irrelevant mark,

common to all �i:
Now de�ne E = f(i; yi) : 1 � i � r; yi 2 Eig and let E be the ��algebra

of subsets of E generated by all sets of the form fig � Ai where 1 � i �
r; Ai 2 Ei: Next put

� =
rX
i=1

1X
n=1
T in<1

"(T in;(i;Y i
n))
: (5.1)

Clearly � is a random, N 0�valued measure such that

�([0; t]� A) <1 (t 2 R0 ; A 2 E): (5.2)

However, for � to be a RCM (with mark space E), we need (p.10) �(ftg �
E) � 1 for all t; at least P�almost surely, and for this to hold it is necessary
to assume that no two �nite jump times for di�erent �i can agree, i.e.

P (
r[

i;j=1
i6=j

1[
k;n=1

fT i
k = T j

n <1g) = 0: (5.3)

If (5.3) holds, � is a RCM, and the corresponding MPP has mark space E
and is the aggregate of all the �i : � consists of all the points determined
from the �i; 1 � i � r :

77
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Remark 5.1.1 If all Ei = EÆ and (5.3) is satis�ed one can also de�ne the
superposition of the �i as the MPP e� with mark space EÆ given by

e� =
rX
i=1

1X
n=1
T in<1

"(T in;Y i
n)
: (5.4)

The di�erence with the corresponding aggregate � given by (5.1) is of course
that � keeps track of which of the original �i a mark came from while e� does
not.

Remark 5.1.2 Even if (5.3) does not hold it is possible to de�ne an aggre-
gate of the �i using a larger mark space than E above, viz. the new mark
space should consist of all �nite subsets of E; a mark designating that all �i

singled out in this subset jump simultaneously.

From now on assume that (5.3) holds, and even, after discarding a P�null
set, that

T i
k (!) 6= T j

n (!) (5.5)

for (i; k) 6= (j; n) and all ! 2 
:
Note that with this assumption, if

N i
t (A

i) = �i([0; t]� Ai) (1 � i � r; Ai 2 E i); (5.6)

then Nt(A) = �([0; t]� A) for A 2 E is given by

Nt(A) =
rX
i=1

N i
t ( eAi); (5.7)

where eAi = fyi 2 Ei : (i; yi) 2 Ag:

For 1 � i � r ; let Li denote the F�i

t �compensating measure for �i and
let

�i
t(A

i) = Li([0; t]� Ai) (t 2 R0 ; A
i 2 E i) (5.8)

denote the corresponding compensator for the counting process N i(Ai):

Theorem 5.1.1 (a) Suppose the RCM's �1; : : : ; �r are stochastically in-
dependent and satisfy (5.5). Then the aggregate � of the �i has F�

t �
compensating measure L determined by

L ([0; t]� A) = �t(A) (t 2 R; A 2 E) (5.9)

where

�t(A) =
rX
i=1

�i
t

� eAi
�
: (5.10)
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(b) Suppose �1; : : : ; �r satisfy (5.5) and that the aggregate � of the �i

has F�
t �compensating measure determined by (5.9) and (5.10). Then

�1; : : : ; �r are stochastically independent.

Proof. (a). By Theorem 3.5.2 and the discussion in Section 3.7, we must
show that �(A) given by (5.10) is F�

t �predictable (which is obvious since

the i'th term in the sum on the right is F�i

t �predictable and F
�i

t � F�
t ) and

that M(A) := N(A)� �(A) is a local F�
t �martingale.

To prove this last assertion, assume �rst that EN t <1 for all t: Then by

Theorem 3.5.2, for all i; M i
� eAi

�
:= N i

� eAi
�
��i

� eAi
�
is a F�i

t �martingale

and further, theM i
� eAi

�
are independent since the �i are. We want to show

that for s < t; F 2 F�
s ;Z

F

Mt(A) dP =

Z
F

Ms(A) dP: (5.11)

Now M(A) =
Pr

i=1M
i
� eAi

�
; so if F =

Tr
i=1 F

i where F i 2 F�i

s ; using the

independence and the martingale property of each M i
� eAi

�
; it follows that

Z
F

Mt(A) dP =
rX

i=1

Z
F

M i
t

� eAi
�
dP

=
rX

i=1

P

 \
j:j 6=i

F j

!Z
F i

M i
t

� eAi
�
dP

=
rX

i=1

P

 \
j:j 6=i

F j

!Z
F i

M i
s

� eAi
�
dP

=

Z
F

Ms(A) dP:

This proves (5.11) for F 2 F�
s of the form F =

T
i F

i with F i 2 F�i

s : But

since F�
s = �

�
F�i

s

�
1�i�r

; the collection of sets F =
T

i F
i generates F�

s and

as it is closed under the formation of �nite intersections, (5.11) holds for all
F 2 F�

s :

Suppose now that the assumption EN t <1 for all t does not hold. For

any n 2 N; 1 � i � r the stopped process MT in( eAi) is a F�i

t �martingale,

see Theorem 3.5.2. But the processes MT in( eAi) are independent, and copying
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the argument above one �nds that

rX
i=1

MT in

� eAi
�

is a F�
t �martingale for each n: With Tn = inf

�
t � 0 : N t = n

	
; for all

i; Tn � T i
n; so by optional sampling, MTn(A) =

�Pr
i=1M

T in

� eAi
��Tn

is a

F�
t �martingale, i.e. M(A) is a F�

t �local martingale.
(b). Here it is assumed that the compensator �(A) is the sum of the

compensators �i
� eAi

�
as in (5.10). From (a) we know this to be true if the

�i are independent, and from Theorem 3.3.2 it now follows that if (5.10)
holds they are indeed independent.

Remark 5.1.3 More informally the theorem could be stated as follows: if
the �i satisfy (5.5) (or just (5.3)), they are independent i� the compensating
measure of the aggregate � is the sum of the compensating measures for the
�i: The precise meaning of this phrase is provided by (5.9) and (5.10).

Remark 5.1.4 Note that if the �i are independent, (5.3) is satis�ed if the
restriction to R+ of the distribution of each T i

n is continuous.

Example 5.1.1 Suppose the �i are independent, and that each �i has a

F�i

t � predictable intensity process
�
�i (Ai)

�
Ai2Ei

; so �i
t (A

i) =
R t
0
�is (A

i) ds:
Then (5.3) is satis�ed and the aggregate � has an intensity process (�(A))A2E
given by

�t(A) =
rX
i=!

�it

� eAi
�
:

5.2 Homogeneous Poisson random measures

and processes with stationary, indepen-

dent increments

Let � be RCM with mark space E; de�ned on some probability space (
;F ; P ):
As usual for A 2 E ; t 2 R0 ;

Nt(A) = �([0; t]� A):

De�nition 5.2.1 � is a homogeneous Poisson random measure if there ex-
ists a positive bounded measure � on (E; E) such that
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(i) for every A 2 E ; N(A) is a homogeneous Poisson process with param-
eter �(A);

(ii) for every k � 2; A1; : : : ; Ak 2 E mutually disjoint, the counting pro-
cesses N(A1); : : : ; N(Ak) are independent.

It would suÆce to assume that � be a R0�valued function on E since (i)
implies that � is then a measure: by monotone convergence, if A1; A2; : : : 2 E
are disjoint and A =

S
j Aj; then

�(A) = EN1(A)

= E� ([0; 1]� A)

= E
X
j

� ([0; 1]� Aj)

=
X
j

E� ([0; 1]� Aj)

=
X
j

�(Aj):

� is called the intensity measure for �:
As we shall now see, homogeneous Poisson measures are precisely the

RCM's discussed in Example 3.8.3, (see also Example 3.3.3).

Proposition 5.2.1 A RCM � is a homogeneous Poisson random measure if
and only if the compensating measure L for � (with respect to the �ltration
(F�

t )) is non-random and of the form

L = `
 �; (5.12)

where ` denotes Lebesgue measure on R0 and � is a positive bounded measure
on (E; E): If L has this form, � is the intensity measure for �:

Proof. Suppose � is homogeneous Poisson, and let � denote the intensity
measure. In particular N is homogeneous Poisson �(E) so EN t = t�(E) <
1: Therefore, by Theorem 3.5.2, to show that L = ` 
 � ; it suÆces to
show that for every A 2 E ; M(A); where Mt(A) = Nt(A) � t�(A); is a
F�
t �martingale. By Lemma 5.2.2 below however, for s < t; Nt(A)�Ns(A)

is independent of F�
s ; and so

E(Nt(A)�Ns(A)jF
�
s ) = E(Nt(A)�Ns(A)) = (t� s)�(A):

The martingale property follows immediately.
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Now suppose conversely that � is a MPP with F�
t �compensating measure

L given by (5.12). That (i) and (ii) from De�nition 5.2.1 hold was shown in
Example 3.8.3.

To complete the proof of Proposition 5.2.1 we still need

Lemma 5.2.2 If � is homogeneous Poisson, then for s < t; A 2 E ; Nt(A)�
Ns(A) is independent of F�

s :

Proof. Since F�
s = �(Nu( eA)j0 � u � s; eA 2 E); it suÆces to show that for

any k 2 N ; u1; : : : ; uk � s; A1; : : : ; Ak 2 E ; A 2 E ; (Nu1(A1); : : : ; Nuk(Ak))
is independent of Nt(A)�Ns(A):We do this for k = 1; writing u1 = u; A1 =eA: Then
Nt(A)�Ns(A) = (Nt(A \ eA)�Ns(A \ eA)) + (Nt(A \ eAc)�Ns(A \ eAc));

Nu( eA) = Nu(A \ eA) +Nu(A \ eAc):

Because � is homogeneous Poisson, it is seen that each of the two terms in
the expression for Nu( eA) are independent of each of the two terms in the
expression for Nt(A)�Ns(A):

Having characterized homogeneous Poisson random measures, we shall
now see how they may be used to describe certain L�evy processes, i.e. pro-
cesses with stationary independent increments.

Let X = (Xt)t�0 be a R
d�valued process, de�ned on (
;F ;Ft; P ) : As-

sume that X is a step process, i.e. X has only �nitely many jumps on �nite
intervals, is piecewise constant between jumps and right-continuous. Also
assume that X0 � x0 for some x0 2 Rd ; and that X is adapted.

De�nition 5.2.2 A Rd�valued step process X has stationary, independent
increments with respect to the �ltration (Ft) if it is adapted and for all 0 �
s < t;

(i) Xt �Xs is independent of Fs;

(ii) the distribution of Xt �Xs depends on s; t only through the di�erence
t� s:

A process with stationary, independent increments is also called a L�evy
process.

Since X is adapted, if for s < t; Xt �Xs is independent of Fs; Xt �Xs

is also independent of FX
s : Note that Xt � Xs is independent of FX

s i� for
all n 2 N ; 0 � s1 < � � � < sn � s; Xt �Xs is independent of (Xs1; : : : ; Xsn):
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Lemma 5.2.3 Suppose X has stationary, independent increments with re-
spect to (Ft): Then, for every s � 0 the process eX = ( eXu)u�0 de�ned by

eXu = Xu+s �Xs

is independent of Fs; and has the same distribution as the process (Xt�x0)t�0;
where x0 is the initial value of X:

Proof. The lemma follows if we show that for n 2 N ; 0 � u1 < � � � <
un; ( eXu1; : : : ; eXun) is independent of Fs and with the same distribution as

(Xu1 � x0; : : : ; Xun � x0): This in turn follows if it is shown that ( eXu1 ; eXu2 �eXu1 ; : : : ; eXun � eXun�1) is independent of Fs and has the same distribution as
(Xu1 � x0; Xu2 �Xu1 ; : : : ; Xun �Xun�1) (since (Xuj � x0) � (Xuj�1

� x0) =

Xuj �Xuj�1
). But eXun� eXun�1 = Xun+s�Xun�1+s is independent of Fun�1+s

and therefore independent of Fs and ( eXu1; eXu2 � eXu1; : : : ; eXun�1 � eXun�2):

Also, eXun � eXun�1 has the same distribution as Xun �Xun�1 : Repeating this

argument, one �nds that Fs; eXu1 ; eXu2 � eXu1 ; : : : ; eXun � eXun�1 are indepen-

dent, and for j � 2 ; eXuj � eXuj�1
has the same distribution as Xuj �Xuj�1

:

Since also eXu1 has the same distribution as Xu1 �X0 = Xu� x0; the desired
conclusion follows.

Let now X be an arbitrary Rd�valued step process. We identify X with
the MPP (T ;Y) = (Tn; Yn)n�1 with mark space (Rdn0 ;B

d
n0); (

�
Rd ;Bd

�
with 0

removed) where Tn is the time of the n'th jump of X; and Yn = 4XTn is the
size of that jump (so here we use a di�erent set of marks from that normally
used for describing piecewise deterministic processes, see p.19). Write � for
the RCM de�ned by (T ;Y) or X; and note that with Nt(B) = �([0; t]�B);

Nt(B) =
X
0<s�t

1(4Xs2B) (t 2 R0 ; B 2 Bd
n0); (5.13)

while X because it is a step process is determined by � through the equations

Xt = x0 +

Z
[0;t]�Rd

n0

y �(ds; dy) (t 2 R0): (5.14)

In particular we see that FX
t = F�

t :

Proposition 5.2.4 The step process X with X0 � x0 has stationary inde-
pendent increments with respect to (FX

t ) if and only if the RCM � determin-
ing X is a homogeneous Poisson random measure.
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Remark 5.2.1 It follows from the proposition and Example 3.8.3 that X
has stationary independent increments i� X is a compound Poisson process,
i.e.

Xt = x0 +
NtX
n=0

Un

where N is a homogeneous Poisson counting process and the Un are i.i.d.
Rd
n0�valued random variables, independent of N:

Proof. Suppose �rst that X has stationary independent increments. For
B 2 Bd

n0 ; s < t ; by (5.13)

Nt(B)�Ns(B) =
X

u:s<u�t

1(4Xu2B)

=
X

v:0<v�t�s

1(4 eXv2B)

with eXv = Xs+v � Xs: From Lemma 5.2.3 it follows that Nt(B) � Ns(B) is
independent of FX

s with a distribution depending on s and t through t � s
only. Assuming for the moment that ENu <1 for all u; we see that for any
B

E(Nt(B)�Ns(B)jFs) = E(Nt(B)�Ns(B)) (5.15)

= 
B(t� s)

where 
B(u) = ENu(B): But for u; v � 0;


B(u+ v) = ENu+v(B) = E(Nu(B)+ (Nu+v(B)�Nu(B))) = 
B(u)+
B(v);

and since 
B is non-decreasing, this implies that 
B(u) = �Bu for some
�B � 0: (5.15) now shows M(B) to be an (Ft)�martingale, where Mt(B) =
Nt(B)� �Bt; and thus N(B) is Poisson (�B) :

If B1; : : : ; Bk 2 B
d
n0 are disjoint, the (F

X
t )�compensators for N(B1); : : : ;

N(Bk) are (�jt)t�0; where �j = �Bj : Since by the de�nition of the N (Bj) no
two of them can jump simultaneously, (5.5) holds and from Theorem 5.1.1
it follows that the N(Bj) are independent, and we have shown that � is
homogeneous Poisson, assuming that EN t <1 for all t:

To get rid of this assumption, we show directly thatN is a Poisson process.
Let for t � 0; T1;t = inffu > tjXu 6= Xtg denote the time of the �rst jump
of X after time t: Because

(T1;t � t > v) =
\

0<u�v

(Xu+t �Xt = 0);
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Lemma 5.2.3 shows that this event is independent of FX
t and has the same

probability as the event\
0<u�v

(Xu �X0 = 0) = (T1 > v):

But then, if  (v) = P (T1 > v);

 (u+ v) = P (T1 > u+ v) = P (T1 > u ; T1;u > u+ v) =  (u) (v)

and therefore
P (T1 > v) = e��v

for some � � 0: If � = 0 ; N is the dead process (and Xt � x0; for all t) and
EN t = 0 <1: If � > 0; we get for u > t;

P (T1;t > ujFX
t ) = e��(u�t) = P (T1;t > ujFN

t ):

But if P (n)
t1:::tn denotes the conditional jump time distributions for N; then by

Lemma 3.3.3 (bi),

P (T1;t > ujFN
t ) =

P
(Nt)
Zt

(]u;1])

P
(Nt)
Zt

(]t;1])
;

where Zt =
�
T1; : : : ; TNt

�
; and this will equal e��(u�t) precisely when

P
(Nt)
T1���TNt

(]t;1]) = e�
��(t�T

Nt
):

Using this on (N t = n) for all n determines the P
(n)
t1���tn and shows that N is

Poisson �; in particular EN t = �t <1; and the preceding argument that �
is homogeneous Poisson applies.

For the converse, suppose that the RCM � determining the step process
X is homogeneous Poisson. By (5.14), for s < t;

Xt �Xs =

Z
]s;t]�Rd

n0

y �(du; dy)

which we must show is independent of FX
s = F�

s with a distribution de-
pending on s; t through t � s only. But this follows immediately from the
observation that if � is homogeneous Poisson, then for any s the restric-
tion of � to ]s;1[ � E is independent of F�

s with the same distribution ase�s :=Pn:Tn<1
"(Tn+s;Yn):
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Let X be a R�valued step process with stationary, independent incre-
ments and �nitely many jumps on �nite intervals so that Proposition 5.2.4
applies. If �t is the distribution of Xs+t �Xs (for any s) clearly

�s � �t = �s+t (s; t 2 R0)

with �t ! "0 weakly as t # 0; i.e. (�t)t�0 is a weakly continuous convolution
semigroup of probability measures on R and in particular each �t is in�nitely
divisible. As such the characteristic function �t of �t is given by (a special
form of) the famous L�evy-Khinchine formula. It is however possible to arrive
at this directly using Proposition 5.2.4: Let for K 2 N ; k 2 Z; IK;k denote
the interval

�
k�1
2K
; k
2K

�
if k 6= 0 and the interval

�
� 1

2K
; 0
�
if k = 0: From (5.14)

it follows that

Xt �X0 = lim
K!1

X
k2Z

k

2K
Nt(IK;k)

and since � is homogeneous Poisson, because the (IK;k)k2Z are mutually
disjoint we �nd that for u 2 R

�t(u) = E exp (iu (Xt �X0))

= lim
K!1

E exp

 
iu
X
k2Z

k

2K
Nt(IK;k)

!

= lim
K!1

Y
k2Z

E exp

�
iu

k

2K
Nt(IK;k)

�
;

since the random variables (Nt(In;k)k2Zp are independent. Since by Propo-
sition 5.2.1 the compensating measure for � is of the form ` 
 � with � a
positive bounded measure on Rn0 and the process N(In;k) is Poisson �(In;k)
so that

E exp (ivNt(In;k)) = exp
�
t�(In;k)(e

iv � 1)
�
;

we deduce that

�t(u) = lim
K!1

Y
k2Z

exp
�
t�(IK;k)(e

iuk2�K � 1)
�

= exp

 
lim
K!1

t
X
k2Z

�(IK;k)(e
iuk2�K � 1)

!

= exp

 
lim
K!1

t

Z
Rn0

fK(x)�(dx)

!
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where

fK(x) =
X
k2Z

�
eiuk2

�K

� 1
�
1IK;k(x)

!
K!1

eiux � 1:

Using dominated convergence, we �nally arrive at

�t(u) = exp

 
t

Z
Rn0

�
eiux � 1

�
�(dx)

!
:

Note that if X is R�valued with stationary independent increments with
�nitely many jumps on �nite intervals, but is no longer a step process, then

�t(u) = exp

 
iat + t

Z
Rn0

�
eiux � 1

�
�(dx)

!
(5.16)

for some a 2 R corresponding to considering Xt = eXt + at with eX a step
process with stationary independent increments as studied above. Finally, if
� is an unbounded positive measure, in particular �

�
Rn0
�
=1; and satis�es

that

� (Rn [�h; h]) <1;

Z
[�h;h]n0

1

y
� (dy) <1 (h > 0);

then (5.16) is the characteristic function of Xt �X0 where X has stationary
independent increments and Xt�X0�at =

P
0<s�t�Xs is the sum of jumps

for X; where the series converges absolutely,
P

0<s�t j�Xsj <1 a.s. With �
unbounded, the set of jump times is countably in�nite and dense in R+ : � is
called the L�evy measure for X: The most general form of the L�evy-Khinchine
formula for R�valued processes incorporates of course a Gaussian component
(corresponding to adding an independent scaled Brownian motion to the X
corresponding to (5.16)) and also allows for sums of jumps that need not
converge absolutely.

We only considered Rd�valued processes above, but it should be fairly
clear that Proposition 5.2.4 generalizes in a straightforward manner to V�
valued processes with stationary independent increments, where V is a vector
space.

5.3 Deterministic compensators, Poisson mea-

sures

From the point of view of describing the distribution of a CP or RCM through
its (canonical) compensator �Æ or compensating measure LÆ; the simplest



88 CHAPTER 5. EXAMPLES OF MODELS

case is that where �Æ or LÆ is deterministic (non-random). The examples we
have seen so far are the homogeneous Poisson process (Examples 2.1.2 and
3.3.1), where

�Æt = �t

for some constant � � 0; and the homogeneous Poisson measures of Section
5.2, where

LÆ = `
�

with ` Lebesgue measure on R0 and � a positive bounded measure on E:
We shall now discuss the processes determined by more general forms of

deterministic compensators or compensating measures.
Let D : R0 ! R0 be an increasing, right-continuous function with D(0) =

0:

De�nition 5.3.1 A N0�valued step process X; de�ned on some probability
space, is a non-homogeneous Poisson process with rate function D provided
X0 = 0 a.s. and X has independent increments such that for s � t; Xt �Xs

follows a Poisson distribution with parameter D(t)�D(s):

Note. The de�nition requires that for all n � 1; 0 = t0 < t1 < � � � < tn the
random variable Xtn�Xtn�1 be independent of

�
Xt1 ; : : : ; Xtn�1

�
and Poisson

(D(tn)�D(tn�1)) : As argued in Lemma 5.2.3 it then follows that for s � t;
Xt �Xs is independent of F

X
s :

Homogeneous Poisson processes are special cases of non-homogeneous
processes, so the terminology `non-homogeneous' should really be understood
as `possibly non-homogeneous' !

LetQ1 denote the canonical homogeneous Poisson process with parameter
1; i.e. the compensator for the probability Q1 on (W;H) is �Æ1;t = t: With D
right-continuous and increasing as above with D(0) = 0; de�ne the process
N� on (W;H) by

N�
u = NÆ

D(u) (u � 0):

Note that N� is increasing and right-continuous.

Proposition 5.3.1 (i) The process N� is a non-homogeneous Poisson pro-
cess with rate function D:

(ii) The process N� is a counting process if and only if D is continuous.

(iii) If D is continuous, the distribution Q� of N� has deterministic com-
pensator �Æ� given by

�Æ�t = D(t):
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Proof. (i). That N� has independent increments follows directly because
under Q1; N

Æ has independent increments. And because NÆ is Poisson (1);
for u < v; N�

v �N�
u is Poisson (D(v)�D(u)):

(ii). We have �N�
u = NÆ

D(u) � NÆ
D(u�)�: If D is continuous, �N�

u =
�NÆ

D(u) � 1 everywhere on W for all u; and N� is a counting process. If D

has a discontinuity, �D(u0) = D(u0)�D(u0�) > 0; at u0 2 R+ ; then

�N�
u0
=lim

h#0

�
NÆ
D(u0)

�NÆ
D(u0�h)

�
as a limit of Poisson random variables with parameters D(u0)�D(u0 � h);
is itself Poisson with parameter �D(u0): In particular Q1

�
�N�

u0
� 2
�
> 0

and N� is not a counting process.
(iii). The martingale properties of NÆ immediately show that

M�
u := N�

u �D(u)

is a FN�

u = HD(u)�martingale (the equality between �ltrations holds only
because D is continuous). Since D is deterministic, as a process it is FN�

u �
predictable, hence D is the FN�

u �compensator for N�; cf. Theorem 3.5.2 (a)
and Section 3.7.

The possible candidates for deterministic compensators of counting pro-
cesses are all functions D of the form above, satisfying in addition that, cf.
(3.23),

�D(u) � 1 (u � 0) : (5.17)

The proposition takes care of the case where D is continuous. If D has
discontinuities, but of course satis�es (5.17), things are more diÆcult and
the description of the process with compensator D not so nice. To treat this
case, identify N� with the MPP (T �n ; Y

�
n )n�1 where T

�
n is the time of the n'th

jump of N� and Y �
n = �N�

T �n
is the size of that jump. For y 2 N ; introduce

the counting process N�y; where

N�y
u =

X
0<r�u

1(�N�
r=y) (5.18)

is the number of jumps for N� of size y on [0; u] : Going back to the de�nition
of N� in terms of NÆ; argue that for u < v;

(N�y
v �N�y

u )y�1 is independent of HD(u): (5.19)

Since

N�
u =

1X
y=1

yN�y
u ; (5.20)
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in particular N�
u � N�y

u for all y; and so EN�y
u � EN�

u <1: From this and
(5.19) it immediately follows that each M�y; where

M�y
u = N�y

u � EN�y
u ;

is aHD(u)�martingale. Since FN�

u � HD(u) (with strict inclusion ifD has dis-
continuities on [0; u]), we have now shown that the RCM �� =

P
n:T �n<1

"(T �n ;Y �n )

has deterministic compensating measure D on R0 � N ; where

D�y(u) := D ([0; u]� fyg) = EN�y
u :

It remains to �nd EN�y
u ; which is easily done from (5.18) if y � 2 since

then the only terms appearing in the sum are for r�values with �D(r) > 0;
in which case �N�

u is Poisson (�D(u)) ; cf. Proposition 5.3.1 and its proof.
Thus

EN�y
u =

X
0<r�u

1

y!
(�D(r))y e��D(r) (y � 2):

For y = 1; use (5.18), (5.20) to obtain

EN�1
u = EN�

u �
1X
y=2

yEN�y
u

=
X

0<r�u

�D(r)e��D(r) +Dc(u);

where Dc(u) := D(u)�
P

r�u�D(r) is the continuous part of D:

De�ning N
�
by

N
�

u =
1X
y=1

N�y
u ;

the total number of jumps forN�; from (5.19) it follows thatM
�

u = N
�

u�EN
�

u

is a HD(u)�martingale, and since

EN
�

u = Dc(u) +
X

0<r�u

�
1� e��D(r)

�
we have shown

Proposition 5.3.2 If eD : R0 ! R is right-continuous and increasing witheD(u) = 0 and � eD(u) < 1 for all u; then the deterministic function eD is the
compensator of the counting process with independent increments N

�
; where
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N
�

u is the total number of jumps on [0; u] for the non-homogeneous Poisson
process process N� with rate function D given by

Dc = eDc; �D(u) = log
�
1�� eD(u)

�
;

Dc; eDc denoting the continuous part of D and eD respectively.

This result still excludes the possibility � eD(u) = 1: But if the counting

process N has deterministic compensator eD and � eD(u0) = 1 for at least one
u0; then �Nu0 = 1 a.s., i.e. a jump at u0 is forced. Proposition 5.3.2 is easily
adjusted to take this exciting option into account!

Returning to the non-homogeneous Poisson process N� with rate function
D discussed above, since we have found the FN�

u �compensator for all N�y;

we are able to read o� the Markov kernels P
�(n)
zn ; �

�(n)
zn;u generating the jump

times T �n (which are also the jump times of N
�
) and the jump sizes Y �

n

for N�: The result is (using (3.27), (3.28) and Section 3.1), writing zn =
(u1; : : : ; un; y1; : : : ; yn) where only zn such that yk � 2 implies �D(uk) > 0
are relevant,

P
�(n)

zn (u) = exp (� (D(u)�D(un)))

for u � un;

��(n)zn;u (fyg) =

8<:
1 if �D(u) = 0; y = 1

(�D(u))y

y!

e��D(u)

1� e��D(u)
if �D(u) > 0; y 2 N

for u > un; listing only the ��values > 0: Note that if �D(u) > 0; �
�(n)
zn;u is

the distribution of a Poisson �D(u) random variable conditioned to be � 1:
We turn now to the discussion of RCM's with deterministic compensat-

ing measures, so let � be a RCM with mark space (E; E) and non-random
F�
t �compensating measure D { retaining the traditional `t' as notation for

timepoints rather than the `u' used above.
De�ningD(t; A) = D ([0; t]� A) ; since ED(t; A) = D(t; A) <1; M(A) =

N(A)�D(�; A) is a martingale and Theorem 3.5.2 (b) and the results above
yield the distribution of N(A): If in particular D(�; A) is continuous, N(A)
is non-homogeneous Poisson with rate function D(�; A):

To study the joint distribution of several N(A); assume for convenience
and simplicity that D is continuous, D (ftg � E) = 0 for all t: Next, let for
r � 2; A1; : : : ; Ar 2 E be mutually disjoint, let (u1; : : : ; ur) 2 Rr ; de�ne

�(t) = E exp

 
i

rX
j=1

ujNt (Aj)

!



92 CHAPTER 5. EXAMPLES OF MODELS

(which is continuous because D is), and then show, proceeding exactly as in
Example 3.8.3, that M is a C�valued martingale, where

Mt =
1

�(t)
exp

 
i

rX
j=1

ujNt (Aj)

!
:

The conclusion is

Proposition 5.3.3 If � has a compensating measure which is deterministic
and continuous, then for any r � 2 and any A1; : : : ; Ar 2 E mutually disjoint,
the counting processes N(A1); : : : ; N(Ar) are independent and N(Aj) is a
non-homogeneous Poisson process with rate function D(�; Aj):

We have deliberately ignored any mention of �ltrations in this result. The
point is of course that if � is Ft�adapted for some �ltration (Ft) and has de-
terministic Ft�compensating measure D (not necessarily continuous), then
D is automatically Ft�predictable and hence characterizes the distribution
of �:

If again we assume that D is continuous, the Markov kernels generating
the jump times for � are given by (use (3.27))

P
(n)

zn (t) = exp
�
�
�
D(t)�D(tn)

��
(t � tn) ; (5.21)

where of course D(t) = D ([0; t]� E) : The kernels generating the jumps are
given by

�
(n)
zn;t(A) =

dD(�; A)

dD
(t) (t > tn; A 2 E) ;

cf. (3.28), in particular the conditional distribution of Yn+1 given (T1; : : : ; Tn;
Tn+1;Y1; : : : ; Yn) depends on Tn+1 only. Combining this with (5.21) we there-
fore see that ifD = �
� is the product of a continuous, positive and ���nite
mesure on R0 and a positive, bounded measure on E; then the Yn are iid with
distribution �=�(E) and independent of the sequence (Tk) :

The �nal remark we shall make is that if � has deterministic, continuous
compensator D; then it follows from Proposition 5.3.3 that � viewed as an
ordinary simple point process on R0 � E is a Poisson process with intensity
measure D; i.e. for any C 2 B0
E ; �(C) is Poisson D(C) and for any r � 2;
C1; : : : ; Cr 2 B0
E mutually disjoint the random variables �(C1); : : : ; �(Cr)
are independent. (That � is simple just means that a.s. all atoms of � have
mass 1; P

T
t;y (� (f(t; y)g) = 0 or 1) = 1).
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5.4 Non-homogeneous Markov chains

Let X be a (G;G)�valued step process with X0 � x0; de�ned on (
;F ; P ) :
Let E = G and identify X with the RCM � with mark space G determined
by the MPP (Tn; Yn)n�1 ; where Tn is the time of the n'th jump for X and
Yn = XTn is the state recahed by that jump when Tn <1: Thus, if Y0 � x0;

Xt = YNt
:

If QÆ = �(P ) is the distribution of �; we want to discuss the struc-
ture of the compensating measure LÆ for QÆ when X is a (in general non-
homogeneous) Markov chain. More precisely, we shall �nd suÆcient condi-
tions on the Markov kernels P (n); �(n) determining QÆ which ensure that X
is Markov with respect to the �ltration

�
FX
t

�
:

First some remarks on the de�nition and basic properties of general
Markov processes.

Let (Ft)t�0 be a �ltration and let X� = (X�
t )t�0 be an arbitrary measur-

able and adapted process de�ned on (
;F ;Ft; P ) with values in (G;G) : We
shall assume that one-point sets in G are measurable: fxg 2 G for x 2 G:

De�nition 5.4.1 The process X� is a Markov process with respect to the
�ltration (Ft) if for every s � t there exists a Markov kernel pst (�; �) from G
to G such that

P (X�
t 2 C jFs ) = pst (X

�
s ; C) (C 2 G) : (5.22)

X� is a time-homogeneous Markov process if in addition one may choose
the pst to depend on (s; t) through the di�erence t� s only.

The Markov kernel pst is called the transition probability from time s to
time t: Note that (5.22) does not determine pst(x; �) uniquely for all x 2 G;
but that it does hold that if pst; epst are both transition probabilities, then
P (X�

s 2 Cst) = 1; where Cst = fx 2 Gjpst(x; �) = epst(x; �)g: Note also that
one may always take pss(x; �) = "x:

In the time-homogeneous case we write pt for any of the transition prob-
abilities ps;s+t with s; t � 0:

A time-homogeneous Markov process is also called a Markov process with
stationary transition probabilities.

It is customary to call a Markov process, which is a step process, aMarkov
chain.
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Example 5.4.1 A Rd�valued process X with independent increments (i.e.
such that Xt �Xs is independent of Fs for s � t; cf. De�nition 5.2.2) with
respect to (Ft); is a Markov process with transition probabilities

pst(x;B) = �st(B � x) (s � t ; B 2 Bd); (5.23)

where �st is the distribution of Xt � Xs and B � x = fx0 � xjx0 2 Bg: If
in addition X has stationary increments, X becomes a time-homogeneous
Markov process with transition probabilities

pt(x;B) = �t(B � x); (5.24)

where �t is the distribution of any increment Xs+t �Xs:

Suppose X� is Markov with transition probabilities (pst); or, in the ho-
mogeneous case, (pt): We say that the transition probabilities satisfy the
Chapman-Kolmogorov equations if for all s � t � u; x 2 G; C 2 G;

psu(x; C) =

Z
G

pst(x; dx
0) ptu(x

0; C): (5.25)

or, in the homogeneous case, if for all s; t � 0; x 2 G; C 2 G;

ps+t(x; C) =

Z
G

ps(x; dx
0) pt(x

0; C): (5.26)

It is essential to note that e.g. (5.25) holds almost surely in the following
sense for any Markov process with transition probabilities (pst): for s � t �
u; C 2 G;

psu(X
�
s ; C) = P (X�

u 2 CjFs)

= E(P (X�
u 2 CjFt)jFs)

= E(ptu(X
�
t ; C)jFs)

=

Z
G

pst(X
�
s ; dx

0) ptu(x
0; C);

where the equalities for each given s; t; u; hold P�almost surely. Thus, given
s � t � u; C 2 G; (5.25) holds for X�

s (P )�almost all x:
We need to mention two more important facts about general Markov

processes.
Let �0 = X�

0 (P ) denote the distribution ofX
�
0 : Then the �nite-dimensional

distributions for the Markov process X� are uniquely determined by �0 and
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the transition probabilities pst: This follows by an induction argument, using
that

P (X�
t 2 C) = E (P (X�

t 2 C jZ0 ))

=

Z
G

�0(dx
0) p0t(x

0; C)

and that for n � 2; 0 � t1 < � � � < tn; C1; : : : ; Cn 2 G;

P
�
X�

t1 2 C1; : : : ; X
�
tn 2 Cn

�
= E

�
1�

X�
t1
2C1;:::;X�

tn�1
2Cn�1

�P �X�
tn 2 Cn

��Ftn�1

��
= E

�
1�

X�
t1
2C1;:::;X�

tn�1
2Cn�1

�ptn�1tn(X
�
tn�1

; Cn)

�
:

The second fact we need is a generalization of the Markov property (5.22):
for t � 0 ; let F t;X�

= �(X�
uju � t): Then for any F 2 F t;X�

;

P (F jFt) = P (F jX�
t ); (5.27)

a fact which informally may be phrased as follows: the future depends on
the past only through the present.

(5.27) is proved considering F 2 F t;X�
of the form

F =
�
X�

t1 2 C1; : : : ; X
�
tn 2 Cn

�
g;

where n 2 N ; t � t1 < � � � < tn; C1; : : : ; Cn 2 G; and then proceeding by
induction: the case n = 1 is just (5.22), and the induction step from n � 1
to n is obtained using that

P (F jFt) = E(P (F jFtn�1)jFt):

A standard extension argument �nally gives (5.27) for all F 2 F t;X�
:

We now go back to the setup from the beginning of this section with X
a step process and � the RCM describing X:

The basic ingredient needed to make X a Markov chain (with respect to
the �ltration (FX

t )) is a collection of time dependent transition intensities,
i.e. a function q : R0 �G� G ! R0 such that

(i) (t; x)! qt(x; C) is B0 
 G�measurable for any C 2 G;

(ii) C ! qt(x; C) is a positive bounded measure on (G;G) for any t 2
R0 ; x 2 G;
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(iii) qt(x; fxg) = 0 for all t 2 R0 ; x 2 G:

Here (iii) ensures that at each �nite Tn; X performs a genuine jump, XTn 6=
XTn� a.s. which means in particular that ignoring a null set the �ltrations
agree,

�
FX
t

�
= (F�

t ) :
Introduce qt(x) = qt(x;G): The next result in particular establishes for-

mally the RCM construction of time-homogeneous Markov chains from Ex-
ample 2.2.3.

Theorem 5.4.1 A suÆcient condition for the step process X to be Markov
with respect to the �ltration (FX

t ); is that there exist time dependent transition
intensities (qt(x; C)) such that the Markov kernels P (n); �(n) determining the
distribution QÆ of the RCM � are given by

P
(0)
(t) = exp

�
�

Z t

0

qs(x0) ds

�
; �

(0)
t (C) =

qt(x0; C)

qt(x0)
;

and for n 2 N ; t1 < � � � < tn � t; y1; : : : ; yn 2 G;

P
(n)

zn (t) = exp

�
�

Z t

tn

qs(yn) ds

�
; �

(n)
zn;t(C) =

qt(yn; C)

qt(yn)

with t > tn in the last identity.
If qt does not depend on t; then X is a time-homogeneous Markov chain.

Proof. The proof relies on Lemma 3.3.3. Let t > 0 and consider the
conditional distribution of �sX := (Xu)u�s given FX

s : We want to show that
it depends on the past FX

s through Xs only. Conditioning on FX
s amounts to

conditioning on N s = k; T1 = tt; : : : ; Tk = tk; Y1 = y1; : : : ; Yk = yk for some
k 2 N ; 0 < t1 < � � � < tk � s; y1; : : : ; yk 2 G: Since also �sX is determined
by �s�; the restriction of � to ]s;1[ � E; cf. p.37, and since Xs = yk on
the set of conditioning, the desired Markov property for X follows, using the
lemma, if we show that

P
(k)

zk
(t)=P (k)

zk
(s)

for t � s;
�
(k)
zk;t

for t > s and
P

(k+n)
join(zk;ezn); �

(k+n)
join(zk;ezn);t

for n 2 N ; ezn = �t1; : : : ; tn; y1; : : : ; yn� with t < et1 < � � � < etn < t; ey1; : : : ; eyn 2
G, all of them depend on zk = (t1; : : : ; tk; y1; : : : ; yk) only through yk: But
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this is immediate using the explicit expressions for the P (n); �(n) from the
statement of the theorem.

The time-homogeneous case follows by noting that when qt does not de-
pend on t; the conditional distribution of e�s given F�

s depends on s and Xs

through Xs only. Here

e�s = X
n:s<Tn<1

"(Tn�s;Yn)

is �s� translated backwards in time to start at time 0:

With the setup used in Theorem 5.4.1, the RCM � determining the
Markov chain X; has a compensating measure L; which has a predictable
intensity process � = (�(C))C2G (recall that L([0; t] � C) =

R t
0
�s(C)ds)

given by
�t(C) = qt(Xt�; C);

as follows from Proposition 3.4.1. Note that

�t(C) = qt(Xt�; CnfXt�g)

and that if t ! �t(C) has limits from the right, it follows from Proposition
3.4.2 (b), using (5.27) that

�t+(C) = qt+(Xt; CnfXtg)

= lim
h#0

1

h
P (Tt;1 � t+ h; Xt;1 2 CnfXtgjXt);

where Xt;1 is the state reached by X at the time of the �rst jump strictly
after t and Tt;1 is the time of that jump. Typically the right hand side equals
lim 1

h
pt;t+h (Xt; Cn fXtg) and the identity may be written

qt+(Xt; C) = lim
h#0

1

h
(pt;t+h(Xt; C)� "Xt(C)) ;

the expression usually associated with the concept of transition intensities.
(The diagonal intensities qt (x; x) in Markov chain theory are de�ned as
lim 1

h
(pt;t+h (x; fxg)� 1) = �qt(x)).

It is perfectly possible to have Markov chains without transition intensi-
ties as described above. The proof of Theorem 5.4.1 carries over to the case
where the Markov kernels P (n); �(n) have the form

P
(0)

(t) = F x0(t); �
(0)
t (C) = rt (x0; C) ;

P
(n)

zn (t) = F yn(t)

F yn(tn)
; �

(n)
zn;t(C) = rt (yn; C) :
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where for each x 2 G; Fx is the distribution function for a probability on
R+ with F x = 1 � Fx the corresponding survivor function, and where for
each t; rt is a transition probability on G; such that rt(x; fxg) = 0 for all x
(corresponding to qt(x0; C)=qt(x0) from Theorem 5.4.1).

For the expression for P (n) to make sense, it is natural to assume that
F x(t) > 0 for all t 2 R0 : Even this restriction can be omitted by using families�
F xjs

�
x2G;s�0

of survivor functions, with each F xjs the survivor function for

a probability on ]s;1] ; consistent in the sense that if s < t and F xjs (t) > 0;
then

1

F xjs (t)
F xjs = F xjt on ]t;1] :

One then de�nes
P

(n)

zn (t) = F ynjtn (t):

5.5 The basic models from survival analysis

Let X1; : : : ; Xr be R+�valued random variables, to be thought of as the
failure times of r di�erent items.

We shall assume that the Xi are independent and that the distribution
of Xi has a Lebesgue density corresponding to the hazard function ui;

P (Xi > t) = exp

�
�

Z t

0

ui(s)ds

�
:

De�ne the counting process N i by

N i
t = 1(Xi�t):

Then N i has at most one jump and has FN i

t �compensator �i
t =

R t
0
�isds;

where

�is = ui(s)1(Xi�s)

= ui(s)1(N i
s�=0):

The aggregate � of (N1; : : : ; N r) is the RCM with mark space E = f1; : : : ; rg
such that

�([0; t]� A) = Nt(A) =
X
i2A

N i
t (A � E):

(Since the Xi have continuous distributions and are independent, (5.3) is
satis�ed).
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By Theorem 5.1.1 (a), the F�
t �compensating measure for � is given by

the compensators �(A) =
P

i2A �
i; with �i as above.

It is of particular interest to consider the case where the Xi are identi-
cally distributed, ui = u for 1 � i � r: With N =

Pr
i=1N

i (the counting
process recording the total number of failures observed at a given time), the
F�
t �compensator for N is � =

Pr
i=1 �

i =
R �
0
�s ds; where

�s = u(s)Rs�

with Rs� the number of items at risk just before time s;

Rs� =
rX
i=1

1(N i
s�=0) =

rX
i=1

(1�N i
s�) = r �N s�:

Notice in particular that M := N � � is a F�
t �martingale. Since how-

ever �s depends on s and N s� alone, � is also (FN
t )�predictable and the

(FN
t )�compensator for N: It follows therefore, that if QÆ is the distribution

(on (W;H)) of N; the compensator �Æ for QÆ is �Æt =
R t
0
�Æsds; where

�Æs = u(s)(r �NÆ
s�)

+ (5.28)

with the +�sign added to give an intensity process de�ned on all of W;
which is everywhere � 0:

From the discussion in Section 5.4 it follows that the fact that �s is a
function of s and N s� only, also implies thatN is a non-homogeneous Markov
chain, with state space f0; 1; : : : ; rg; initial state N 0 � 0: The transition
probabilities are

pst(k; n) = P (N t = njN s = k);

non-zero only if 0 � k � n � r; 0 � s � t; and may be computed explicitly:
let

F (t) = exp

�
�

Z t

0

u(s) ds

�
be the survivor function for the distribution of the Xi; F = 1 � F the
distribution function. Then for k � n; s � t;

pst(k; n) = P (Xi 2 ]0; t] for n values of i jXi 2 ]0; s] for k values of i)

=

�
r

k;n;r�n

�
(F (s))k(F (t)� F (s))n�k(F (t))r�n�

r
k

�
(F (s))k(F (s))r�k

=

�
r � k

r � n

��
1� exp

�
�

Z t

s

u

��n�k

exp

�
� (r � n)

Z t

s

u

�
:
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Thus, conditionally on N s = k; N t � k follows a binomial distribution (r �

k; 1� exp
�
�
R t
s
u
�
):

The transition probabilities are also determined by the time dependent
transition intensities

qt(k; n) = lim
h#0

1

h
(pt;t+h(k; n)� Ækn);

(at least when e.g. u is continuous, so the limits exists), where the only
non-zero intensities are qt(k; k + 1) = �qt(k; k), and where

qt(k; k + 1) = (r � k)u(t)

as is seen by either using the expressions for the transition probabilities
directly or referring to Proposition 3.4.2 (a), (5.28) and the fact that

QÆ(NÆ
t+h �NÆ

t � 1jHt) = 1� pt;t+h(N
Æ
t ; N

Æ
t ):

What we have discussed so far is the most elementary of all models in sur-
vival analysis. An important generalization arises by considering models for
right-censored survival data. It is still assumed that the Xi are independent
with hazard functions ui; but due to right-censoring, not all Xi are observed.
Formally, apart from X1; : : : ; Xr; we are also given the censoring variables
V1; : : : ; Vr; which are R+�valued random variables. What is observed are the
pairs (Si; Æi) of random variables where

Si = Xi ^ Vi; Æi = 1(Xi�Vi):

If Æi = 1; Xi is observed, while if Æi = 0; the censoring time Vi is observed,
and all that is known about the unobserved failure time Xi is that it exceeds
(is strictly larger than) Vi:

For each i; introduce a counting process N i with at most one jump,

N i
t = 1(Xi�t^Vi):

Thus N i has one jump precisely when Xi < 1 and Xi is observed, and no
jump if either Xi =1 or Xi is not observed. If there is a jump, it occurs at
time Xi:

So far we have said nothing about the joint distribution of the Vi; either
on their own or jointly with the Xi: Now let Ft be the ��algebra generated
by the failures and censorings observed to occur in [0; t]: Formally,

Ft = �(Si1(Si�t); Æi1(Si�t))1�i�r:
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(Note that (Si > t) 2 Ft: since Si > 0; Si1(Si�t) = 0 i� Si > t). What is
usually assumed about a model for right-censored survival data, is then that
for every i; M i is a Ft�martingale, where

M i
t = N i

t �

Z t

0

�isds; �is = ui(s)I is; (5.29)

that (M i)2 � �i is a martingale, and �nally that M iM j is a martingale for
i 6= j: Here I i in (5.29) is the Ft�predictable indicator

I is = 1(Si�s);

which is one when item i is still at risk at time s, i.e. just before s; i had as
yet neither been censored nor observed to fail.

There are several comments to be made on these martingale assumptions.
The �rst is that even though it is always assumed that theXi are independent
with hazard functions ui; requiring thatM

i be a martingale is not enough to
specify the joint distribution of (X1; : : : ; Xr;V1; : : : ; Vr): To see why this is so,
think of the observations (Si; Æi) as a MPP (T ;Y) ; where the Tn when �nite
are the distinct �nite values of the Si ordered according to size, and where Yn;
if Tn <1; lists either the item i observed to fail at time Tn (if any), and/or
those items j observed to be censored at Tn: (Without any assumptions on the
structure of the censoring pattern, it is perfectly possible for the censorings of
several items to occur simultaneously, and even to coincide with the observed
failure time of some other item). As mark space we could use

E := f(i; A) : 1 � i � r; A � f1; : : : ; rgnfigg[f(c; A) : ; 6= A � f1; : : : ; rgg;

where the mark (i; A) means `i observed to fail, all j 2 A censored' and the
pure censoring mark (c; A) means `no failures observed, all j 2 A censored'.
With this setup the �ltration generated by (T ;Y) is precisely (Ft) and we
know that to specify the distribution of the MPP, one must write down the
Ft�compensators for all the counting processes Ny; Ny

t =
P1

n=1 1(Tn�t;Yn=y)
for arbitrary y 2 E: All that is done in (5.29) is to give the compensator for

N i =
X

A:(i;A)2E

N (i;A);

so not even the distribution of the observations (Si; Æi) is determined by
(5.29), much less of course the joint distribution of all (Xi; Vi): The message
is that with (5.29) and the assumption that the Xi are independent with
hazards ui; the model for censored survival data is only partially speci�ed.



102 CHAPTER 5. EXAMPLES OF MODELS

Note that the assumptions about the martingale structure of (M i)2 and
M iM j presented after (5.29) are direct consequences of (5.29) and Proposi-
tion 3.5.3 (b), so are not new conditions.

In the model without censoring discussed initially we have V1 � V2 �
� � �Vr � 1; and then I is = 1(Xi�s) and as we saw earlier, (5.29) is in fact
satis�ed.

We shall give some other examples of censoring models, where (5.29)
holds.

Suppose �rst that for 1 � i � r; Vi � vi; where vi 2]0;1] is a given
constant. Observing all (Si; Æi) then amounts to observing the independent
counting processes N i;

N i
t = 1(Xi�t^vi):

With T i
1 the �rst (and only) jump time for N i;

P (T i
1 > t) = F i(t ^ vi);

F i denoting the survivor function F i(t) = exp(�
R t
0
ui) for the distribution

of Xi: Thus the distribution of T i
1 has hazard function

ui;(0)(t) =

�
ui(t) (t � vi)
0 (t > vi)

and the compensator for N i has Ft�predictable intensity process

�it = ui(t)1[0;vi](t)1(N i
t�=0) = ui(t)I

i
t ;

i.e. (5.29) holds.
As a second example, suppose that for each i; Xi and Vi are independent,

that the di�erent pairs (Xi; Vi) are independent and that Vi for all i has a
distribution with Lebesgue density gi: Identify any given observable pair
(Si; Æi) with a MPP described by the two counting processes

N i
t = 1(Xi�t^Vi); N c;i

t = 1(Vi�t;Vi<Xi);

(which makes sense since P (Xi = Vi < 1) = 0). Then N i; N c;i combined
have at most one jump in all, occurring at time Si: Hence, to �nd the com-

pensating measure (with respect to (FN i;Nc;i

t )), we need only �nd the hazard
function ui;(0) for the distribution of Si; and the conditional jump distribution

�i(t) := �
i;(0)
t (fig) = P (Xi � VijSi = t):

Clearly, if uci is the hazard function for gi;

ui;(0)(t) = ui(t) + uci(t); (5.30)
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while �i is determined by the conditionZ
B

�i(t)P (Si 2 dt) = P (Xi � Vi; Si 2 B) (B 2 B0):

But (fi denoting the density for Xi; Gi the survivor function for Vi)

P (Xi � Vi; Si 2 B) = P (Xi � Vi; Xi 2 B))

=

Z
B

Gi(xi)fi(xi) dxi;

and since P (Si > t) = F i(t)Gi(t); Si has density F igi + fiGi and soZ
B

�i(t)P (Si 2 dt) =

Z
B

�i(t)
�
F igi + fiGi

�
dt:

Consequently

�i =
fiGi

F igi + fiGi

=
ui

ui + uci

(since fi = uiF i; gi = uciGi), and comparing with (5.30) it is seen that

the intensity process �i for the FN i;Nc;i

t �compensator for N i is given by
(5.29). Because of the independence of the pairs (Xi; Vi); using Theorem
5.1.1 (a) it follows that (5.29) holds (with (Ft) the �ltration generated by
(N i; N c;i)1�i�r).

It is in fact true that (5.29) holds under much more general independence
assumptions: it is enough that X1; : : : ; Xr are independent with hazards ui;
and that the random vector V = (V1; : : : ; Vr) is independent of (X1; : : : ; Xr):
To see this, consider �rst the conditional distribution of the counting pro-
cesses N i given V = v; v = (v1; : : : ; vr): Since V is independent of the Xi

this is the same as the distribution of the N i; assuming the censoring times
Vi to be identically equal to the given constants vi; a situation where we have
already seen that (5.29) holds, and have then found the compensators for the
N i: A small amount of work shows that this amounts to saying that the N i

(with V random and independent of the Xi) have compensatorsZ �

0

e�is ds; e�is = �i(s)Ii(s)

with respect to the �ltration ( eFt); where eFt = �(V;N i
s)0�s�t;1�i�r: But Ft �eFt and since the compensators are Ft�predictable, we deduce that (5.29) is

satis�ed.
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A di�erent example of a model for right-censoring for which (5.29) holds:
let X1; : : : ; Xr be independent with hazard function ui for Xi: De�ne V1 =
� � � = Vr = X(m) withX(1) � X(2) � � � � � X(r) the order statistics. (Since the
Xi have continuous distributions, the �nite Xi�values are distinct). Clearly,
there is a strong dependence between theXi and the Vi: Nevertheless it is easy
to see that (5.29) holds: start with eN i

t = 1(Xi�t); and let e� =
P

n:eTn<1
"( eTn;eYn)

denote the RCM with mark space f1; : : : ; rg determined from the eN i: The
observations (Si; Æi)1�i�r arising from censoring at X(m) are identi�ed with
the counting processes

N i
t = 1(Xi�t;Xi�X(m));

corresponding to a RCM � =
P

n:Tn<1

"(Tn;Yn) with mark space f1; : : : ; rg:

Clearly (Tk; Yk) = (eTk; eYk) for k � m; Tm+1 = Tm+1 = � � � = 1: So the
Markov kernels determining � agree with those of e� up to and including the
time of the m'th jump. We know the compensators for e� and deduce the
desired structure for those of �:

In conclusion of this discussion of censoring models we note that there
are lots of other censoring problems for which (5.29) holds (always assuming
that the Xi are independent with hazards ui), without V and the Xi being
independent.

A di�erent question, that can be given an aÆrmative answer, is the fol-
lowing: suppose only that the joint distribution of the (Si; Æi) satis�es the
martingale property (5.29) for all i; but do not otherwise suppose anything
about the distribution of the Xi: Is this assumption always compatible with
the requirement that the Xi be independent with hazard functions ui?

One of the most versatile of all models used in survival analysis is the
Cox regression model. Here the intensity for failure of an item is allowed to
depend on an observable process of covariates which contains information
about di�erent characteristics for that item.

The model is typically only partially speci�ed, describing the intensity
for failure, but not the distribution of the covariates. The model allows for
censoring.

Formally, suppose given a �ltered space (
;F ;Ft; P ) and let for 1 � i �
r; �i be an Rp�valued Ft�predictable process (the covariate process for i
represented as a column vector), let Vi 2]0;1] be the censoring time, Xi the
failure time for item i; and assume that the counting process N i;

N i
t = 1(Xi�t^Vi)
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is Ft�adapted, and that the f0; 1g�valued process I i;

I it = 1(t�Xi^Vi)

is Ft�predictable.
The fundamental assumption in the Cox model is then that for every i

the Ft�compensator for N i has Ft�predictable intensity �
i;

�it = u(t)e�
T �itI it ; (5.31)

where u is the hazard function for some distribution on R+ and �T =
(�1; : : : ; �p) is a row vector of regression parameters. The `model' arises
by allowing the baseline hazard u and the ��parameters to vary.

Note that if � = 0 we get a model for right-censoring as discussed above
(with all ui = u).

In the case of no censoring (all Vi � 1) and each � it = & i(t) a given, non-
random function of t; take (Ft) to be the �ltration generated by (N i)1�i�r:
It is then clear that X1; : : : ; Xr are independent such that for 1 � i � r; the
distribution of Xi has hazard function

ui(t) = u(t)e�
T &i(t):

In general with random covariates no such expression is valid for the fail-
ure time hazards and the best interpretation of the Cox model is through
expressions like (cf. Proposition 3.4.2),

u(t+)e�
T �it+ = lim

h#0

1

h
P (t < Xi � t+ hjFt) on the set (Xi ^ Vi > t)

describing the imminent risk of failure.
With only the intensities (5.31) given of course hardly anything is said

about the distribution of the censoring times and covariates. With all the
�i e.g. piecewise deterministic processes determined from certain RCM's, a
full speci�cation of the model could be given involving not only the failure
intensities (5.31) but also censoring intensities (possibly jointly or jointly with
a failure) and intensities describing the jumps of the �i: Such speci�cations
are never given in statistical practice which makes model based prediction of
mean survival times and other such relevant quantities virtually impossible
in the Cox regression model!
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Chapter 6

Piecewise deterministic Markov

processes

6.1 De�nition and construction

Markov chains are Markov processes that are piecewise constant with only
�nitely many jumps on �nite time intervals. They were treated in Example
2.2.3 (time-homogeneous chains) and in greater generality and detail in Sec-
tion 5.4 and are special cases of the class of Markov processes we shall now
discuss, which in turn are special cases of the piecewise deterministic pro-
cesses introduced p.19. For some of the basic properties of Markov processes,
see Section 5.4.

So let X = (Xt)t�0 be a process with state space (G;G); where G is a
topological space such that fxg 2 G for all x 2 G, assume that X0 � x0 for
some given x0 2 G; that X has only �nitely many discontinuities on �nite
time intervals, and that with Tn the time of the n'th jump (discontinuity),
Yn the state reached by the jump,

Xt = f
(N t)
Ztjx0

(t) (6.1)

with N t the total number of jumps on [0; t]; Zt =
�
T1; : : : ; TNt

;Y1; : : : ; YNt

�
and with each t ! f

(n)
znjx0

(t) a continuous function assumed to satisfy that

f
(n)
znjx0

(t) is jointly measurable in the arguments x0; zn = (t1; : : : ; tn; y1; : : : ; yn)

and t: Finally, the f (n) satisfy the boundary conditions

f
(0)
jx0

(0) = x0; f
(n)
znjx0

(tn) = yn:

The process X; piecewise continuous by assumption, is identi�ed with
the MPP (Tn; Yn) with mark space (G;G); and with the corresponding RCM

107
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�: It is utterly boring but perfectly possible to show that (ignoring a null
set if necessary) the random variables (Tn; Yn) are F

X�measurable (FX =
�(Xt)t�0) and that the �ltrations (FX

t ) and (F
�
t ) agree, at least if (6.2) below

holds. (For instance, that T1 is FX�measurable follows from

(T1 > t) =
\

q2Q0 ;q�t

�
Xq = f (0)

x0 (q)
�
).

Note that by (6.1) and Proposition 3.2.1 (bii), it is clear thatX is F�
t �adapted.

The distribution of X is determined by that of � and its Markov kernels
P

(n)
znjx0

and �
(n)
zn;tjx0

(depending on x0), through (6.1). However, the identi�-

cation between X and � and the �ltrations
�
FX
t

�
and (F�

t ) works only if,

with the f
(n)
znjx0

(t) continuous functions of t as above, the Tn are true jump

times for X: on (Tn <1) it must hold a.s. that XTn 6= XTn�. In terms of
the Markov kernels generating the distribution of (Tn; Yn) this means that

�
(n)
zn;tjx0

�n
f
(n)
znjx0

(t)
o�

= 0 (6.2)

for almost all values (zn; t) of (Zn; Tn+1) : (While always (6.1) determines X
from �; to go the other way one needs some mechanism for identifying the Tn
{ �nding the Yn = XTn is then immediate. Here we focus on the Tn being the
jump times for X; but in general one might just add to X the information
about when the Tn occur, for instance by introducing states (x;mark) to
signify the occurrence of a jump for �: In that case one need not assume
the f

(n)
znjx0

to be continuous and X is nothing but a F�
t �adapted process, cf.

Proposition 3.2.1. Also, as marks Yn one need not useXTn { other possibilities
are Yn = (XTn�; XTn) or, in the case of Rd�valued processes, Yn = �XTn as
was done in Section 5.2. We shall not discuss these generalizations further).

The distribution of X being described by the distribution of �; the prob-
lem we shall now discuss is that of �nding out what structure must be im-
posed on the Markov kernels P

(n)
znjx0

; �
(n)
zn;tjx0

and the functions f
(n)
znjx0

; in or-
der for X to be a Markov process, and, in particular, a time-homogeneous
Markov process. We shall furthermore impose the constraint that the transi-
tion probabilities of the Markov processes do not depend on the initial state
x0:

For s � 0; consider the conditional distribution of �sX = (Xt)t�s given
FX
s : By (5.27) X is Markov i� this depends on the past FX

s through Xs

only. Conditioning on FX
s amounts to conditioning on N s = k; Zk = zk =

(t1; : : : ; tk; y1; : : : ; yk) for some k 2 N0 ; 0 < t1 < � � � < tk � t; y1; : : : ; yk 2 G
(cf. Corollary 3.2.2). On the set (N s = k; Zk = zk); by (6.1),

Xs = f (k)
zkjx0

(s); (6.3)
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and until the time Ts;1 of the �rst jump after s; X follows the deterministic
function

t! f
(k)
zkjx0

(t) (t � s):

Copying the proof of Theorem 5.4.1 and referring to Lemma 3.3.3, it now
follows that for X to be Markov with transitions that do not depend on x0,
it is suÆcient that the following six quantities (for arbitrary k; x0; t1; : : : ; tk;
y1; : : : ; yk) depend on these 2k + 2 variables through Xs as given by (6.3)
only:

f (k)
zkjx0

(t) (t � s);

P
(k)

zkjx0
(t)=P

(k)

zkjx0
(s) (t � s) (6.4)

�
(k)
zk;tjx0

(t � s)

and, for n 2 N ; s < et1 < � � � < etn; ey1; : : : ; eyn 2 G with ezn = (et1; : : : ;etn; ey1;
: : : ; eyn)

f (k+n)
join(zk;ezn)jx0
P (k+n)
join(zk;ezn)jx0
�(k+n)
join(zk;ezn);tjx0

�
t > etn� :

Starting with (6.4), the requirement that this quantity depends on Xs only
amounts to requiring that for some function �st;

f
(k)
zkjx0

(t) = �st(f
(k)
zkjx0

(s)): (6.5)

Taking s = tk and recalling the boundary condition f
(k)
zkjx0

(tk) = yk gives

f
(k)
zkjx0

(t) = �tk;t(yk):

Inserting this general expression for f (k) in (6.5), and changing the notation
a little gives

�su(y) = �tu(�st(y)) (0 � s � t � u; y 2 G); (6.6)

which together with the boundary conditions

�tt(y) = y (t 2 R0) (6.7)

are the basic functional equations describing the deterministic behavior of a
piecewise deterministic Markov process: (6.1) becomes

Xt = �TNt
;t(YNt

) (6.8)
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with TN t
= 0; YNt

= Y0 � x0 on (N t = 0): More compactly (6.6) and (6.7)
may be written

�su = �tu Æ �st (0 � s � t � u); �tt = id (t � 0);

id denoting the identity on G: In particular the �st form a two-parameter
semigroup under composition.

Having determined the structure of the piecewise deterministic part of
the process, it is now an easy matter to prove the following result, where
D := f(s; t; y) 2 R2

0 �G : s � tg and (t; y)! qt(y) is a measurable function
from R0 � G to R0 ; while for every t 2 R0 ; pt is a transition probability
(Markov kernel) on G such that (t; y)! pt(y; C) is measurable for all C and
such that for all t; y

pt (y; fyg) = 0; (6.9)

as is essential to ensure that X has a discontinuity at each �nite Tn; cf. (6.2).

Theorem 6.1.1 (a) Suppose � : D ! G is a measurable function which
satis�es (6.6), (6.7) and is such that t! �st(y) is continuous on [s;1[
for all s 2 R0 ; y 2 G: Then the piecewise deterministic process X given
by X0 = Y0 � x0 and

Xt = �TNt
;t(YNt

)

is a Markov process with transition probabilities that do not depend on
x0; provided the Markov kernels P

(n)
znjx0

; �
(n)
zn;tjx0

determining the distri-
bution of the RCM � recording the jump times for X and the states
reached by X at the time of each jump, are of the form

P
(0)

jx0
(t) = exp

�
�

Z t

0

qs(�0;s(x0)) ds

�
; (t 2 R0)

�
(0)
tjx0

(C) = pt(�0;t(x0); C) (t 2 R0 ; C 2 G)

and for n 2 N; t1 < � � � < tn � t; y1; : : : ; yn 2 G

P
(n)

znjx0 (t) = exp

�
�

Z t

tn

qs(�tn;s(yn)) ds

�
;

�
(n)
zn;tjx0

(C) = pt(�tn;t(yn); C) (C 2 G);

with t > tn in the last identity.

(b) The piecewise deterministic Markov process X determined by �tu(y);
qt(y); pt(y; C) is time-homogeneous with transition probabilities that

do not depend on x0, if there exists a measurable function e� : R0 �
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G ! G with e�0 (�) = id and t ! e�t(y) continuous on R0 for all y; a
measurable function eq : G ! R0 and a transition probability ep on G
with ep (y; fyg) = 0; such that for all s � t; y 2 G

�st(y) = e�t�s(y); qt(y) = eq(y); pt(y; C) = ep(y; C):
Notation. In the sequel we always write �; q; p rather than e�; eq; ep in the

time-homogeneous case.

Remark 6.1.1 qt(y) is the intensity for a jump to occur at time t if the
process at that time is in state y: pt(y; C) is interpreted as the conditional
probability that a jump leads to a state in C; given that the jump occurs at
time t from state y:

Note that in the time-homogeneous case (6.6), (6.7) becomes

�s+t(y) = �s (�t(y)) (s; t � 0; y 2 G); �0(y) = y (y 2 G) (6.10)

or, in compact form
�s+t = �s Æ �t; �0 = id :

Thus the �t form a one-parameter commutative semigroup under composi-
tion.

Proof. (Theorem 6.1.1). For part (a) we must show that (6.4) and the
three quantities after that depend on k; x0; zk through Xs = �tk;s(yk) only.
For (6.4) this follows from (6.5) and (6.6), cf. the argument on p.109 leading
to (6.6). Next

P
(k)

zkjx0
(t)

P
(k)
zkjx0

(s)
= exp

�
�

Z t

s

qu(�tk;u(yk)) du

�

= exp

�
�

Z t

s

qu(�su(Xs)) du

�
;

�
(k)
zk;tjx0

= pt(�tk;t(yk))

= pt(�st(Xs));

again using (6.6). As for the last three quantities, f
(k+n)
join(zk;ezn)jx0 ; P

(k+n)
join(zk;ezn)jx0 ;

�
(k+n)
join(zk;ezn);tjx0 ; they depend on etn; eyn and (in the case of �) t only, in particular

they do not depend on either of k; x0 or zk: This completes the proof of (a).
The proof of part (a) relies on an identi�cation of the conditional dis-

tribution of �sX given FX
s : Here s 2 R0 is given but arbitrary, so when
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saying that the conditional distribution depends on Xs only, we really mean
that it depends on Xs and the constant s: To obtain a time-homogeneous
X; this dependence on s must be eliminated and thus, to prove (b), one
must show that when �; q; p are of the form given in part (b), (6.4) and
the four quantities after (6.4), which we already know to depend on s and

Xs = �tk;s(yk) =
e�s�tk (yk) only, either do not depend on s or, when eval-

uating a certain quantity at a time-point t � s depends on t through t � s
alone. But this is immediate since for instance

P
(k)

zk
(t)

P
(k)

zk
(s)

= exp

�
�

Z t

s

eq(e�u�s(Xs)) du

�
= exp

�
�

Z t�s

0

eq(e�u(Xt)) du

�
etc. (See also the last part of the proof of Theorem 5.4.1 for a more formal
argument).

We shall discuss further the structure of PDMP's and begin with a dis-
cussion of the solutions to the homogeneous semigroup equation (6.10).

It is immediately checked that a general form of solutions are obtained
by considering a continuous bijection S : G ! eG; where eG is a topological
vector space, and de�ning

�t(y) = S�1 (S(y) + tv0) (6.11)

for some v0 2 eG: In particular, if G = Rd one may take eG = G with S a
homeomorphism on Rd :

Assuming that G = R ; it is also possible to obtain partial di�erential
equations for solutions of (6.10). By assumption t! �t(y) is continuous, in
particular lims#0 �s(y) = �0(y) = y: Suppose now that � is di�erentiable at
t = 0;

lim
s#0

1

s
(�s(y)� y) = a(y)

exists as a limit in R : Then for t 2 R0 ; using (6.10)

Dt�t(y) = lim
s#0

1

s
(�s+t(y)� �t(y))

= lim
s#0

1

s
(�s(y)� y)

�t(�s(y))� �t(y)

�s(y)� y

= a(y)Dy�t(y)
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so, assuming that the partial derivatives exist we arrive at the �rst order
linear partial di�erential equation

Dt�t(y) = a(y)Dy�t(y) (6.12)

with the boundary condition �0(y) = y:
Becuse the �t commute under composition, a di�erential equation di�er-

ent from (6.12) is also available, viz.

Dt�t(y) =lim
s#0

1

s
(�s (�t(y))� �t(y))

resulting in the non-linear di�erential equation

Dt�t(y) = a(�t(y)): (6.13)

Examples of solutions corresponding to di�erent choices of a are essen-
tially (apart from the �rst example and for the others, apart from possible
problems with domains of de�nition) of the form (6.11) with S satisfying
v0=S

0 = a (where now v0 2 R). Some examples where K is a constant:

(i) If a � 0; �t(y) = y; corresponding to the step process case.

(ii) If a(y) = K; then �t(y) = y +Kt; yielding piecewise linear processes.

(iii) If a(y) = Ky; then �t(y) = yeKt.

(iv) If y > 0 only and a(y) = K
y
; then �t(y) =

p
y2 + 2Kt; a solution that

cannot be used on all of R0 if K < 0: (However, it may still be possible
to extend to a complete solution of (6.10) by forcing a jump when the
�t(y) reaches the critical value 0).

(v) More generally, if y > 0 and a(y) = Ky�; where � 6= 1 ; then �t(y) =�
y1�� +K (1� �) t

�1=(1��)
:

(vi) If a(y) = Ke�y; then �t(y) = log(ey +Kt):

A fairly general form of solutions to the functional equation (6.6) in the
non-homogeneous case is obtained by recalling the standard space-time de-
vice: if X is non-homogeneous Markov, then (t; Xt) is time-homogeneous
and piecewise deterministic with, trivially, the time component increasing
linearly over time with slope 1. With eS a homeomorphism from the state
space R0 � G for (t; Xt) to R0 � eG; with eG a topological vector space, this
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makes it natural to look for eS of the form eS(t; y) = (t; St(y)) with the deter-

ministic part of (t; Xt) given by (6.11), using eS instead of S; (s; y) instead
of y and (1; v0) instead of v0: The end result is that with (St)t�0 a family of

homeomorphisms from G to eG; the functions (�st)0�s�t given by

�st(y) = S�1
t (Ss(y) + (t� s) v0)

for some v0 2 eG satisfy the non-homogeneous equation (6.6) and the bound-
ary condition (6.7).

We next discuss intensity processes. Since all P (n) have hazard functions

uznjx0 (t) = qt(�tn;t(yn));

as a consequence the MPP (Tn;Yn)n�1 has a F
�
t �predictable intensity process

�; so that �t(C) =
R t
0
�s(C)ds: Using Proposition 3.4.1 and the expressions

for the u(n); �(n); it follows using (6.8) that

�t(C) = qt(Xt�)pt(Xt�; C); (6.14)

and in the time-homogeneous case,

�t(C) = q(Xt�)p(Xt�; C): (6.15)

The Markov property of X is re
ected in the fact that �t(C); which is
FX
t �predictable, depends on the past (Xs)0�s<t through Xt� only.
It is quite easy to generalize Theorem 6.1.1 to the case, where the P (n) do

not have densities: imitating the proof one only has to verify that (6.4) and
the quantities listed after that, depend on the past through Xs only. The
result is

Theorem 6.1.2 (a) Suppose � : D ! G is a measurable function which
satis�es (6.6), (6.7) and is such that t! �st(y) is continuous on [s;1[
for all s 2 R0 ; y 2 G: The piecewise deterministic process X given by
X0 � x0 and

Xt = �TNt
;t(YNt

)

is a Markov process with transitions that do not depend on x0; provided
the �(n) are as in Theorem 6.1.1, and if furthermore the P (n) are of the
form

P
(n)

znjx0 (t) = Qtn;yn(t) (t � tn);

where for each s; y; Qsy is a probability on ]s;1] with survivor function
Qsy; and the Qsy satisfy that for s � t � u; y 2 G;

Qsy(u) = Qsy(t)Qt;�st(y)
(u):
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(b) The Markov process X from (a) is time-homogeneous if �st = �t�s;
pt (y; C) = p (y; C) and if in addition Qsy(t) depends on s and t through
t� s only.

Remark 6.1.2 Theorem 6.1.1 is the special case of Theorem 6.1.2 corre-
sponding to

Qsy(t) = exp

�
�

Z t

s

qu(�su(y)) du

�
:

6.2 Examples of PDMP's

6.2.1 Renewal processes

A SPP T = (Tn)n�1 is a (0�delayed) renewal process (cf. Example 2.1.3)
if the waiting times Vn = Tn � Tn�1 (with T0 � 0) are independent and
identically distributed. De�ning the backward recurrence time process X by

Xt = t� TNt;

(the time since the most recent renewal, Tn denoting the renewal times), we
claim that X is time-homogeneous Markov (with respect to the �ltration
(FX

t )).

To verify this, we use Theorem 6.1.1 and assume that the distribution of
Vn has hazard function u;

P (Vn > v) = exp

�
�

Z v

0

u(s)ds

�
:

(X will be time-homogeneous Markov even without this assumption, which
is made to make the example �t into the framework of Theorem 6.1.1. For
the more general result, use Theorem 6.1.2).

As state space we may use G = R0 or G = [0; ty[; with ty the termina-
tion point for the distribution of the Vn: X is then identi�ed with the MPP
(Tn; Yn); where the Tn are as above, and Yn = XTn is seen to be always 0
on (Tn <1): Hence, when determining the distribution of (Tn; Yn) we need

only worry about P
(n)
zn ; where y1 = y2 = � � � = yn = 0 and similarly for the

�(n): By calculation it is clear that (cf. Example 2.1.3)

P
(n)

t1���tn;0���0(t) = exp

�
�

Z t�tn

0

u(s) ds

�
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and since �
(n)
t1���tnt0���0

= "0; and the deterministic behavior of X is described
by Xt = �t�TNt

(YNt
) where �t(y) = y + t satis�es (6.10), it follows from

Theorem 6.1.1 that X is time-homogeneous Markov with

�t(y) = y + t; q(y) = u(y); p(y; �) = "0:

Consider again the renewal process T = (Tn) but assume now that

P (Vn <1) = 1: The forward recurrence time process eX is de�ned by

eXt = TN t+1 � t;

the time until the next renewal. The state space for eX is again R0 or
�
0; ty

�
:

We have eX0 = T1; and to �x the value, eX0 � ex0 ; we must condition on
T1 = V1 = ex0; i.e. all distributions must be evaluated under the conditional
probability P (�jT1 = ex0):

The MPP describing eX is (Tn; Yn) with Tn as always the time of the n'th
renewal and

Yn = eXTn = Tn+1 � Tn = Vn+1:

The deterministic part of eX is given by eXt = �t�s(YNt
) ; where �t(y) =

y � t: Since also

P (0) = "~x0; P
(n)
zn = "tn+yn (n � 1);

�
(n)
zn (]y;1[) = P (V1 > y)

it follows quite easily from Theorem 6.1.2, that eX is time-homogeneous
Markov with respect to (F

eX
t ): Note that since Tn+1 = Tn + Yn; one need

only consider P
(n)
zn when t1 = ex0; tk+1 = tk + yk and �

(n)
zn;t when in addition

t = tn + yn:
Note that the �ltrations (FX

t ) and (F
eX
t ) for the backward and forward

processes are quite di�erent: TNt+1 is F
eX
t � but not FX

t �measurable (except
in the case where the the Vn are degenerate, Vn � v0 for some v0 > 0).

The process T discussed above is a 0-delayed renewal process since all
waiting times Vn for n � 1 are iid, corresponding to X0 � 0: But as a
Markov process, the backward recurrence time process X may be started
from any x0 2 [0; ty[ in which case, by Theorem 6.1.1 (b), with q(y) = u(y)
and �t(y) = y + t, we �nd

P
(0)
(t) = exp

�
�

Z t

0

u(x0 + s)ds

�
;
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while the remaining P (n) and all �(n) are as before. In the case where x0 >
0; T = (Tn) is an example of a delayed renewal process, with the waiting
times Vn independent for n � 1 but only (Vn)n�2 identically distributed.
Note that if U has the same distribution as the Vn for n � 2; the distribution
of V1 is that of U � x0 given U > x0:

6.2.2 Processes derived from homogeneous Poisson mea-

sures

Let N be a time-homogeneous Poisson process with parameter � > 0; and
let (Un)n�1 be an iid sequence of Rd�valued random variables such that
P (Un = 0) = 0: Let P denote the distribution of the Un: (This setup was
used to describe a compound Poisson process in Remark 5.2.1).

Let � : D ! G = Rd satisfy the conditions of Theorem 6.1.1 (a) and
consider the piecewise deterministic process X = (Xt)t�0 given by X0 � x0;

Xt = �TNt
;t(YNt

)

where as usual Yn = XTn; while the Un determine the jump sizes for X;

4XTn = Un:

Identifying X with the MPP (Tn; Yn); we �nd

P
(n)

zn (t) = e��(t�tn)

and

�
(n)
zn;t(C) = P (�tn;t(yn) + Un+1 2 C)

= P(C � �tn;t(yn))

It follows from Theorem 6.1.1 that X is a Markov process, which is time
homogeneous if �tu(y) is of the form �u�t(y): For the compound Poisson
process (a step process: �t(y) = y) and the piecewise linear process with
�t(y) = y+�t we obtain processes with stationary, independent increments,
cf. Section 5.2.

6.2.3 A PDMP that solves a SDE

Let N be a homogeneous Poisson process with parameter � > 0 and consider
the stochastic di�erential equation (SDE)

dXt = a(Xt) dt+ �(Xt�) dNt; X0 � x0 (6.16)
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for a R�valued cadlag process X; where a and � are given functions with
�(x) 6= 0 for all x: If a solution X exists it satis�es

Xt = X0 +

Z t

0

a(Xs) ds+

Z
]0;t]

�(Xs�) dNs

and is necessarily cadlag. To �nd the solution note that between jumps,
writing _Xt =

d
dt
Xt;

_Xt = a(Xt);

which should be compared with (6.13), while because �(x) is never 0; X
jumps precisely when N does and

�Xt = �(Xt�)�Nt:

Suppose now that for every x; the non-linear di�erential equation

f 0(t) = a(f(t)); f(0) = x

has a unique solution f(t) = �t(x): Fixing s � 0 and looking at the functions
t ! �t+s(x); t ! �t (�s(x)) ; it is immediately checked that both solve the
di�erential equation f 0(t) = a(f(t)); f(0) = �s(x); hence, as expected, �t+s =
�t Æ �s; �0 = id; i.e. (6.10) holds.

It is now clear that (6.16) has a unique solution given by

Xt = �t�TNt (YNt) ; �XTn+1 = �
�
�t�Tn (Yn)

�
where the Tn are the jump times for N (and X) and Yn = XTn with Y0 � x0:
(Note that it is used in an essential manner that it is the term �(Xt�) dNt

rather than �(Xt) dNt that appears in (6.16)). It is now an easy matter to see
that X is a time-homogeneous PDMP: the Markov kernels for the (Tn; Yn)
are

P
(n)

zn (t) = e��(t�tn) (t � tn) ;

�
(n)
zn;t = "y�n (t > tn) ;

where y�n = �t�tn(yn) + �
�
�t�tn(yn)

�
; and hence X satis�es the conditions

of Theorem 6.1.1 (b) with e�t = �t; eq(y) = � for all y; andep (y; �) = "y+�(y):

The reasoning above works particularly well because N is Poisson. With
other choices for N one might still �nd that X is Markov, but it is clear that
the hazard functions for the conditional jump time distributions of N must
then in a critical way depend on the �t:We shall not here discuss further the
possibility of obtaining homogeneous PDMP's with non-Poisson jump times
as solutions to SDE's.
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6.2.4 An example from the theory of branching pro-

cesses

Suppose one wants to set up a model describing the evolution of a one-sex
population, where each individual (mother) can give birth to a new individ-
ual with a birth rate depending on the age of the mother, and where each
individual may die according to an age dependent death rate. How should
one go about this? We of course shall do it by de�ning a suitable MPP and
associating with that a process which turns out to be a homogeneous PDMP.

Let � : R0 ! R0 ; Æ : R0 ! R0 be given functions, to be understood as the
age-dependent birth rate and death rate respectively. We suppose given an
initial population X0 � x0 consisting of k0 � 1 individuals, labelled by their
ages a

(0)
1 ; : : : ; a

(0)
k0

(all � 0). There are di�erent possibilities for the choice
of the state space G: Here we shall simply let G consist of all �nite subsets
of R0 ; allowing for repetitions of elements, where the state x = fa1; : : : ; akg
for k 2 N0 ; a1; : : : ; ak � 0 is interpreted as a population consisting of k

individuals of ages a1; : : : ; ak: Thus X0 � x0 =
n
a
(0)
1 ; : : : ; a

(0)
k0

o
. In general

individuals may have the same age, denoted by a repeated element: a pop-
ulation consisting of 5 individuals, one pair of twins and one set of triplets,
would be denoted fa; a; b; b; bg : An extinct population (0 individuals) is de-
noted ;: If x = fa1; : : : ; akg 2 G; we write jxj for the population size k and
x + t = fa1 + t; : : : ; ak + tg (Note: the choice of G is quite crude and ig-
nores information concerning the life histories of single individuals. It is not
a problem to de�ne a population process on a state space where one keeps
track of this type of information { the details are left to the reader).

In the model we shall de�ne (which can easily be generalized to allow e.g.
for multiple births), all births and deaths occur at separate time points (so
one only sees individuals of the same age if they are present at time 0). In
particular, the population size can only increase or decrease in jumps of size
1: If the process is observed in state x = fa1; : : : ; akg and a jump occurs, the
state reached by the jump is either fa1; � � � ; akg [ 0 corresponding to a birth
or fa1; : : : ; akg nai for some 1 � i � k corresponding to a death (where of
course, if there were several individuals of age ai in x; fa1; : : : ; akg nai denotes
the population where precisely one of those of age ai is removed, the others
retained).

It is now a simple matter to set up the model. The process is piecewise
deterministic,

Xt = �t�TNt

�
YNt

�
with Tn the time of the n'th jump, Yn the state reached by that jump, and
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the deterministic behaviour given by

�t (x) = x + t

if jxj � 1 and �t (;) = ;: The Markov kernels determining the distribution
of the MPP (Tn; Yn) are given by, for t � tn; with only the atoms for �(n)

listed,

P
(n)

znjx0
(t) = exp

�
�

Z t�tn

0

[� + Æ]yn (s) ds

�
;

�zn;tjx0 ((yn + t� tn) [ 0) =

Pk
i=1 � (ai + t� tn)

[� + Æ]yn (t� tn)

�zn;tjx0 ((yn + t� tn) nai0 + t� tn) =
Æ (ai0 + t� tn)

[� + Æ]yn (t� tn)
(1 � i0 � k) :

Here

�zn;tjx0 ((yn + t� tn) nai0 + t� tn) =
Æ (ai0 + t� tn)

[� + Æ]yn (t� tn)
(1 � i0 � k) :

[� + Æ]yn (s) :=
kX
i=1

(�(ai + s) + Æ(ai + s))

and zn = (t1; : : : ; tn; y1; : : : ; yn) with yn = fa1; : : : ; akg ; using of course
t0 = 0; y0 = x0 if n = 0: Naturally, empty sums equal 0; hence it follows
in particular that once the population becomes extinct, it remains extinct
forever.

It may be shown that the process de�ned above does not explode. Clearly
the �t satsify (6.10) and it is then immediately veri�ed from Theorem 6.1.1
(b) that X is time-homogeneous Markov with

q (x) =
kX
i=1

(� (ai) + Æ (ai)) ;

p (x; x [ 0) =

Pk
i=1 � (ai)Pk

i=1 (� (ai) + Æ (ai))
;

p (x; xnai0) =
Æ (ai0)Pk

i=1 (� (ai) + Æ (ai))
(1 � i0 � k) ;

where x = fa1; : : : ; akg, and where only the atoms for p (x; �) have been
speci�ed. The corresponding predictable intensities, �t(C) for special C; are
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given by

�t =
X
a2Xt�

(� (a) + Æ (a)) ;

�t (Xt� [ 0) =
X
a2Xt�

�(a);

� (Xt�na0) = Æ (a0) (a0 2 Xt�) ;

justifying the interpretation of �; Æ as age-dependent birth and death inten-
sities.

A particularly simple case of the model above is obtained when both
� and Æ are constants. In that case the intensities above depend on Xt�

through the population size jXt�j only and it follows that the process jXj is
a time-homogeneous Markov chain with state space N0 ; the familiar linear
birth- and death process with transition intensities

qi;i+1 = i�; qi;i�1 = iÆ:

The process we have constructed here has the branching property char-

acteristic of branching processes: with the initial state x0 =
n
a01; : : : ; a

(0)
k0

o
as above, de�ne k0 independent processes X(i) with age-dependent birth-

and death intensities � and Æ respectively such that X(i)
0 =

n
a(0)i

o
: TheneX :=

Sk0
i=1X

(i) has the same distribution as X: (A proof of this may be
given using Theorem 5.1.1 to identify the relevant compensating measure foreX).

A quantity that is easily calculated and critical for the ultimate behaviour
of the population is 
; the expected number of children born to an individual
throughout her lifetime. To �nd 
; consider an initial population f0g consist-
ing of one newborn individual �. Let N b be the counting process that registers
the times at which � gives birth. Let also � denote the time at which � dies

and de�ne Nd
t = 1(��t): then

�
N b; Nd

�
has F(N

b;Nd)�compensator
�
�b;�d

�
where

�b
t =

Z t

0

1(Nd
s�=0)�(s) ds; �d

t =

Z t

0

1(Nd
s�=0)Æ(s) ds:

Since �d is FNd

�predictable we recognize that

P (� > t) = exp

�
�

Z t

0

Æ (s) ds

�
and it then follows that

EN b
t = E�b

t =

Z t

0

exp

�
�

Z s

0

Æ(u) du

�
�(s) ds;
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and de�ning N b
1 = lim

t!1
N b
t that


 = EN b
1 =

Z 1

0

exp

�
�

Z s

0

Æ(u) du

�
�(s) ds:

One would expect the population to become extinct almost surely (no matter
what the value of X0) if 
 < 1; while if 
 > 1 for some initial populations
(e.g. those containing at least one newborn) the population will grow to 1
over time with probability > 0: Note that for the linear birth- and death
process 
 T 1 according as � T Æ:

6.3 Itô's formula for homogeneous PDMP's

In this section we shall discuss in more detail the structure of R�valued
piecewise deterministic Markov processes, that are time-homogeneous.

The processes will be of the type described in Theorem 6.1.1 (b). Thus,
if X = (X)t�0 denotes the process with now (R;B) as state space, X is
completely speci�ed by its initial value X0 � x0 and the MPP (Tn; Yn)n�1;
where Tn is the time of the n'th discontinuity (n'th jump) for X; and Yn =
XTn 2 R is the state reached by the n'th jump, cf. (6.8),

Xt = �t�T
Nt

(YNt
) ;

with � describing the deterministic behavior of X between jumps so that
t ! �t(y) is continuous and satis�es the semigroup equation �s+t = �s Æ �t
(s; t � 0) with the initial condition �0 = id; cf. (6.10). Recall also that the
distribution of (Tn; Yn)n�1 is determined by

P
(n)

znjx0 (t) = exp

�
�

Z t

0

q(�t�s(yn)) ds

�
;

�
(n)
zn;tjx0

(C) = p(�t�tn(yn); C)

with q � 0 and such that t! q(�t(y)) is a hazard function every y; and with
p a Markov kernel on G such that, cf. (6.9),

p(y; fyg) = 0 (y 2 R): (6.17)

If � is the RCM determined by (Tn; Yn); we see that � has F�
t = FX

t �
compensating measure L given by

L([0; t]� C) = �t(C) =

Z t

0

�s(C) ds
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with the predictable intensity �(C) determined as in (6.15), in other words

L (ds; dy) = q (Xs�) ds p (Xs�; dy) : (6.18)

Finally, we shall assume that t! �t(y) is continuously di�erentiable, and
writing

a(y) = Dt�t(y)jt=0

we then have the di�erential equation (6.13),

Dt�t(y) = a (�t(y)) :

Suppose now that f : R0 �R ! R is a continuous function, and consider the
process (f(t; Xt))t�0: We may then use Itô's formula for MPP's, Section 3.8,
to obtain a decomposition of f(�; X) into a local martingale and a predictable
process. To formulate the result, introduce the operator A acting on the
space D (A) of functions f that are continuously di�erentiable in t and y and
satisfy that

R
R
p (y; dey) jf (t; ey)� f (t; y)j < 1 for all y; and with Af given

by

Af (t; y) = Dtf(t; y) + a(y)Dyf(t; y) + q(y)

Z
R

p(y; dey) (f(t; ey)� f(t; y)):

Theorem 6.3.1 (a) For f 2 D (A) the process f(�; X) may be written

f(t; Xt) = f(0; x0) +

Z
]0;t]�R

Sys M(ds; dy) + Ut; (6.19)

where M is the martingale measure �� L; (Sys )s�0;y2R is the FX
t �pre-

dictable 
ow given by

Syt = f(t; y)� f(t; Xt�) (6.20)

and U is continuous and FX
t �predictable with

Ut =

Z t

0

Af (s;Xs) ds: (6.21)

The decomposition is unique up to indistinguishability.

(b) If EN t <1 for all t and if f 2 D (A) is such that

Af � 0 (6.22)

and the function (s; y; ey) ! f (s; ey)� f (s; y) is bounded on [0; t]� R2

for all t; then the process f (�; X) is a FX
t �martingale.
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Proof. (a). As in Section 3.8 we identify S by identifying the jumps in
(6.19). Since f 2 D (A) and X is continuous between jumps, f (�; X) jumps
only when � does and with the requirement that U in (6.19) be continuous
it follows that

�f (t; Xt)�N t = SXt
t �N t

which certainly holds if S is given by (6.20).
Having found S, we de�ne U by solving (6.19) for Ut: It then follows that

between jumps U is di�erentiable in t and that _Ut :=
d
dt
Ut is given by

_Ut =
d
dt
f (t; Xt) +

d
dt

Z
]0;t]�R

Sys L (ds; dy) :

But
d
dt
f (t; Xt) = Dtf (t; Xt) +Dyf (t; Xt) _Xt

and by (6.13), between jumps

_Xt =
d
dt
�t�TNt

�
YNt

�
= a

�
�t�TNt

�
YNt

��
= a (Xt) :

Since also, by (6.18)

d
dt

Z
]0;t]�R

Sys L (ds; dy) = d
dt

Z t

0

ds q (Xs�)

Z
R

p (Xs�; dy) S
y
s

= q (Xt)

Z
R

p (Xt; dy) S
y
t ;

using (6.20) it follows that between jumps

_Ut = Af (t; Xt)

and we have shown that (6.19) holds with S; U given by (6.20), (6.21).
The uniqueness of the decomposition follows from Proposition 3.5.1.
(b). This is immediate from (a) and Theorem 3.6.1 (iii2).

Suppose that h : R ! R is continuously di�erentiable and bounded.
Then f 2 D (A) where f (t; y) = h(y) and Af (t; y) = Ah(y) where

Ah(y) = a(y)h0(y) + q(y)

Z
R

p (y; dey) (h (ey)� h(y)) : (6.23)

The operator A; acting on a suitable domain of functions h; is the in�nites-
imal generator for the time-homogeneous Markov process X: (The opera-
tor A is the generator for the time-space process (t; Xt)t�0). Note that if
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EN t < 1 for all t; since h is bounded the stochastic integral M(S) (where
now Syt = h(y)� h (Xt�)) is a martingale, and hence, taking expectations in
(6.19),

Eh (Xt) = h(x0) +

Z t

0

EAh(Xs) ds;

from which follows the familiar formula for the generator,

Ah(x0) =lim
t!0

1

t
(Ex0h(Xt)� h(x0)) ; (6.24)

valid for arbitrary x0; and where we have written Ex0 instead of E to em-
phasize that X0 � x0:

6.3.1 An example involving ruin probabilities

In general there is not much hope of solving an equation like (6.22) explicitly.
However, martingales of the form f(�; X) are nice to deal with when available,
as we shall now see when discussing some classical ruin problems.

Let N be a one-dimensional, homogeneous Poisson process with param-
eter � > 0 and let (Un)n�1 be a sequence of iid R�valued random variables
with P (Un = 0) = 0; independent of N: Finally, let x0 > 0; let � 2 R and
de�ne

Xt = x0 + �t+
NtX
n=1

Un;

i.e. X is a compound Poisson process (Remark 5.2.1) with a linear drift
t ! �t added on. In particular X has stationary independent increments,
cf. Section 5.2, and is a time-homogeneous, piecewise deterministic Markov
process with

�t(y) = y + �t; q(y) = �

for all t; y; and
p(y; �) = the distribution of y + U1:

We de�ne the time to ruin as

� ruin = infft : Xt � 0g:

The problem is then to �nd the ruin probability pruin = P (� ruin <1) and, if
possible, the distribution of � ruin:

We shall focus on two di�erent setups: (i) the simple ruin problem cor-
responding to the case where P (U1 > 0) = 1; � < 0; where X decreases
linearly between the strictly positive jumps, (ii) the diÆcult ruin problem
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where P (U1 < 0) = 1; � > 0 with X increasing linearly between the strictly
negative jumps.

It should be clear that for Problem (i),

X� ruin = 0 on (� ruin <1); (6.25)

and it is this property that makes (i) simple, while for Problem (ii) it may
well happen that

X�ruin < 0;

and it is this possibility of undershoot, which makes (ii) diÆcult.
It is easy to �nd that pruin = 1 in some special cases: in both Problem (i)

and (ii), � = EU1 is well de�ned, but may be in�nite. Now

XTn = x0 + �Tn +
nX

k=1

Uk

and so, by the strong law of large numbers

1

n
XTn

a.s.
!

�

�
+ �: (6.26)

Consequently, for both Problem (i) and (ii)

pruin = 1 if
�

�
+ � < 0: (6.27)

(For (i) this is possible only if � <1: For (ii) (6.27) is satis�ed if in particular
� = �1).

Let P denote the distribution of the Un and introduce

 (�) = Ee��U1 =

Z
e��u P(du):

In the case of Problem (i), this is �nite if � � 0; and  is the Laplace transform
for U1: For Problem (ii),  is �nite if � � 0: (It is of course possible that
 (�) < 1 for other values of � than those just mentioned in either case (i)
or (ii)). From now on, when discussing Problem (i), assume � � 0 and when
treating Problem (ii), assume � � 0:

By a simple calculation

E exp(��(Xt � x0)) =
1X
n=1

P (N t = n)e���tE exp (��
Pn

1 Uk)

=
1X
n=1

(�t)n

n!
e�te���t n(�)

= exp(t�(�))
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where
�(�) = � (�)� �� ��: (6.28)

Because X has stationary, independent increments, also

E exp(��(Xs+t �Xs))jF
X
s ) = exp(t�(�))

for any s � 0; so de�ning

Vt(�) = exp(��(Xt � x0)� t�(�));

the following result follows immediately:

Proposition 6.3.2 For Problem (i), (Vt(�);F
X
t ) is a martingale for each

� � 0: For Problem (ii), (Vt(�);FX
t ) is a martingale for each � � 0:

We proved this without using (6.22), but it is quite instructive to verify
that (6.22) holds: we have

f(t; y) = exp(��(y � x0)� t�(�))

and a(y) = � for all y; so

Dtf(t; y) + a(y)Dyf(t; y) = f(t; y)(��(�)� ��)

while

q(y)

Z
R

p(y; d~y) (f(t; ~y)� f(t; y)) = �

�Z
f(t; y + u)P(du)� f(t; y)

�
= f(t; y)(� (�)� �):

Using (6.28) we see that (6.22) does indeed hold.

Problem (i)

First note, that as a Laplace transform,  is strictly convex on R0 ; and that
 is di�erentiable on R+ with

 0(�) = �EU1e
��U1 :

Let � # 0 and use monotone convergence to obtain  0(0) := lim�#0  
0(�);

 0(0) = ��;

also if � =1:
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Since  is strictly convex, so is �; and

�(0) = 0; �0(0) = ��� � �:

De�ning �0 = supf� � 0 : �(�) = 0g; it follows, that �0 = 0 i� �=� + � � 0
(i� �0(0) � 0), cf. (6.27), and that �0 > 0 i� �=�+ � > 0 ; (i� �0(0) < 0).

Since V0(�) � 1; the martingales V (�) for � � 0 have constant expectation
1, so applying optional sampling to the bounded stopping times t ^ � ruin for
t � 0 we obtain

1 = EVt^� ruin (�) = E1(� ruin�t)e
�x0�� ruin�(�) + E1(� ruin>t)e

��(Xt�x0)�t�(�)

using (6.25) on the way. Now take � > �0 and consider the last term. Since
t < � ruin; Xt > 0 so the integrand is dominated by the constant e�x0 (because
also �(�) > 0). Since e�t�(�) ! 0 as t!1; the last term vanishes as t!1:
On the �rst, use monotone convergence to obtain

1 = E1(� ruin<1)e
�x0�� ruin�(�) (� > �0):

By monotone convergence

E1(� ruin<1)e
�� ruin�(�) " pruin as � # �0

and consequently
pruin = e��0x0:

Furthermore, again since �(�) > 0 for � > �0;

Ee��(�)� ruin = E1(� ruin<1)e
��(�)� ruin = e��x0

and we have shown the following result:

Proposition 6.3.3 (a) For Problem (i), the ruin probability is

pruin = e��0x0:

where �0 = supf� � 0 : �(�) = 0g:

(b) For # > 0; the Laplace transform of the (possibly in�nite) random
variable � ruin is given by

Ee�#� ruin = e��
�1(#)x0 ; (6.29)

where ��1 : R0 ! [�0;1[ is the strictly increasing inverse of the func-
tion � restricted to the interval [�0;1[:

Note that (6.29) is valid only for # > 0 ; but that by monotone conver-
gence

pruin = e��0x0 = lim
##0;#>0

e��
�1(#)x0 = lim

##0;#>0
Ee�#� ruin:
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Problem (ii)

For the solution of Problem (i), (6.25) was used in an essential manner. With
the possibility of undershoot occurring in Problem (ii), (6.25) no longer holds.

The basic idea now is to replace X by the process eX given by

eXt =

�
Xt if t < � ruin
0 if t � � ruin;

i.e. at the time of ruin, the non-positive value of X is replaced by 0 and kept
there forever. Clearly eX� ruin = 0 on (� ruin <1);

so (6.25) holds for eX: However, going from X to eX destroys the independent

increments property, so it is not so easy to �nd simple functions of eX that
are martingales.

We certainly have that eX is a piecewise deterministic process with state
space R0 : If eTn is the time of the n'th jump for eX and eYn = eX eTn � 0 the
state reached by that jump, it is immediately seen that the Markov kernelseP (n); ~�(n) determining the distribution of the MPP (eTn; eYn) are given as
follows: eP (n)

znjx0
(t) =

�
exp(��(t� tn)) if yn > 0

1 if yn = 0

for t � tn; while for t > tn; yn > 0;

e�(n)
zn;tjx0

= the distribution of (yn + �(t� tn) + U1) _ 0;

or more formally

e�(n)
zn;tjx0

(]a; yn + � (t� tn)[) = P (]a� yn � � (t� tn) ; 0[)

if 0 < a � yn + � (t� tn) and

e�(n)
zn;tjx0

(f0g) = P (]�1;�yn � �(t� tn)]) :

(Recall that P is the distribution of U1 and that U1 < 0).

The expression for eP (n) and e�(n) show that eX is a piecewise deterministic
timehomogeneous Markov process with

e�t(y) =

�
y + �t if y > 0;

0 if y = 0;

eq(y) =

�
� if y > 0;
0 if y = 0;ep(y; �) = the distribution of (y + U1) _ 0:
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From now on assume that �U1 follows an exponential distribution,

P (U1 � u) = e�u (u � 0);

where � > 0: Thus � = � 1
�
; so from (6.27),

pruin = 1 if �� < �:

We therefore also assume that �� � �; and are now looking for a bounded
function g : R0 ! R such that g( eX) is a F

eX
t �martingale.

Lemma 6.3.4 With

g(y) =
�
� + e�

�y
�
1R+(y) (y 2 R0) ;

where � = � �
�+�

; �� = �
�
� �; the process g

� eX� is a F
eX
t �martingale.

Note that g(0) = 0 and that �� � 0 so g is bounded on R0 :
Proof. Imitating the proof of Theorem 6.3.1 we want to show that

g
� eXt

�
= g (x0) +

Z
]0;t]�R0

eSys fM (ds; dy)

with fM = e�� eL; writing e� for the RCM describing the jump times eTn and
marks eYn for eX and writing eL for the F e�

t = F
eX
t �compensating measure fore�: Identifying jumps gives

eSyt = g(y)� g
� eXt�

�
and by di�erentiation with respect to t between jumps and with t < � ruin (soeXt > 0), we �nd

d
dt
g
� eXt

�
= �g0

� eXt

�
; (6.30)

� d
dt

Z
]0;t]�R0

eSys L(ds; dy) = � d
dt

tR
0

ds eq � eXs�

� R
R0

ep� eXs�; dy
� eSys :(6.31)

That these two derivatives are the same amounts to showing that for y > 0;

���e�
�y = �� (Eg ((y + U1) _ 0)� g(y))

= ��
�
E1(U1>�y)

�
�+ e�

�(y+U1)
�
� �� e�

�y
�

= �

�
�+

�

� + ��

�
e�y + �

��

� + ��
e�

�y;
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i.e. we need that

� = �
�

� + ��
; � =

�

� + ��
;

which are precisely the conditions on � and �� given in the statement of the
lemma.

For t > � ruin there are no jumps for eX; eXt = 0; and also eL vanishes (sinceeq = 0). Hence the time derivatives (6.30), (6.31) agree on all of R0 between
jumps, and the proof is complete.

Proposition 6.3.5 When the �Un are exponential, P (U1 < u) = e�u for
u � 0; and �� � �; the ruin probability is given by

pruin = e(
�
�
��x0) �

��
: (6.32)

Proof. The martingale g
� eX� is bounded, hence eg1 := lim

t!1
g
� eXt

�
exists

a.s. and Eeg1 = Eg
� eX0

�
= g(x0): Since g(0) = 0; on (� ruin <1) we have

eg1 = 0: On (� ruin =1) ; eg1 = lim
�
�+ e�

� eXt

�
and if �� > �; since �� < 0

and eXt = Xt ! 1 by the strong law of large numbers, see (6.26), we haveeg1 = �: Thus g(x0) = � (1� pruin) if �� > �; yielding the desired result. If
�� = � we have �� = 0; � = �1 and learn nothing from the argument above.
However, using e.g. a coupling argument one shows that pruin is a decreasing
function of � and it then follows that pruin = 1 if �� = �: (For the coupling,
take �1 < �2 and de�ne on the same probability space two processes X1; X2

with the same initial value, same � and same � and the same jump times,
but such that the jump sizes U1;n for X1 are all larger than those, U2;n; for

X2 { viz. U1;n = �2
�1
U2;n: Then for all t; X1;t � X2;t and the probability of

ruin for X1 exceeds that for X2).

6.4 Likelihood functions for PDMP's

Using the results of Chapter 4 together with the construction from Section
6.1, it is an easy matter to derive likelihood processes for observation of
PDMP's.

Suppose given a RCM � =
P

n:Tn<1
"(Tn;Yn) on some measurable space

(
;F) ; and let P; eP be two probability measures on (
;F) : Write Pt; ePt for
the restrictions of P; eP to F�

t and write eP �loc P if ePt � Pt for all t 2 R0 :
The likelihood process L� = (L�t )t�0 for observing � is then given by the
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results from Chapter 4, more speci�cally if Q; eQ are the distributions of �
under P; eP respectively, then eP �loc P i� eQ�loc Q and

L
�
t = Lt Æ �;

where Lt =
d eQt

dQt
is the likelihood process from Chapter 4.

Now, suppose further that X = (Xt)t�0 is a (G;G)�valued process de-
�ned by X0 � x0 and

Xt = �T
Nt

;t

�
YNt

�
;

where each t! �st (y) is continuous and the �st satisfy the semigroup prop-
erty (6.6) and the boundary condition (6.7), cf. Theorem 6.1.2. Finally
assume that the Markov kernels generating P are as in Theorem 6.1.2, while
those generating eP have a similar structure,

eP (n)

znjx0
(t) = exp

�
�

Z t

tn

eqs ��tn;s (yn)� ds�
e�(n)
zn;tjx0

(C) = ept ��tn;t (yn) ; C� ;
where eqs � 0 and each ept is a Markov kernel on G such that ept (y; fyg) = 0
for all t; y; cf. (6.9).

Thus X is a PDMP under both P and eP and from Theorem 4.0.2 and
(6.14) we immediately obtain the following result:

Theorem 6.4.1 A suÆcient condition for eP �loc P is that qt (y) > 0 for all
t; y; that

R t
s
qu (�su (y)) du <1 for all s < t; all y; and that ept (y; �)� pt (y; �)

for all t; y:
In that case a

�
FX
t

�
�adapted version of the likelihood process L� is LX =�

LXt
�
t�0

given by

LXt =

exp

�
�

Z t

0

(eqs (Xs)� q (Xs)) ds

� N
X
tY

n=1

eqTXn �XTXn �

�
qTXn

�
XTXn �

� depTXn �XTXn �; �
�

dpTXn
�
XTXn �; �

� �XTXn

�
:

Notation. Of course N
X

t is the total number of jumps for X on [0; t] and

TX
n is the time of the n'th jump for X: Note that N

X
is P�indistinguishable

from N and that for all n; TX
n = Tn P�a.s.

We have not given Theorem 6.4.1 in its most general form, which would
amount to a direct translation of Theorem 4.0.2. The result gives (in special
cases) the likelihood function for observing a PDMP completely on an interval
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[0; t] : Formally, that likelihood is the Radon-Nikodym derivative between
the distributions on �nite intervals of two di�erent PDMP's, and here it is
important to emphasize that for the likelihood to make sense at all (i.e. local
absolute continuity to hold), the piecewise deterministic behaviour of the two
processes must be the same because (some of) the �st can be read o� from
the sample path. Thus, as was done above, while the qt; pt can change intoeqt; ept; the �st must remain the unchanged when switching from one process
to the other.

6.5 Di�erential equations for transitions

Let X be a time-homogeneous PDMP with state space G as in Theorem
6.1.2 (b) with X0 � x0 for an arbitrary x0; and let h : G ! R be bounded
and measurable. Consider the function Pth : G! R given by

Pth (x0) = Ex0h (Xt) ;

i.e. Pt is the transition operator for X for time intervals of length t; related
to the generator A through the formal expression

A =lim
t!0

1

t
(Pt � id) ;

cf. (6.24). The transition operators form a semigroup, Ps+t = PsPt; as
is (essentially) seen from the Chapman-Kolmogorov equations (5.26) in the
time-homogeneous case.

Writing x rather than x0 for the arbitrary initial state, we shall �rst quote
the backward integral equations for computing Pth(x):

For n 2 N0 ; de�ne

P
(n)
t h(x) = Ex

�
h (Xt) 1(Nt=n)

�
:

Then clearly

P
(0)
t h(x) = h (�t (x)) exp

�
�

Z t

0

q (�s (x)) ds

�
(6.33)

and recursively, conditioning on the time of the �rst jump and using Lemma
3.3.3 (bii),

P
(n+1)
t h(x) =

Z t

0

ds fq (s; x)

Z
G

p (�s (x) ; dy) P
(n)
t�sh(y);
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where

fq(s; x) = q (�s (x)) exp

�
�

Z s

0

q (�u (x)) du

�
is the density for the distribution of the �rst jump time T1: Summing on n
�nally gives

Pth(x) = h (�t (x)) exp

�
�

Z t

0

q (�s (x)) ds

�
+

Z t

0

ds fq (s; x)

Z
G

p (�s (x) ; dy) Pt�sh(x):

In the Markov chain case (�t(x) = x) this after di�erentiation with respect to
t yields the famous backward Feller-Kolmogorov di�erential equations. No
simple analogue of these are available for general PDMP's, although for h
smooth enough,

d

dt
Pth(x) = A (Pth) (x);

(see (6.23) for the de�nition of the generator A).
We shall also quote the forward equations although they are more diÆcult

to derive and less transparent. For n � 0; conditioning on Zn+1 we �rst �nd

P
(n+1)
t h(x) =

Ex1(Tn+1�t)h
�
�t�Tn+1

(Yn+1)
�
exp

 
�

tR
Tn+1

q
�
�u�Tn+1

(Yn+1)
�
du

!
:

Next, condition on Zn to obtain

= Ex1(Tn�t)

Z t

Tn

ds fq(s� Tn; Yn)

Z
E

p
�
�s�Tn (Yn) ; dy

�
h
�
�t�s(y)

�
exp

�
�

tR
s

q
�
�u�s(y)

�
du

�
:

Use the device 1(Tn�t)
R t
Tn
ds =

R t
0
ds 1(Tn�s) to take the integral with respect

to x outside the expectation, and then use

fq (s� Tn; Yn) = q
�
�s�Tn (Yn)

�
P x (Tn+1 > s jZn )

on (Tn � s) to obtain, cf. (6.33),

=

Z t

0

dsEx1(Ns=n)q
�
�s�Tn (Yn)

� Z
E

p
�
�s�Tn (Yn) ; dy

�
P

(0)
t�sh(y)

=

Z t

0

dsEx1(Ns=n)q (Xs)

Z
E

p (Xs; dy) P
(0)
t�sh(y):
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Thus, changing s to t� s;

P
(n+1)
t h(x) =

Z t

0

dsP
(n)
t�s

�
q
�
�;P(0)

s h
��
(x);

where

q
�
�;eh� (ex) := q (ex) Z

E

p (ex; dy) eh(y):
Summing on n �nally gives

Pth(x) = h (�t (x)) exp

�
�

Z t

0

q (�s (x)) ds

�
+

Z t

0

dsPt�s

�
q
�
�;P(0)

s h
��
(x):

For Markov chains on a state space which is at most countable, after di�er-
entiation this gives the forward Feller-Kolmogorov di�erential equations for
the transition probabilities.
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Appendix A

Di�erentiation of cadlag

functions

Let A be a positive measure on (R0 ;B0) such that A(t) := A ([0; t]) <1 for
all t and A(0) = 0: Let f be a Borel function on R0 such that

R
]0;t]

jf j dA <1

for all t; and de�ne

F (t) =

Z
]0;t]

f(s)A(ds): (A.1)

Clearly F is cadlag (right-continuous with left limits), F (0) = 0 and F
inherits the following properties of A: (i) if for some s < t; A(s) = A(t) also
F (s) = F (t) (and F is constant on ]s; t]); (ii) if �F (t) 6= 0 also �A(t) > 0:

It is natural to say that F is absolutely continuous with respect to A
with Radon-Nikodym derivative f: For us it is of particular interest that the
derivative may be computed in a certain way.

For any function g on R0 de�ne for k;K 2 N ; gk;K = g
�

k
2K

�
and gK as

the function

gK =

1X
k=1

1] k�1

2K
; k

2K
]
gk;K � gk�1;K

Ak;K � Ak�1;K

with the convention x
0
= 0 (where in practice we shall only have to worry

about 0
0
).

Proposition A.0.1 If F is given by (A.1), then lim
K!1

FK(t) = f(t) for

A�a.a. t and lim
K!1

R
]0;t]

jFK � f j dA = 0 for all t:

Proof. Suppose that A is a probability measure and that
R
R0
jf j dA < 1

and let GK = �
��

k�1
2K
; k
2K

��
k�1

: Then E (f jGK ) = FK ; hence (FK)K�1 is a

uniformly integrable martingale on (R0 ;B0; A) converging A�a.e. (and in

137



138 APPENDIX A. DIFFERENTIATION OF CADLAG FUNCTIONS

L1(A)) to E (f jG1 ) where G1 is the smallest ��algebra containing all the
GK; i.e. G1 = B0 so that E (f jG1 ) = f:

The argument obviously applies also if A is a bounded measure withR
jf j dA < 1, and for general A and f with

R
[0;t]

jf j dA < 1 for all t; by

e.g. considering the restriction of A to [0; t0] for an arbitrarily large t0; it is
seen that the A�a.e. convergence and the L1�convergence on [0; t0] remains
valid.

Let now F : R0 ! R be a cadlag function, but not apriori of the form
(A.1). We say that F is (pointwise) di�erentiable with respect to A if

(i) whenever A(s) = A(t) for some s < t; also F (s) = F (t);

(ii) whenever �F (t) 6= 0 also �A(t) > 0;

(iii) lim
K!1

FK(t) = f(t) exists for A�a.a. t:

We then call f the derivative of F with respect to A; and write f = DAF:

Proposition A.0.2 If the cadlag function F is pointwise di�erentiable with
respect to A with DAF = f; then a suÆcient condition for

F (t) = F (0) +

Z
]0;t]

f(s)A(ds) (t 2 R0) (A.2)

to hold, is that f be bounded on �nite intervals and that

jF (t)� F (s)j �

Z
]s;t]

jf j dA (A.3)

for all s < t:

Note. Clearly (A.3) is necessary for (A.2) to hold.
Proof. Given t; write tK =

�
2Kt
�
=2K (where [x] is the integer part of x),etK = tK + 1

2K
: Using (A.3) we �nd for s � t;

jFK (s)j �
1X
k=1

1] k�1

2K
; k

2K
] (s)

R
] k�1

2K
; k

2K
] jf j dA

Ak;K � Ak�1;K

� sup
[0;t]

jf j

and hence, by dominated convergence,Z
]0;t]

f dA = lim
K!1

Z
]0;t]

FK dA:
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ButZ
]0;t]

FK dA =
1X
k=1

(Fk;K � Fk;K�1)
A
�

k
2K
^ t
�
� A

�
k�1
2K

^ t
�

Ak;K � Ak�1;K

=

[2K t]X
k=1

(Fk;K � Fk�1;K) +
�
F
�etK�� F (tK)

� A(t)� A (tK)

A
�etK�� A (tK)

= F
�etK�� F (0)�

�
F
�etK�� F (tK)

� A
�etK�� A(t)

A
�etK�� A (tK)

where (i) above has been used for the second equality. Since F is right-
continuous, F

�etK�! F (t) as K !1: If �A(t) = 0; by (ii) F is continuous
at t and so also F (tK)! F (t) and since the ratio involving the A�increments
is bounded by 1; we have convergence to F (t)�F (0) of the entire expression.
If �A(t) > 0; let c be an upper bound for jF j on [0; t+ 1] and use������F �etK�� F (tK)

� A
�etK�� A(t)

A
�etK�� A (tK)

����� � 2c
A
�etK�� A(t)

�A(t)
! 0

to again obtain convergence to F (t)� F (0):

The following useful di�erentiation rule is easily proved: if F1; F2 are
di�erentiable with respect to A; so is the product F1F2 and

DA (F1F2) (t) = (DAF1) (t)F2 (t) + F1 (t�) (DAF2) (t) :

Note that this expression is not symmetric in the indices 1; 2: Switching
between 1 and 2 gives an alternative expression for the same derivative.
In practice one expression may prove more useful than the other. If the
conditions from Proposition A.0.2 are satis�ed for (Fi; DAFi) ; i = 1; 2; one
obtains the partial integration formula

(F1F2) (t) = (F1F2) (0)+

Z
]0;t]

((DAF1) (s)F2 (s) + F1 (s�) (DAF2) (s)) A(ds):
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Appendix B

Filtrations, processes,

martingales.

We shall quickly go through some of the basics from the general theory of
stochastic processes. All results below are quoted without proofs.

A �ltered probability space is a quadruple (
;F ;Ft; P ); where (
;F ; P )
is a probability space and (Ft)t�0; the �ltration, is an increasing family of
sub ��algebras of F ; Fs � Ft if s � t: (Notation: � means `contained in or
equal to').

A probability space is complete if any subset of a P�null set is measur-
able: if F0 2 F ; P (F0) = 0; then F 2 F for any F � F0:

A probability space (
;F ; P ) may always be completed: de�ne N =
fF � 
 : 9F0 2 F with P (F0) = 0 such that F � F0g ; and let F be the
smallest ��algebra containing F and N : Then F = fF [ N : F 2 F ; N 2
Ng and P extends uniquely to a probability P on (
;F) using the de�nition
P (F ) = P (F ) for any F 2 F and any representation F = F [N of F with
F 2 F ; N 2 N : The probability space (
;F ; P ) is complete and is called
the completion of (
;F ; P ):

A �ltered probability space (
;F ;Ft; P ) satis�es the usual conditions if
(
;F ; P ) is complete, if N � F0 where now N = fN 2 F : P (N) = 0g; and
if the �ltration is right-continuous,

Ft = Ft+ (t � 0);

where Ft+ :=
T

s>tFs:
Much of the literature on process theory presents results and de�nitions,

assuming that the usual conditions are satis�ed. We shall not make this
assumption here, although we have in mind applications where the �ltra-
tion is automatically right-continuous, but where we do not complete the
��algebras.
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Let (G;G) be a measurable space. A stochastic process (in continuous
time) with state space (G;G); de�ned on (
;F ; P ); is a familyX = (Xt)t�0 of
random variablesXt : (
;F)! (G;G): A stochastic process X ismeasurable,
if the map

(t; !)! Xt(!)

from (R0 � 
;B0 
 F) to (G;G) is measurable.
The �ltration generated by the process X is the family (FX

t )t�0 of ��alge-
bras, where FX

t = �(Xs)0�s�t:
A process X with a state space which is a measurable subspace of (Rd ;Rd)

is right-continuous if t! Xt(!) is right-continuous for P�almost all !: Sim-
ilarly,X is left-continuous, cadlag, increasing, continuous if for P�almost all
!; t ! Xt(!) is respectively left-continuous, cadlag (right-continuous with
left limits), increasing (in each of the d coordinates), continuous.

Let (
;F ;Ft; P ) be a �ltered probability space. A process X de�ned
on (
;F ; P ) is adapted if it is measurable and each Xt : (
;F) ! (G;G)
is Ft�measurable. X is predictable (or previsible) if it is measurable, X0

is F0�measurable and the map (t; !) ! Xt(!) from (R+ � 
;B+ 
 F) to
(G;G) is P�measurable, where P; the ��algebra of predictable sets, is the
sub ��algebra of B+ 
F generated by the subsets of the form

]s;1[� F (s 2 R0 ; F 2 Fs):

If X;X 0 are two processes on (
;F ; P ) with state space (G;G); they are
versions of each other if for all t; P (Xt = X 0

t) = 1: They are indistinguishable
if F0 :=

T
t�0 (Xt = X 0

t) 2 F and P (F0) = 1:

Proposition B.0.3 Let X be a process on (
;F ;Ft; P ) with state space
(G;G) � (Rd ;Bd):

(i) If X is right-continuous or left-continuous, X is indistinguishable from
a measurable process.

(ii) If X is right-continuous and each Xt is Ft�measurable, X is indistin-
guishable from an adapted process.

(iii) If X is left-continuous and Xt is Ft�measurable for all t; X is indis-
tinguishable from a predictable process.

Notation used above: (G;G) � (Rd ;Bd) means that (G;G) is a measurable
subspace of (Rd ;Bd):

We shall now proceed to de�ne martingales and submartingales in con-
tinuous time.

Let (
;F ;Ft; P ) be a �ltered probability space and let X be a real valued
process (state space (G;G) � (R;B)).
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De�nition B.0.1 X is a martingale (submartingale) if for all t; EjXtj <
1; Xt is Ft�measurable and

E(XtjFs) = Xs (0 � s � t)

(E(XtjFs) � Xs (0 � s � t)):

X is a supermartingale if �X is a submartingale.

The de�nition depends in a crucial manner on the underlying �ltration.
We shall therefore include the �ltration in the notation and e.g. write that
(Xt;Ft) is a martingale.

The next result describes transformations that turn (sub)martingales into
submartingales.

Proposition B.0.4 Let ' : R ! R be convex.

(a) If (Mt;Ft) is a martingale and Ej'(Mt)j <1 for all t; then ('(Mt);Ft)
is a submartingale.

(b) If (Xt;Ft) is a submartingale, � is increasing (and convex) and Ej'(Xt)j
<1 for all t; then ('(Xt);Ft) is a submartingale.

Notation. If f is a R�valued function, write f+; f� for the positive and
negative part of f : f+ = f _ 0; f� = �(f ^ 0):

Proposition B.0.5 Let (Xt;Ft) be a submartingale.

(a) If t > 0 and D � [0; t] is at most countable, then for every x > 0

P

�
sup
s2D

Xs > x

�
�

1

x
EX+

t

P

�
inf
s2D

Xs < �x

�
�

1

x

�
EX+

t � EX0

�
(b) If in addition X is right-continuous or left-continuous, for all t �

0; x > 0

P (sup
s�t

Xs > x) �
1

x
EX+

t

P (inf
s�t

Xs < �x) �
1

x
(E+

t � EX0):
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Let D � R0 ; and let f : D ! R be a function. For a < b 2 R; the
number of upcrossings from a to b for f on D is de�ned as

�D(f ; a; b) = sup fn 2 N0 : 9t1 < t2 < � � � < t2n 2 D
with f(t2k�1) < a < b < f(t2k); 1 � k � ng :

The following analytic fact is a basic tool for establishing the main theorem
on continuous time martingales.

Lemma B.0.6 Let f : Q 0 ! R:

(a) The following two conditions are equivalent:

(i) the limits

f(t+) := lim
s#t; s>t

f(s); f(t�) := lim
s"t; s<t

f(s)

exists as limits in R ; simultaneously for all t 2 R0 in the case of
f(t+) and for all t 2 R+ in the case of f(t�):

(ii) �Qo\[0;t](f ; a; b) <1 (t 2 R0 ; a < b 2 R):

(b) If (i), (ii) are satis�ed, then the function t ! f(t+) from R0 to R is
cadlag.

In order to show that there are �nitely many upcrossings, one uses

Lemma B.0.7 Let (Xt;Ft) be a submartingale, let t 2 R+ and let D � [0; t]
be at most countable. For all a < b 2 R; �D(X; a; b) is then a Ft�measurable
random variable and

E�D(X; a; b) �
1

b� a
E(Xt � a)+:

We are now ready to formulate the main theorem for martingales and
submartingales in continuous time.

Theorem B.0.8 (a) Let (Mt;Ft) be a martingale.

(i) For P�almost all ! the limits

Mt+(!) := lim
s�t; s2Q0

Ms(!); Mt�(!) := lim
s�t; s2Q0

Ms(!)

exists as limits in R; simultaneously for all t � 0 in the case of
Mt+(!) and for all t > 0 in the case of Mt�(!): Moreover, for
every t;

EjMt+j <1; EjMt�j <1:
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(ii) For all t � 0; E(Mt+jFt) = Mt a.s., and for all 0 � s <
t; E(MtjFs+) =Ms+ a.s. Moreover, for a given t � 0; Mt+ =Mt

holds a.s. if one of the two following conditions are satis�ed:

(�) Ft+ = Ft;
(��) M is right-continuous in probability at t:

(B.1)

(iii) The process M+ := (Mt+)t�0 may be chosen in such a way that
all Mt+ are Ft+�measurable, in which case (Mt+;Ft+) is a cad-
lag martingale. Furthermore, if one of the conditions in (B.1) is
satis�ed for every t � 0; then M+ is a version of M:

(iv) If supt�0EM
+
t <1 or if supt�0EM

�
t <1; then

M1 := lim
t!1; t2Q0

Mt = lim
t!1

Mt+

exists a.s. and EjM1j <1:

(b) Let X = (Xt;Ft) be a submartingale.

(i) For P�almost all ! the limits

Xt+(!) := lim
s�t; s2Q0

Xs(!); Xt�(!) := lim
s�t; s2Q0

Xs(!)

exists as limits in R; simultaneously for all t � 0 in the case of
Xt+(!) and for all t > 0 in the case of Xt�(!): Moreover, for
every t;

EjXt+j <1; EjXt�j <1:

(ii) For all t � 0; E(Xt+jFt) � Xt a.s., and for all 0 � s < t;
E(XtjFs+) � Xs+ a.s. Moreover, for a given t � 0; Xt+ � Xt

holds a.s. if (B.2�) is satis�ed and Xt+ = Xt holds a.s. if (B.2��)
is satis�ed:

(�) Ft+ = Ft;
(��) X is right-continuous in probability at t:

(B.2)

(iii) The process X+ := (Xt+)t�0 may be chosen in such a way that
all Xt+ are Ft+�measurable, in which case (Xt+;Ft+) is a cadlag
submartingale. Furthermore, if (B.2��) is satis�ed for every t � 0;
then X+ is a version of X:
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(iv) If supt�0 EX
+
t <1; then

X1 := lim
t!1; t2Q0

Xt = lim
t!1

Xt+

exists a.s. and EjX1j <1:

Note. A process V = (Vt)t�0 is right-continuous in probability at t; if
for every sequence (tn) with tn � t; limn!1 tn = t it holds that Vtn ! Vt in
probability.

We next proceed with a brief discussion of stopping times and the optional
sampling theorem.

Let (
;F ;Ft; P ) be a �ltered probability space. A map � : 
 ! R 0 is a
stopping time if

(� < t) 2 Ft (t 2 R+):

Let � be a stopping time and de�ne

F� := fF 2 F : F \ (� < t) 2 Ft for all t 2 R+g;

which is a ��algebra. Note that if � � t0 for some t0 2 R0 ; then F� = Ft0+:
Also, if � � � are stopping times, then F� � F� :

If the �ltration is right-continuous, Ft+ = Ft for all t; � : 
 ! R 0 is a
stopping time i� (� � t) 2 Ft for all t 2 R0 and F� = fF 2 F : F \ (� � t) 2
Ft for all t 2 R0g: On general �ltered spaces such � are called strict stopping
times and are special cases of stopping times.

Now let X be a R�valued process de�ned on (
;F ;Ft; P ) and let � be
a stopping time. De�ne X� by

X� (!) = X�(!)(!)

if � (!) <1: This de�nes X� almost surely if P (� <1) = 1: If P (� =1) >
0 de�ne X� (as an a.s. surely de�ned random variable) only in the case where
X1 = limt!1Xt exists a.s. and then put

X� = X1 on (� =1):

Lemma B.0.9 Assume that (Ft) is right-continuous and let X be a R�
valued process which is right-continuous and adapted, and let � be a stopping
time such that X� is de�ned almost surely. Then X� is a.s. equal to a
F��meas-urable random variable.
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The lemma justi�es that one may always assume that X� (when de�ned)
is F��measurable if X is right-continuous and adapted.

For the statement of the next result, recall that a family (Ui)i2I of real-
valued random variables is uniformly integrable if (i) sup

i2I
E jUij <1 and (ii)

lim
x!1

sup
i2I

R
(jUij>x)

jUij dP = 0: In particular, (Ui) is uniformly integrable if (a)

there exists a random variable U 2 L1 such that P (jUij � jU j) = 1 for all i;
(b) there exists p > 1 such that (Ui) is bounded in Lp: sup

i2I
E jUij

p <1:

Theorem B.0.10 (Optional sampling). Assume that the �ltration (Ft) is
right-continuous.

(a) Let (Mt;Ft) be a right-continuous martingale and let � � � be stopping
times.

If either of the following two conditions (i), (ii) are satis�ed, then
EjM�j <1; EjM� j <1 and

E(M� jF�) =M�; (B.3)

(i) � is bounded.

(ii) (Mt)t�0 is uniformly integrable.

(b) Let (Xt;Ft) be a right-continuous submartingale and let � � � be stop-
ping times.

If either of the following two conditions (i), (ii) are satis�ed, then
EjX�j <1; EjX� j <1 and

E(X� jF�) � X�; (B.4)

(i) � is bounded.

(ii) (X+
t )t�0 is uniformly integrable.

Note that if (aii) (or (bii)) holds, then lim
t!1

Mt ( lim
t!1

Xt) exists a.s. and

M� (respectively X� ) is well de�ned for any stopping time � : Thus, with (aii)
satis�ed (B.3) holds for all pairs � � � of stopping times, while if (bii) is
satis�ed (B.4) holds for all pairs � � � :

We �nally need to discuss local martingales. We still assume that the
�ltration is right-continuous.
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First note that if M is a cadlag Ft�martingale and � is a stopping time,
then M � is also a Ft�martingale, where M � is M stopped at � ;

M �
t :=M�^t:

(Note that by optional sampling, for s < t

E (M �
t jF�^s ) =M �

s :

To obtain the stronger result

E (M �
t jFs ) =M �

s ;

one shows that if F 2 Fs; then F \ (� > s) 2 F�^s and thereforeZ
F

M �
t dP =

Z
F\(�>s)

M �
t dP +

Z
F\(��s)

M� dP

=

Z
F\(�>s)

M �
s dP +

Z
F\(��s)

M �
s dP

=

Z
F

M �
s dP:)

De�nition B.0.2 An adapted, R�valued cadlag process M is a local Ft�
martingale if there exists a sequence (�n)n�1 of stopping times, increasing to
1 a.s., such that for every n; M �n is a Ft�martingale.

That (�n) increases to 1 a.s. means that for all n; �n � �n+1 a.s. and
that lim

n!1
�n = 1 a.s. The sequence (�n) is called a reducing sequence for

the local martingaleM; and we write that M is a local Ft�martingale (�n) :
Clearly any martingale is also a local martingale (use �n � 1 for all

n). If (�n) is a reducing sequence and (�n) is a sequence of stopping times
increasing to 1 a.s., since (M �n)�n = M �n^�n it follows immediately that
(�n ^ �n) is also a reducing sequence.

It is often important to be able to show that a local martingale is a true
martingale. This may be very diÆcult, but a useful criterion is the following:

Proposition B.0.11 Let M be a local Ft�martingale. For M to be a Ft�
martingale it is suÆcient that for all t;

E sup
s:s�t

jMsj <1: (B.5)

Warning. A local martingale M need not be a martingale even though
E jMtj < 1 for all t: There are even examples of local martingales M that
are not martingales although the exponential moments E exp (� jMtj) are
<1 for all t; � � 0: Thus moment conditions on the individual Mt are not
suÆcient to argue that a local martingale is a true martingale { some kind
of uniformity as in (B.5) is required.
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