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Preface

A first version of these lecture notes was prepared for a graduate course given
at the University of Copenhagen 1995-96. Visits to the University of Aarhus
at the Centre for Mathematical Physics and Stochastics during the autumn
of 1998 and at the Stochastic Centre, Chalmers University of Technology and
the University of Gothenburg in early 1999, made it possible to prepare the
version presented here.

In some respects the notes represent a modern version of the lecture notes
Jacobsen [10] and deal with the time dynamics of point processes. The fo-
cus is on canonical marked point processes (MPP’s) (equivalently, MPP’s on
filtered probablity spaces with the filtration that generated by the process it-
self), and their use in the study of piecewise deterministic processes (PDP’s),
notably piecewise deterministic Markov processes (PDMP’s). This approach
conforms with the author’s attitude that all understanding of MPP’s stems
from an understanding of the canonical setup! Nevertheless, MPP’s adapted
to more general filtrations are also discussed, and some of the main structural
differences between the canonical and other setups are pointed out.

The MPP part of the notes (Chapters 1 to 5) constructs MPP’s from the
regular conditional distributions generating jump times, respectively marks,
given the past history. Compensators and compensating measures are then
defined, it is shown (in the canonical case) that the compensating measure
determines the distribution of the MPP, and the basic martingales character-
izing the compensators are derived. A martingale representation theorem is
also given, together with a form of 1t6’s formula for MPP’s. The final general
result presents a simple necessary and sufficient condition for local absolute
continuity between the distributions of two different MPP’s.

Among the examples discussed are Markov chains (homogeneous and non-
homogeneous) viewed as MPP’s. Chapter 6 shows how to generalize this to
PDMP’s, where the basic theory is developed from scratch and the Markov
property established through a key lemma already used heavily for the MPP
theory. In a certain sense, a PDP is nothing but a process adapted to the
filtration generated by a MPP. For the process to be Markov (homogeneous
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or non-homogeneous) a special structure is of course required, as discussed
in Chapter 6, but once that structure is present, martingale properties, It6’s
formula, likelihood processes etc. for PDMP’s, are immediately available
from the MPP theory.

Most of the results presented in these notes are certainly well known.
Perhaps though, some of the proofs and the approach used to develop parts
of the theory is different from what has been seen elsewhere.

The notes are intended for courses at graduate to post-doc level. They are
still in a somewhat preliminary form, e.g. with some proofs only sketched,
and doubtless contain a number of typographical and other errors.

The short bibliography at the end of the notes mentions only some of the
most important references on counting processes, marked point processes and
piecewise deterministic Markov processes. Most of the items are monographs
including several only parts of which are directly relevant for the subject
matter of the notes. For detailed bibliographies, see Last and Brandt [16]
(MPP’s) and Davis [8] (PDMP’s).

[ am very grateful for the hospitality and fine working conditions I enjoyed
while visiting MaPhySto in Aarhus and the Stochastic Centre in Gothenburg.
Special thanks are due to Jacob Krabbe Pedersen from the Department of
Theoretical Statistics at the University of Aarhus, who voluntarily under-
took the huge task of converting the handwritten manuscript of the original
Copenhagen notes into IXTEX.

Copenhagen, July 1999
Martin Jacobsen



Chapter 1

Simple and marked point
processes

1.1 The definition of SPP’s and MPP’s

Let (2, F, P) be a probability space: {2 a non-empty set, the sample space,
F a o—algebra of subsets of 2 and P a probability measure on F.

Definition 1.1.1 A simple point process (SPP for short) is a sequence T =
(Tn)n21 of Ry —valued random variables defined on (Q2, F, P) such that

(Z) P(T1§T2§"‘):1:

(ii) P (T, < Tpir, Ty < 00) = P(T, < o0) (n>1),
(iii) P (ng(’)lo T, = oo) = 1.

Notation. The intervals referring to the time axis are denoted as follows:
Ry = [0,00[, Ry = ]0,00[, Ry = [0,00], Ry = ]0,00]. The corresponding
Borel o—algebras are written By, By, By, B..

Thus, a SPP is an almost surely increasing sequence of strictly positive,
possibly infinite random variables, strictly increasing as long as they are finite
and with almost sure limit oco. The interpretation is that the 7, mark the
occurrence in time of some event, the n’th occurrence happening at time 7,
if T,, < oo and less than n events occurring altogether (on the time axis Ry)
if T,, = oo. By the definition, no event can happen at time 0, nevertheless we
shall mostly use Ry (rather than R, ) as time axis.

7



8 CHAPTER 1. SIMPLE AND MARKED POINT PROCESSES

The condition (iii) in Definition 1.1.1 is important. It is equivalent to the
statement that only finitely many events can occur in any finite time interval.
The more general class of SPP’s obtained by retaining only (i) and (ii) from
Definition 1.1.1 is the class of simple point processes with explosion. It will
be denoted SPP., and will be discussed further in Section 2.1 below.

Introducing the sequence space

_N .
K:{(tn)n>1€R+:t1§t2§---Too, ty < tni1 1ftn<oo}

together with the o—algebra K generated by the coordinate projections
T? (t1,te,...) = t, (n>1), we may view the SPP T as a (K, K) —valued
random variable, defined P—a.s. The distribution of 7T is the probability
T (P) on (K, K) obtained by transformation,

T(P)(B)=Plw:T(w)eB} (Bek).

Similarly, introducing

K:{(tn)meﬂ:tlgtzg---, tn <t iftn<oo}

with IC the o—algebra generated by the coordinate projections on K,_the
distribution of a SPPey, T, is the transformed probability T (P) on (K,K) .

Note that K = {(tn) € K :lim t, = oo}.
n—oo
Now suppose also given a measurable space (E, &), the mark space. Ad-
join to E the irrelevant mark V, write E = FEU{V} and let £ =0 (£,{V})

denote the o—algebra of subsets of E generated by the measurable subsets
of E and the singleton {V}.

Definition 1.1.2 A marked point process (MPP for short) with mark space
E, is a double sequence (T,Y) = (T),>1» (Yn),s,) of Ry—valued random
variables T,, and E—wvalued random variables Y, defined on (Q, F, P) such
that T = (1,) is a SPP and

(i) P(Y, € B,T, < o) = P (T, < ),
(ii) P (Y, =V, T, = 00) = P (T, = ).

Thus, as in Definition 1.1.1 we have a sequence of time points marking
the occurrence of events, but now these events may be of different types,
with the type (or name or label) of the n’th event denoted by the n’th mark,
Y,. Note that the irrelevant mark appears only for events that never occur.
It was introduced only in order to have Y,, always defined for all n.
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A MPP (7,)Y) may be viewed as a (Kg, Kg)—valued random variable,
where

Ky = {((tn) () €ER, x B (ty) € K, yn € B iff t,, < oo}

with g the o—algebra of subsets of Kg generated by the coordinate pro-
jections T2 ((t) , (yk)) = tn, V.2 ((tk) s (yk)) = yn. The distribution of (T,))
is then the transformed probability (7,Y) (P) on (Kg, Kg).

MPP’s with ezplosion are introduced in the obvious manner as (fE, KE) —
valued random variables, where

Ky = {((tn),(yn)) ER,XE :(t) €K, yo € Eiff t, < oo}

with g the o—algebra generated by the projections on K. The distribution
of a MPP,, (T, y) is of course the probability (T, y) (P) on (KE, ICE) )

1.2 Counting processes and counting measures

Let 7 = (1,),~, be a SPP and define the counting process (CP) associated
with 7 as N = (V) , where
Ne=) 1< (1.1)
n=1

Thus N; counts the number of events in the time interval [0, ¢] with Ny = 0.
Clearly each N; is a Ny—valued random variable. Also, for P—a.a. w the
sample path ¢ — N; (w) belongs to the space W of counting process paths,

W = {w e Ny° : w(0) =0, wis right-continuous, increasing,
Aw(t) =0 or 1 for all t}.

Notation. Ny denotes the non-negative integers N U {0}. We also write
Ny =NU{c}, N=NU {c0}.

If t — f(t) is a cadlag-function (right-continuous with left limits) such as
any w € W, Af is the function of discontinuities for f, Af(t) = f(t)— f(t—).

Note that it is the assumption that the 7}, be strictly increasing as long
as they are finite (Definition 1.1.1 (ii)), that ensures that ¢ — N; increases
only in jumps of size 1.

On W define the canonical counting process N° = (N?),5, by Nf(w) =

w(t), so in fact N° : W — W is just the identity, and let H = o (N}),-, be the
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smallest o—algebra of subsets of W such that all NV are measurable. Then
we may view N defined by (1.1) as a (W, ) —valued random variable with
distribution () = N(P) the probability on (W, H) obtained by transformation
of P.

Note that 7 is easily recovered from N since a.s.

T, =inf{t >0: N, =n},

(T, <t) = (N, >n), (1.2)

where here as elsewhere we define inf () = co. Thus we have shown that any
SPP may be identified with its associated CP.

The discussion above could also be carried out for 7 a SPP,, only now
N; = oo can occur with probability > 0, and W should be replaced by the
space W of paths @w € N]é% that otherwise satisfy the conditions already
imposed on w € W.

We have seen that a SPP can be identified with a counting process. In a
similar fashion, a MPP (7,Y) = ((T5,), (Y,)) can be identified with a random
counting measure (RCM) p, viz.

p= Y Emuv)- (1.3)

neN:T), <oo

Here g(1,, v,) (W) = €(7, (w),v,(w)) 15 the measure on the product space (Ry x E,
By ® £) attaching unit mass to the point (7, (w),Y, (w)) and identically 0
elsewhere. Thus, for P—a.a. w, p(w) is a discrete counting measure on
(Ry x E,By®E&), i.e. u(w) is a positive c—finite measure such that

pw,C)eNy (CeBy®E),
p(w, {0} x E) =0,

plw it} xE) <1 (t=0),
p(w,[0,t] x E) <oo (t>0).

The identity
p(C)=> 1c(Th,Y,) (CE€B®E)
n=1

shows that for all measurable C, u(C) is a Ny—valued random variable.

We shall denote by M the space of discrete counting measures on (Ry X F,
By ®E). Elements in M are denoted m and we write p° for the identity map
on M. For C € By ® &, u°(C) denotes the function m — m(C) from M to
Np.

On M we use the o—algebra H = o (1°(C))pep e » the smallest o —
algebra such that all z°(C') are measurable. Thus, with p the RCM above,
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p becomes an a.s. defined (M, H) —valued random variable. Its distribution
is the probability @ = u(P) on (M, H).

It is also possible to describe (7,)) through a family of counting pro-
cesses: for A € £ define N(A) = (N;(A)),>, by

A) = lm<tvaen)
n=1

so Ni(A) counts the number of events on [0, {] matching a mark belonging to
the set A. Note that
Ni(A) = p([0,1] x A).

The total number of events on [0, is denoted N,

o0

= lm<,
n=1

(cf. (1.1)) and N is the counting process (Nt)»o .

It is easily verified that H = o (N;(A4))0 4ee -

We shall now show how the 7,, and Y,, may be recovered in a measurable
fashion from p (or rather, the counting processes N (A)). Clearly

T,=inf{t >0: N, =n},

(T, <t)= (N, >n), (1.4)

cf. (1.2). It is more tricky to find the Y;,, however using the right-continuity
of counting processes one finds that

Y EA U ﬂ U k) 1/2K —n—]_ Nk)/QK(A)_N(k:—I)/QK(A) :]_),

Ko=1 K=Kj k=1

showing that if 1 is a random variable, so is Y,,. Note however that without
some further structure on (£, &) it may not be possible to compute Y, (w)
from p(w). It is possible if e.g. either all singletons {y} € £ or more generally
if £ separates points in the sense that for all y # y' € F there exists A € £
such that y € A, y' € A°. With this kind of structure imposed on (F,E), we
have seen that any MPP may be identified with its associated RCM.

If E (and &) is uncountable, it is much more convenient to identify (7, ))
with the RCM p rather dthan the collection (N(A)) ,.¢ - If however E is at
most countably infinite with £ comprising all subsets of F, it is enough to
keep track of just N¥ := N} for all y € E since N(A) = > yea VY.

It is of course possible to identify MPP, s with suitable exploding RCM’s
where N, = oo is possible. We shall not go into the details.
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Chapter 2

Construction of SPP’s and
MPP’s

2.1 Creating SPP’s

We shall construct SPP’s by constructing probabilities on the sequence space
(K, K), see Section 1.1. We shall call a probability on (K, K) a canonical SPP.
Through the bimeasurable bijection ¢ : (K, K) — (W, H) given by (cf. (1.1),

(1.2)) )
NE (ot ter ) =S Tou)(®) (.. ) € K.

T7 (o' (w)) =inf{t >0: N)(w) =n} (weW), (2.1)

we at the same time obtain a construction of canonical counting processes,
i.e. probabilities on (W, H).

The reader is reminded that if (D;, D;) for i = 1,2 are measurable spaces,
a Markov kernel or transition probability from (Dy,Dy) to (Dg, Dy) is a map
p: Dy x Dy — [0,1] such that

(i) 21 = pg, (As) is Dy — measurable for all Ay € Dy,
(ii) As — ps, (A2) is a probability on (Ds, Dy) for all z; € Dy.

Markov kernels in particular serve as regular conditional probabilities.

The idea underlying the construction of the distribution of a SPP T =
(T,,) is to start by specifying the marginal distribution of 77 and then, succes-
sively for each n € N, the conditional distribution of 7,41 given (T1,...,T}) .
More precisely, let

KM ={(t),...,t,) 10 <ty < - <t, <00, ty <ty if t), < 00}

13



14 CHAPTER 2. CONSTRUCTION OF SPP’S AND MPP’S

be the space of n—sequences that can appear as the first n coordinates of
an element in K, equipped with the o—algebra K™ spanned by the coordi-
nate projections (equivalently, the trace on K (") of the n—dimensional Borel
o—algebra).

Assume given a probability P(®) on R, and also for every n € N, a Markov
kernel PO from (K™, K) to (R,,B,).

Notation. Write 2, for a typical point (t,...,t,) € K™ and T, for the
projection T, ((ty)) =t, on K.

Theorem 2.1.1 (a) For every choice of the probability PO and the Markov
kernels P™ for n > 1 satisfying

P ({o0}) =1 if tn = o0, ‘

there is a unique probability R on the sequence space (F, K) allowing explo-
sions, such that T;(R) = PO and for every n > 1, z, € K™ the probability
P (+) is a regular conditional distribution of T, | given (T({, . ,T;) = Z.

(b) R defines a canonical SPP R, i.e. R(K) =1 with R the restriction
to K of R, if and only if

R ( lim T° = oo) ~1. (2.3)
n—oo
We shall not give the proof here. The theorem follows easily from the Kol-
mogorov consistency theorem by showing consistency of the finite-dimensional
distributions, cf. the expression (2.8) below, which refers to the MPP case.

Remark 2.1.1 It should be clear that (2.2) ensures that the sequence (T;)

1S increasing a.s., strictly increasing as long as T:L is finite. And it is also
clear that (2.3) is exactly the condition ensuring that no explosion occurs.
Note that several choices of Markov kernels may lead to the same R:

subject only to the measurability conditions, Pz(: ) may be changed arbitrarily

for z, € B™ € K™ provided R (T, ...TZ) € B™) = 0.

While arbitrary choices of P™ forn > 0 lead to possibly exploding SPP’s,
there is no simple characterization of the P™ that result in genuine SPP’s.
Indeed, it may be extremely difficult to decide whether a canonical SPP,,
1s a true SPP or not. This stability problem will be discussed on various
occasions later in these notes.
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Notation. We shall often describe the Pz(f) through their survivor func-
tions P, ,
P, (t) = P (Jt,¢]).
By (2.2), Fi:) (t) =1fort <t,ift, < oo, so it suffices to give FSZ) (t) for

t > t,, imposing the value 1 for t = ¢, < oc.

Example 2.1.1 The dead process is the canonical SPP with no jumps in
finite time: R (17 = oo) = 1. It is completely specified by the requirement
PO = ¢ while the choice of P™ for n > 1 is immaterial, cf. the remarks
following Theorem 2.1.1.

Example 2.1.2 The canonical Poisson process (SPP version) is the prob-
ability R that makes the waiting times V> = T2 — T2 | for n > 1 (with
Ty = 0) independent and identically distributed (iid), exponential with some
rate A > 0. Thus

POty =e™ (t>0),

PU(1) = e ) (1> 1),

n

The corresponding probability Q@ = ¢(R) on (W,H) makes N° into a
homogeneous Poisson process with parameter \: for s <t, N — N7 is inde-
pendent of (Ng),<, and

u<s

. (A —9)" _xts
Q(Nt—Ns:n):Te Alt=s) (nEN())
This familiar fact will appear as a consequence of Examples 3.8.1 and 3.8.3
below.

The dead process may be viewed as the Poisson process with parameter
A=0.

Example 2.1.3 A canonical renewal process is a canonical SPP such that
the waiting times V) are 1id. If G is the survivor function for the waiting
time distribution,

P =G (t>0),

P =G (t—t)) (t>1).

Zn

The Poisson process is in particular a renewal process. That renewal pro-
cesses do not explode is of course a consequence of the simple fact that if
U, >0 for n > 1 are iid random variables, then > U, = 0o a.s.
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Example 2.1.4 Suppose the waiting times V) are independent, V.7 exponen-
tral at rate \,,_1 > 0. Thus

?(0) (t) — 6_/\0t (t Z 0)7

ﬁ(n) (t) — Q*An(t*tn) (t Z tn)

Zn

If \,, = 0 for some n > 0 and ng is the smallest such n, precisely ng jumps
occur and Ty | = 00 a.s.

With this ezample explosion may be possible and either happens with prob-
ability 0 (and we have a SPP) or with probability 1 (and we have a gen-
uine SPP.;). Stability (no ezplosion) occurs iff >, o, EV,;) = oo, i.e. iff
> a0, =00 (with 1/0 = 0).

The canonical counting process corresponding to a SPP or SPP,, as de-
scribed here, is a continuous time, homogeneous Markov chain, moving from
state 0 to state 1, from 1 to 2 etc. The process N° 4+ 1 is what is commonly
called a birth process.

(For a general construction of time-homogeneous Markov chains, see FEi-
ample 2.2.3 below).

2.2 Creating MPP’s

The construction of MPP’s (7,Y) with mark space (E,&) consists in the
construction of canonical MPP’s, i.e. probabilities R on the sequence space
(K(E),K(E)), cf. Section 1.1. If £ separates points, (see p. 11), the
bimeasurable bijection ¢ : (K(E),K (E)) — (M, H) given by

@(t17t27---;y17y27---): Z 6(tn:yn)

and
Ty (¢7'm) =inf{t :m ([0,t]) =n} (meM,neN), (2.4)
(Y; op e A) = (2.5)

U ﬂ U (Nik—n/QK =n- 1aNIS/2K(A) - N(okfl)/QK(A) = 1)
Ko=1 K=Kg k=1
forn € N, A € £, where N7 (1°, A) = p° ([0,1] x A), N, = N2 (E), provides
a construction of a canonical random counting measure by transformation,
vielding the probability ¢(R) on (M, H).
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The idea behind the construction of a MPP is to start with the marginal
distribution of the first jump time 7} and then successively specify the con-
ditional distribution of 7,4 given (T1,...,T,;Y1,...,Y,) and of Y, 41 given
(T, ..., Tn, Tyy1; Y1, ..., Y,) . Formally, let

KM(E)={(t1, - ta; ¥, osyn) : 0<ty <0 <ty <00, g < tppa
and yy, € E if t;, < oo}

denote the space of finite sequences of n timepoints and n marks that form
the beginning of sequences in K (E), equipped with the o—algebra K™ (E)
spanned by the coordinate projections (equivalently the trace on K™ (E) of
the product o—algebra B" ® £"). Similarly, for n € Ny define

J(n)(E) - {(tla"'atnat;yla"'ayn) : (tla"'atn;yla"'ayn) € K(n)(E)a
tn <t with ¢, < tif t, < oo}

equipped with the obvious o—algebra j(”)(E).

Assume given a probability P(®) on R, and, for every n € N, a Markov
kernel P(™ from (K(")(E), K (E)) to (R+,B+) , as well as, for every n €
Ny, a Markov kernel (" from (J™(E), 7™ (E)) to (E,€).

Notation. Write z, for a typical point (ti,...,tn;y1,...,9:) € KM(E)
and (zy, ) or zy,t for a typical point (t1,...,tn, Y1, ..., Yn) € JM(E). Also
we write T ((tg, yr)) = tn and Y, ((tg, yr)) = yn for coordinate projections
on K(E).

Theorem 2 2.1 (a) For every choice of the probability P and the Markov
kernels P™ for n > 1, 7™ for n > 0 satisfying

P{::; (twyoc]) =1 if tn < o0

P ({oo}) =1 ity = oo,

ngft (E) = if t < oo, (2:6)
TV (V) = ift = o0

there is a unique probability R on the sequence space (?(E),E(E)) allowing
explosions, such that T,(Q) = P© and for every n > 1, z, € KM (E),
the probability Pz(f) (+) is a regular conditional distribution of TnJrl given

(T;,...,TZ;?;,...,?;) = zn, and for every n > 0, (z,,t) € JW(E),
the probability wi”)t(-) is a regular conditional distribution of 7;+1 given

(T T Tn+1,Y,...,?;;):(zn,t).
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(b) R defines a canonical MPP R, i.e. R(K(E)) =1 with R the restric-
tion to K(F) of R, if and only if

R ( lim T, = oo) = 1. (2.7)
n—o00

Similar remarks apply to this result as those given after Theorem 2.1.1.

The proof is based on the Kolmogorov consistency theorem working with

finite-dimensional distributions, which have the following appearance: for
neN, C™ e KM(E),

R(Z, e C™) = (2.8)
fP (dty) [70 (dyy) -+ [ PO D (dt) [70 Y (dyn) Too (2a) -

Notation. As in the SPP case we shall write F(ZZ) (t) = P (Jt,0)), c.f.
p.15.

Example 2.2.1 Suppose E = {1,...,r} is finite with r > 2, and let £ be
the o—algebra of all subsets of E. Define

?(0) (t) — e—/\t (t > 0), ?(n) (t) — e—)\(t—tn) (t > tn)’

" ({y) =p, (yeEE)

for some XA > 0 and some probability function (py)yeE (i.e. py >0, > .py, =
1). In other words, the waiting times between jumps are iid exponential, the
Y2 are iid (py) and the sequences (Ty;) and (Y,?) are independent. The result-
ing probability R on (K(E),K(E)) is the canonical Poisson process with mark
space E and parameter vector (\y), ., where Ay = Apy. If @ = ¢(R) is the
corresponding canonical RCM one finds, that under ), the counting process
N°¥ := N° ({y}) is Poisson \,, and that the N°Y are mutually stochastically
independent. (For a proof, see Example 3.8.3). Note that by FEzample 2.1.2,
N° is Poisson \.

Example 2.2.2 Suppose (Xn)neNo 1$ a stochastic process in discrete time
with state space (G,G) (each X, is a G—measurable, G—uvalued random vari-
able). The distribution of (X,) conditionally on Xy = xy for an arbitrary
xo € G, may be viewed as the MPP with mark space (G,G) generated by the

Markov kernels PZ(:‘)Q:O = epq1 and

7™ (A) =P (Xp4 € AlXy =20, (X1,.. ., X0) = 20).

Zn,t|Zo
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It is one of the main purposes of these notes to construct piecewise deter-
ministic processes (PDP’s) from MPP’s and to use MPP theory to discuss
the properties of the PDP’s. We now briefly outline how the connection
arises.

Suppose X = (X}),5, is a stochastic process defined on some probability
space with a state space (G, G) which is a topological space equipped with its
Borel o—algebra. Assume further that X is right-continuous and piecewise
continuous with only finitely many discontinuities (jumps) on any finite time
interval. Then a MPP is easily constructed from X by letting 7, be the
time of the n’th jump, and defining Y,, = Xy, (if 7, < 00) to be the state
reached by X at the time of the n’th jump. In general it is of course not
possible to reconstruct X from the MPP, but if further structure is imposed
the reconstruction can be done in a natural way, i.e. such that knowledge
about the MPP on [0, ] yields (Xj),.,, for any ¢: suppose that the initial
value 7y = Xy of X is non-random and that for every n € N; there is a
suitably measurable function fz(:‘)xo (t) of z, and t and the initial state xg
such that

N,
= £ 29)
where Z; := (Tl, . ..,TNT;YI,...,YWT). Thus, until the time of the first

jump, X; = f&) (t) is a deterministic function of 2 and ¢, between the first
and second jump, X; is a function of zy,¢ and 77,Y; etc. The functions
™ provide algorithms for computing X between jumps, based on the past
history of the process. Note that the fact that Y, = Xz on (T, < c0)
translates into the boundary condition

We shall more formally call a process X of the form (2.9) piecewise deter-
ministic. It is a piecewise continuous process if all t — fz(f) (t) are continuous
on [t,,00[, a step process (or piecewise constant process) if £l (t) =y, and
a piecewise linear process with slope o if f{™ (t) = yn + a(t — t,) for some
constant a not depending on n.

Example 2.2.3 We shall outline the MPP description of time-homogeneous
Mar-kov chains in continuous time. That what follows is a construction of
such chains is well known but will follow in any case from Theorem 6.1.1.
Let X = (X}),~, be a homogeneous Markov chain with an at most countably
infinite state space E with £ the o—algebra of all subsets. In accordance
with traditional notation we write 1, 7,1 for elements of E rather than e.g.
Y, Yp. Assume that Xo = iy € F is non-random (alternatively, look at X
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conditionally on Xo) and that X has only finitely many jumps in finite time
intervals. The distribution of the chain is completely specified by the initial
state ig and the transition probabilities (not depending on i)

Dij (t) = P(Xs+t — ] |Xs - Z) - P(Xs+t — ] |(Xu)u§sa Xs = Z)

for any s,t,i,j and also by iy and the transition intensities

o1
gij =i = (py (1) = 0i5)
where 0;; = 1 if i = j and = 0 otherwise. The transition probabilities form
a semigroup, P(s+t) = P(s)P(t) for s,t > 0 with P(0) = I, where P(t) =
(pij (t)); jep is the transition matriz for time intervals of length t and I = (6;)
is the B x E identity matriz. The q;; satisfy Ni := —qi; > 0, ¢;; > 0 fori # j
and ) qij = 0 for all i.

X 1is a step process as described above, i.e. X is given by (2.9) with, for
Zn = (tla"'atn;ila"'ain)a

fz(:\)io (t) = lIn,

letting T, be the time of the n’th jump of X and Y, = X, on (T, < o).
Then the distribution of the MPP ((T},), (Yy)) is determined by the Markov
kernels P™, 7™ given by

-\io’ "io
F(O) (t) gt ﬁ(") (t) — o= ip (t—tn) (t >t ) (2 10)
jio (0) = € 70, anlio \1) = € =mh '
n Ginj
Wgn{tm (A) = Z )\—] (2.11)
JEANE, T

corresponding to the well known fact that for minimal jump chains with sta-
tionary transitions, conditionally on the past the waiting time to the next
Jump 1s exponential at rate \; , where i, is the present state, while the jump
itself is governed by the intensities g;,; in the manner described.

Note that if \; = 0, the state i is absorbing as is seen from (2.10): once
the chain enters state i, it remains there forever. In particular the definition
of Wgz)t‘io if Xi, =0 (in which case (2.11) does not make sense) is therefore
immaterial.



Chapter 3

Compensators and martingales

3.1 Hazard measures

Let P be a probability on (R+,E+) with survivor function P. Thus P(t) =
P (]t,00]) and P(t—) = P ([t,00]). Also write AP(t) := P ({t}) with in par-
ticular AP(oc0) := P ({o0}).

Definition 3.1.1 The hazard measure for P is the positive measure v on
(Ry, By) with v < P and

dv _{ =5 ifB(E-) >0,

—(t) = t— 3.1
d]P’() 0 otherwise. (3:1)

Formally, the Radon-Nikodym derivative is with respect to the restriction
to Ry of P rather than P itself. By the definition of v,

1
U(B) = /B 5o B )

for all B € B, as follows from the observation that

P({t>0:P(t—)=0})=0, (3.2)

i.e. the definition of dv/dP(t) when P(t—) = 0 is immaterial. (With ¢/ as
defined in (3.3) below,the set appearing in (3.2) is = () if t' = 00, = [tT, oo[
if t' < 0o and AP (t1) = 0, = |¢f, 0o[ if ¢ < 0o and AP (¢f) > 0).

The reader is reminded about the standard more informal definition of
hazard measure: if U is a R,—valued random variable, then the hazard
measure for the distribution of U is given by

v(tt+d) =Pt <U<t+dt|U>t),

21
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i.e. if U is the timepoint at which some event occurs, ¥ measures the risk of
that event happening now or in the immediate future given that it has not
occurred yet.

If P has density f with respect to Lebesgue measure, v has density u
where u(t) = f(t)/P(t) if P(t) > 0. The function u is then called the hazard
function for P.

Define

th:=inf {t > 0:P(t) = 0}, (3.3)

the termination point for P. Note that because P(0) = 1, ' > 0. Further,
th = oo iff P(t) > 0 for all t € Ry and if t < co always P(#!) = 0 and
in addition either AP (¢1) > 0, or AP (¢f) = 0 and P(t! — ) > 0 for all
0 < e < . Also v (]t',00[) = 0 because of our definition (3.1) — but that
need of course not hold with other definitions of v beyond ¢'.

The basic properties of hazard measures are summarized in the next result

where Av(t) := v ({t}).

Theorem 3.1.1 Let v be the hazard measure for some probability P on
(R+,B+) . Then

(1) v is locally finite at 0: v (]0,t]) < oo fort > 0 sufficiently small;
(ii) v (]0,t]) < oo if t < t1;
(iii) Av(t) <1 for allt € Ry, Av(t) <1 for all t < tT;
(iv) Av (t) =1 iff tT < oo and AP (t') > 0;
(v) if AP (t7) > 0, then v (]0,t1]) < oo if tT < co and v (R}) < oo if

th = 00;
(vi) if AP (tY) =0, then v (]0,t'[) = co whether t' is finite or not.

If conversely v is a positive, possibly infinite measure on (R, By), locally
finite at 0 as in (i) above with Av (t) < 1 for allt € Ry, then v is the hazard
measure for a uniquely determined probability P on (R+,B+) in the following
sense: the termination point tt for P is

th=inf{t >0: Av(t) =1 or v (]0,t]) = oo} (3.4)
and the survivor function P for P is given by the product integral

= o (1=v(d ft <t
B(t) :{ [occr (1= () Zéﬂ
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Note. The product integral is described in detail below, see (3.6).
Proof. If P(t—) > 0 then v (]0,¢]) < f}O q ﬁ P(ds) < oo, proving (i), (ii)
and (v). (iii) and (iv) follow from Av(t) = AP(t)/P(t—) if P(t—) > 0. To
prove (vi), note that P ([t, tf D 1 0as ¢t 1 ¢ and then define ¢, = 0 and
recursively choose £, such that P ([tk, il D < %]P’ ([tk,l, tt D . Then ¢, 1T t' and
hence

v(J0,67]) = > v ([te-1, tal)

- X

N ].;2:; [tk—l,tk[?(s_)P(dS)
P ([tr—1, ti])

2 2 B (1)

where the assumption AP(t') = 0 has been used in the last step. But the
series in the last line diverges since each term is > %

For the proof of the last part of the proposition we focus on two cases,
noting that the definition of ¢' is certainly the only possible in view of
(iv) and (vi): suppose first that P has a continuous density f on ]0,¢'[.

Then v (dt) = u(t) dt where u(t) = f(t)/P(t) = — (log@(t))l forcing P(t) =
exp (— fotu(s) ds) = exp (—v (]0,t])) for ¢ < tI. Suppose next that P is dis-
crete in the special sense that there is a finite or infinite strictly increasing
sequence 0 < t; < ty < --- < oo such that all AP (¢;) > 0 and > AP (#) +
AP (00) = 1. Then Av(ty) = AP (t;,) /P(ty—) = 1 —P(t;)/P(t;_1) and conse-
quently P(t) = [T5_, (1 — Av (t;)) resulting in P(t) = [[y,, (1 — Av(s)). ®

The following immediate consequence of Theorem 3.1.1 will be used later:

Corollary 3.1.2 IfU is a R, —valued random variable with hazard measure
v, then
P (]0,UNRy) < o0) = 1. (3.5)

The last part of the proof of Proposition 3.1.1 gives two instances of how
the product integral

P(t)= J] (1-v(ds) (3.6)

0<s<t

should be interpreted. It may be shown more generally that if P is continuous
(AP (t) =0 for all t € R,), then

P(t) = exp (-v (]0,1])),
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and if P is discrete (there is an at most countably infinite subset By of Ry
such that P(R;\B,;) = 0), then

B() = [ (- Av(s)

0<s<t

with only the factors 1 —Av(s) for s € B, contributing to the continuous time
product. For general P, suppose v is a given hazard measure and compute ¢
by (3.4). To recover P it suffices to find P(¢) for ¢ < t!. Consider v restricted
to ]O,tT[ and split v into its continuous and discrete parts, v = v° + v¢,
where for Borel sets B C 0,¢![, v4(B) = > epnp, Av(t) writing By =
{t €]0,t"[: Av(t) > 0} . Then the claim is that

B(t) = exp (—v (0,4))) [] (1 - av(s)). (3.7)

0<s<t

The idea behind the proof is essentially to identify v and v with hazard
measures, one of which must have termination point ¢'. One then exploits
that if U¢, U? are independent random variables with hazard measures v¢, 1%
(so that since U® has a continuous distribution and U? a discrete distribution,

PU>t)=exp(—v°(0,8])), PU*>t)= ] (1-2av's))),

0<s<t

then U := min (UC, Ud) , which trivially has survivor function P as in (3.7),
has hazard measure v = v° + v¢ by Proposition 3.1.3 (ii) below.

Example 3.1.1 (i) v = 0 is the hazard measure for the probability ¢
with point mass 1 at oco.

(i) v = M where A > 0 and { denotes Lebesgue measure, is the hazard
measure for the exponential distribution with rate \, i.e. P(t) = e .

(iii) v =" pe, where 0 < p < 1, is the hazard measure for the geometric
distribution on N given by AP (n) =p (1 —p)"~" forn e N.

Hazard measures have some further nice properties, that we quote without
proofs.

Proposition 3.1.3 (i) If P has hazard measure v and ty > 0 is such
that P(ty) > 0, then the hazard measure for the conditional probability
P (- []to, o0]) is the restriction to |ty, 00| of v.
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(ii) If Uy, Uy are Ry—wvalued and independent random variables with dis-
tributions Py, Py and hazard measures vy, vy respectively, then provided
AP, (t)APy(t) = 0 for all t > 0, the distribution of U := min (Uy, Uy)
has hazard measure v = vy + Vs.

The assumption in (ii) that P;, P, do not have atoms in common on R,
is essential for the assertion to be valid.

For the proof of Proposition 3.1.3 and other proofs omitted here, one may
use the techniques discussed in Appendix A.

3.2 Adapted and predictable processes

We shall in most of this chapter be dealing with canonical counting processes
and canonical random counting measures, i.e. probabilities on the spaces
(W, H) and (M, H) respectively, cf. Sections 2.1 and 2.2. Recall that any
such probability may be viewed as a SPP, respectively a MPP through the
following definition of the sequence of jump times (7,) on W,

=inf{t >0: Ny =n} (neN),

see (2.1), and the following definition of the sequence of jump times (7,) and
marks (7,)) on M,

Tn:inf{t>0:N:=n} (n €N),

(1, € A) U ﬂ U (_O/f /2K =N 17Nl:/2K(A) - N(okfl)/ZK(A) = 1)

Ko=1 K=Kg k=1
(3.8)

forn e N, A € &, see (2.4), (2.5). In order to be able to identify the exact
value of 7,, from (3.8), we assume from now on that £ separates point, cf. p.
11. Otherwise the notation used throughout is

N°(w) =w, N/ (w)=w(t) (weW,t>0),

and
pe (m) =m, p°(C,m)=m(C)

form € M, C € By ® &, while N, : M — Ny and N, (A) : M — Ny (for
A € &) are defined by

Z 1 (T <t)

n=1
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oo

NP (Aym) =) racem,en (m) = p° ([0,4] x A,m)

n=1

for m € M, and where we write e.g. NP(A,m) rather than N (A)(m).
Finally we define

B (T1,--,Tn) on W,
gn_{ (7_17"'77_n;7717"'777n) on M (39)

as well as

L S

€ - { Sner g = { S (3.10)

with the convention that on (N;y = 0), resp. (N; = 0) , &, = 0 (the impor-
tant thing is that &, should be something non-informative and if viewed as a
random variable, should generate the trivial c—algebra, o (£,) = {0, W} or
{0, M}). Note that £, summarizes the jump times and marks occurring in
[0,t], &,_ those occurring in [0, ¢].

The fundamental filtration on (W, H) is (H;),~, where

Hi=o0 ((Nso)ogsgt)

is the smallest o —algebra such that all N; for s < t are measurable. Similarly
the fundamental filtration on (M, H) is (H),, where

Hi=o0 ((N;(A))Ogsgt,AES) :

For t = 0 we get the trivial o—algebra,

0wy
Ho = { {0, M}

Note that if £’ C £ generates £ (the o—algebra o (£') generated by the sets
in £ is & itself) with E' € £ and &' is closed under the formation of finite
intersections, Ay N Ay, € £ if A1, Ay € &', then H; =0 ((N;)(A))Ugsgt,/leé") :

A process X = (X),5, with state space (G,G) defined on W or M is
a family of G—valued random varaibles. The process is measurable if the
mapping (¢, w) 2 X, (w), respectively (¢, m) 2 X, (m), is measurable from
(Ry x W, By ® H) , respectively (Ry x M, By ® H), to (G,G). X is adapted
if it is measurable and each X, is H;—measurable; X is predictable (or
previsible) if Xy is constant (i.e. Ho—measurable) and if ® restricted to
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(Ry x W,BL ®@H), or (R x M,B, ®*H), is measurable with respect to
the predictable c—algebra P. Here P is generated by the subsets

Jt,oo[ x H (t>0,H e H,)

of Ry x W or Ry x M. Recall that any R?—valued process X = (X;),., which
is left-continuous and adapted is predictable. (See Appendix B for a more
general discussion of the concepts from process theory introduced here).
The following useful result characterizes H; and adapted and predictable
processes and also shows that the filtration (#;) is right-continuous. Recall

the definitions (3.9), (3.10) of £,,, &, and &,_.
Proposition 3.2.1  (a) Consider the space (W, H) .

(i) A set H C W belongs to H, iff for every n € Ny there exists
B, € B} N0,t]" such that

HN (N, =n)=({, € By,Tpi1 > t).

(ii) For everyt >0, My = Hy where Hyy i= (Voog Hise
(1ii) A real-valued process X = (Xt)t20 is adapted iff for every n € Ny

there exists a measurable function (z,,t) — fz(f) (t) from R} x Ry
to R such that identically on W and for all t € Ry,

X, = f0(1).

(iv) A real-valued process X = (X,g)t20 is predictable iff for every n €

Ny there ezists a measurable function (z,,t) — Fm (t) from R x
Ry to R such that identically on W and for all t € Ry

X, = fg_vf-)(t). (3.11)
(b) Consider the space (M, H).

(i) A set H C M belongs to Hy iff for every n € Ny there exists
C, € (BT ®&™) N (]0,t]" x E™) such that

HnN (Nt - n) = (£, € Cpy Ty > 1). (3.12)

(ii) For everyt >0, My = Hy where Hyy i= (Voog Hise
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(iii) A real-valued process X = (Xy),~, is adapted iff for every n € Ny

there exists a measurable function (z,,t) — fz(f) (t) from (R} x
E™) x Ry to R such that identically on M and for all t € Ry

x, = ")), (3.13)

(iv) A real-valued process X = (Xt)tzo is predictable iff for every n €

Ny there exists a measurable function (z,,t) — Fm (t) from (R} x

E™) x Ry to R such that identically on M and for all t € Ry

N,_

¥, = 1), (3.14)
Remark 3.2.1 The description of adapted processes merely states (apart
from measurability properties) that a process is adapted iff its value at t can
be computed from the number of jumps on [0, t] and the timepoints and marks
for these jumps. In particular, an adapted R—uvalued process on e.g. (M, H)
is piecewise deterministic, cf. (2.9). For a process to be predictable, to find

its value at t it suffices to know the number of jumps just before t, their
location and the marks.

Example 3.2.1 On (W, H), the counting process N° is adapted but not pre-
dictable. Similarly, on (M, H) the counting processes N°(A) are adapted for
all A € &, but not predictable except for A = . To see the latter, fix A # (),
t > 0 and just note that there is m € M with N7 (m,A) =0 and a different
m with NY_ (m, A) = 0, Ny (m, A) = 1 (the first jump for m occurs at time t,
resulting in a mark in A); but were N°(A) predictable, by Proposition 3.2.1,
Ng(m, A) = N7 (m, A).

As an example of the representation (3.13), note that on (M, H), NP (A)
has the representation (3.13) with

FE) = 1)

where, as usual, z, = (t1, ..., 0} Y1, -+ Yn) -

Proof. (Proposition 3.2.1). We just prove (b).
(i). To show that all H € #; have the representation (3.12), it suf-
fices to show that (3.12) holds for the members of the H,—generating class

((Ng(4) = l))ZGNO,sgt,Aeg- But

(N;(A) = lv N: = n) = (Z 1(7k§s,nkeA) = la T <1t < Tn-l—l)
k=1
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so (3.12) holds with

On - {Zn : Zl}U,S}XA (tkayk) = la ln < t} .

k=1

Suppose conversely that H C M satisfies (3.12) for all n. Since H = | J7~ , HN

¢}

(Nt - n) H € H, follows if we show H N (Nj - n) € #,. But for that, by
(3.12), it suffices to show that

(gn € Cp, Tny1 > t) € H,

for C,, of the form
Chn={zn :tx < s,y € A} (3.15)

for 1 < k < n,s <t A € €&, since these sets generate (Bfﬁ@é’”) N
(]0,¢]" x E™). But with C, given by (3.15), use a variation of (3.8) to verify
that

(é-n € CTL;TTL+1 > t) = (Tk S S, Tn+1 > t) N

oo 2K

U m U (NEJ'*US/?K =k—1 ]?S/QK(A) - N(Oj_l)s/QK(A) = 1)

Ko=1 K=K j=1

which clearly is a set in H;.

(ii). We must show that H;, C H;. So suppose that H € H;,, i.e. that
H € H,, forall k € N. By (i), for every n, k there is C,; C ]0,¢ + £]" x E™
measurable such that

HnN (N;% - n) = (&0 € Cruger Togs > £+ 1), (3.16)

Now consider the set of m € M belonging to the set (3.16) for k sufficiently
large. Because t — N; is right-continuous and piecewise constant and be-
cause m € (Tn41 >t+ 1) for k sufficiently large iff m € (7,41 > ), this
leads to the identity

HnN (Nf = n) = (gn € KQMQ Cn,k> N (Tpit > 1)

But since C,, ;. is a measurable subset of ]0, t+ %]n x E™, U?OZI ﬂZO:KO Chk
is a measurable subset of ]0,¢]" x E™, hence (3.12) holds and by (i), H € H,.
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(iii). Let X be a R—valued, adapted process. Writing X = X+ — X,
the difference between the positive and negative part of X, it is seen that to
establish (3.13) it is enough to consider X > 0. Further, writing

Jm 3 S v ()

k=0

it is clear that it suffices to consider adapted X of the form

X;(m) =1p (t,m) (3.17)
for some D € By ® H, i.e. D has the property that

Dy:={m:(t,m) € D} € H,
for all t. But by (i), for every n € Ny, ¢t > 0,
DN (Nj - n) = (&, € Chty Tup1 > 1)

for some C,; € B} ® £€" and it follows that (3.13) holds with

F() =1e,, (2n) -

It remains to show that f(® is a measurable function of (z,,t). But since X
is measurable, so is

(t,m) = Xe(m)1 g,y (m) = £ @)

and the assertion follows easily.
For the converse, suppose that X is given by (3.13) with all (z,,t) —

fz(f)(t) measurable. It is immediately checked that X is then measurable,
and it remains to see that X, is H;—measurable. For this, the standard
approximation techniques imply that it suffices to consider f(™ of the form

fz(:) (t) = 1c, (20) Lsp00((?)
for some C),, € B} ® £, s, > 0. But then, for every n,
Xel(ws—n) = Lguecn) Lrnstcrnin Lsn ol ()

which is H;—measurable by (i).
(iv). Arguing as in the proof of (iii), to prove that any predictable X has
the form (3.14), it suffices to consider

Xt(m) = 1D (t, m)
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for D € P. Since the desired representation holds trivially for D = R, x M,
it here suffices to consider D of the form

D=]s,00[xH (s>0,H¢€H,), (3.18)

since these sets form a class closed under the formation of finite intersections
that generate P.

Since H € H,, (3.12) holds and consequently, if D is given by (3.18), for
t>0,

Xt - 1}5,00[(t) 1H

oo n

= 1}s,oo[(t)zl(ﬁg;n) Lig ehrisr>s)
n=0 k=0

using that when t > s, N,_ > N,. Thus (3.13) holds with

k=0

fz(::)(s) = Ljs00((t) (i: Loy (2k) Lso0f (t11) + 1, (zn)> .

Finally, let X be given by (3.14) and let us show that X is predictable.
Clearly Xj is constant on M, hence Hy—measurable. To show that X is
P—measurable on R, x M it suffices to consider f™ of the form

F() = 1e, (2n) Lsp el(2)

for some C, € B} ® £", s, > 0. We need
D, = {(t,m) 1> 0, X, (m) =1, No_(m) = n} ePp

and find, using s, j x := s, + 727 to approximate the value of ¢ > s, that

Dn - U m U ]Sn,j,K, Sn,j+1,K] X (é‘n & Bn,NZn,J_,K = n)

Ko=1 K=K j=0

K

which is in P because <§n € Bn,N:nJ_ = n) € Hs,,, and the interval

1Sn..K» Sn,j+1,k] 1s open to the left. [ |

Proposition 3.2.1 has the following intuitively obvious and very useful
consequence: conditioning on H, is the same as conditioning on the number
of jumps on [0,¢], their location in time and their associated marks. More
formally we have
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Corollary 3.2.2 If Q is a probability on (M, H) (or (W,H)) and U is a
R—wvalued random variable with E|U| < oo, then

E(U|H,) }:1_Ln (UIE,, Tni1 > t). (3.19)

Note. E(U|E,, Tns1 > t) is the conditional expectation of U given the
random variables £, and 1(, - considered on the set (7,41 > t) only.

Proof. By its definition E (U |£,, Tp41 > t) is a measurable function of &,
and 1(;,.,>¢), evaluated on the set (7,41 > t) only where the indicator is 1,
cf. (3.20) below. Thus we may write

1(N?:n)E (U |§n77_n+1 > t) - 1(ﬁ::n)()0n (gn)

and (3.13) shows that the n’th term in (3.19) is H;—measurable for all n.
Next, let H € H; and use (3.12) and the definition of E (U |€,,, 71 > t) to
obtain

/Zl (0 B (U 0T > 1) dP

= Z/ EU|¢,,Tns1 >t) dP
6 eCnyTn+1>t

= Z / UdP
—0 7 (£, €Cn,Tny1>1)

n

= /UdP.
H

Remark 3.2.2 The usefulness of the result comes from the construction of
SPP’s and MPP’s which makes it natural to work with the conditional expec-
tations on the right of (3.19). Note that on (7,41 > t),

E(Ul>nl6) _ 1
Q (Tni1 > t[E,) F(gn) (1)

E (Ul 16,) -

(3.20)

EU &y Tn > 1) =
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3.3 Compensators and compensating measures

Let @@ be a probability on (W,H) determined by the sequence (P(")) of

Markov kernels, see Theorem 2.1.1. Write V,(ZZ) for the hazard measure for
P™ ¢f. Section 3.1 so that

dugz) B 1
i T
when Fi:) (t—) > 0.

Definition 3.3.1 The compensator for Q is the process A° = (A7),5, on
(W, H) given by N

NP
A7 = v (Irn, Ta A1) (3.21)
n=0

Note that only for the last term, n = N7, is 7,41 At =¢.
Clearly, for allw € W, t — A7 (w) is > 0, 0 at time 0, increasing and right-
continuous. The ambiguity in the choice of the Markov kernels (see p.14)

translates into the following ambiguity about the compensator: if (]3(”) is

another sequence of Markov kernels generating @ with resulting compensator
A°, then A° and A° are (Q—indistinguishable, i.e.

QN (7\; - A§> ~1. (3.22)
>0
As it stands Ay can take the value co. However, by (3.5) it follows that
Q[ (A <o0) =1.
>0

Another important property of the compensator, see Theorem 3.1.1 (iii), is
that

QAN <1)=1. (3.23)
>0
The definition of what corresponds to the compensator for a probability

Q) on (M, H) is more involved.
Let (P(”), 71'(”)) be the sequences of Markov kernels generating (). We start

by defining the total compensator as the process A~ = (K;) on (M, H)
>0
given by

A =D v (ray Tasr A ) (3.24)
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with 2" the hazard measure for P"). This definition mimics (3.21) and A”
has the same properties as A° in the CP-case as listed above. In particular,
for Q—a.a. m, the right-continuous function ¢ — K; (m) defines a positive
measure A°(dt,m) on Ry with A° ({0},m) = Aj(m) = 0, A° ([0,1],m) =
A; (m) < oo for all t and AR, (m) = A° ({t},m) < 1 for all .

For A € £ we define the Q—compensator for the CP N°(A) as the process
A°(A) given by

AS(A) = A} . V) () B (ds). (3.25)

Definition 3.3.2 The compensating measure for @) is the random, non-
negative, Q—a.s. o—finite measure L° on Ry x E given by

2= [ [1etnYaTa) cesnoe).
Ro JE

That L° is a random measure as described in the definition means of
course that for Q—a.a. m, C — L° (C,m) is a positive, c—finite measure on
By®E.

Note that

AZ(A) = L°([0,1] x A), A, =L°([0,] x E).
An essential property of compensators is presented in

Proposition 3.3.1 (a) The compensator A° for a probability Q on (W, H)
15 predictable.

(b) The compensators AN°(A) for the counting processes N°(A) under a
probability Q@ on (M, H) are predictable for all A € £.

Proof. We prove (a), which is good enough to pinpoint the critical part of
the argument. Keeping Proposition 3.2.1 (aiv) in mind, on (Nt"_ = n) where
either N) =n or Ny =n+1,

S
—

Ay =" v (ki) + 08 (7)) (3.26)
0

i

it N =n, and

n

o k n+1
Ay = Z ng) 7k, Tht1]) + l/énil) (7 ns1,t])
k=0
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if Ny = n + 1. But in this latter case, 7,41 = t and it is seen that the
expression (3.26) still holds and thus also the representation (3.11). |

It is critically important that it is possible to reconstruct the Markov
kernels generating a probability ) from the compensators: consider first the
CP case. Then using (3.21) one finds that for any n, z, = (t1,...,%,),

V2 (Jta, 1)) = A7 (w) — A7 (w)

for any w € (Ntof =n,§, = zn) . Similarly, in the MPP case, cf. (3.24), for
any n, zp = (t1, -, tn; Y1y -+ Yn)

v (Jtu, 1)) = K, (m) = A (m) (3.27)

for any m € (W;_ =n,§, = zn) . To extract the kernels WE,Z),t is more elabo-

rate and based on the fact, obvious from (3.25), that the measure A° (dt, A)
on Ry determined from the right-continuous process t — A7 (A) is absolutely
continuous with respect to the measure A°(dt) with Radon-Nikodym deriva-
tive

R )

Thus I (A)
(n) =——>(t,m :
() = DB ) 329

for any m € (W;ﬁ =n,§, = zn> . The only problem here is that the Radon-

Nikodym derivative is determined for A” (dt,m) —a.a t only, with an excep-
(n)

tionel set depending on A and m, so care is needed to obtain e.g. that m, 7,

is always a probability.

Even though the Markov kernels are obtainable from the compensators, it
is just conceivable that two different ()’s might have the same compensators.
That this is not the case follows from the next result which informally stated
shows that compensators characterize probabilities on (W, H) or (M, H).

Theorem 3.3.2 (a) Suppose N° is the compensator for some probability
Q on (W,H). Then that Q is uniquely determined.

(b) Suppose L° is the compensating measure for some probability (Q on
(M, H). Then that Q) is uniquely determined.

Proof. We just consider (b). Suppose that Q # @ are two probabilities on
(M, H) with compensating measures L°, L°. Since () # @ there is a smallest
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n € Nsuch that the Q—distribution of ¢, is different from the @—distribution
of £,,. Define

Cp—1 = {zn—1: the conditional ) — distribution of (7,,n,) given
&,_1 = #p—1 1s different from the corresponding
conditional @) — distribution } .

By the definition of 1, Q (&, , € Cn1) = Q (&,_1 € Cnei) > 0, while by
the definition of C, |, the compensating measures LO,ZO for @, Q) satisfy
that L°(m) # L°(m) for all m such that &, ;(m) € C,_;. Thus L° is

not Q—indistinguishable from L° and hence, cf. (3.22), L° cannot be a
compensating measure for Q). [ |

Example 3.3.1 Suppose Q on W makes N° Poisson \, see Example 2.1.2.
Then the hazard measure for PZ(,?) is the restriction to |t,,oo[ of A times
Lebesgue measure. Thus

Ay = )t
in particular the compensator is deterministic.
Example 3.3.2 Suppose QQ on W makes N° a renewal process with waiting
time distribution with hazard measure v, see Example 2.1.3. Then

Ny

Ay = ZV(]O,Tn+1 ANt —Ty]).

n=0

If in particular the waiting time distribution is absolutely continuous with
hazard function u, then

t
A7 :/ u(s— 7o) ds. (3.29)
0

Example 3.3.3 Suppose E is finite and let () be the canonical RCM with
the Markov kernels described in FExample 2.2.1, i.e. the Poisson process with
mark space E and parameter vector (\y), .y, . Then

AS(A) =t A,
yeA

and
L°=/Qk

where { is Lebesgue measure and k is the measure on E given by k(A) =

ZA )\y'
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We shall conclude this section with a key lemma that will prove immensely
useful in the future. For s > 0, define the shift 0, mapping W, respectively
M, into itself, by

. Ne—N°  ift>s o
o= { VN EZ = (sl B)).

Thus 60, only contains the points from the original process that belong strictly
after time s. Writing (7,,), -, (777175)”>1 for the sequence of jump times and
marks determining 6, we have for instance in the MPP case that

Tn,s = Tk+n, 77n,s = Nk4n

on (N: = k)
Similarly, for ko € N define Jy, = 0, as the map Uy, : (7, < 00) = W
or M given by

NP — N? ift > 1
e N°)e =4 ~ 1 7k - Dpopt® = p1° (- N E)).
o= { N LT = (0 (a0l < B)

Lemma 3.3.3 (a) Let Q be a probability on (W, H) with compensator A°,
generated by the Markov kernels P(™

(i) The conditional distribution of O;N° given N2 = k, £, = 2, for
an arbitrary k € Ny, 2z = (t1,...,t) € K® with t;, < s is the
probability Q = Q,, on (W, H) generated by the Markov kernels

13‘562 given by
(0
P, = PP (-[ls, o))
pmn)  _ plktn)
PZn|k 2k PjO (zk,zk) (Tl Z 1) )
where for z, = (%vl, e ) ) with t, > s,
join (zx, z,,) = (tl,...,tk,ﬁ,...,fn).

(i1) The conditional distribution of Iy, N° given &, = z, for an ar-

bitrary zg, = (t1, ..., tk,) € K5o) with t,, < oo is the probability
Q Q|k0 2y O (W ’H) generated by the Markov kernels P|( n)
ko,zk
given by
pO  _ plk)
|ko,2k, Zko
pm = plkotn) (n>1),

Zn |k0,2k0 jOiH(ZkO;gkO)
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where for z, = (%vl, ) ,Zn) e K™ with t, > o
jOiH (Zkoagn) = (tl, .. .,tko,a, .. ,Zn) .

(b) Let Q be a probability on (M, H), generated by the Markov kernels
(p(n)) , (W(n)) )

(i) The conditional distribution of O,u° given Ny = k, &, = z, for
an arbitrary k € Ny, 2z = (t1, ..., te;y1s ..., yx) € KE(E) with
ty < s is the probability Q = Qk,z, on (M, H) generated by the

Markov kernels lﬁgik, ﬁ‘(glk given by
(0
Pyl = PP (]1s,00))
Smn)  _ plktn)
P = Poinzozy  (m21),
~(n) __(k+n) -
ﬂ-gzvt'kvzk o WjOin?zk,Zn),t (n Z 0, t > tn)

where for z, = (t~1,...,t~n;§1,...,gn) e KM(E) with t, > s,
jOin(Zkagn) = (tla-"atkagla-"7;n;y17"'7yk7g17"'gn) .

(i) The conditional distribution of Vy,p° given &, = zy, for an ar-
bitrary zp, = (t1, ..y trgi Y - -5 Yko) € KE(E) with ty, < oo is

the probability () = Q|k0 I (M, H) generated by the Markov
RO

pH(n) ~(n) ;
kernels P|k0,Zk0, 7r|k0,zk0 given by

ﬁ(o) pko)

|k0:Zk0 zko ’
P oy = Fioin(sgz) 2 1)
~=(n) _,_(ko+n) ~
'/T2n7t|k)072k-0 - ﬂ—join(zko’gn),t (n Z O)t > tn)

where for z, = (%],...,?n;gl,...,gn) e K™ (E) with t, > ty,,
jOin (Zkoagn) = (tla s '7tk07a7 s '7?n;y17' s 7yk07g17 s gn) .

Note. By Corollary 3.2.2, the conditional probabilities described in (ai)
and (bi) simply determine the conditional distribution of 0, given H;.
Proof. We only outline the proof. The expressions for f)\g))zk in (ai), (bi)
follow immediately from Corollary 3.2.2 and (3.20). The remaining assertions
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are consequences of the fact that conditining first on e.g. the first £ jump
times and marks, and then, within that conditioning, also on the times and
marks for the next n jumps, is the same as conditioning from the start on
the k + n first jump times and marks. [ |

The formulation we have given of Lemma 3.3.3 uses the Markov kernels to
desribe the conditional distributions of #; and ¥,. Alternatively they may be
described using compensators and compensating measures and here, using
Proposition 3.1.3 (i), it is seen e.g. that if @) is a probability on (M, H)
with compensating measure L°, then the conditional distribution of # given
NZ =k, &, = 2z, has a compensating measure L“’k,zk which is the restriction of
L° to [s,00[ in the following sense: for any mgy € M such that N, (mg) = k,
gk (mo) = %k

- (m,C) = L° (cross (mg,m),C N (]s,o0[ x E))

for arbitrary m € M, C € By ® £, where cross (mgy, m) € M is obtained by
using mg on [0, s] x E, m on |s,o0[ X E, i.e.
cross (mo, m) = mg (-N[0,s] X E) +m (-N]s, 00 x E).

We have in this section only discussed compensators for CP’s and RCM’s
that do not explode (see p.9). The definitions carry over verbatim to pro-
cesses with explosion (adding e.g. the requirement L° ([T, 00[ X F) = 0

with 7, = inf{t : Nto = oo} the time of explosion). One may then show

that in fact 7, = inf {t A, = oo} a.s. which yields a (useless) criterion for
deciding whether explosions are possible or not.

A more useful criterion for explosion in terms of compensators is the
following: let () be a probability on (M, H) (no explosions) and let () be a
probability on (M, ’H) , the space of exploding discrete counting measures m
(i.e. N, (m) = ([0,1] x E) = oo is possible). Let @ have total compensator
A, @ have total compensator A . Finally, for m, m € M write

m=<m
if for all £, B o
N, (m) < N, (m).

Proposition 3.3.4 Assume that A and N are continuous. A sufficient
condition for @) to be non-exploding s that

~0 ~0

Ay () = A, () < Nj(m) = A (m) (3-30)
for all s <t and all M < m with N, (m) = N, (m) = N, (m) = N,(m).
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Proof. An outline of the proof: let ﬁz(:) and P™ denote the Markov kernels
generating the jump times for CNQ and @ respectively. (3.30) implies that for
any n and any Z, = (f1, ..., tn; U1 - > Un)s Zn = (t1s ooy tns Y1y - - oY) With
t, <ty for k = 1,...,n, the distribution ]35(:) is stochastically larger than
P e,

=S B

Pa ()= P (0 (331)

for all ¢ > t,. (For this one needs the continuity of the total compensators:
because of this assumption, in terms of hazard measures (3.31) reads

exp (<72 (| t])) > exp (02 (ta, 1))

which follows easily from (3.30)). But by a coupling construction it is then
possible to define on some probability space, random sequences (Tn, §~/n> and
(T, Y,) of two sets of jump times and marks such that g := >
has distribution é, =D coo

n, T, > T,. Since by assumption p does not explode, neither does ji. [ |

n:fn<oo 6(fn,l7n)

€(T,,v,) has distribution @, and for every

A quite useful consequence of this result is presented in Corollary 3.4.4
in the next section.
3.4 Intensity processes

We shall in this section discuss the case where compensators can be repre-
sented as ordinary Lebesgue integrals.

Definition 3.4.1 (a) Let Q be a probability on (W, H) with compensator
A°. A predictable process A° > 0 is an intensity process for Q) if Q—a.s.

t
A;:/ Xds (t>0).
0

(b) Let Q be a probability on (M, H) with compensating measure L°.

(i) Let A € E. A predictable process \°(A) > 0 is an intensity process
for the counting process N°(A) under Q if Q—a.s.

A%(A) :/Ot)\;’(A) ds (t>0).
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(i1) If for arbitrary A € & there is an intensity process \°(A) for
N°(A) under Q such that Q—a.s. A — X/ (A) is a positive measure
on (E,E) for all t, then the collection (A°(A)) sce i an intensity
measure for Q).

. . . s o oV
(1i1) If K is a positive, o—finite measure on (E, ) and if \° = ()\ )yeE

is a collection of predictable processes \° > 0 such that Q—a.s.

t
N = [ [ Xk as ¢z0.aee),
0Ja
then \° is a k—intensity process for ().

Note that we have demanded that all intensities be predictable. It is per-
fectly possible to work with intensities that are adapted but not predictable
and still give predictable (since adapted and continuous) compensators by
integration, cf. Proposition 3.4.2. However, in some contexts (see Propo-
sition 3.4.3 and Theorem 4.0.2 below) it is essential to have the intensities
predictable.

The requirement in (biii) stipulates that the compensating measure L°
for @ should have a density with respect to f®k: L° (dt,dy) = N/ dt k (dy) .

Of course if \° is a x—intensity for @, then (A°(A)),.¢ is an intensity
measure for (), where

A(A) = / Xk (dy).

and each A\°(A) defined this way is an intensity process for N°(A).
The following result gives sufficient conditions for existence of intensities.
Recall the definition p.22 of hazard functions.

Proposition 3.4.1 (a) Let Q be a probability on (W, H) determined by the

Markov kernels P™. Assume that Q—a.s. for every n, Pg(n) 15 abso-

lutely continuous with respect to Lebesque measure with hazard function
uén). Then
o Ny
x = ul™) (1 (3.32)

s an intensity process for Q).

(b) Let Q be a probability on (M, H) determined by the Markov kernels
P™ gnd 7(™.
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(i) Assume that Q—a.s. for every n, Pg(") is absolutely continuous

with respect to Lebesque measure with hazard function ué"). Then
(A°(A)) ace is an intensity measure for Q, where

x(4) = a4, (3.33)

(i1) If in addition to the assumption in (i), it also holds that there is a
positive, o— finite measure k on (E,E) such that Q—a.s. for every

n and Lebesgue-a.a. t, Wén),t 18 absolutely continuous with respect

to k with density pén{t, then ()\Oy)ye s a k—intensity for ), where

E

(v

N = U, ) (t)pg%;)(y). (3.34)

Proof. The predictability of the intensity processes is ensured by the left-
limits N, , &,_ appearing in the expressions. Everything else follows from
the definitions of the compensators and the fact that

v (dt) = u™ (1) dt.

Example 3.4.1 The canonical Poisson counting process with parameter \
has intensity process
A = A,

cf. Example 3.3.1.

Example 3.4.2 For the renewal process (Example 3.3.2), if the waiting time
distribution has hazard function u,

Al =u (t — TNt°_>

s an intensity process. Note that the compensator A = f[f AL ds is the same
as that given by (3.29), but that the integrand in (3.29) is not predictable.

Example 3.4.3 Consider the finite-dimensional Poisson process from FEx-
ample 3.3.3. Then the deterministic quantities

A=y,

define a ko—intensity process, where ko 18 counting measure on E.
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The following description is perhaps the one most often associated with
the concept of (non-predictable) intensity processes.

Proposition 3.4.2 (a) Let Q be a probability on (W, H) and assume that
Q) has an intensity process \° given by (3.32) such that Q—a.s. all

limits from the right, A\, :mloirl? . Ayn exist. Then for all t, Q—a.s.
>

[e] : 1 o (¢)
Avt :hilol,rfgo o (Nen = NG > 1[3e)

(b) Let Q be a probability on (M, H), let A € € and assume that N°(A)
has intensity process A°(A) given by (3.33) such that Q—a.s. all limits

from the right, A}, (A) :hﬂgrgl . Ao in(A) exist. Then for all t, Q—a.s.
,n>

o . 1 —o0 —o0
A (A) :hﬂolfigo EQ (Nt+h -N, 21, €A |%t) :

Proof. Recall from p.37 that 7, , is the mark for the first jump on ]¢, 00].
The proof is now based on Lemma 3.3.3 and follows by explicit calculations
that we show in the MPP case:

1 o —o
EQ <Nt+h - N, > 17771,t € A|Ht)
L[ ) (7))

= o[ et

— A (4)

Remark 3.4.1 Proposition 3.4.2 shows in what sense it is possible to build
a model (SPP or MPP) from intensities of the form that specifies (approzi-
mately) the probability of a certain event happening in the near future, con-
ditionally on the entire past: as we have seen, it is sometimes possible to
interpret these kind of intensities as genuine intensity processes, in which
case we have a SPP or MPP. There is of course always the usual problem
with explosions, but other than that the importance of the result lies in the
fact that from an intuitive understanding of the phenomenon one wants to
describe, one can often argue the form of the intensities given by limits as
in Proposition 3.4.2. That this may lead to a complete specification of the
model is certainly a non-trivial observation!



44 CHAPTER 3. COMPENSATORS AND MARTINGALES

Warning. In the literature one may often find alternative expressions for
e.g. the counting process intensities \;, such as

1 0 0 1 0 o
1]%1 +Q@ (N2oy — Ny = 1[H,), 1’5101 e (Ngen — NP M)

Although often valid, these expressions are not valid in general (for the second
version, not even if all EN; < 00). Something like

: 1 (¢] [e]
lim --Q (N2, — Ny > 2|H,) =0,

is required, but this may fail (although the examples may appear artificial).

The right limit intensities in Proposition 3.4.2 are typically not pre-
dictable. They must never be used in expressions such as (4.7) below. Also
the next result will not in general hold for right limit intensities.

Proposition 3.4.3 (a) Let Q be a probability on (W, H) with intensity
process given by (3.32). Then for all n > 1,

Q()\:n>0,7'n<oo):Q(7'n<oo).

(b) Let Q be a probability on (M, H) with k—intensity process given by
(3.34). Then for alln > 1,

QA" >0,7, <00) =Q (1, < 00).
Proof. (b). By explicit calculation
Q (A::’Ln = OaTn < OO)
= Q(u) G, (1) = 0.7, < o0)

Tn—1,00 E

where
n—1 n—1
C= {(t, y) u (@) pl ) (y) = o} ,

Since

—(n—1)

PID(dt) = ul VP () dt, w870 (dy) = pf Y, () s (dy)

gnfl n—1 nflvt



3.5. THE BASIC MARTINGALES 45

by assumption, it is clear that
Q ()\:zn =0,7, < oo) =0.

Let Q,(Q be probabilities on (M, H) and (M, H) respectively (i.e. Q

allows explosions) such that the Markov kernels P™ P™ generating the

Zn

jump times are absolutely continuous with hazard functions u{”, @, Let

Zn
also XO, X denote the total intensity processes,

%ol Tl

Corollary 3.4.4 A sufficient condition for @ to be non-exploding is that

=0

A (m) < X:(m)
for allt >0 and all m,m € M with m < m, N, (m) = N, (m).

The proof is obvious from Proposition 3.3.4. See p.39 for the meaning of
the ‘inequality’ m < m.

Example 3.4.4 Tf@ is such that there exists constants a,, > 0 with > 1/a, =

oo and Xt < agye everywhere on M for every t, then @ 1s non-exploding, cf.
p.16.

3.5 The basic martingales

In this section we shall characterize compensators and compensating mea-
sures through certain martingale properties. The main results provide Doob-
Meyer decompositions of the counting process N° on (W, H) and the counting
processes N°(A) on (M, H): these counting processes are H;—adapted and
increasing, hence they are trivially local submartingales and representable as
a local martingale plus an increasing, predictable process, 0 at time 0. As we
shall see, the increasing, predictable process is simply the compensator.

The fact that the increasing, predictable process in the Doob-Meyer de-
composition is unique (when assumed to equal 0 at time 0) in our setup
amounts to Proposition 3.5.1 below.

Recall that a Ro—valued map defined on (W, H) or (M, H) is a stopping
time provided (7 < t) € H, for all ¢, (equivalently, since the filtration is right
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continuous, (7 < t) € H,; for all t). The pre-7 o—algebra H., is the collection
{HeH:HnNn(r<t)eH,forallt} ={HeH: HN(r <t) € H, for all t}
of measurable sets. In particular each 7, is a stopping time, and as may easily
be verified, H,, is the c—algebra generated by &,,.

Let @ be a probability on (W, H) or (M, H). A local Q—martingale is
a real-valued, #H,—adapted process M = (M;),.,, such that each M*» :=
(Mpn/\t)t>0 is a true martingale — still with respect to the filtration (Hy) —
for some increasing sequence (p,) of stopping times with p, 1t co Q—a.s.
The sequence (p,) is called a reducing sequence and we write that M is a
local @QQ—martingale (p,). By far the most important reducing sequence is
the sequence (7,,) of jump times. (See Appendix B for a general discussion
of stopping times, local martingales and the optional sampling theorem.)

Proposition 3.5.1 Suppose M s a right-continuous, H;—predictable local
Q — martingale on (W, H) or (M, H). Then M is constant,

Q) (M, = Mp) = 1.

£>0

Proof. Suppose first that M is a right-continuous, predictable martingale.
By optional sampling, which applies only because M is right-continuous, for
any t,

EM,,5 = EMy = M,

since Mj is a constant random variable, being Hy—measurable. But since
M is predictable, by Proposition 3.2.1 there is a Borel function f such that
M. nt = f (71 At) and thus

£0) = FOPV @) + | f(s) PO (ds).

10,¢]

From this follows by differentiation with respect to P(*) (see Appendix A),
that f is constant and so, M is constant on [0,7;]. Again by optional sam-
pling, F (Mrn+1At |7-[Tn/\t) = M, . But the conditional expectation on the
left is

V< E (My o ni o) + Loty B (Mo one [He)
- 1(7n§t)E (M’fn+1/\t |€n) + 1(7’n>t)]\/[t

and so, by the same argument using the Markov kernel P( ") instead of PO,
one finds that M is constant on |7,,7,41] and equal to M . It follows im-
mediately that M = M,.
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Let now M be a right-continuous and predictable local (Q—martingale
with reducing sequence (p,,). We claim that for each n the martingale M#»
is in fact predictable and from this the assertion follows from what has been
proved already: for each n we have M#» = M, a.s. and since p, T co a.s.
also M = M, a.s.

It remains to show that if X is a right-continuous and predictable R —
valued process and p is a stopping time, then X7 is predictable. But

XP = Xel(pot) + Xplipen)

and here the first term on the right defines a predictable process since X and
the left-continuous indicator process (1(p2t)) i>o are predictable. The second
term is predictable since the process (X pl(p<t)) is left-continuous and for

>0
all ¢,
Xplipany =Jm Y X xLiisype,c b
k=1
is H;—measurable. [ ]

Remark 3.5.1 The result is peculiar to the point process setup: Brownian
motion is the most famous example of a continuous martingale which is not
constant! The assumption that M be right-continuous is also important: it is
easy to find cadlag (in particular right-continuous) martingales M that are
not constant, and such that Q (My = M, ) =1 for all t. But then (M;_) is a
left-continuous, hence predictable martingale, which is non-constant.

Theorem 3.5.2 (a) Let Q be a probability on (W, H) with compensator
A°. Then M° := N° — A° is a local Q—martingale (1,,) and A° is, up
to Q—indistinguishability, the unique right-continuous H;—predictable
process, 0 at time 0, such that M° is a (Q—local martingale. A sufficient
condition for M° to be a Q—martingale is that EN; < oo for all t.

(b) Let Q be a probability on (M, H) with compensating measure L° and
compensators A°(A), AJ(A) = L°([0,t] x A). Then, for any A € &,
M°(A) := N°(A)—A°(A) is a local Q—martingale (1,,) and A°(A) is, up
to Q—indistinguishability, the unique right-continuous H;—predictable
process, 0 at time 0, such that M°(A) is a Q—local martingale. A
sufficient condition for M°(A) to be a Q—martingale is that ENy(A) <
oo for all t.

Proof. The proof relies on a technique that will be used also on several
occasions in the sequel, and is therefore here presented in detail. We consider
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the more difficult case (b) only and will start by showing that M°(A) is a
()—martingale if ENy(A) < oo for all ¢.
The idea is to argue that for this it suffices to prove that

EN:lf\t(A) = EAj'l/\t(A)7 (335)

for all probabilities @ on (M, H), where of course A°(A) is the compensator
for the @ considered, and then verify (3.35) by explicit calculation. (Note
that since 0 < N7 ,,(A) <1 the expectation on the left is trivially finite for
all @, in particular it follows from (3.35) that A2 ,,(A) is Q@—integrable for
all @ and all ¢ and A).

We claim first that from Lemma 3.3.3 (b) and (3.35) it follows that for
alln € Ny and all t > 0,

E(N?

Tn4+1 AL

(A) = N2 (A 16,) = E (A7, 0(A) = A2 W (A)5,) - (3:36)

This identity is obvious on (7, > t) and on (7, < t) is just (3.35) applied to
the conditional distribution of the shifted process 9, u°, see Lemma 3.3.3.
It is an immediate consquence of (3.35) and (3.36) that for all @), A, and
all n and ¢,
EN;’”M(A) = EA:n/\t(A)

with both expectations finite since N7 ,,(A) < n. Let n T oo and use mono-
tone convergence to deduce that for all @), A, and all ¢,

EN?(A) = EAS(A), (3.37)

whether the expectatons are finite or not. Finally, assuming that EN?(A) <
oo for all ¢ it follows first for s < ¢ that E (N7 (A) |[Hs) < co Q—a.s. and
then from Lemma 3.3.3 (b) and (3.37) applied to the conditional distribution
of Bsu° given H,, that

E (N7 (A) = NJ(A) [Hs) = E(A{(A) = AS(A) [Hy)

which by rearrangement of the terms, that are all finite, results in the desired
martingale property
E (M} (A) | Hs) = MJ(A).

It remains to establish (3.35). But
EN7 p(A) = Q(ri <t,m € A)

= [ #0) POas)
10,¢]
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while

BAL(A) = B ml00) 0y
]07‘1/\t]

~ PO / 7O (4) pO (ds)
10,¢]

! Lq <4] i (A) (ds)> PO (du)

and (3.35) follows by partial integration, cf. Appendix A.

That A°(A) is the only predictable process, 0 at time 0, such that N°(A)—
A°(A) is a local @—martingale follows immediately from Proposition 3.5.1:
if also N°(A) — A° is a local martingale, where A° is predictable and 0 at
time 0, then A°(A) — Aois a predictable local martingale, 0 at time 0, hence
identically equal to 0.

The remaining assertion of the theorem, that M°(A) is always a local
(Q—martingale (7,), is easy to verify: the distribution @, of the stopped
RCM p°™ := p°(-N [0, 7] x E) obviously has compensating measure L°™" =
L°(-N[0,7°] x E), (the Markov kernels P™*) 7™() generating @,, are those
of Q for k < n, while Pt = ¢}, and since E,N?(A) < n < oo,
by what has been proved above, M°™(A), which is @,—indistinguishable
from M°(A), is a Q,—martingale for all n, equivalently M°(A) is a local
()—martingale (7,,). |

Some of the other important martingales arising directly from the com-
pensators are presented in the next result. Note that the result does not hold

in the form presented here without the assumption about continuity of A°
and A°.

Proposition 3.5.3 (a) Let Q be a probability on (W, H) with continuous
compensator A°. Then M° — A° is a local Q—martingale (1,,), which
is a QQ—martingale iof EN; < oo for all t.

(b) Let QQ be a probability on (M H) with compensators A°(A) and con-
tinuous total compensator A

(i) For every A € £, M (A) — A°(A) is a local Q—martingale (1,,),
which is a Q—martingale if ENY(A) < oo for all t.

(i1) For every A, A" € & with ANA" =0, M°(A)M°(A") is a local
Q—martingale (1,) which is a Q—martingale if ENS(A) < oo,
ENp(A") < oo for all t.
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Proof. Note for (b) that all A°(A) are continuous when A° is. Otherwise
the technique from the proof of Theorem 3.5.2 is used, i.e. for the two parts
of the Proposition it is argued that it suffices to show that for all @, A, A’
and t,

EMS

T1AL

= FEA>

T1AL
EM‘I?l/\t(A) = EAj'l/\t(A)7 EM:l/\t(A)M:l/\t(A,) = 0

respectively. These identities are then verified directly through straightfor-
ward calculations leading to some not so straightforward partial integrations.
[t is important to point out one step in the argument: to show e.g. in (b)
that M°"(A) — A°(A) is a martingale if all EN?(A) < oo one must deduce

that
EM (A) = EAZ(A) (3.38)

for all t when knowing that
EM, (4) = EA?, ,,(4) (3.39)

for all ¢ and n. (Since we know from Theorem 3.5.2 that EAj(A) = ENy(A) it
follows in particular from (3.38) that EM?" (A) < oo as is certainly required
for the martingale assertion). To deduce (3.38) from (3.39), use Fatou’s
lemma and monotone convergence to obtain

EM{"(A) = Eliminf M2 ,,(A)
n—oo
< liminf EMZ,,(A) (3.40)
n—oo
= lim BAZ ,(4)
= EA(4)

< 0.

But with M°(A) a martingale and M?*(A) integrable for all £, M°(A) is a
submartingale and in particular, by optional sampling,

EM;"(A) > EMZ, ,(A) = EA,

for all n,t. Letting n 1 oo gives EM?"(A) > EA? which combined with the
inequality (3.40) yields (3.38).

Note, as is relevant for the proof of (bii), that the argument above implies
that all M (A)Mp(A') are integrable if ENY(A) and ENY(A') are both finite
for all ¢. |
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Remark 3.5.2 For (bi) it suffices to assume that A°(A) is continuous, and
for (bii) that A(A°(A)A°(A")) = 0. Without these assumptions it is still
possible to find in (bi) a predictable, increasing process A° such that Me (A)—

A° is a local martingale, and in (bii) o predictable process Y, 0 at time 0,
such that M°(A)M°(A") — T is a local martingale, see Section 3.8 below.

3.6 Stochastic integrals and martingales

Let @ be a probability on (M, #H) with compensating measure L° (for the
results in this section it is natural to consider canonical CP’s as a special case
of canonical RCM’s). We shall first discuss stochastic integrals with respect
to u° and L° and then use them to arrive at the martingale representation
theorem, Theorem 3.6.1 below.

The integrands are functions of m € M, ¢t > 0 and y € E. A typical
integrand is denoted S where (m,t,y) — S} (m) is assumed to be R—valued
and measurable (with respect to the Borel c—algebra on R and the product
o—algebra H ® By ® £ on M x Ry x E). Often we shall think of S as a
family (SY),.p of processes S¥ = (S/),5, and then refer to S as a flow of
processes. Particularly important are predictable flows which are flows with
each SY predictable.

The stochastic integral

NU(S) = (NP (S NE(S)i= [ S1y (dsydy
10,t]xE
is always well defined as a R—valued process, and the stochastic intgral is

just a finite sum,
oo

N (S)y= ) s
n=1
T <00

If each SY is adapted, also N°(S) is adapted.
The stochastic integral

A(S) = (AS(S))ymor  AS(S) (m) i= /] St m) L . ds,

is always well defined if S > 0 (or S < 0) as a Ry—valued process (respectively
a process with values in [—o00,0]) with the integral an ordinary Lebesgue-
Stieltjes integral for each m. If S > 0, in order for A°(S) to be @—a.s. finite,

N Q) (A;(S) < o) =1,

£>0
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it suffices that
Qﬂ( sup S§<oo) =1.
>0

s<tyeck

For arbitrary S, write S = ST —S~ where ST = SV0, S~ = —SA0 and define
A°(S) = A°(ST) — A°(S™) whenever A°(ST) or A°(S7) is @—a.s. finite. In
particular A°(S) is well defined with

Q[ (IA{(S)| < 00) =1

t>0

provided
Qﬂ ( sup |SY| < oo) = 1.
£>0

s<t,yeck

If A°(S) is well defined, it is an adapted process if each S¥ is adapted and
a predictable process if S is a predictable flow.

Note. If discussing counting processes there is of course no need for
predictable flows: S is just a predictable process.

Suppose A°(S) is well defined and then define the process M°(S) by
M7 (S) = N7 (S) — A (S). (3.41)
Theorem 3.6.1 Let @ be a probability on (W, H) or (M, H).

(1) Suppose M is a right-continuous local Q—martingale. Then there ezists
a predictable flow S = (SY) such that

M, = My + M;(S). (3.42)
(it) If S > 0 is a predictable flow, then
(1) M°(S) given by (3.41) is a local Q—martingale (1,,) if for all n >
1,t>0,
EN7 n(S) < oo
(2) M°(S) given by (3.41) is a Q—martingale if for all t > 0,
EN;(S) < 0.

(1i1) If S is a predictable flow, then
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(1) M°(S) given by (3.41) is a local Q—martingale (1,,) if for alln >
1,1 >0,
EN7 7 (15]) < o0;
(2) M°(S) given by (3.41) is a Q—martingale if for all t > 0,
EN?(]S]) < o0.

Proof. We outline the main parts of the proof and note first that (iii) follows
trivially from (ii). We start with the proof of

(ii). By the technique introduced in the proof of Theorem 3.5.2, it suffices
to prove that

E / SV u° (ds, dy) = E / SV I° (ds, dy) (3.43)
}O,Tl/\t}XE ]O,Tlf\t]XE
for all ¢+ and all @), with L° the compensating for ). By Proposition 3.2.1
(biv) there is a function f (s,y), jointly measurable in s and y, such that
SY = f(s,y) on (N;_ = 0) . Thus (3.43) reduces to

El(ngt)f(ﬁﬂh) = E/

10,71AL

O (ds 7 (d s,
| (@s) [ =) 1 (5.0)

or

PO (ds) [ 79 (d s,
Lﬂ @s) [ 70 () £ s0)

= P(O) O (ds 70 (d s,
(t)/m ( >/E O (dy) £ (5,9)

(0) (0) (0)
+A]7ﬂp (du) A]’u}u (dS) /E7Ts (dy) f(S,y)-

This you verify directly by partial integration or differentiation with respect
to P (see Appendix A).
An alternative way of proving (ii) is to start with flows S of the form

Sg = 1Ho 1]80,00[ (8) le (y) (344)

where sg > 0, Hy € Hs,, Ag € &€, and then extend to all S > 0 by standard
arguments. For S of the form (3.44) the (local) martingale property of M° (.S)
follows from that of M° (Ap).

(). Suppose just that M is a right-continuous true Q—martingale. Be-
cause M is adapted we can write

M, = f"(t) on (Nj :n) (3.45)
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for all n,t, cf. Proposition 3.2.1 (biii). By optional sampling
E(M; e — M |€,) =0 on (1, <t),
an identity which using (3.45) we may write
P (1) (f§”> (t) - f§”> - »)
+ fion Pe. '(ds) [, ”g s (dy) (fjgi(lg) (s (8) — fg(:) (Tn)) =0
on (1, <t), where join (§,,, (5,¥)) = (T1y -+ s Tny S; My e o vy My Y) -

We want to find S such that (3.42) holds. Since each SY is predictable
we may write

(3.46)

St =g (s.y) on (N._=n)
so that on (7, < t) we have that
M:n+1/\t (S) - M:n (S)

g ds) [ (dy) g (s.)
gé:) (Tn+1777n+1) - Ji'rnﬂ'n_,_l] v e dS fE‘ ﬂ—ﬁ ,8 dy) (S y)

with the top expression valid if ¢ < 7,,¢, that on the bottom if t > 7,.,.
But also on (7, < t),

fg ( ) fg ( n) ift < Tn-i—la
fg“ (Tugr) = fE (1) it > 7oy,

and it is seen that M° (S) = M if for all n, ¢,y on (7, < t) it holds that
e (ds) [pmd), (dy) o (s,9) = 10 = £ (),
98 (1) = [, g8 (@s) [l () o (5.0) = Fiel o (0 = 1 (70)

MTn+1/\t - M‘Fn - {

~ [ia v (ds) [l (dy) g (s,9) = £ () = £ () (347)
and
n n+1
gén) (t7 y) f](()lrﬂg)n ty ( ) fg ( ) ) (348)
where equation (3.48) defines g§ ). But from (3. 46) it follows that t — f(t) :=

fg(n)( ) is differentiable with respect to P := P ) and by the differentiation
rule

Dp (F1F) (t) = (DpFy) (1) F2(t) + Fi(t=) (DpFy) (1),
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(see Appendix A), (3.46) implies that

SO~ £ ED+P ) Dof ) == [ 7 d) (F550 ) 0 = £ (7).

™
E

or equivalently, using (3.48)

P (t-) Dpf(t) = — /E 7 (dy) o (1), (3.49)

From (3.46) we see in particular that f(¢) is right-continuous for ¢ > 7,,, and
since both sides of (3.47) vanish as ¢ | 7, with the left hand side obviously
differentiable with resect to P, to prove (3.47) it suffices to show that

Dos)=0p (= [ o) [ = 00) o s).
Tn,t E

But recalling the definition (3.1) of hazard measures, it is seen that this is

precisely (3.49). |

Remark 3.6.1 It is often important to be able to show that a local martin-
gale is a martingale. The conditions in Theorem 3.6.1 (iib) and (iiib) are
sufficient for this but far from necessary.

We shall conclude this section by quoting some important identities in-
volving the socalled quadratic characteristics and cross characteristics for
(local) martingales.

Suppose M is a Q—martingale with EM? < oo for all . Then M? is a
submartingale and by the Doob-Meyer decomposition theorem,

M? = local martingale + A

where A is predictable, cadlag, increasing, 0 at time 0. A is in general process
theory called the quadratic characteristic for M and is denoted (M) (not to
be confused with the quadratic variation process [M]).

More generally, if My, Ms are two martingales with second moments, the
cross characteristic between M, M> is the process

(My, M) == 1 ((My + M) — (M; — My)). (3.50)

For us, with Theorem 3.6.1 available, we need only find the quadratic
characteristics for the stochastic integrals M°(S). So let @) be a probability
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on (M, H)and let S, S be predictable flows such that the stochastic integrals
A®(S%),A° (§2) are well defined, and define

(r(s) = A (),
<M°(S), M°(§)> — A (s§) .
(Note that these definitions conform with (3.50)).

Proposition 3.6.2 Assume that A° is continuous. Assume also that for all
n and t,

S

Sup Tn/\S

s<t,ye E,meM

where S* = S or = S. Then

(m)| < o0 (3.51)

M° (%) = (M°(S)),  M°(S)M° (§)—<M°(S),M° (§)> (3.52)

are local QQ—martingales (1) .
If instead of (3.51)

EN, < oo, sup 52" (m)] < o0
s<t,ye E,meM

holds for all n and t, then the local martingales in (3.52) are Q—martingales.

For the proof, a critical step is to verify by explicit calculation that for

all @),
EM,(S) = BAS, (%), BM;,(S)M;,(5) = BAZ, , (8S).

Note that Proposition 3.5.3 corresponds to the special case S} = 14 (y),
Sg} = 1AI (y) .

The integrabilitry conditions imposed above are not the most general
available.

3.7 Compensators and filtrations

We have so far exclusively discussed compensators and compensating mea-
sures for canonical CP’s and RCM’s, i.e. probabilities on (W, H) and (M, H)
respectively. Both concepts make perfect sense for CP’s and RCM’s defined
on arbitrary filtered spaces, but they are defined through martingale prop-
erties rather than using quantities directly related to the distribution of the
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process. Working on canonical spaces it is the probability ) that decides
the structure of the compensators, hence the terminology ‘QQ—compensator’
used earlier. On general spaces it is the filtration that matters, hence we
shall write ‘F,—compensator’ below.

Suppose that p is a RCM defined on (2, F, P) and let (F}'),, be the
filtration generated by p, Ff* = 0 (Ns(A))gc <y ace » Where as usual Ny(A) =
p ([0, 5] x A). In particular the filtration (F/") is right-continuous. Also, let
Q) = p(P) be the distribution of y and let L° be the compensating measure
for Q.

The initial important point to make is that all results about ) and L°
carry over to results about p, the filtration (F}') and the positive random
measure L := L° o . Thus e.g. A(A) = (A(A)),~, is F}'—predictable for all
A €&, where Ay(A) = L([0,t] x A), and also

(i) for all A € & M(A) :== N(A) — A(A) is a F/'—local martingale (T,)
(where of course T, = inf {t : Ny = n});

(ii) up to P—indistinguishability, A(A) is the unique F}'—predictable pro-
cess A, 0 at time 0, such that M(A) is a F}'—local martingale.

Note also that any F}'—predictable, right-continuous F}'—local martin-
gale is constant.

We shall now discuss CP’s and RCM’s defined on filtered spaces (2, F, F;,
P). It will always be assumed that the filtration (F;) is right-continuous.

Let N be an adapted counting process defined on (2, F, F;, P). In par-
ticular FY C F, for all ¢, where (F)) is the filtration generated by N,
FN = 0(Ns)geser- We shall call A the F—compensator for N if Ag = 0
P—a.s., A is increasing, right-continuous, F;,—predictable and satisfies that
M := N —Ais a F;—local martingale. This compensator exists and is unique
by the Doob-Meyer decomposition theorem. Note that by the preceding dis-
cussion the FN —compensator for N, as just defined for arbitrary filtrations,
is A° o N, where A° is the compensator for the distribution Q = N(P) of N.

Similarly, if p is an adapted random counting measure on (Q, F, F;, P),
(so in particular F}' C F; for all t) the Fy,—compensating measure for p is
the positive random measure L with L ({0} x E) = 0 P—a.s. such that for
all A € &€, A(A), where Ay(A) = L(]0,¢] x A), defines a right-continuous
F}'—predictable process, necessarily increasing, such that M (A) := N(A) —
A(A) is a Fy—local martingale. Thus, as a special case of this definition, the
F}'—compensating measure is L° o y with L° the compensating measure for
Q = u(P).

Note. If L is a positive random measure such that all A(A) are F;, —
predictable we shall say that L is F,—predictable.
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In general compensators and compensating measures depend of course on
the filtration. Furthermore, and this is an important point, while e.g. we
know that the F/'—compensating measure for a RCM p determines the dis-
tribution @ of u, it is not in general true that the F,—compensating measure
for p determines @ (and of course, much less will it determine P). This
also applies to canonical processes: if @) is a probability on (M, H) with
compensating measure L°, the H;—compensator for the counting process
N°(A) is A°(A), but A°(A) does not determine the distribution of N°(A) —
marginals of compensating measures do not determine the distribution of the
corresponding marginals of the RCM.

To elaborate further on this point, let @ be a probability on (M, H) with
compensating measure L°. The H,—compensator for the counting process
N° is Ko,

N,
8, =Y v (rn, Taa A))
n=0

while the Htﬁo—compensator for N* is

=70

—o Nt
Aiv = Zvé:) (]Tna Tn+1 A t])
n=0
where &, = (71,...,7,) and Pén) is the hazard measure for the conditional

Q—distribution of 7, given £, a conditional distribution typically different
from Pén). And typically it is impossible to obtain AY  (and the distribution

of N°) from knowledge of A" alone — to achieve this complete knowledge of
L° may be required.

In one important fairly obvious case one can say that a J;—compensating
measure determines the distribution of a RCM p.

Proposition 3.7.1 Let u be an adapted RCM on (2, F,F;, P) with Fy—
compensating measure L. If L is F}'—predictable, then L = L° oy up to P—
indistinguishability, where L° is the compensating measure for the distribu-

tion Q = u(P) of p.

Proof. By definition, for all A, M(A) = N(A) — A(A) is a F;—local martin-
gale. If we can show that in fact M (A) is a F;—local martingale (7},), since
each T, is a F}'—stopping time, we have that M(A) is a F}'—local martingale
and the assertion follows from the discussion at the beginning of this section.
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Thus, let (fn> be a reducing sequence for M(A) (so each T, is a F, —
stopping time) and note first that since each T} is a F;—stopping time, for ev-

ery n and k, MToATk g 5 Fi;—martingale. In particular, since F ‘an/\Tk/\t(A)‘

= B | N5, i A) = Ay g no(A)] < 00 for all £ and 0 < Ny 0 (4) < we
see that EATnATkAt(A) < oo for all t and thus, for s < t, F € F;,

/ (Nfﬁn/\Tk/\t(A) _an/\Tk/\s(A)) dpP :/ (ATTLATk/\t(A) _Afﬁn/\Tk/\s(A)> dpP
" " (3.53)

as is seen writing down the martingale property for M Tu Ty, (A) and rearrang-
ing the terms. Let now n 1T oo and use monotone convergence to obtain

[ () = Nrias () dP = [ () = Amns() dP. (359
F F
Since Np,a:(A) < k, this equation for s = 0, F' = Q shows that all Az (A)
are integrable. It is therefore safe to rearrange the terms in (3.54) and it is
then clear that M7k (A) is a F;—martingale for all k. |

Example 3.7.1 Let N be a counting process on (2, F, P) and let U > 0 be a
F—measurable random variable. N is a Cox process if conditionally on U =
A, N is homogeneous Poisson (X\). The distribution of N is thus a mizture of
Poisson process distributions and by explicit calculation of the Markov kernels
Pz(") generating the distribution of N, one finds that the F} —compensator is

n

AN = fot MY ds with FN —predictable intensity process

W Joy P(dX) e AN H
t .
Jo, P(dX) e XA

with P the distribution of the U. This unlovely expression for AN of course
serves to describe the unlovely distribution of N. By contrast, defining F; =
o (U, }"tN) (in particular U is Fo—measurable) the F,—compensator A for N
S

A =Ut

which describes the conditional distribution of N given U only, and does not
contain any information whatever about the distribution of U.

In Section 5.5 below we shall discuss some of the basic models in survival
analysis. These are partially specified in the sense that only parts of the
Fl'—compensating measure for a RCM p is given. As will be seen, this
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applies in particular to models for right-censored survival data, where hardly
ever the compensators for censorings are described.

Even though there is not a general mechanism for determining compen-
sators using Markov kernels as we did in the canonical case, it is possi-
ble to give a prescription for certain filtrations: let pu be a RCM and let
0=uay < a; <ay < ---be given timepoints with a; T oo and a; = oo al-
lowed. Let Ay for £ > 1 be given o—algebras, increasing with k, and consider
the filtration (F;) given by

ft:U(Ak,ftM) (te[ak,ak+1[, kEN@).

Then the restriction to any interval [ay, ag, [ of the F,—compensating mea-
sure for y is found as the restriction of the F}'—compensating measure with
respect to the conditional probability P (-|F,, ).

3.8 1Ito’s formula for MPP’s

Let @) be a probability on (M, ) and let X be an adapted R—valued process.
Ito0’s formula shows that X can be decomposed as a sum of a predictable
process and a local martingale. Uniqueness of the decomposition is achieved
when the initial values of the terms are fixed.

By Proposition 3.2.1,

x = 1), (3.55)

Recall that X is piecewise continuous if all fz(f) (t) are continuous functions
of t > t,, and define X°¢, the continuous part of X as

Xf=X,—- ) AX,
0<s<t

Note that X can only have discontinuities at the timepoints 7,,.

Theorem 3.8.1 (It6’s formula). Suppose that N° is continuous and let X
be an adapted R—uvalued process which is piecewise continuous. Then

Xi=Xo+ U +M(S) (t>0), (3.56)
where S = (SY) is the predictable flow
y_ f(Nt1) (W)
U= Fioia(e, ) ~ Tem ()

and where U is continuous and predictable. Subject to Uy = 0, M§(S) =0
a.s., the processes U and the local QQ—martingale M°(S) are unique up to
Q—1indistinguishability.
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Proof. By (3.55), X is cadlag and the process AX of jumps is well defined.
Now identify AX and AM°(S): since A is continuous,

=70
nNt

AM?(S) = S, " AN, (3.57)
while
AX, = AX,AN,
- (V0= w) s
- (QEZ:(:_{)(WN?)) -1 w) aw;
Thus (3.56) holds with

(N_+1)

Yy _
St = join (&—(t.y))

which is a predictable flow, and
U=X; — Xo— M(S) = X[+ A}(S) (3.58)

which is continuous and adapted, hence predictable.
The uniqueness of the representation (3.56) is immediate from Proposition
3.9.1. n

Remark 3.8.1 There is a general decomposition of any adapted, R—valued
process, but in general U will not be continuous, perhaps not even cadlag.

The proof of the theorem yields the decomposition in explicit form, but this
15 typically too unwieldy to use in practice. Instead, with X cadlag and piece-
wise continuous as required in the theorem, one finds S by directly identifying
AX, = S’:N?AN:, cf. (3.57) and then using (3.58) to find U.

Example 3.8.1 Let Q be the canonical Poisson process on (W, H) with pa-
rameter A > 0. Fix ng € N and define

Xt = L(vp=no).

Since
AX; = <1(N;L:no—1) B 1(Nt°7:no)> ANy

we obtain
Xt — Ut + MtO(S)
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with
Np_=no-1) — 1 (Np_=no)

and, since X 1s a step process with Xy =0 so that X¢ =0,

t
U = A(l(Ns_nol)_l(Ns_no))Ads
t
= /(1<N:=no—1>—1<N§=no>)AdS-
0

Since |S| < 1, by Theorem 3.6.1 (i112) M°(S) is a Q—martingale and thus

Pny(t) := EX; = EU, = /0lt (Pro—1(8) — Png(5)) Ads, (3.59)

a formula valid for ng > 1, t > 0. But we know from Example 2.1.2 that
po(t) =Q (11 >t) =e M and since (3.59) shows that

Pro(t) = A (Pro-1() = g (1)) s Png(0) =0
for ng > 1, by induction or otherwise the well known formula

Pa(t) = ()Z!) e

follows.

Example 3.8.2 We can use Ito’s formula to establish that if Q) is a proba-
bility on (M, H) and A° is continuous, then X = M° (A) — A°(A) is a local
Q—martingale (1,,) (Proposition 3.5.3): first, it is easily checked that

AX, = (2M7_(A) + 1) 1( )AN;’

TNoea
and so (3.56) holds with
SV = (M (4) +1) 14(). (3.60)

To show that X s a local martingale we must first show that U = 0, where,

¢f. (3.58),
U, = X7+ / / 51 (dy) T (ds).
0 E

But if Ko(ds) = Xz ds, by differentiation between jumps in the defining ex-
pression for X,

Xp = X7 = 2M(A4) (-X(4)) = A (4)
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where A°(A) (ds) = WgV) (A)ds. Using (3.60) it now follows that the contin-

uous process U satisfies U, = 0, hence U = 0.
Using Theorem 3.6.1 (iiil1) it is an easy matter to show that X is a local
martingale:

N2 L (18] < A o (2 (Niw +Kiw) + 1) N (ds)

< (2 (n+KinAt> +1> n

and since EX, ,, = EN, ,, < n < oo it follows that EN? ,, (|S]) < oc.
But the condition in Theorem 3.6.1 (iii2) is too weak to give that X is a
Q—martingale when EW; < oo for all t, as was shown in Proposition 3.5.3.

By similar reasoning one may show that M°(A)M°(A’) is a local martin-

gale when AN A" =0 (Proposition 3.5.3).
Example 3.8.3 Let Q be the probability on (M, H) determined by

PO =e™ PY@)=e ) (n>1t>t,),

7 (A) =k(A) (n>0,A€€)

where A > 0 and K is a probability on (E,&), cf. FEzample 3.3.3 above.
Thus, under Q, the waiting times (T, — Tn_1),, are i.i.d. exponential \, the
marks (1,,),, are i.i.d with distribution k, and the sequences (1) and (n,,)
are independent.

We shall show that for any r € N, and any Ay,..., A, € € mutually
disjoint, under @) the counting processes (N°(A; ))1<]<r are independent, ho-
mogeneous Poisson processes with intensities \; := Ak(A;) forj=1,...,r

We shall show this by showing that for any s < t, the increments (N7 (A;)
— N2(4)))i<j<r are independent of Hs and also mutually independent with
Ny (A ) — N2(A;) following a Poisson distribution with parameter \;(t — s).
And this in turn will be shown by showing that for all (us,...,u,) € R",

Mt::exp<ZuJN° —tZ)\ “‘J—l)

is a C—valued QQ—martingale: the martmgale property E (M |Hs) = My is
easily rewritten as

E((%Xp(iZ(Nf(A) N (A ))) I’H>

J=1

= exp ((t —s) Z)\j (e — 1)) :

j=1
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which is precisely to say, (when (uq,...,u,) varies) that the joint character-
istic function of (N7 (A;) — NJ(4))), < <, given Hs is that of r inedependent
Poisson random variables with parameters (A; (t — 5)),<;<, -

We use Ito’s formula to show that M is a martingale. Because

AMt = Mt— (Z ]'Aj <77N:) (eiuj — ]_)) AN:’
j=1

we have the representation
M, =14 U+ M;(S)

with U continuous, Uy = 0 and

r

SP=M_Y 1a(y) (6™ —1).

i=1

We now show that U = 0 by verifying that between jumps U, = %Ut = 0.
But clearly, since N°(S) is constant between jumps,

U, = M, + A2(S).
By computation, if t € |71, Ty for some n, writing c =Y 7"_, A (e — 1),

Mt = —CMt

while

= CMt

(using that between jumps, M, = M;).

Thus U = 0 and My = 1+ M(S). It remains to verify that M is a
Q—martingale, and this follows from Theorem 3.6.1 (iii2) if we show that
ENy (|S]) < oo for all t. But

|SY = e,

s0 EN? (1S]) = e @EN, = e\ < .
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In the version of Itd’s formula given above, Theorem 3.8.1, it was assumed
in particular that the total compensator A~ should be continuous. We shall
by two examples show how a martingale decomposition may be obtained
when this assumption is not fulfilled.

Example 3.8.4 Let QQ be a probability on (W, H) with compensator A° that
need not be continuous. If A° is continuous, we know from Proposition 3.5.3
that M°* — A° is a local Q—martingale, but it was also noted that if A° is not
continuous, this is no longer true. We are thus, for general A°, looking for
A right-continuous and predictable, 0 at time 0, such that M®* — A is a local
martingale, i.e. we also need S predictable such that

M — A = N°(S) — A°(S). (3.61)

In particular X = M — N°(S) must be predictable, and this fact is used to
identify S. (It is no longer as in the proof of Theorem 3.8.1 and the preceding
examples, a matter of simply identifying the jumps of M occurring when N°
Jumps, with those of N°(S). Note that the two processes N° and A° may share
discontinuities, but that it is also possible that one of them is continuous, the
other discontinuous at a certain point).

If ANy =0 we have
X, = (M — AA7)* = N7 (8)
while if ANy =1,
Xy = (M +1—AN)* = N2(S) - S

If X s to be predictable the two expressions must be the same, i.e. we must
have

Sy =142 (M7 — AAY).

With S determined, A is of course found from (3.61), but a simpler ez-
pression is available by showing that A is differentiable with respect to A°
and finding Do A. (For a discussion of differentiability and the results used
below, see Appendiz A).

We have Dy A°(S) = S. To find Dpo X, fiz t and for a given K find k € N
such that tx = % <t< 2% = tx. The task is to compute (for A°—a.a. t),
X (tg) — X (tr)

lim —
K—o0 A° (tK) — A° (t[()




66 CHAPTER 3. COMPENSATORS AND MARTINGALES

and there are two cases, (i) ANy =0, (i1) ANy =1 and AN} > 0. (Because
the limit is only wanted for A°—a.a. t we may ignore the case ANy =1 and
AN} =0). In case (i) one finds that the limit is

| (M.;K + M;K) (M;K _ M )
lim

— = —(2M7_ — AA;
K—00 A° (tK) — A° (tK) ( = t)

since for K sufficiently large, MfK = M7 — (A° (tNK) —A° (tK)) A simi-
lar argument in case (ii) results in the same limit and verifying the other
requirements for differentiability, one ends up with

DAoXt _ — (2Mto_ — AA;) .
Thus

DAoKt - DAoXt+St
= 1—AAS

and, using the results from Appendiz A,

A= DreAgdAI=A = > (AN,

10,¢] 0<s<t

Example 3.8.5 Let QQ be a probability on (M, H) with compensating mea-
sure L°. Let A, A" € € and look for a decomposition of M°(A)M°(A"), i.e.

we want A right-continuous and predictable, 0 at time 0, and a predictable
flow (SY) such that

My (A)M;(A) = Ay + N°(S) — A°(S).

From Proposition 3.5.3 we know that if N is continuous, A = A°(A) if
A=A"and A =0 if ANA" = 0. Here we do not assume that A° is continuous.

We find S by using that X := M°(A)M°(A") — N°(S) is predictable. If
AN, =0,

Xi = (MP_(A) = AN (A)) (MP_(A) — AA7(A)) — NP(S),
while if AN, =1,

X = (Mp(A)+ La(n,) — AA(A)) (ME(A) + L (n,) — ANS(A))
N7 (S) - S
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where we write n, = Nye - Predictability of X forces the two expressions to be
tdentical, hence

SV = Lo (y) + La(y) (ME_(A) — AXZ(A) + Lu(y) (ME(A) — AN (4)).

- (3.62)

As in the previous Erample 3.8.4, we identify A through its derivative
DKOA = _DKOX + DKOAO(S). Here

1%&@24%%@% (3.63)

(Vi-)

where my s short for Te, 4 and by computations along the same lines as

those in Fxample 3.8.4, treating the cases AN; =0 and AN; =1, AK; >0
separately one finds

Dye Xy = —Mp_(A)mi(A") — My (A")m,(A) + AN, 7, (A) i (A").
Thus, recalling (3.62), (3.63)
DsoAy = Do Xy 4 Do L2(S) = m (AN A') — AN, 7w, (A)m, (A)
so finally,

M= DpAdR, =N (ANA) — Y AAI(A)AA(A).

10,¢] 0<s<t
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Chapter 4

Likelihood processes

In this short chapter we derive the likelihood function corresponding to ob-
serving a CP or RCM completely on a finite time interval [0, ¢]. In statistical
terms, one would suppose given a family of distributions for the point pro-
cess, choose a reference measure from the family and define the likelihood
function as the Radon-Nikodym derivative between the distribution of the
process observed on [0,¢] under an arbitrary measure from the family and
under the reference measure. The essence is therefore to be able to find the
relevant Radon-Nikodym derivatives between two different distributions of
the process on [0, 1] .

Let ,Q be two probability measures on (W, H) or (M, #H), and let for
t>0, Qy, @t denote the restrictions of @), @ to H,;.

Definition 4.0.1 @ is locally absolutely continuous with respect to Q) if
Q: < Qq forallt € Ry.

If @ is locally absolutely continuous with respect to ), we write @t Lloc
Q¢ and define the likelihood process £ = (£;),5, by

_dQ
dQ;’
Since Hy is the trivial o—algebra, £y = 1. Otherwise each £; is H; —

measurable, > 0 (QJ—a.s. and

£ (4.1)

Q(H)Z@(H)z/&th:/stdQ (t € Ry, H € Hy). (4.2)
H H

With Eg denoting expectation with respect to @), it follows in particular
that
EQEt =1 (t € R()) .

69
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If s <tand H € Hs C Hy, it follows from (4.2) that

/S dQ = /StdQ,

in other words, £ is a Q—martingale which, since the filtration (#;) is right-
continuous, has a cadlag version. In the sequel we shall always assume £ to
be cadlag.

Since £ > 0, £ ::tlirg £, exists ()—a.s. and by Fatou’s lemma Fg £, <

1. The reader is reminded that the Lebesgue decomposition of @ with respect
to @ (on all of H) is

Q =L Q + C

where £ - @ is the bounded measure (£ - Q) (H) = [,; £, dQ on H, and
where ( is a bounded positive measure on H W1th Q L ¢ (i.e. there is a
set Hy € H such that Q(Hy) = 1, ((Hy) = 0). In particular, @ 1 Qiff
Q(Le =0) =1, and @ < Q iff EgL, =1, this latter condition also being
equivalent to the condition that £ be uniformly integrable with respect to Q.

Before stating the main result, we need one more concept: if P and P are
probabilities on R, we write P <o, PP if

(i) ]INDR+ < Pg,, the subscript denoting restriction to R, (from R.);
(ii) P (]¢,00]) > 0 whenever P (]t, 00]) > 0.

Note that if ¢, # are the termination points for P,P (see p.22) the last
condition is equivalent to the condition i’ < ¢f. Note also that P <o P
ifP < P (on all of R+) while it is possible to have ]P’R+ < Pg, without

P <<1OC P: if P = €505 ]P’R+ < P, for any PP since ]P’R+ is the null measure,
but ]P’~<<1OC P iff P (]t,00]) > 0 for all ¢ € Ry.
If P <0 P, we write
dP dPg
—(t) = (¢ te .
B0 =) (R

We shall as usual denote by P™, 7(" the Markov kernels generating Q
_ ~ =(n)
and of course write P 7™ for those generating Q. PSZL) and P, are the

survivor functions for P\ and P{™.

Theorem 4.0.2 () Let Q,Q be probabilities on (W, H). In order that
Q <oe Q it is sufficient that P©) <, P and that for every n € N
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there exists an exceptional set B2 € B with Q (€, € B2") = 0 such
that P oo P for all z, = (th, ... 1) & B™ with 0 < t; < --- <
t.

If this condition for CNQ Lloc Q 18 satisfied, the cadlag QQ—martingale £
is up to Q—indistinguishability given by

N© N(nfl) T(Nto)
? dP P, (1)
é’nfl 6
e, = | | L () | (teRy).
o dP D PR )

(b) Let Q,Q be probabilities on (M, H). In order that Q <woe Q it is
sufficient that P <5c PO and (i) for every n € N there exists an
exceptional set C™! € BT @ E" with Q (&, € CM") = 0 such that
P oo P for all 2z, = (ty ot Yty Yn) & CM with 0 < #) <
cor < by, and (ii) for everyn € Ny there exists an exceptional set DM €

Bt @ & with Q (£, Tn41) € D) = 0 such that %g:?t < wiﬁft for

all (zp,t) = (t1, oty Y1, oY) & DM with 0 < 8 < -+ < t, < L.

If this condition for CNQ Loc Q 18 satisfied, the cadlag QQ—martingale £
is up to Q—indistinguishability given by

N, gpn=1 o ) ;(ﬁ;’) 0
gnfl gnflan 6
L= H n—1 (Tn) n—1 (nn) t—io (t € R()) .
n=1 dPén—l ) dﬂ-én—ly)Tn th]\ft) (t)

Proof. We just give the proof of (b). For n € N, let R, R, denote the
distribution of £, under @ and @ respectively, restricted to (7,, < c0) so that
e.g. R, is a subprobability on R} with

Ro(Co) = Q (£, € Coymn < 0)  (Cp € BL@E™).

Because (13,2(:)) < (Pz(:)) and %g’;)t < 7™, (for almost all z, and
R, :

zZ
RJ,_ s

(2n, 1)) it follows that R, < R, and

dR, v (aptth Rl
—(2n) = — (¢ ——(y 4.3
an( ) g (dpk(lill)( k)d’/r(k,l) ( k) ( )

Z—1,lk

for R,—a.a. 2z, € R} x E".
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We want to show that for t € Ry, H € H,,
Q) = [ siQ
0

and recalling the representation of sets in #;, Proposition 3.2.1 (bi), and
writing H = |J,_, H N (N; = n) , this follows if we show

Q(&, €CnTp >t) = / £,dQ
(£n€C’n,'rn+1>t)
where H N (N; = n) = (&, €Cy,Tpe1 > t). But
~ —(n) -
Q (é‘n € Ona Tn+1 > t) == / an (t) dQ
(€nECn)

-/ RECEACEN

=) dR
= P (t)=%~(&,) dQ.
/(gn EC”) 6" an

=(n)
Define H,, = <P§n (t) > 0) . Then the last integral above is the same as the

integral over the set (¢, € C,,) N H, and since by the assumption ]3§(n) Kloc

Pg(:) we have ﬁé:) (t) > 0 on H,, the domain of integration may be replaced

by (fn € Cn,ﬁgz) (t) > 0) N H,, and the integral may be written

/( Pe, Ol () i

fn Ecn yTn+1 >t,ﬁg;) (t)>0) ﬂHn Fﬁn) (t

U
=y
3

as is seen by conditioning on &, in this last integral. But by the definition of
H, and the appearance of the factor P, (t) in the integrand, this is the same

as the integral over (gn € Ch,Tpi1 > t,ﬁé:) (t) > 0) , and finally, because

S0 _ o) _ S0y _
Q (rni > 6, P =0) = Fal (50 0y-0) P, (1) = 0.
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we may as well integrate over (¢, € Cp,, Tp11 >t) = HN (W: = n) and we
have arrived at the identity

~ Y P, (t)dR
Q(HN (N, =n :/ n m (£ dQ.
< ( t )) HA (W =n) P( )(t) dR (&)
Using (4.3), the assertion of the theorem follows immediately. |

Remark 4.0.2 It may be shown that the sufficient conditions for @ Kloc @
as given in (a), (b) are in fact also necessary. The perhaps most peculiar

condition, viz. that PV <. P™ rather than just (ﬁz(:)) < (PZ(:))
Ry Ry

was certainly used in the proof, and that it is necessary may be seen from
the following CP example: suppose Q 15 the distribution of the dead process
while under Q, 71 is bounded by 1 say. Then P( )« P( ) trivially since P( )

is the null measure, PO <oe PO does not holg and fort > 1 it does not
hold either that Q; < Q since Q; (11 <t) =1, Q¢ (11 <t) =0.

It is in general possible to express the formula for £; in terms of com-
pensators or compensating measures. We shall see how this may be done in
some special cases. B
_ Consider first the CP case and assume that the compensators A°, A° under
@, @) have predictable intensities,

B L, ¢
A} = / Agds, A7 :/ AL ds
0 0

sy, a0 =) ()

s— s §s—

with

where ﬂéz) (ugz)) is the hazard function for P (PZ(: )), cf. Proposition 3.4.1

(a). If Q@ <o @ we have

~(k—1) Tk glk=1)
dpg(:: 11) (7_ ) B u&kfl (Tk) exXp (_ f‘r:fl ufk—l (S) ds) (4 4)
(k 1) k 1 T k—1 Y .
dpék 1 gk—l) (Tlc) exp (_ kak—l uék—l)(s) dS)
(N?)
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and it follows that

[
Ny o

€, = exp (—K;; + A;;) I] i— (4.6)

n=1"Tn

Similarly, if @, () have compensating measures Z", L° with k—intensities
(Proposition 3.4.1 (bii), the same « for @ and @),

—~o¥ _ NO_ NO_ —o¥ No_ No_
5 =il 0l @), % = 0T )
we still have analogues of (4.4), (4.5) and in addition
~(k—1) ~(k-1)
dﬂ-fk—lﬂ—k (77 ) _ pgk—lﬂ'k (nk)
k—1 k)= (k=1
dﬂ-ék—la)'rk pék—la)"_k (nk)
and it follows that
N: Xonn
£, = exp (_At + K;) E )\gzﬂ . (4.7)

The derivation of (4.6) and (4.7) shows that it is the predictable intensities
that must enter into the expressions: it is the preceding intensity that fires
the next jump. Using the right-continuous intensities of Proposition 3.4.2
would drastically change the expressions and yield non-sensical results.

We quote a particular case of (4.7), important for statistical applications.
Here @ is the important measure, while the particular ) displayed serves
only as a convenient reference. Recall Examples 3.3.3 and 3.8.3.

Corollary 4.0.3 On (M, H) let Q be the Poisson process with compensating
measure L° = (Qk, where k is a bounded positive measure on (E,E) with

A= k(E) > 0. If@ has predictable k—intensity (X:y> , then Q <ioc Q and

£ =exp (—At + Xt) H Xizn

Proof. With () Poisson, all Pz(:) have Lebesgue densities that are > 0
on |t,,00[ and have termination point oo. By assumption also all PZ(: ) have

Lebesgue densities and hence ﬁz(:) Kloc PZ(,? ), Because () has x—intensity

process )\?y = 1 for all ¢, y, the assumptions about () imply also that %Sj}t <



75

WSZ)J always. Thus Q <joc Q by Theorem 4.0.2 and the expression for £

emerges as a special case of (4.7). |

The conditions for local absolute continuity in Theorem 4.0.2 were ex-
pressed in terms of the Markov kernels generating () and (). It is natural to
ask for conditions expressed in terms of the compensating measures instead
and such conditions exist in the literature, but there does not appear to be
an easy translation between the two sets of conditions.

Example 4.0.6 Let Q be an arbitrary probability on (W, H) and let Q be
the canonical dead process. Then Q <ioe Q if (and only if) P (t) > 0 for
all t (P has termination point 0o), and in that case

1

L= —5—

1(np=0)- (4.8)

Example 4.0.7 If Q,Q are probabilities on (W, H), Q is Poisson (\) where

A >0, @ 15 Poisson (A) , then @ Lloe @ and

—(X=2)t A "
o o >(X> |

Note that on H, @ 1Q zfx # X since by the strong law of large numbers
i 13 -3t ot [ Tt ) 1.

Example 4.0.8 Recall the description in Example 2.2.3 of time-homogeneous
Markov chains on an at most countably infinite state space E. On (M, H)
the chain X° is defined by

Xy =nw
with X§ = 19, a given state in E. Suppose that under (), X° is Markov with
transition intensities (gi;) and that under CNQ, X° 1s Markov with transition
intensities (q;;) . Then Q <ioe Q if whenever ¢;; > 0 for i # j also ¢;; > 0,
and in that case

b o\
St = exp (-/ ()‘Xé’ — )\Xé’) d8> H <qﬂ>
‘ (igyiti N1

where \; = —q;;, \i = —qi; and

N = L(xe_=ioxe=)) :/

0<s<t 10,

1/yo _y AN
t] (XS_iZ)
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fori # j is the number of jumps from i to j on [0,t], writing N® = N° ({;})
for the number of jumps with mark j, i.e. the number of jumps X° makes
into the state j.

If @ <oe @, £ is a (Q—martingale, hence has a representation
'Qt — 1 + MO(S),

cf. Theorem 3.6.1. If £ is of the form (4.7), identifying the jumps of £ one
finds that the predictable flow S is given by

’)‘\*y
Sf:/ﬂt, ()\_2_ )
t

Suppose Q,@ are as in Example 4.0.6. If, say, P has termination
point 1, the expression (4.8) for £, still makes sense (Q—a.s. for all ¢ (since
Q(Ny =0)=0fort > 1), but Q L Qand £is certainly not a Q—martingale,
not even a (Q—local martingale (since Q (), (£: =0) =1).

It is also possible to obtain expressions of the form (4.7) for instance,
that are (Q)—local martingales but not (J—martingales: if @ corresponds to
a MPP. (a MPP with explosion possible, see p.9) but the conditions on
the Markov kernels from Theorem 4.0.2 are satisfied, then £ is a (Q—local
martingale (7,,) (because at the time of the n’th jump explosion has not
yet occurred, and the conditions for local absolute continuity between the
processes stopped at 7, are obviously satisfied), but if Q (7 <t) > 0

(with 7o, =lim 7, the time of explosion), then Ep&; < 1 so £ is not a
n—oo

(Q—martingale.

In principle this observation may be used to test for explosions: suppose
£ is given by (4.7) but that one does not know whether () may explode or
not. Then the condition Egf, =1 for all ¢ forces the (J—local martingale £

to be a true martingale and @ cannot explode in finite time.



Chapter 5

Examples of models

5.1 Independent point processes

Let » € N with r > 2 and consider r given MPP’s, each viewed as a RCM
pt with mark space (E, €%, 1 < i < r, all defined on the same probability
space (2, F, P). In particular x4 may correspond to a SPP, in which case E’
is a one point set and p‘ may be thought of as a counting process.

Let (7!),>1 denote the sequence of jump times for p* and (Y!),>; the
sequence of marks, so Y/ € E' = E' U{V} , where V is the irrelevant mark,
common to all p'.

Now define E = {(i,y") : 1 <i <r, y* € E'} and let € be the o—algebra
of subsets of E generated by all sets of the form {i} x A® where 1 < i <

r, A* € &. Next put
=33 .

i=1 n=1
Ty, <oo

Clearly f is a random, Ny—valued measure such that
pu([0,t] x Ay <o (teRy, A€E). (5.2)

However, for ;1 to be a RCM (with mark space E), we need (p.10) u({t} x
E) <1 for all ¢, at least P—almost surely, and for this to hold it is necessary
to assume that no two finite jump times for different ;‘ can agree, i.e.

P(lJ U{Ti =T <o} =0. (5.3)
ij=1k,n=1
i£]
If (5.3) holds, p is a RCM, and the corresponding MPP has mark space F
and is the aggregate of all the u’* : pu consists of all the points determined
from the pf, 1 <i<r.

7
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Remark 5.1.1 If all E' = E° and (5.3) is satisfied one can also define the
superposition of the u' as the MPP i with mark space E° given by

TEDDD PR (54)

i=1 n=1
T} <oo

The difference with the corresponding aggregate pu given by (5.1) is of course
that p keeps track of which of the original u* a mark came from while i does
not.

Remark 5.1.2 FEven if (5.3) does not hold it is possible to define an aggre-
gate of the u' using a larger mark space than E above, viz. the new mark
space should consist of all finite subsets of E, a mark designating that all u*
singled out in this subset jump simultaneously.

From now on assume that (5.3) holds, and even, after discarding a P—null
set, that

T} () # T} (@) (5-5)
for (i,k) # (j,n) and all w € Q.
Note that with this assumption, if

NHAY) = p'([0,t] x AY) (1 <i<r, A" € &Y, (5.6)
then Ny (A) = u([0,¢] x A) for A € £ is given by

Ni(A) = 37 NI (5.7

where Ai = {yi € E': (i,y') € A}. |
For 1 <i <r,let L' denote the F/ —compensating measure for x4/ and
let
N(AY) = Li([0,t] x AY)  (teRy, A' € &) (5.8)

denote the corresponding compensator for the counting process N*(A").

Theorem 5.1.1 (a) Suppose the RCM’s pu', ..., u" are stochastically in-
dependent and satisfy (5.5). Then the aggregate p of the p* has F}' —
compensating measure L determined by

L([0,t] x A)=A(A) (teR, A€&) (5.9)

where

Ay(A) = zr:A;' (Zi) . (5.10)
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(b) Suppose ut,...,u" satisfy (5.5) and that the aggregate u of the '
has F|'—compensating measure determined by (5.9) and (5.10). Then
pt, ..., 1" are stochastically independent.

Proof. (a). By Theorem 3.5.2 and the discussion in Section 3.7, we must
show that A(A) given by (5.10) is F}'—predictable (which is obvious since

the ’th term in the sum on the right is F/ —predictable and F/* C F*) and
that M(A) := N(A) — A(A) is a local .7:” martingale.

To prove this last assertion, assume first that £N, < oo for all t. Then by
Theorem 3.5.2, for all 4, M* (Z’) = N! (El> — Al (Z’) is a ffl—martingale

and further, the M ( A?) are independent since the y are. We want to show
that for s < t, F' € F¥,

/FMt(A) dP:/FMS(A) dP. (5.11)

Now M(A) =3, M’ (El) ,so if F'=(i_, F? where F' € F¥ | using the

independence and the martingale property of each M® (ZZ> , it follows that

/FMt(A) ip = i/FM;' (Zi) P

_ ZP <JQZFJ> M (ZZ’) P
_ ZP <JQZFJ> M (ZZ’) P

This proves (5.11) for F' € F¥ of the form F = (), F* with F* ¢ F*. But

since F!' = o (.7:"4) , the collection of sets F' = (), F* generates F* and
1<z<r

as it is closed under the formation of finite intersections, (5.11) holds for all

F e Fr.

Suppose now that the assumption EN, < oo for all ¢ does not hold. For
any n € N, 1 < i < r the stopped process M (AZ) is a F/ —martingale,
see Theorem 3.5.2. But the processes M7 (AZ) are independent, and copying
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the argument above one finds that
e
i=1
is a F/'—martingale for each n. With 7,, = inf {t >0:N, = n}, for all
. AT
i, T, < T, so by optional sampling, M (A) = (Z;":l M (A’)) is a

F}'—martingale, i.e. M(A) is a F{'—local martingale.
(b). Here it is assumed that the compensator A(A) is the sum of the

compensators A’ <f~ll) as in (5.10). From (a) we know this to be true if the

pt are independent, and from Theorem 3.3.2 it now follows that if (5.10)
holds they are indeed independent. [ |

Remark 5.1.3 More informally the theorem could be stated as follows: if
the u' satisfy (5.5) (or just (5.3)), they are independent iff the compensating
measure of the aggregate p is the sum of the compensating measures for the
pt. The precise meaning of this phrase is provided by (5.9) and (5.10).

Remark 5.1.4 Note that if the p' are independent, (5.3) is satisfied if the
restriction to R, of the distribution of each T! is continuous.

Example 5.1.1 Suppose the u' are independent, and that each u' has a
FI — predictable intensity process (X (Ai))Aiegi , s0 AL (AY) = f(f AL (A7) ds.
Then (5.3) is satisfied and the aggregate pu has an intensity process (A(A)) 4c¢

given by .
A(A) = Z Al (Zi) .

5.2 Homogeneous Poisson random measures
and processes with stationary, indepen-
dent increments

Let u be RCM with mark space E, defined on some probability space (2, F, P).
As usual for A € &, t € Ry,

Ni(A) = p([0, 1] x A).

Definition 5.2.1 p is ¢ homogeneous Poisson random measure if there ez-
ists a positive bounded measure k on (E,&) such that
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(i) for every A € £, N(A) is a homogeneous Poisson process with param-
eter k(A),

(ii) for every k > 2, Ay,..., Ay € € mutually disjoint, the counting pro-
cesses N(Ay),..., N(Ag) are independent.

It would suffice to assume that x be a Ry—valued function on & since (i)
implies that « is then a measure: by monotone convergence, if Ay, As,... € &
are disjoint and A = J; A;, then

K(4) = EN(4)
= Eu(0,1]x )
= BY u(0.1]x 4)

J
= D> Bu((0,1] x 4))
J
J
k is called the intensity measure for p.

As we shall now see, homogeneous Poisson measures are precisely the
RCM’s discussed in Example 3.8.3, (see also Example 3.3.3).

Proposition 5.2.1 A RCM p is a homogeneous Poisson random measure if
and only if the compensating measure L for p (with respect to the filtration
(F}")) is non-random and of the form

L=(®k, (5.12)

where ¢ denotes Lebesque measure on Ry and k is a positive bounded measure
on (E,E). If L has this form, k is the intensity measure for pu.

Proof. Suppose p is homogeneous Poisson, and let x denote the intensity
measure. In particular N is homogeneous Poisson #(E) so EN; = tk(E) <
00. Therefore, by Theorem 3.5.2, to show that L = ¢ ® x , it suffices to
show that for every A € &, M(A), where M;(A) = N,(A) — tk(A), is a
F}'—martingale. By Lemma 5.2.2 below however, for s < ¢, Ny(A) — Ny(A)
is independent of F*, and so

E(Ny(A) = Ns(A)|FY) = E(N(A) = Ny(A)) = (t — 5)r(A).

The martingale property follows immediately.



82 CHAPTER 5. EXAMPLES OF MODELS

Now suppose conversely that p is a MPP with F/'—compensating measure
L given by (5.12). That (i) and (ii) from Definition 5.2.1 hold was shown in
Example 3.8.3. u

To complete the proof of Proposition 5.2.1 we still need

Lemma 5.2.2 If pu is homogeneous Poisson, then fors <t, A€ &, N(A)—
N, (A) is independent of FP.

Proof. Since F* = o(N,(A)|0 <u < s, Ae &), it suffices to show that for
any k € N uy,...,up <s, Ay,..., A4, €& A€ &, (Ny (A1), ..., Ny (Ar))
is independent of N;(A) — Ny(A). We do this for k£ = 1, writing u; = u, A, =
A. Then

N(A) = Ny(A) = (N(ANA) = N,(ANA)) + (N(AN A°) — N,(An A9)),
N,(A) = N,(ANA)+ N,(An A%).

Because 4 is homogeneous Poisson, it is seen that each of the two terms in
the expression for N,(A) are independent of each of the two terms in the
expression for Ny(A) — Ny(A). |

Having characterized homogeneous Poisson random measures, we shall
now see how they may be used to describe certain Lévy processes, i.e. pro-
cesses with stationary independent increments.

Let X = (Xi)i>0 be a RY—valued process, defined on (2, F, F;, P) . As-
sume that X is a step process, i.e. X has only finitely many jumps on finite
intervals, is piecewise constant between jumps and right-continuous. Also
assume that Xy = z, for some 2z, € R? | and that X is adapted.

Definition 5.2.2 A R?—valued step process X has stationary, independent
increments with respect to the filtration (F;) if it is adapted and for all 0 <
s < t,

(i) Xy — X is independent of F,

(i1) the distribution of X; — X depends on s,t only through the difference
t—s.

A process with stationary, independent increments is also called a Lévy
process.

Since X is adapted, if for s < t, X; — X, is independent of F,, X; — X,
is also independent of FX. Note that X; — X is independent of FX iff for
allneN, 0<s <---<s, <s, X;— X isindependent of (Xj,,..., X, ).
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Lemma 5.2.3 Suppose X has stationary, independent increments with re-
spect to (F;). Then, for every s > 0 the process X = (Xu)u>0 defined by

Xy ::)(u+s - X

is independent of F,, and has the same distribution as the process (Xy—xo)i>o,
where xqy s the initial value of X.

Proof. The lemma follows if we show that forn € N, 0 < u; < --- <
Up, ()?ul, e ,)?un) is independent of F, and with the same distribution as
(Xu, — o, - .., Xu, — o). This in turn follows if it is shown that (X,,, Xu, —
)N(ul, o ,)?un - Xunfl) is independent of F; and has the same distribution as
(Xuy, — 20, Xup — Xuyy oo, Xy, — X, y) (since (Xy; — 20) — (Xoy,_, — 70) =
Xy, — Xy, ;). But )N( —)?un_l = Xy, 15— Xu,_ 45 18 1ndependent of }"un s
and therefore independent of F, and (Xul,Xu2 — Xul, e Xun_1 — Xun_z)
Also, X Xu , has the same distribution as Xun — X,,_,- Repeating this
argument one ﬁnds that Fj, Xul,XM - Xul, o Xun - )N(unfl are indepen-
dent, and for j > 2 Xu — Xu] , has the same distribution as X, — X, _,.
Since also )?ul has the same distribution as X,, — Xy = X, — x9, the desired
conclusion follows. [ |

Let now X be an arbitrary R? —valued step process. We identify X with
the MPP (7,Y) = (T, Yn),,», with mark space (R{y, BY,), ((R?, 3?) with 0
removed) where T, is the time of the n’th jump of X, and Y,, = A Xy, is the
size of that jump (so here we use a different set of marks from that normally

used for describing piecewise deterministic processes, see p.19). Write u for
the RCM defined by (7,)) or X, and note that with N;(B) = u([0,¢] x B),

=Y liaxen (t€Ry, BeBh), (5.13)

0<s<t

while X because it is a step process is determined by p through the equations

X, = +/ yp(ds,dy)  (t € Ry). (5.14)
0,1

d
XR\O

In particular we see that F;¥ = Ff".
Proposition 5.2.4 The step process X with Xy = xy has stationary inde-

pendent increments with respect to (F7X) if and only if the RCM p determin-
ing X is a homogeneous Poisson random measure.
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Remark 5.2.1 It follows from the proposition and Erample 3.8.3 that X
has stationary independent increments iff X is a compound Poisson process,

1.€e.
Nt

Xt:x0+ZUn
n=0

where N 1s a homogeneous Poisson counting process and the U, are i.i.d.
R‘\io—valued random variables, independent of N.

Proof. Suppose first that X has stationary independent increments. For
Be Bl , s<t, by (513)

\0
Ny(B) — Ny(B) = Z Liax,eB)
us<u<t

= > lsxien)

v:0<v<t—s

with X, = X,,, — X,. From Lemma 5.2.3 it follows that N,(B) — N,(B) is
independent of FX with a distribution depending on s and t through ¢ — s

S J—
only. Assuming for the moment that £N, < oo for all u, we see that for any

B
E(N(B) = Ny(B)|Fs) = E(Ni(B)— Ny(B)) (5.15)
= gt —s)
where v5(u) = EN,(B). But for u,v > 0,
Vp(u+v) = ENyiy(B) = E(Nu(B) + (Nuto(B) — Nu(B))) = v5(u) +75(v),

and since 7 is non-decreasing, this implies that v5z(u) = Agu for some
Ap > 0. (5.15) now shows M (B) to be an (F;)—martingale, where M;(B) =
Ny(B) — Apt, and thus N(B) is Poisson (Ag).

If By,...,B, € B‘\io are disjoint, the (F;¥)—compensators for N(By),...,
N(By) are (\t)i>0, where A; = Ap,. Since by the definition of the N (B;) no
two of them can jump simultaneously, (5.5) holds and from Theorem 5.1.1
it follows that the N(B;) are independent, and we have shown that p is
homogeneous Poisson, assuming that EN, < oo for all .

To get rid of this assumption, we show directly that NV is a Poisson process.
Let for ¢t > 0, T}, = inf{u > t|X, # X,} denote the time of the first jump
of X after time ¢. Because

(IEJ——t > U):: r} (}(u+t_')Q ::0%

0<u<v
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Lemma 5.2.3 shows that this event is independent of F;¥ and has the same
probability as the event

) (Xu—Xo=0)=(T1 >v).
0<u<y
But then, if ¢(v) = P(T} > v),
Yu+v)=P(Ty >u+v)=P(Ty >u, Ty >u+v)=1u)(v)

and therefore

P(Ty>v)=e™

for some X > 0. If_X =0, N is the dead process (and X; = mg, for all ¢) and
EN,=0<oo.If A >0, we get for u > t,

P(Tyy > u|lFY) = e = P(Ty, > u|FY).

But if Pt(f.).tn denotes the conditional jump time distributions for N, then by
Lemma 3.3.3 (bi),
N
Py (Ju, %))
N ’
P (1t 0))

where Z, = (T1,...,Ty,) , and this will equal e *“~") precisely when

P(Tl,t>U|ftN) =

Pt (Jto0]) = e X010,
Using this on (N, = n) for all n determines the Pt(f,),tn and shows that N is
Poisson ), in particular EN, = At < 0o, and the preceding argument that
is homogeneous Poisson applies.

For the converse, suppose that the RCM p determining the step process
X is homogeneous Poisson. By (5.14), for s < t,

Xy — X, = y,u(dua dy)

}s,t}XR‘{O
which we must show is independent of FX = F¥ with a distribution de-
pending on s,t through ¢ — s only. But this follows immediately from the
observation that if y is homogeneous Poisson, then for any s the restric-
tion of p to ]s,00[ x E is independent of F# with the same distribution as

Hg = Zn:Tn<oo E(Ty+s,Yn)- u
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Let X be a R—valued step process with stationary, independent incre-
ments and finitely many jumps on finite intervals so that Proposition 5.2.4
applies. If v; is the distribution of X, — X, (for any s) clearly

Vsk vy =Vsyy (8,1 € Ry)

with v, — g¢ weakly as t | 0, i.e. (4),5, is a weakly continuous convolution
semigroup of probability measures on R and in particular each v, is infinitely
divisible. As such the characteristic function ¢, of v; is given by (a special
form of) the famous Lévy-Khinchine formula. It is however possible to arrive
at this directly using Proposition 5.2.4: Let for K € N, k € Z, Ik}, denote
the 1nterval] 2K , 2K] if £ # 0 and the 1nterval] 2K’0[ if k = 0. From (5.14)
it follows that
X — Xo = lim Y 2iKNt(IK,k)

K—oo
kEZ

and since p is homogeneous Poisson, because the (Ixk)kez are mutually
disjoint we find that for u € R

o (u) = FEexp (iu(X; — Xp))

= I}l_r)nooEexp (zuz — Ny( IKk>

keZ

= [;i_rglooHEeXp < Nt([Kk))

since the random variables (NVy(I,, x)kez» are independent. Since by Propo-
sition 5.2.1 the compensating measure for p is of the form ¢/ ® x with k a
positive bounded measure on Ry, and the process N (I, ) is Poisson (1, )
so that

Eexp (1vNy(Inx)) = exp (t/i([n,k)(eiv _ 1)) ;

we deduce that

¢(w) = lim JTexp (m([K,k)(eiu'ﬂ*K . 1))

= exp ([;Enwtén(lK’k)(eiUkZ_K — 1))

= exp | lim ¢ [k (x)k(dx)
K—oo Ryo
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where

fre@) = 30 (e 1) 1y, (@)

keZ

|
K—oo

Using dominated convergence, we finally arrive at

¢,(u) = exp (t /R (e™* —1) /i(dx)) .

Note that if X is R—valued with stationary independent increments with
finitely many jumps on finite intervals, but is no longer a step process, then

¢, (u) = exp (iat + t/R (e —1) n(dx)) (5.16)

for some a € R corresponding to considering X; = )?t + at with X a step
process with stationary independent increments as studied above. Finally, if
k is an unbounded positive measure, in particular s (R\O) = 00, and satisfies
that )
 (R\ [=h, ]) < oo, / Lldy) <00 (h>0),

[~h,h]\0 Y
then (5.16) is the characteristic function of X; — X, where X has stationary
independent increments and X; — Xo—at = >, _ ., AX, is the sum of jumps
for X, where the series converges absolutely, > ., [AX,| < co a.s. With &
unbounded, the set of jump times is countably infinite and dense in R, . & is
called the Lévy measure for X. The most general form of the Lévy-Khinchine
formula for R—valued processes incorporates of course a Gaussian component
(corresponding to adding an independent scaled Brownian motion to the X
corresponding to (5.16)) and also allows for sums of jumps that need not
converge absolutely.

We only considered R?—valued processes above, but it should be fairly
clear that Proposition 5.2.4 generalizes in a straightforward manner to V —
valued processes with stationary independent increments, where V' is a vector
space.

5.3 Deterministic compensators, Poisson mea-
sures

From the point of view of describing the distribution of a CP or RCM through
its (canonical) compensator A° or compensating measure L°, the simplest
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case is that where A° or L° is deterministic (non-random). The examples we
have seen so far are the homogeneous Poisson process (Examples 2.1.2 and
3.3.1), where

A =Mt

for some constant A > 0, and the homogeneous Poisson measures of Section
5.2, where
L° =I®k

with ¢ Lebesgue measure on Ry and x a positive bounded measure on E.
We shall now discuss the processes determined by more general forms of
deterministic compensators or compensating measures.
Let D : Ry — Ry be an increasing, right-continuous function with D(0) =
0.

Definition 5.3.1 A Ny—walued step process X, defined on some probability
space, is a non-homogeneous Poisson process with rate function D provided
Xo =0 a.s. and X has independent increments such that for s <t, X; — X,
follows a Poisson distribution with parameter D(t) — D(s).

Note. The definition requires that foralln > 1,0 =1, <t; < --- < t, the
random variable X; — X, _, be independent of (th, e ,th_l) and Poisson
(D(tn) — D(tn—1)) - As argued in Lemma 5.2.3 it then follows that for s <,
X; — X, is independent of F.X.

Homogeneous Poisson processes are special cases of non-homogeneous
processes, so the terminology ‘non-homogeneous’ should really be understood
as ‘possibly non-homogeneous’!

Let @ denote the canonical homogeneous Poisson process with parameter
1, i.e. the compensator for the probability @, on (W, H) is A{, =t. With D
right-continuous and increasing as above with D(0) = 0, define the process
N* on (W, H) by
Ny =Npy (uz0).

Note that N* is increasing and right-continuous.

Proposition 5.3.1 (i) The process N* is a non-homogeneous Poisson pro-
cess with rate function D.

(i1) The process N* is a counting process if and only if D is continuous.

(111) If D is continuous, the distribution Q* of N* has deterministic com-
pensator A°* given by

A = D(%).
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Proof. (i). That N* has independent increments follows directly because
under ()1, N° has independent increments. And because N° is Poisson (1),
for u < v, N} — N is Poisson (D(v) — D(u)).

(ii). We have ANy = Np ., — Np,_,_. If D is continuous, AN; =
AN[",(u) < 1 everywhere on W for all u, and N* is a counting process. If D
has a discontinuity, AD(uo) = D(ug) — D(ug—) > 0, at uy € Ry, then

ANZO :1}%1 (Nf)(uo) - NE)(uofh))

as a limit of Poisson random variables with parameters D(ug) — D(ug — h),
is itself Poisson with parameter AD(ug). In particular @ (AN} >2) > 0
and N* is not a counting process.

(iii). The martingale properties of N° immediately show that

M? := N* — D(u)

is a FN" = H pwy—martingale (the equality between filtrations holds only
because D is continuous). Since D is deterministic, as a process it is F¥ —
predictable, hence D is the FY" —compensator for N*, c¢f. Theorem 3.5.2 (a)
and Section 3.7. [

The possible candidates for deterministic compensators of counting pro-
cesses are all functions D of the form above, satisfying in addition that, cf.
(3.23),

AD(u) <1 (u>0). (5.17)

The proposition takes care of the case where D is continuous. If D has
discontinuities, but of course satisfies (5.17), things are more difficult and
the description of the process with compensator D not so nice. To treat this
case, identify N* with the MPP (7}f,Y¥), ., where T} is the time of the n’th

jump of N* and V¥ = AN}; is the size of that jump. For y € N, introduce
the counting process N*¥, where

N =" lani—y) (5.18)
0<r<u

is the number of jumps for N* of size y on [0, u]. Going back to the definition
of N* in terms of N°, argue that for u < v,

(N2 — N*y)y>1 is independent of Hp,). (5.19)

u

Since

N; =Y yNy, (5.20)
y=1
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in particular N > N¥ for all y, and so EN;;Y < EN,; < oo. From this and
(5.19) it immediately follows that each M™*, where

MY = Ny¥ — ENJY,

is a ‘H p(yy—martingale. Since ]—"év* C Hp(u) (with strict inclusion if D has dis-
continuities on [0, u]), we have now shown that the RCM p* = >~ 1. €1z v
has deterministic compensating measure ® on Ry X N, where

D¥(u) =D ([0,u] x {y}) = EN,”.

[t remains to find EN;Y, which is easily done from (5.18) if y > 2 since
then the only terms appearing in the sum are for r—values with AD(r) > 0,

in which case AN} is Poisson (AD(u)), cf. Proposition 5.3.1 and its proof.

Thus
ENyY = >

0<r<u

o L (AD() e BP0 (> )

For y = 1, use (5.18), (5.20) to obtain
EN = EN:— ZyEN*y
= ) AD(r)e *P") + D(u),

0<r<u

where D(u) := D(u) — >_,, AD(r) is the continuous part of D.
Defining N~ by

o0
—* “y
pvu - E :]Vﬂ )
y=1

the total number of jumps for N*, from (5.19) it follows that M, = N, —EN,,
is a Hp)—martingale, and since

EN,=D(u)+ Y (1-e2"")

0<r<u

we have shown

Proposition 5.3.2 If D: Ry — R is right-continuous and increasing with
D(u) =0 and AD(u) < 1 for all u, then the deterministic function D is the
compensator of the counting process with independent increments N , where
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NZ is the total number of jumps on [0, u] for the non-homogeneous Poisson

process process N* with rate function D given by
D¢ =D, AD(u) = log (1 . Af)(u)) ,

D¢, D¢ denoting the continuous part of D and D respectively.

This result still excludes the possibility AD(u) = 1. But if the counting
process N has deterministic compensator D and AD(ug) = 1 for at least one
ug, then AN,, =1 a.s., i.e. a jump at ug is forced. Proposition 5.3.2 is easily
adjusted to take this exciting option into account!

Returning to the non-homogeneous Poisson process N* with rate function
D discussed above, since we have found the Y —compensator for all N*Y,
we are able to read off the Markov kernels P;™ | 75"} generating the jump
times 7 (which are also the jump times of N') and the jump sizes Y*
for N*. The result is (using (3.27), (3.28) and Section 3.1), writing z, =
(Wi, Un; Y1, - -, Yy) Where only z, such that y, > 2 implies AD(uy) > 0

are relevant,
P, (u) = exp (— (D(u) — D(un)))

for u > u,,
1 if AD(u) =0, y=1
A0 ({yh) =4 (AD(w))” eAPM
" ({y u e _
] [ ooADW) if AD(u) >0, yeN

for u > wu,, listing only the m—values > 0. Note that if AD(u) > 0, i s

the distribution of a Poisson AD(u) random variable conditioned to be > 1.

We turn now to the discussion of RCM’s with deterministic compensat-
ing measures, so let u be a RCM with mark space (F,€) and non-random
Fl'—compensating measure ® — retaining the traditional ‘¢’ as notation for
timepoints rather than the ‘u’ used above.

Defining D(t, A) = D ([0,t] x A), since ED(t, A) = D(t, A) < oo, M(A) =
N(A) — D(-, A) is a martingale and Theorem 3.5.2 (b) and the results above
yield the distribution of N(A). If in particular D(-, A) is continuous, N(A)
is non-homogeneous Poisson with rate function D(-, A).

To study the joint distribution of several N(A), assume for convenience
and simplicity that © is continuous, © ({t} x E) = 0 for all ¢. Next, let for
r>2, Ay, ..., A, € £ be mutually disjoint, let (uq,...,u,) € R", define

&(t) = Eexp ( Zu]Nt )
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(which is continuous because D is), and then show, proceeding exactly as in
Example 3.8.3, that M is a C—valued martingale, where

1 ~
M, = 0] exp (z;uth (Aj)> :

The conclusion is

Proposition 5.3.3 If u has a compensating measure which is deterministic
and continuous, then for anyr > 2 and any A4, ..., A, € & mutually disjoint,
the counting processes N(A1),...,N(A,) are independent and N(A;) is a
non-homogeneous Poisson process with rate function D(-, A;).

We have deliberately ignored any mention of filtrations in this result. The
point is of course that if u is F;—adapted for some filtration (F;) and has de-
terministic F;—compensating measure © (not necessarily continuous), then
® is automatically JF;—predictable and hence characterizes the distribution
of p.

If again we assume that 2 is continuous, the Markov kernels generating
the jump times for p are given by (use (3.27))

P(t) = exp (- (D(t) - D(t)) (£ > tn), (5.21)

where of course D(t) = D ([0,¢] x E). The kernels generating the jumps are
given by

i dD(-, A

() = PLA)

dD

cf. (3.28), in particular the conditional distribution of Y, given (73,...,T,,
Toi1;Y1,...,Y,) depends on T,, 44 only. Combining this with (5.21) we there-
fore see that if ® = p®« is the product of a continuous, positive and o—finite
mesure on Ry and a positive, bounded measure on E, then the Y,, are iid with
distribution k/k(FE) and independent of the sequence (T}) .

The final remark we shall make is that if © has deterministic, continuous
compensator ®, then it follows from Proposition 5.3.3 that y viewed as an
ordinary simple point process on Ry X E is a Poisson process with intensity
measure D, i.e. for any C' € By® &, u(C) is Poisson D(C) and for any r > 2,
Cy,...,C, € By® & mutually disjoint the random variables u(CY), ..., u(C,)
are independent. (That y is simple just means that a.s. all atoms of p have

mass 1, P(,,, (4 ({(t.9)}) =0 or 1) = 1)

(t) (t>t,,A€E),
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5.4 Non-homogeneous Markov chains

Let X be a (G, G) —valued step process with Xy = zg, defined on (2, F, P).
Let £ = G and identify X with the RCM p with mark space G determined
by the MPP (7,,Y,),~,, where T,, is the time of the n’th jump for X and
Y, = X7, is the state recahed by that jump when T, < co. Thus, if Yy = zy,

Xt — Yﬁt

If Q° = p(P) is the distribution of p, we want to discuss the struc-
ture of the compensating measure L° for ° when X is a (in general non-
homogeneous) Markov chain. More precisely, we shall find sufficient condi-
tions on the Markov kernels P 7(®) determining ° which ensure that X
is Markov with respect to the filtration (") .

First some remarks on the definition and basic properties of general
Markov processes.

Let (F;),so be a filtration and let X* = (X}),., be an arbitrary measur-
able and adapted process defined on (2, F, F;, P) with values in (G, G). We
shall assume that one-point sets in G are measurable: {z} € G for z € G.

Definition 5.4.1 The process X* is a Markov process with respect to the
filtration (F;) if for every s <t there exists a Markov kernel pg (-,-) from G
to G such that

P(X; e C|F,)=pu(X5C) (Ceg). (5.22)

X" is a time-homogeneous Markov process if in addition one may choose
the pg to depend on (s,t) through the difference t — s only.

The Markov kernel py; is called the transition probability from time s to
time ¢. Note that (5.22) does not determine pg(x,-) uniquely for all x € G,
but that it does hold that if py, pg are both transition probabilities, then
P(X! € Cy) =1, where Cy, = {z € Gps(r,-) = pa(z,-)}. Note also that
one may always take pys(z,-) = ;.

In the time-homogeneous case we write p; for any of the transition prob-
abilities pg s4¢ with s,2 > 0.

A time-homogeneous Markov process is also called a Markov process with
stationary transition probabilities.

It is customary to call a Markov process, which is a step process, a Markov
chain.



94 CHAPTER 5. EXAMPLES OF MODELS

Example 5.4.1 A R?—valued process X with independent increments (i.e.
such that X; — X is independent of Fy for s <t, cf. Definition 5.2.2) with
respect to (Fy), is a Markov process with transition probabilities

psi(z,B) =va(B—1z) (s<t, BeB"), (5.23)

where vy is the distribution of X; — Xy and B — z = {2’ — x|z’ € B}. If
in addition X has stationary increments, X becomes a time-homogeneous
Markov process with transition probabilities

pi(z, B) = vy(B — x), (5.24)
where vy s the distribution of any increment X, — X;.

Suppose X* is Markov with transition probabilities (py), or, in the ho-
mogeneous case, (p;). We say that the transition probabilities satisty the
Chapman-Kolmogorov equations if for all s <t <wu, x € G, C € G,

psu(xa C) — /(;pst(xa dZU,) ptu(xla O) (525)

or, in the homogeneous case, if for all s,t >0, z € G, C € G,
psit(z,C) = / ps(z, dz") py(2!, O). (5.26)
G

It is essential to note that e.g. (5.25) holds almost surely in the following
sense for any Markov process with transition probabilities (pg): for s <t <

u, C €43,

psu(X5,C) = P(X; € C|Fy)
= E(P(X; € C|F)|F)
E(ptu(Xt*acﬂfs)

= / pst(X;kadajl) ptu(xlac)a
G

where the equalities for each given s, t, u, hold P—almost surely. Thus, given
s <t<wu, C€g,(5.25) holds for X}(P)—almost all x.

We need to mention two more important facts about general Markov
processes.

Let vy = X (P) denote the distribution of Xj. Then the finite-dimensional
distributions for the Markov process X™* are uniquely determined by v and
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the transition probabilities ps;. This follows by an induction argument, using
that

P(X;eC) = E(P (X*EC|Z0))

= / POtI C)
G

and that forn >2, 0<t; < ---<t,, Cq,...,C, €G,

P(X; €C,....X; €C,)

= E <1(X:1€CI;...,X:n_IECn1)ptn—1tn (X:TLfl’ On)> '

The second fact we need is a generalization of the Markov property (5.22):
for t >0, let F4**" = g(X*|u > t). Then for any F' € F&-X",

P(F|F) = P(F|X}), (5.27)

a fact which informally may be phrased as follows: the future depends on
the past only through the present.
(5.27) is proved considering F' € F5*" of the form

F= (X €C,....X; €Cy)},

wheren e N, t <t; < --- <t,, C,...,C, € G, and then proceeding by
induction: the case n = 1 is just (5.22), and the induction step from n — 1
to n is obtained using that

P(F|ft) = E(P(F|-7:tn_1)|~7:t)-

A standard extension argument finally gives (5.27) for all F' € FbX".

We now go back to the setup from the beginning of this section with X
a step process and p the RCM describing X.

The basic ingredient needed to make X a Markov chain (with respect to
the filtration (F;¥)) is a collection of time dependent transition intensities,
i.e. a function ¢ : Ry x G x G — Ry such that

(i) (t,z) — q(x,C) is By ® G—measurable for any C' € G,

(ii)) C — q(z,C) is a positive bounded measure on (G,G) for any t €
Ry, =z € G,
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(iii) ¢z, {z})=0forallt € Ry, x € G.

Here (iii) ensures that at each finite T;,, X performs a genuine jump, X7 #
Xp,— a.s. which means in particular that ignoring a null set the filtrations
agree, (F{X) = (F}").

Introduce ,(z) = ¢(x, G). The next result in particular establishes for-
mally the RCM construction of time-homogeneous Markov chains from Ex-
ample 2.2.3.

Theorem 5.4.1 A sufficient condition for the step process X to be Markov
with respect to the filtration (F}*), is that there exist time dependent transition
intensities (q,(x,C)) such that the Markov kernels P™, 7™ determining the
distribution QQ° of the RCM p are given by

PYt) = exp <— /Ot (o) dS) - mO) = %

and form €N, 1, <--- <1, <1, y1,...,yn € G,

t
P" = n n, C
PO = (- [t ds), e) = 100
tn

qt (yn)

with t > t, in the last identity.
If q; does not depend on t, then X is a time-homogeneous Markov chain.

Proof. The proof relies on Lemma 3.3.3. Let £ > 0 and consider the
conditional distribution of 0, X := (X,),>s given F.*. We want to show that
it depends on the past F;* through X only. Conditioning on FX amounts to
conditioning on Ny =k, Ty =t;,...,Tp = ty, Y1 = y1,...,Ys = y; for some
EeN, O0<ty <---<tp<s, y1,...,Yx € G. Since also 6,X is determined
by @5, the restriction of u to |s,o0[ x E, cf. p.37, and since X; = y; on
the set of conditioning, the desired Markov property for X follows, using the
lemma, if we show that

(k)
P, (1)/P¥(s)
fort > s,
()
Zk,t
for ¢ > s and
(k+n) (k+n)
join(zg,2n)’ join(zg,2n),t

forneN, z, = (Zl,...,tn;yl,...,gn)witht<t~1 <o <y <t Uiy Tn €
G, all of them depend on 2z, = (¢1,...,tk;y1,...,yx) only through y,. But



5.4. NON-HOMOGENEOUS MARKOV CHAINS 97

this is immediate using the explicit expressions for the P, () from the
statement of the theorem.

The time-homogeneous case follows by noting that when ¢; does not de-
pend on ¢, the conditional distribution of s, given F* depends on s and X
through X, only. Here

s = Y ETu-sya)

n:s<T,<oo

is O, translated backwards in time to start at time 0. [ |

With the setup used in Theorem 5.4.1, the RCM p determining the
Markov chain X, has a compensating measure L, which has a predictable
intensity process A = (A(C))ceg (recall that L([0,t] x C) = fot As(C)ds)
given by

M(C) = q(X;-, 0),

as follows from Proposition 3.4.1. Note that

)\t(C) = Qt(Xt—a C\{Xt—})

and that if ¢ — A\;(C) has limits from the right, it follows from Proposition
3.4.2 (b), using (5.27) that

M (0) = g (X, O\{X3})
o1
= l}ig]l Ep(ﬂ’l S t + h, Xt,l € C\{Xt}|Xt),

where X, is the state reached by X at the time of the first jump strictly
after t and 7T}, is the time of that jump. Typically the right hand side equals
lim 3 pypn (X3, C\ {X;}) and the identity may be written

o1
¢+ (X, C) = lﬁgﬁ (Peirn (X, C) — ex,(C)),

the expression usually associated with the concept of transition intensities.
(The diagonal intensities ¢; (x,z) in Markov chain theory are defined as
lim 3 (peen (v, {2}) — 1) = =G,()).

It is perfectly possible to have Markov chains without transition intensi-
ties as described above. The proof of Theorem 5.4.1 carries over to the case
where the Markov kernels P, 7(™ have the form

R 0 P
P((z(t):Fxo(t), (0 = 1y (20, C)
Pzn (t) = flzynn((t?)a Wg:),t(c) =T (yna C) .
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where for each x € G, F, is the distribution function for a probability on
R, with F, = 1 — F, the corresponding survivor function, and where for
each ¢, 7 is a transition probability on G, such that r,(z,{z}) = 0 for all =
(corresponding to ¢;(xg, C')/q,(zo) from Theorem 5.4.1).

For the expression for P to make sense, it is natural to assume that
F,(t) > 0forallt € Ry. Even this restriction can be omitted by using families

(F :,;|s)$e s> O survivor functions, with each F;js the survivor function for

a probability on |s, c0], consistent in the sense that if s < ¢ and Fx\s (t) > 0,

then

1
Fas (1)

Fﬂs = Fﬂt on ]t, OO]

One then defines - _

P (t) = Fypr, (8).

5.5 The basic models from survival analysis

Let Xi,...,X, be R, —valued random variables, to be thought of as the
failure times of r different items.

We shall assume that the X; are independent and that the distribution
of X; has a Lebesgue density corresponding to the hazard function u;,

P(X: > 1) = exp <— /Ot ui(s)ds> |

Define the counting process N' by
Nltz = lix;<p)-

Then N’ has at most one jump and has ftNi—compensator A = fot )\ids,
where

Ao = wi(s)1 (x>

— ui(s)l(Nsi_:o)'

The aggregate p of (N, ..., N") is the RCM with mark space £ = {1,...,r}
such that
p([0,1] x A) = N,(A) =) N, (ACE).
icA
(Since the X; have continuous distributions and are independent, (5.3) is
satisfied).
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By Theorem 5.1.1 (a), the F}'—compensating measure for x is given by
the compensators A(A) = >"._, A, with A’ as above.

It is of particular interest to consider the case where the X; are identi-
cally distributed, u; = v for 1 < i < r. With N = Soi_, N' (the counting
process recording the total number of failures observed at a given time), the
F{'—compensator for N is A = Y7 A" = [ X, ds, where

s = u(s)R,_

with R,_ the number of items at risk just before time s,

r

= ) =2 (1= N)=r-N..

=1

Notice in particular that M := N — A is a F}'— martingale. Since how-
ever A, depends on s and N,_ alone, A is also (F)—predictable and the
(FN)—compensator for N. It follows therefore, that if Q is the distribution
(on (W,H)) of N, the compensator A° for Q° is A{ = fo Aids, where

Ao =u(s)(r — N)*t (5.28)

with the T—sign added to give an intensity process defined on all of W,
which is everywhere > 0.

From the discussion in Section 5.4 it follows that the fact that A, is a
function of s and N,_ only, also implies that N is a non-homogeneous Markov
chain, with state space {0,1,...,r}, initial state Ny = 0. The transition
probabilities are

pst(k,n) = P(N; =n|N; = k),

non-zero only if 0 < k <n <r, 0 < s <t, and may be computed explicitly:

let .
F(t) = exp (— /0 u(s) ds)

be the survivor function for the distribution of the X;, F = 1 — F the
distribution function. Then for £ < n, s <t,
pst(k,n) = P(X; €]0,t] for n values of i |X; € ]0,s] for k values of 7)
(o) (F(8))F(E(t) = F(5))"*(F(2))
(W) (F(s)* F(S))’" g
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Thus, conditionally on N, = k, N; — k follows a binomial distribution (r —

k, 1 —exp (— fstu)).
The transition probabilities are also determined by the time dependent
transition intensities

o1
Qt(ka n) = 1’%1 E(pt,tJrh(k, 7"0) - 6kn)7

(at least when e.g. w is continuous, so the limits exists), where the only
non-zero intensities are ¢;(k, k + 1) = —q;(k, k), and where

q(k, k+1)=(r —k)u(t)

as is seen by either using the expressions for the transition probabilities
directly or referring to Proposition 3.4.2 (a), (5.28) and the fact that

Q° (N7 — Ny > 1Hy) =1 — proyn(Ny, NY).

What we have discussed so far is the most elementary of all models in sur-
vival analysis. An important generalization arises by considering models for
right-censored survival data. It is still assumed that the X; are independent
with hazard functions u;, but due to right-censoring, not all X; are observed.
Formally, apart from Xi,...,X,, we are also given the censoring variables
Vi, ..., V,, which are R, —valued random variables. What is observed are the
pairs (S;, ;) of random variables where

If 0, =1, X; is observed, while if §; = 0, the censoring time V; is observed,
and all that is known about the unobserved failure time Xj; is that it exceeds
(is strictly larger than) V;.

For each i, introduce a counting process N’ with at most one jump,

N} = 1(x,<tavi)-

Thus N’ has one jump precisely when X; < oo and X is observed, and no
jump if either X; = oco or X is not observed. If there is a jump, it occurs at
time X;.

So far we have said nothing about the joint distribution of the V;, either
on their own or jointly with the X;. Now let F;, be the c—algebra generated
by the failures and censorings observed to occur in [0, ¢]. Formally,

Fi = 0(Sil(s,<ty, 0il(s;<p))i<i<r-
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(Note that (S; > t) € F: since S; > 0, Sil(s,<y = 0iff S; > t). What is
usually assumed about a model for right-censored survival data, is then that
for every i, M® is a F,—martingale, where

t

M} = N} — / Mds, N =ul(s)I, (5.29)
0

that (M*)? — X" is a martingale, and finally that M*M/ is a martingale for

i # j. Here I' in (5.29) is the F;—predictable indicator

I; - 1(51'25)7

which is one when item i is still at risk at time s, i.e. just before s, ¢ had as
yet neither been censored nor observed to fail.

There are several comments to be made on these martingale assumptions.
The first is that even though it is always assumed that the X; are independent
with hazard functions u;, requiring that M* be a martingale is not enough to
specify the joint distribution of (X, ..., X;;V1,...,V}). To see why this is so,
think of the observations (S;,0;) as a MPP (7,)), where the 7,, when finite
are the distinct finite values of the S; ordered according to size, and where Y,,,
if T, < oo, lists either the item i observed to fail at time T, (if any), and/or
those items j observed to be censored at T;,. (Without any assumptions on the
structure of the censoring pattern, it is perfectly possible for the censorings of
several items to occur simultaneously, and even to coincide with the observed
failure time of some other item). As mark space we could use

E={0G,A) :1<i<r, AC{l,...,r N\ Ul(e, A): 0 £AC{1,...,r}},

where the mark (i, A) means ‘7 observed to fail, all j € A censored’ and the
pure censoring mark (¢, A) means ‘no failures observed, all j € A censored’.
With this setup the filtration generated by (7,)) is precisely (F;) and we
know that to specify the distribution of the MPP, one must write down the
F;—compensators for all the counting processes N¥, Ny = > 1(7, <1y, =y)

for arbitrary y € E. All that is done in (5.29) is to give the compensator for

Ni — Z NG,

A:(i,A)EE

so not even the distribution of the observations (S;,d;) is determined by
(5.29), much less of course the joint distribution of all (X;, ;). The message
is that with (5.29) and the assumption that the X; are independent with
hazards u;, the model for censored survival data is only partially specified.
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Note that the assumptions about the martingale structure of (A/%)? and
MM presented after (5.29) are direct consequences of (5.29) and Proposi-
tion 3.5.3 (b), so are not new conditions.

In the model without censoring discussed initially we have V; = V, =
-+ Vp = oo, and then I} = 1(y,>5 and as we saw earlier, (5.29) is in fact
satisfied.

We shall give some other examples of censoring models, where (5.29)
holds.

Suppose first that for 1 < i < r, V; = v;, where v; €]0,00] is a given
constant. Observing all (S;, ;) then amounts to observing the independent
counting processes N,

N; = Lixi<tno,)-
With T} the first (and only) jump time for N,

F; denoting the survivor function F;(t) = exp(— f(f u;) for the distribution
of X;. Thus the distribution of T} has hazard function

w0y Jouwt) (<)

u ) { 0 (t> vy)

and the compensator for N’ has F,—predictable intensity process
Ay = i) 1000 ()1 (s —p) = wi(B)T;,

i.e. (5.29) holds.

As a second example, suppose that for each i, X; and V; are independent,
that the different pairs (X;, V;) are independent and that V; for all i has a
distribution with Lebesgue density g¢;. Identify any given observable pair
(S;,d;) with a MPP described by the two counting processes

) c,l
Ny = Lix,;<invi)s Nyo = lvi<iviex)s

(which makes sense since P(X; = V; < c0) = 0). Then N*, N% combined
have at most one jump in all, occurring at time S;. Hence, to find the com-

pensating measure (with respect to (}"tNN)), we need only find the hazard
function u®© for the distribution of S;, and the conditional jump distribution

pi(t) =7V ({i}) = P(X; S VilSi = 1),
Clearly, if u{ is the hazard function for g;,

wO (1) = u(t) + ul(t), (5.30)



5.5. THE BASIC MODELS FROM SURVIVAL ANALYSIS 103

while p, is determined by the condition
[ ) P(S € d) = PO, <V Sie B) (B € By).
B

But (f; denoting the density for X;, G; the survivor function for V;)

P(X;<V;, S;eB) = P(X;<V, X;€B))

= / Gi(x;) fi(w;) das,
B
and since P(S; > t) = F;(t)G;(t), S; has density F,;g; + f;G; and so
[ nittrP(sican = [ o) (Figi+ £G) .
B B

Consequently
p; = [iGi _ W
" Fgi+ G ouituf

(since f; = u;F;, g; = u¢G;), and comparing with (5.30) it is seen that
the intensity process A* for the ftNZ’NC’Z—compensator for N is given by
(5.29). Because of the independence of the pairs (X;, V;), using Theorem
5.1.1 (a) it follows that (5.29) holds (with (F;) the filtration generated by
(N?, N“)1<i<r).

It is in fact true that (5.29) holds under much more general independence
assumptions: it is enough that Xi,..., X, are independent with hazards u,,
and that the random vector V' = (V1,...,V}) is independent of (X7,..., X,).
To see this, consider first the conditional distribution of the counting pro-
cesses N* given V = v, v = (vq,...,v,). Since V is independent of the X;
this is the same as the distribution of the N*, assuming the censoring times
V; to be identically equal to the given constants v;, a situation where we have
already seen that (5.29) holds, and have then found the compensators for the
Nt. A small amount of work shows that this amounts to saying that the N*
(with V' random and independent of the X;) have compensators

/ X: ds, Xi = 11;(8)I;(s)
0
with respect to the filtration (]T"t), where F, = o(V, N )o<s<t<i<r- But F C
F; and since the compensators are F;—predictable, we deduce that (5.29) is
satisfied.
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A different example of a model for right-censoring for which (5.29) holds:
let Xi,..., X, be independent with hazard function u; for X;. Define V| =
<o =V, = Xy with Xy < X(g) < -+ < X, the order statistics. (Since the
X; have continuous distributions, the finite X;—values are distinct). Clearly,
there is a strong dependence between the X; and the V;. Nevertheless it is easy
to see that (5.29) holds: start with N} = 1(x,<y), and let B = 3> & 7,

n:Ty, <oo
denote the RCM with mark space {1,...,7} determined from the N’. The
observations (S;,d;)1<i<, arising from censoring at X(,,) are identified with
the counting processes

Ntl - 1(Xi§t,Xi§X(m))’
corresponding to a RCM pu = > &1,,v,) with mark space {1,...,r}.
n:Tp <oo
Clearly (Ty,Y:r) = (Ty,Yy) for k < m, T,s1 = Tppy1 = -+ = 00. So the

Markov kernels determining p agree with those of 1 up to and including the
time of the m’th jump. We know the compensators for g and deduce the
desired structure for those of p.

In conclusion of this discussion of censoring models we note that there
are lots of other censoring problems for which (5.29) holds (always assuming
that the X; are independent with hazards w;), without V' and the X; being
independent.

A different question, that can be given an affirmative answer, is the fol-
lowing: suppose only that the joint distribution of the (S;, ;) satisfies the
martingale property (5.29) for all 7, but do not otherwise suppose anything
about the distribution of the Xj;. Is this assumption always compatible with
the requirement that the X; be independent with hazard functions u;?

One of the most versatile of all models used in survival analysis is the
Cox regression model. Here the intensity for failure of an item is allowed to
depend on an observable process of cowvariates which contains information
about different characteristics for that item.

The model is typically only partially specified, describing the intensity
for failure, but not the distribution of the covariates. The model allows for
censoring.

Formally, suppose given a filtered space (2, F, F;, P) and let for 1 < i <
r, ¢" be an RP —valued F,—predictable process (the covariate process for i
represented as a column vector), let V; €]0, oo] be the censoring time, X; the
failure time for item i, and assume that the counting process N?,

Nf = 1(xi<tavy)



5.5. THE BASIC MODELS FROM SURVIVAL ANALYSIS 105

is F;—adapted, and that the {0, 1} —valued process I°,
I} = Lp<xinv)

is F;—predictable.
The fundamental assumption in the Cox model is then that for every i
the F,—compensator for N* has F,—predictable intensity )\’

No=u(t)e? S 5.31
t t

where v is the hazard function for some distribution on R, and g% =
(B1,---,8,) is a row vector of regression parameters. The ‘model’ arises
by allowing the baseline hazard v and the f—parameters to vary.

Note that if 3 = 0 we get a model for right-censoring as discussed above
(with all u; = u).

In the case of no censoring (all V; = oo) and each ¢! = ¢*(t) a given, non-
random function of ¢, take (F;) to be the filtration generated by (N%);<;<,.
It is then clear that X1,..., X, are independent such that for 1 < i <r, the
distribution of X; has hazard function

u;(t) = u(t)e? <O,

In general with random covariates no such expression is valid for the fail-
ure time hazards and the best interpretation of the Cox model is through
expressions like (cf. Proposition 3.4.2),

u(t+)e? G = I’H{)I%P(t < X; <t+h|F) ontheset (X;AV;>1)
describing the imminent risk of failure.

With only the intensities (5.31) given of course hardly anything is said
about the distribution of the censoring times and covariates. With all the
¢’ e.g. piecewise deterministic processes determined from certain RCM’s, a
full specification of the model could be given involving not only the failure
intensities (5.31) but also censoring intensities (possibly jointly or jointly with
a failure) and intensities describing the jumps of the ¢*. Such specifications
are never given in statistical practice which makes model based prediction of
mean survival times and other such relevant quantities virtually impossible
in the Cox regression model!
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Chapter 6

Piecewise deterministic Markov
processes

6.1 Definition and construction

Markov chains are Markov processes that are piecewise constant with only
finitely many jumps on finite time intervals. They were treated in Example
2.2.3 (time-homogeneous chains) and in greater generality and detail in Sec-
tion 5.4 and are special cases of the class of Markov processes we shall now
discuss, which in turn are special cases of the piecewise deterministic pro-
cesses introduced p.19. For some of the basic properties of Markov processes,
see Section 5.4.

So let X = (X;)i>o be a process with state space (G,§G), where G is a
topological space such that {z} € G for all z € G, assume that X, = z, for
some given zy € G, that X has only finitely many discontinuities on finite
time intervals, and that with 7, the time of the n’th jump (discontinuity),
Y., the state reached by the jump,

X, = o2 () (6.1)
with N, the total number of jumps on [0,t], Z; = (Tl, oo T Y, Ym)
and with each ¢ — f;:fxo (t) a continuous function assumed to satisfy that

fz(:fxo (t) is jointly measurable in the arguments g, 2, = (f1,. .., tn; Y1, - -, Yn)

and . Finally, the f(™ satisfy the boundary conditions
0 n
) =20, f0 (1) = v

The process X, piecewise continuous by assumption, is identified with
the MPP (7,,,Y,) with mark space (G, G), and with the corresponding RCM

107
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p. It is utterly boring but perfectly possible to show that (ignoring a null
set if necessary) the random variables (7,,,Y,,) are FX —measurable (FX =
o(X1)i>0) and that the filtrations (F;¥) and (F}') agree, at least if (6.2) below
holds. (For instance, that T; is F* —measurable follows from

Mi>t)= [ (X=r90)).

q€Qo,q<t

Note that by (6.1) and Proposition 3.2.1 (bii), it is clear that X is F}'—adapted.
The distribution of X is determined by that of y and its Markov kernels
P™ and ™ (depending on z), through (6.1). However, the identifi-

Zn|To Zn,t|To
cati|0n between‘X and p and the filtrations () and (F}') works only if,
with the fz(:|)x0 (t) continuous functions of ¢ as above, the T, are true jump
times for X: on (7}, < oo) it must hold a.s. that X7, # Xr, . In terms of
the Markov kernels generating the distribution of (7},,Y,) this means that

e ({F0,0}) =0 (6.2)

for almost all values (z,,t) of (Z,,T,+1). (While always (6.1) determines X
from p, to go the other way one needs some mechanism for identifying the 7,
— finding the Y,, = X7, is then immediate. Here we focus on the T}, being the
jump times for X, but in general one might just add to X the information
about when the T, occur, for instance by introducing states (x, mark) to
signify the occurrence of a jump for p. In that case one need not assume
the fz(:|):1:0 to be continuous and X is nothing but a F{'—adapted process, cf.
Proposition 3.2.1. Also, as marks Y;, one need not use X7, — other possibilities
are Y, = (Xr, _, X7,) or, in the case of R?—valued processes, Y, = AX7 as
was done in Section 5.2. We shall not discuss these generalizations further).

The distribution of X being described by the distribution of x, the prob-
lem we shall now discuss is that of finding out what structure must be im-
posed on the Markov kernels PZ(:RIO, Wgz)t‘wo and the functions fz(:|)mo’ in or-
der for X to be a Markov process, and,’in particular, a time-homogeneous
Markov process. We shall furthermore impose the constraint that the transi-
tion probabilities of the Markov processes do not depend on the initial state
Zo-.

For s > 0, consider the conditional distribution of #,X = (X;);>, given
FX. By (5.27) X is Markov iff this depends on the past F:* through X,
only. Conditioning on fsx amounts to conditioning on N,=k, Zp =2z =

(t1,- s tesyr, -, yx) forsome k € Ny, 0 <ty <--- <t <t y1,...,ye € G

(cf. Corollary 3.2.2). On the set (N; =k, Z), = z;), by (6.1),
X, = (s), (63)

2k |zo
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and until the time T ; of the first jump after s, X follows the deterministic
function

t— fz(f‘)wo t) (t>s).
Copying the proof of Theorem 5.4.1 and referring to Lemma 3.3.3, it now
follows that for X to be Markov with transitions that do not depend on x,
it is sufficient that the following six quantities (for arbitrary k,xo, 1, ..., ,
Y1,---,Yr) depend on these 2k + 2 variables through X as given by (6.3)

only:

fE @ (> ),

(k) H(k)
(k)
ﬂ-zk,t\wo (t 2 S)

and, forn €N, s <t; < - <tp, J1,---,0n € G with Zn:(ﬂ,...,tn;gl,
c>Yn)

J

oin(zg,2n)|To
(k+n)
join(zg,Zn)|xo
7r(k+n) (t > ’tvn) .

join(zp .2 ) o

Starting with (6.4), the requirement that this quantity depends on X only
amounts to requiring that for some function ¢y,

P (6 = 6 (£S5, (9)): (6.5)

Taking s = ¢}, and recalling the boundary condition fz(;]:|)$0 (tr) = yi gives

fz(k) (t) = ¢tk,t(yk)-

ko

Inserting this general expression for f*) in (6.5), and changing the notation
a little gives

¢su(y) - ¢tu(¢st(y)) (0 S S S t S u, Yy € G), (66)
which together with the boundary conditions
ou(y) =y (t€Ry) (6.7)

are the basic functional equations describing the deterministic behavior of a
piecewise deterministic Markov process: (6.1) becomes

Xy = ¢Tm,t(yﬁt) (6.8)
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with Ty, = 0, Yg, = Y5 = x9 on (N, = 0). More compactly (6.6) and (6.7)
may be written

¢su:¢)tuo¢st (OSSStSU)v ¢tt:id (tEO),

id denoting the identity on G. In particular the ¢, form a two-parameter
semigroup under composition.

Having determined the structure of the piecewise deterministic part of
the process, it is now an easy matter to prove the following result, where
D :={(s,t,y) €ER3 x G:s <t} and (t,y) — ¢:(y) is a measurable function
from Ry x G to Ry, while for every ¢t € Ry, p; is a transition probability
(Markov kernel) on G such that (t,y) — pi(y, C) is measurable for all C' and
such that for all ¢,y

pe(y,{y}) =0, (6.9)

as is essential to ensure that X has a discontinuity at each finite T;,, cf. (6.2).

Theorem 6.1.1 (a) Suppose ¢ : D — G is a measurable function which
satisfies (6.6), (6.7) and is such that t — ¢, (y) is continuous on [s, 00|

foralls € Ry, y € G. Then the piecewise deterministic process X given
by Xo =Yy = xg and
X = ¢Tﬁt,t(yﬁt)

18 a Markov process with transition probabilities that do not depend on

Tg, provided the Markov kernels PZ(:RIO, Wgz)t‘wo determining the distri-

bution of the RCM u recording the jump times for X and the states
reached by X at the time of each jump, are of the form

P (1) = exp (— J R ds) . (teRy)
) (C) = pi(dp4(20),C)  (t€Ro, C €G)

and form € N, t; < -+ <t, <t, y1,...,yp € G

t
PE:L)‘SUO (t) = exp <_/ qs(¢tn,s(yn)) dS) )
tn
Ty (C) = Pil61,4 (). C) (€ €G),
with t > t, in the last identity.

(b) The piecewise deterministic Markov process X determined by ¢,,(y),
a@(y), pe(y,C) is time-homogeneous with transition probabilities that
do not depend on xq, if there exists a measurable function ¢ : Ry X
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G — G with ¢, (-) = id and t — ¢,(y) continuous on Ry for all y, a
measurable function ¢ : G — Ry and a transition probability p on G
with p (y,{y}) = 0, such that for all s <t, y € G

du(¥) = b, (v), @(y) =aly), ply,C)=5ly,C).

Notation. In the sequel we always write ¢, ¢, p rather than 5, ¢, p in the
time-homogeneous case.

Remark 6.1.1 ¢(y) is the intensity for a jump to occur at time t if the
process at that time is in state y. py(y,C) is interpreted as the conditional
probability that a jump leads to a state in C, given that the jump occurs at
time t from state y.

Note that in the time-homogeneous case (6.6), (6.7) becomes

Oe(y) = 0, (DY) (5,820, ye€G),  Gly) =y (yeG) (6.10)

or, in compact form
¢s+t:¢so¢t7 ¢0 :ld

Thus the ¢, form a one-parameter commutative semigroup under composi-
tion.

Proof. (Theorem 6.1.1). For part (a) we must show that (6.4) and the
three quantities after that depend on k, o, 2, through X, = ¢, (yx) only.
For (6.4) this follows from (6.5) and (6.6), cf. the argument on p.109 leading
to (6.6). Next

Hk)
sz o t t
_[)(T() = exp <_/5 Qu(¢tk,u(yk)) du)

- (- u(60a(X) ).

Wii),ﬂmo = pt(¢tk,t(yk))
= pi(9.(X5)),

again using (6.6). As for the last three quantities, f*" (k-+n)

join(zg,Zn)|zo > * join(zg,Zn)|zo ?

Jgfit?z)k,zn),t\mo , they depend on t,,, ¥, and (in the case of 7) ¢ only, in particular
they do not depend on either of k, xo or z;. This completes the proof of (a).
The proof of part (a) relies on an identification of the conditional dis-
tribution of 6,X given FX. Here s € Ry is given but arbitrary, so when
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saying that the conditional distribution depends on X; only, we really mean
that it depends on X, and the constant s. To obtain a time-homogeneous
X, this dependence on s must be eliminated and thus, to prove (b), one
must show that when ¢, ¢, p are of the form given in part (b), (6.4) and
the four quantities after (6.4), which we already know to depend on s and
X = ¢y (k) = 5S_tk (yx) only, either do not depend on s or, when eval-
uating a certain quantity at a time-point ¢ > s depends on ¢ through ¢ — s
alone. But this is immediate since for instance

P oy (= [ oy )

:ew(—Ahk@A&»mQ

etc. (See also the last part of the proof of Theorem 5.4.1 for a more formal
argument). |

We shall discuss further the structure of PDMP’s and begin with a dis-
cussion of the solutions to the homogeneous semigroup equation (6.10).

It is immediately checked that a general form of solutions are obtained
by considering a continuous bijection S : G — G, where G is a topological
vector space, and defining

& (y) = S (S(y) + two) (6.11)

for some vy € G. In particular, if G = R? one may take G = G with S a
homeomorphism on R?.

Assuming that G = R , it is also possible to obtain partial differential
equations for solutions of (6.10). By assumption ¢ — ¢,(y) is continuous, in
particular limg o ¢,(y) = ¢o(y) = y. Suppose now that ¢ is differentiable at
t =0,

1
lim —(¢,(y) —y) = a(y)

sJ0 S

exists as a limit in R . Then for ¢ € Ry, using (6.10)

Dibly) = i (Duual) — 4(9)
_ iml . G (05(y)) — 9 (y)
= lim~(,(y) —y) 0.0) —
= a(y)Dyo,(y)
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so, assuming that the partial derivatives exist we arrive at the first order
linear partial differential equation

Digy(y) = aly) Dy, (y) (6.12)

with the boundary condition ¢,(y) = y.
Becuse the ¢, commute under composition, a differential equation differ-
ent from (6.12) is also available, viz.

Dubu(y) =lim * (6, (6,(1)) — 6(v))

sl0 8

resulting in the non-linear differential equation

Dy (y) = a(¢y(y))- (6.13)

Examples of solutions corresponding to different choices of a are essen-
tially (apart from the first example and for the others, apart from possible
problems with domains of definition) of the form (6.11) with S satisfying
v9/S" = a (where now vy € R). Some examples where K is a constant:

(i) If a =0, ¢,(y) =y, corresponding to the step process case.

)
(ii)
)
)

If a(y) = K, then ¢,(y) = y + Kt, yielding piecewise linear processes.
(iii) If a(y) = Ky, then ¢,(y) = yekt.

(iv) If y > 0 only and a(y) = %, then ¢,(y) = \/y? + 2Kt, a solution that
cannot be used on all of Ry if K < 0. (However, it may still be possible
to extend to a complete solution of (6.10) by forcing a jump when the
¢,(y) reaches the critical value 0).

(v) More generally, if y > 0 and a(y) = Ky®, where 8 # 1, then ¢,(y) =
(P + K (1—-p))"" 7.

(vi) If a(y) = Ke ¥, then ¢,(y) = log(e¥ + Kt).

A fairly general form of solutions to the functional equation (6.6) in the
non-homogeneous case is obtained by recalling the standard space-time de-
vice: if X is non-homogeneous Markov, then (¢, X;) is time-homogeneous
and piecewise deterministic with, trivially, the time component increasing
linearly over time with slope 1. With S a homeomorphism from the state
space Ry x G for (¢, X;) to Ry x G, with G' a topological vector space, this
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makes it natural to look for S of the form S(t, y) = (t, Si(y)) with the deter-

ministic part of (¢, X;) given by (6.11), using S instead of S, (s,y) instead
of y and (1, vp) instead of vg. The end result is that with (S;),., a family of

homeomorphisms from G to é, the functions (@,;)y<,<, given by

$uu(y) = S7" (Ss(y) + (t = 5) vo)

for some vy € G satisfy the non-homogeneous equation (6.6) and the bound-
ary condition (6.7).
We next discuss intensity processes. Since all P(™ have hazard functions

Uz |zo (t) = Qt(¢tn,t(yn))a

as a consequence the MPP (T}, Y},),>; has a F{'—predictable intensity process
A, so that A(C) = fot As(C)ds. Using Proposition 3.4.1 and the expressions
for the u(™, 7™ it follows using (6.8) that

A(C) = q(Xo-)pe (X, C), (6.14)
and in the time-homogeneous case,
)\t(C) = Q(Xt,)p(Xt,, C) (615)

The Markov property of X is reflected in the fact that A\,(C'), which is
F;X¥ —predictable, depends on the past (X;)o<s<; through X;  only.

It is quite easy to generalize Theorem 6.1.1 to the case, where the P do
not have densities: imitating the proof one only has to verify that (6.4) and
the quantities listed after that, depend on the past through X, only. The
result is

Theorem 6.1.2 (a) Suppose ¢ : D — G is a measurable function which
satisfies (6.6), (6.7) and is such that t — ¢, (y) is continuous on [s, 00|
for all s € Ry, y € G. The piecewise deterministic process X given by
Xo = xp and

Xy = ¢Tm,t(Yﬁt)
15 a Markov process with transitions that do not depend on xy, provided

the 7™ are as in Theorem 6.1.1, and if furthermore the P are of the
form

Pl (8) = Quy () (£ 1),

where for each s,y, Qs is a probability on |5, 00] with survivor function
Qsys and the Qg satisfy that for s <t <wu, y € G,

Quy(1) = Quy () Qs g, ()
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(b) The Markov process X from (a) is time-homogeneous if ¢y = ¢,_,,
p: (y,C) = p(y,C) and if in addition Q,(t) depends on s andt through
t— s only.

Remark 6.1.2 Theorem 6.1.1 is the special case of Theorem 6.1.2 corre-
sponding to

20 = e (- [ u(60a(®)) ).

6.2 Examples of PDMP’s

6.2.1 Renewal processes

A SPP T = (T,),~, is a (0—delayed) renewal process (cf. Example 2.1.3)
if the waiting times V,, = T,, — T,,_; (with T, = 0) are independent and
identically distributed. Defining the backward recurrence time process X by

Xt:t_TNta

(the time since the most recent renewal, T,, denoting the renewal times), we
claim that X is time-homogeneous Markov (with respect to the filtration
(F)).

To verify this, we use Theorem 6.1.1 and assume that the distribution of
V,, has hazard function u,

P(V, >wv) =exp (— /OU u(s)d5> ,

(X will be time-homogeneous Markov even without this assumption, which
is made to make the example fit into the framework of Theorem 6.1.1. For
the more general result, use Theorem 6.1.2).

As state space we may use G = Ry or G = [0,t![, with ¢! the termina-
tion point for the distribution of the V,,. X is then identified with the MPP
(T,,,Y,), where the T,, are as above, and Y,, = Xr, is seen to be always 0
on (7,, < 00). Hence, when determining the distribution of (7,,,Y},) we need

., where y; = yo = --- =y, = 0 and similarly for the
7™, By calculation it is clear that (cf. Example 2.1.3)

—(n) =t
Pt1~~~tn,0~~~0(t) = exp <—/0 U(S) dS)

only worry about P
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and since Wi?_),_tnto,,,o = g9, and the deterministic behavior of X is described

by Xi = ¢,_p_ (Yy,) where ¢,(y) = y + 1t satisfies (6.10), it follows from
t

Theorem 6.1.1 that X is time-homogeneous Markov with

o (y) =y+t, qly) =uly), ply,-)=czo

Consider again the renewal process 7 = (7,,) but assume now that
P (V,, < 00) = 1. The forward recurrence time process X is defined by

th :Tﬁt'i'l —t,

the time until the next renewal. The state space for X is again Ry or [0, tt [

We have )?0 = Ti, and to fix the value, )?0 = Zp , we must condition on
T, = Vi = g, i.e. all distributions must be evaluated under the conditional
probability P(-|T; = Zy).
The MPP describing X is (T, Y,) with T,, as always the time of the n’th
renewal and _
Y, = XTn = In+1 — T, = Vn+1-

The deterministic part of X is given by X, = ¢y_s(Yy,) , where ¢,(y) =
y — t. Since also

P(O) - 6:%07 P'Z(’ZI:L) = 6tn+yn (n > 1)’

mt (Jy, 0of) = P(Vi > )
it follows quite easily from Theorem 6.1.2, that X is time-homogeneous
Markov with respect to (.EX) Note that since T,,; = T, + Y,, one need
only consider P™ when ¢, = 7, thy1 = tr + yr and wiﬁ{t when in addition
t=1,+ yYn. B

Note that the filtrations (F;*) and (F;*) for the backward and forward

processes are quite different: Ty, is F;* — but not F;* —measurable (except
in the case where the the V,, are degenerate, V,, = v, for some vy > 0).

The process T discussed above is a 0-delayed renewal process since all
waiting times V,, for n > 1 are iid, corresponding to X, = 0. But as a
Markov process, the backward recurrence time process X may be started
from any zy € [0,¢'[ in which case, by Theorem 6.1.1 (b), with ¢(y) = u(y)
and ¢,(y) =y +t, we find

PY(t) = exp (— /Otu(l“o + 5)d5> )
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while the remaining P™ and all 7(™ are as before. In the case where zy >
0, 7 = (T,) is an example of a delayed renewal process, with the waiting
times V,, independent for n > 1 but only (V;,),>2 identically distributed.
Note that if U has the same distribution as the V,, for n > 2, the distribution
of Vj is that of U — x( given U > xy.

6.2.2 Processes derived from homogeneous Poisson mea-
sures

Let N be a time-homogeneous Poisson process with parameter A > 0, and
let (U,)n>1 be an iid sequence of R? —valued random variables such that
P(U, = 0) = 0. Let P denote the distribution of the U,. (This setup was
used to describe a compound Poisson process in Remark 5.2.1).

Let ¢ : D — G = R? satisfy the conditions of Theorem 6.1.1 (a) and
consider the piecewise deterministic process X = (X;);>o given by X, = x,

X = ¢Tm,t(yﬁt)
where as usual Y,, = Xp , while the U,, determine the jump sizes for X,
AXrp, =U,.
Identifying X with the MPP (7,,Y,), we find

?(n) (t) = o~ A(t=tn)

Zn

and

T(C) = P(¢,, (yn) + Unys € O)
= ]P)(O - ¢tn,t(yn))

It follows from Theorem 6.1.1 that X is a Markov process, which is time
homogeneous if ¢,,(y) is of the form ¢, ,(y). For the compound Poisson
process (a step process: ¢,(y) = y) and the piecewise linear process with
é,(y) = y + at we obtain processes with stationary, independent increments,
cf. Section 5.2.

6.2.3 A PDMP that solves a SDE

Let N be a homogeneous Poisson process with parameter A > 0 and consider
the stochastic differential equation (SDE)

dXt = Cl(Xt) dt + O'(Xt,) dNt, X[] =2 (616)
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for a R—valued cadlag process X, where a and o are given functions with
o(z) # 0 for all z. If a solution X exists it satisfies

t
Xt:X0+/ a(Xs)ds+/ o(Xs_)dN;
0 10.¢]

and is necessarily cadlag. To find the solution note that between jumps,
writing X, = £X,,

Xt = CL(Xt),
which should be compared with (6.13), while because o(z) is never 0, X
jumps precisely when N does and

AXt = O'(Xt,)ANt.
Suppose now that for every x, the non-linear differential equation

f'(t) =a(f®), f(0)==

has a unique solution f(t) = ¢,(z). Fixing s > 0 and looking at the functions
t = ¢ps(x), t = ¢y (Py(x)), it is immediately checked that both solve the
differential equation f'(t) = a(f(t)), f(0) = ¢,(x), hence, as expected, ¢,,, =
b, 0 ¢, oy = id, i.e. (6.10) holds.

It is now clear that (6.16) has a unique solution given by

X = d)t—TNt (YNt) ) AXTn+1 =0 (d)thn (Yn))

where the T), are the jump times for N (and X) and Y,, = Xy with Yy = x,.
(Note that it is used in an essential manner that it is the term o(X;_) dV;
rather than o(X;) dNV; that appears in (6.16)). It is now an easy matter to see
that X is a time-homogeneous PDMP: the Markov kernels for the (7,,,Y},)
are

F(n) (t) — ef}\(tftn) (t Z tn) ,

Zn

T = (E>t,),

where 47 = ¢,_, (yn) + 0 (¢, (Un)) , and hence X satisfies the conditions

of Theorem 6.1.1 (b) with ¢, = ¢,, ¢(y) = A for all y, and

ﬁ(ya ) = 6y+tr(y)-

The reasoning above works particularly well because N is Poisson. With
other choices for N one might still find that X is Markov, but it is clear that
the hazard functions for the conditional jump time distributions of N must
then in a critical way depend on the ¢,. We shall not here discuss further the
possibility of obtaining homogeneous PDMP’s with non-Poisson jump times
as solutions to SDE’s.
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6.2.4 An example from the theory of branching pro-
cesses

Suppose one wants to set up a model describing the evolution of a one-sex
population, where each individual (mother) can give birth to a new individ-
ual with a birth rate depending on the age of the mother, and where each
individual may die according to an age dependent death rate. How should
one go about this? We of course shall do it by defining a suitable MPP and
associating with that a process which turns out to be a homogeneous PDMP.

Let : Ry — Ry, 0 : Ry — Ry be given functions, to be understood as the
age-dependent birth rate and death rate respectively. We suppose given an
initial Population Xy = x consisting of ky > 1 individuals, labelled by their
ages alo), . .,ag;) (all > 0). There are different possibilities for the choice
of the state space G. Here we shall simply let G consist of all finite subsets
of Ry, allowing for repetitions of elements, where the state x = {a;,...,ax}
for k € Ny, ay,...,ar > 0 is interpreted as a population consisting of k

individuals of ages aq,...,ax. Thus Xy = 2y = {ago), .. .,ag;)

}. In general
individuals may have the same age, denoted by a repeated element: a pop-
ulation consisting of 5 individuals, one pair of twins and one set of triplets,
would be denoted {a,a,b,b,b} . An extinct population (0 individuals) is de-
noted 0. If x = {aq,...,ar} € G, we write |z| for the population size k& and
r+t={a+1t,...,a, +t} (Note: the choice of G is quite crude and ig-
nores information concerning the life histories of single individuals. It is not
a problem to define a population process on a state space where one keeps
track of this type of information — the details are left to the reader).

In the model we shall define (which can easily be generalized to allow e.g.
for multiple births), all births and deaths occur at separate time points (so
one only sees individuals of the same age if they are present at time 0). In
particular, the population size can only increase or decrease in jumps of size
1. If the process is observed in state x = {ay,...,a;} and a jump occurs, the
state reached by the jump is either {ay,- -, ax} U0 corresponding to a birth
or {ai,...,ax} \a; for some 1 < i < k corresponding to a death (where of
course, if there were several individuals of age a; in x, {a;, ..., ax} \a; denotes
the population where precisely one of those of age a; is removed, the others
retained).

It is now a simple matter to set up the model. The process is piecewise
deterministic,

Xy = ¢t—Tm (Yﬁt)

with 7, the time of the n’th jump, Y,, the state reached by that jump, and
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the deterministic behaviour given by
o, (x)=x+t

if |z] > 1 and ¢, (0) = (. The Markov kernels determining the distribution
of the MPP (T,,Y,) are given by, for ¢ > t,, with only the atoms for 7("
listed,

PO, (1) =exp (— /0 o 16+ 4], (5) ds) ,

_ T Blatt—ti)
R T R (R

5(ai0 +t — tn)
[8+4],, (t—1t.)

T 2 stlao (Y +t =) \ai, +1 —t,) = (1<io<k).

Here

(S(CLZ'O —|—t—tn)
(8 +4],, (t—tn)

T 2 t|2o ((yn +1— tn) \aio +1— tn) = (1 <ip < k) .

k
[B+4],, (s):= Z (B(ai + s) + 6(ai + 5))

i=1
and z, = (t1,.. -, tn;y1,---,Yn) With y, = {ai,...,ax}, using of course
to = 0, yo = x if n = 0. Naturally, empty sums equal 0, hence it follows
in particular that once the population becomes extinct, it remains extinct
forever.

It may be shown that the process defined above does not explode. Clearly

the ¢, satsify (6.10) and it is then immediately verified from Theorem 6.1.1
(b) that X is time-homogeneous Markov with

k

q(x) = Y (Bla;)+5(w)),

i=1
Zf:l B (a;)

;v U 0 )

PnTU0) = S e) + 6 (@)
0 (aio) .

) %0 — 1 S S k‘ R

Pl = S Gy oy ==Y
where z = {aj,...,a;}, and where only the atoms for p(z,-) have been

specified. The corresponding predictable intensities, A\;(C') for special C, are
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given by
Xo= ) (Bla)+d(a),
M (X-U0) = Y Bla),

AX\ao) = 6(a0) (ao € Xio),

justifying the interpretation of (3,0 as age-dependent birth and death inten-
sities.

A particularly simple case of the model above is obtained when both
0 and 0 are constants. In that case the intensities above depend on X,
through the population size |X; | only and it follows that the process |X| is
a time-homogeneous Markov chain with state space Ny, the familiar linear
birth- and death process with transition intensities

Giit1 =10,  Gii—1 = i0.
The process we have constructed here has the branching property char-

acteristic of branching processes: with the initial state xq = {a(l), cen a,(c?))}

as above, define ky independent processes X with age-dependent birth-
and death intensities 3 and d respectively such that X(E” = {ago)}. Then

X = Ufil X® has the same distribution as X. (A proof of this may be
given using Theorem 5.1.1 to identify the relevant compensating measure for
X).

A quantity that is easily calculated and critical for the ultimate behaviour
of the population is 7, the expected number of children born to an individual
throughout her lifetime. To find 7, consider an initial population {0} consist-
ing of one newborn individual ¢. Let N’ be the counting process that registers
the times at which ¢ gives birth. Let also ( denote the time at which ¢ dies

and define N = 1(;<;. then (N°, N?) has f(Nb’Nd)—compensator (Ab, A7)
where

t t
AL :/ l(Nd :O)B(s) ds, A¢ :/ l(Nd :0)5(3) ds.
0 5 0 5
Since A? is F¥"—predictable we recognize that

P(C>1t) = exp (—/Oté(s) ds)

and it then follows that

EN? = EAb = /t exp (— /s d(u) du) B(s) ds,
0 0
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and defining N2 = lim N} that
—00

VZEN;:AW@W<_£3myw>m@@.

One would expect the population to become extinct almost surely (no matter
what the value of Xj) if v < 1, while if v > 1 for some initial populations
(e.g. those containing at least one newborn) the population will grow to oo
over time ;vith probability >>0. Note that for the linear birth- and death
process 7 = 1 according as (3 = 0.

6.3 Itd’s formula for homogeneous PDMP’s

In this section we shall discuss in more detail the structure of R—valued
piecewise deterministic Markov processes, that are time-homogeneous.

The processes will be of the type described in Theorem 6.1.1 (b). Thus,
if X = (X);>0 denotes the process with now (R, B) as state space, X is
completely specified by its initial value Xy = zy and the MPP (T,,,Y,)n>1,
where T, is the time of the n’th discontinuity (n’th jump) for X, and Y, =
X7, € R is the state reached by the n’th jump, cf. (6.8),

Xt = ¢t7Tﬁt (Yﬁt) )

with ¢ describing the deterministic behavior of X between jumps so that
t — ¢,(y) is continuous and satisfies the semigroup equation ¢,,, = ¢, o ¢,
(s,t > 0) with the initial condition ¢, = id, cf. (6.10). Recall also that the
distribution of (7, Y,),>1 is determined by

Y1) = exp (— / q<¢t_s(yn>>ds),
™0 (€)= p(6y 4, (1), )

with ¢ > 0 and such that ¢ — ¢(¢,(y)) is a hazard function every y, and with
p a Markov kernel on G such that, cf. (6.9),

ply.{y}) =0 (y€R). (6.17)

If 1 is the RCM determined by (7},,Y;), we see that p has F}' = FX—
compensating measure L given by

MMﬂx@:Aﬂnzéuﬂn@
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with the predictable intensity A\(C') determined as in (6.15), in other words
L (ds,dy) = q (X,-) dsp(Xs-,dy). (6.18)

Finally, we shall assume that ¢ — ¢,(y) is continuously differentiable, and
writing
a(y) = Digy(y)|i=o
we then have the differential equation (6.13),

Dy (y) = a(d(y)) -

Suppose now that f : Ry x R — R is a continuous function, and consider the
process (f(t, Xt))i>0. We may then use Ito’s formula for MPP’s, Section 3.8,
to obtain a decomposition of f(-, X') into a local martingale and a predictable
process. To formulate the result, introduce the operator A acting on the
space D (A) of functions f that are continuously differentiable in ¢ and y and
satisfy that [ p(y,dy) |f (t,y) — f (t,y)] < oo for all y, and with Af given
by

Af (t,y) = Dif(ty) +aly) Dy f(t,y) +q(y) /Rp(y, dy) (f(t,y) — f(t,y))-

Theorem 6.3.1 (a) For f € D(A) the process f(-, X) may be written

(4. X)) = F(0,30) + / SY M(ds,dy)+ U, (6.19)

10,¢] xR

where M is the martingale measure pn — L, (S¥)s>0yer s the F;X —pre-
dictable flow given by

St = f(ty) — f(t, X,) (6.20)

and U is continuous and F;* —predictable with

t
U, :/ Af (s, X;) ds. (6.21)
0
The decomposition is unique up to indistinguishability.
(b) If EN; < oo for all t and if f € D (A) is such that
Af =0 (6.22)

and the function (s,y,7) — f(s,9) — f (s,y) is bounded on [0,t] x R?
for all t, then the process f (-, X) is a F;X—martingale.
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Proof. (a). As in Section 3.8 we identify S by identifying the jumps in
(6.19). Since f € D (A) and X is continuous between jumps, f (-, X) jumps
only when p does and with the requirement that U in (6.19) be continuous
it follows that

Af (t,X;) AN, = SX*AN,

which certainly holds if S is given by (6.20).
Having found S, we define U by solving (6.19) for U;. It then follows that

between jumps U is differentiable in ¢ and that U, := %Ut is given by

U't:%f(t,XtH%/ SY L (ds, dy) .

10,t] xR

But
LF(t,Xy) =Dof (¢, X)) + Dyf (¢, X)) X,

and by (6.13), between jumps
Xo= 200y () =a (0 ry (V) =a(X)).

Since also, by (6.18)

t
s sty = 4 [ e o s
10,t]xR 0 R
— () [ p(Xidy) ST,
R
using (6.20) it follows that between jumps

Ut - Af (ta Xt)

and we have shown that (6.19) holds with S, U given by (6.20), (6.21).
The uniqueness of the decomposition follows from Proposition 3.5.1.
(b). This is immediate from (a) and Theorem 3.6.1 (iii2). n

Suppose that h : R — R is continuously differentiable and bounded.
Then f € D (A) where f (t,y) = h(y) and Af (¢t,y) = Ah(y) where

Ah(y) = a(y)H (4) + a(v) / p(w,d5) (W@ —h(y).  (6.23)

The operator A, acting on a suitable domain of functions h, is the infinites-
imal generator for the time-homogeneous Markov process X. (The opera-
tor A is the generator for the time-space process (t,X;),5,). Note that if
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EN,; < oo for all t, since h is bounded the stochastic integral M (S) (where
now Sy = h(y) —h (X;_)) is a martingale, and hence, taking expectations in
(6.19),

Eh(X,) = h(wo) + / t EAR(X,)ds,

from which follows the familiar formula for the generator,
1
—1i _ Zo _
Ah(xg) —11_{18 . (E*h(X;) — h(zo)) , (6.24)

valid for arbitrary zy, and where we have written E*° instead of E to em-
phasize that Xy = .

6.3.1 An example involving ruin probabilities

In general there is not much hope of solving an equation like (6.22) explicitly.
However, martingales of the form f(-, X') are nice to deal with when available,
as we shall now see when discussing some classical ruin problems.

Let N be a one-dimensional, homogeneous Poisson process with param-
eter A > 0 and let (U,)n>1 be a sequence of iid R—valued random variables
with P(U,, = 0) = 0, independent of N. Finally, let 2o > 0, let « € R and
define

N
Xt :$0+Oét—|—ZUn,
n=1
i.e. X is a compound Poisson process (Remark 5.2.1) with a linear drift
t — at added on. In particular X has stationary independent increments,
cf. Section 5.2, and is a time-homogeneous, piecewise deterministic Markov
process with

o, (y) =y+at, qly) =\

for all ¢,y, and
p(y, ) = the distribution of y + U;.

We define the time to ruin as
Train = inf{t : X; < 0}.

The problem is then to find the ruin probability pryin = P(Truin < 00) and, if
possible, the distribution of 7 .

We shall focus on two different setups: (i) the simple ruin problem cor-
responding to the case where P(U; > 0) = 1, a < 0, where X decreases
linearly between the strictly positive jumps, (ii) the difficult ruin problem
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where P(U; < 0) =1, a > 0 with X increasing linearly between the strictly
negative jumps.
[t should be clear that for Problem (i),

X

Truin

=0 on (Tpn < 00), (6.25)

and it is this property that makes (i) simple, while for Problem (ii) it may
well happen that
X

Truin

<0,

and it is this possibility of undershoot, which makes (ii) difficult.
It is easy to find that p,,in = 1 in some special cases: in both Problem (i)
and (ii), £ = EU, is well defined, but may be infinite. Now

XTn :ZUU—FO{TH—FZU]C

k=1
and so, by the strong law of large numbers
1 a.s. (X
—-X — . 6.26
ST +£ (6.26)
Consequently, for both Problem (i) and (ii)
Pram = 1 if % rE<oO, (6.27)
(For (i) this is possible only if £ < co. For (ii) (6.27) is satisfied if in particular
£ =—00).

Let P denote the distribution of the U, and introduce
Y(0) = Be """ = / e " P(du).

In the case of Problem (i), this is finite if > 0, and ¢ is the Laplace transform
for U,. For Problem (ii), ¢ is finite if § < 0. (It is of course possible that
1(0) < oo for other values of # than those just mentioned in either case (i)
or (ii)). From now on, when discussing Problem (i), assume # > 0 and when
treating Problem (ii), assume 6 < 0.

By a simple calculation

Besp(—0(X, — ) = 3 P(N, = m)e~ Bexp (~0 50 Uy)

% (\f)n
— Z%ehteeatwn(g)

n=1

= exp(tp(f))
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where

p(0) = Ap(0) — X — Oa. (6.28)

Because X has stationary, independent increments, also
E exp(—0(Xyy — X)) |F) = exp(tp(0))
for any s > 0, so defining
Vi(0) = exp(=0(X; — 20) — tp(0)),
the following result follows immediately:

Proposition 6.3.2 For Problem (i), (Vi(0),F) is a martingale for each
0 > 0. For Problem (i), (V,(0), F;*) is a martingale for each 6 < 0.

We proved this without using (6.22), but it is quite instructive to verify
that (6.22) holds: we have

f(t,y) = exp(=0(y — z) — tp(0))
and a(y) = « for all y, so
Dif(t,y) +a(y)Dyf(t,y) = f(t,y)(—p(0) — ab)

while

o) [ o) (7(05) ~ ) = A( [ s+ 0P - o)
= St y) (A (0) = A).
Using (6.28) we see that (6.22) does indeed hold.

Problem (i)

First note, that as a Laplace transform, v is strictly convex on Ry, and that
1 is differentiable on R, with

J'(0) = —BEUe ",
Let 6 | 0 and use monotone convergence to obtain ¢'(0) := limg ¥’ (6),
T/),(O) = _67

also if £ = oo.
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Since v is strictly convex, so is p, and

p(0) =0, p'(0)=-X—a.
Defining 6y = sup{f > 0 : p(8) = 0}, it follows, that 6y = 0 iff a/A+ & <0
(iff p'(0) > 0), cf. (6.27), and that 0y > 0 iff a/A+& > 0, (iff p'(0) < 0).
Since V4 (#) = 1, the martingales V'(#) for @ > 0 have constant expectation

1, so applying optional sampling to the bounded stopping times ¢ A 7.y, for
t > 0 we obtain

1= EV;&/\Tmin (9) = El( eaxO_Tmin(g) + El(Truin>t)e_e(Xt_xO)_tp(g)

TruinSt)

using (6.25) on the way. Now take # > 6y and consider the last term. Since
t < Truin, X¢ > 0 so the integrand is dominated by the constant e?*0 (because
also p(f) > 0). Since e — 0 as t — oo, the last term vanishes as t — co.
On the first, use monotone convergence to obtain

1= El(Tmin<oo)69:5077“1“[)(0) (9 > 90)
By monotone convergence
E]'(Truin<oo)€_7ruinp(9) T pruin as 9 J/ 90

and consequently

Pruin = 6_00930 .

Furthermore, again since p(¢) > 0 for 6 > 6,,
Ee PO Truin — El(T _ <Oo)e*p(9)'rruin — ¢ 0o
and we have shown the following result:

Proposition 6.3.3 (a) For Problem (i), the ruin probability is

Pruin = 6_00930 .

where 0y = sup{f > 0 : p(#) = 0}.
(b) For 9 > 0, the Laplace transform of the (possibly infinite) random
variable Toun 1S given by

Be Vmin = =P (D)0, (6.29)

where p~' : Ry — [0y, 00] is the strictly increasing inverse of the func-
tion p restricted to the interval [0y, ool

Note that (6.29) is valid only for ¢ > 0 , but that by monotone conver-
gence

_ . —p—1 . _ .
Pruin = €907 = lim ™" D20 = |jm FeVmuin,
#10,9>0 840,0>0
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Problem (ii)

For the solution of Problem (i), (6.25) was used in an essential manner. With
the possibility of undershoot occurring in Problem (ii), (6.25) no longer holds.
The basic idea now is to replace X by the process X given by

ayd Xt if t < T ruin
Xt B { 0 if ¢ > Truin,

i.e. at the time of ruin, the non-positive value of X is replaced by 0 and kept
there forever. Clearly

X =0 on (Tyn < 00),

Truin

so (6.25) holds for X. However, going from X to X destroys the independent
increments property, so it is not so easy to find simple functions of X that
are martingales. B

We certainly have that X is a piecewise deterministic process with state
space Ry. If T}, is the time of the n’th jump for X and Y, = X5 > 0 the
state reached by that jump, it is immediately seen that the Markov kernels
P™ 7 determining the distribution of the MPP (T},,Y,) are given as

follows:
=(n) (t) = exp(—A(t —t,)) if y, >0
for t > t,, while for t > t,,, y, > 0,

#™ = the distribution of (Y + a(t — t,) + Uy) VO,

Zn,t|To

or more formally

T e (059 + (¢ = 1)) = P(Ja = yn = a (1 = 1) , 0]

if0<a<y,+a(t—t,) and

71 ({03) = P (] =00, —yn — a(t — 1))

(Recall that P is the dlstrlbutlon of U; and that U; < 0).

The expression for P™ and 7™ show that X is a piecewise deterministic
timehomogeneous Markov process with

~ B y+at if y > 0,
o (y) = { 0 if y =0,
_ A if y >0,
p(y,-) = the distribution of (y + U;) V 0.
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From now on assume that —U; follows an exponential distribution,
PU, <u) =€ (u<0),
where 3 > 0. Thus £ = —+, so from (6.27),
Pruin = 1 1 af < A

We therefore also assume that a8 > A, and are now looking for a bounded
function ¢ : Ry — R such that g(X) is a ;¥ —martingale.

Lemma 6.3.4 With

9@W) = (k+e"Y) 1p,(y) (yeR),

where k = ﬁ+9, 0" = 2 — 3, the process g ()?) 1S a ff}—martmgale.

Note that ¢(0) = 0 and that §* < 0 so g is bounded on Ry.
Proof. Imitating the proof of Theorem 6.3.1 we want to show that

g ()?t) = g (o) +/ SY M (ds, dy)
]0 t}XRO

with M =n— L writing  for the RCM describing the jump times T and
marks Y for X and writing L for the ]—"” = FX—compensating measure for
1. Identifying jumps gives

S¢ =g — g (X0

and by differentiation with respect to ¢ between jumps and with ¢ < 7, (S0
X; > 0), we find

49(%) = ag (%), (6.30)
_%/ SV L(ds,dy) = —%jdszj()?s_) fﬁ(f(s_,dy) S¥(6.31)
10,6 xRy 0 Ro

That these two derivatives are the same amounts to showing that for y > 0,

abe’ = —XN(Eg((y+U)V0)—g(y))
= -\ (EI(U1>,y) (li + 60*(“[]1)) — K — ee*y)

o By 0" 0y
)\<K+ﬂ+9* e —|—)\ﬁ+9*e ,
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i.e. we need that
B A
B+ 0 B+

which are precisely the conditions on k and 6* given in the statement of the
lemma.

For ¢t > T,un there are no jumps for )?, )?t = 0, and also L vanishes (since
¢ = 0). Hence the time derivatives (6.30), (6.31) agree on all of Ry between
jumps, and the proof is complete. [ |

Proposition 6.3.5 When the —U, are exponential, P(U; < u) = e for
u <0, and a8 > N, the ruin probability is given by

_ (Asm) A 2
pruln € aﬁ' (6-3 )

Proof. The martingale g ()?) is bounded, hence g ::tlim g ()?t> exists
—00

a.s. and Egy = Eyg <)~(O> = ¢g(zg). Since ¢g(0) = 0, on (Tryin < 00) we have

oo = 0. 0N (Truin = 00) , Joo = lim (,«u n e"*ft) and if o > ), since 0% < 0

and X; = X; — oo by the strong law of large numbers, see (6.26), we have
Joo = K. Thus g(z¢) = K (1 — prun) if @B > A, yielding the desired result. If
aff = A we have 8* = 0, kK = —1 and learn nothing from the argument above.
However, using e.g. a coupling argument one shows that p.,, is a decreasing
function of § and it then follows that p.,, = 1 if @3 = A. (For the coupling,
take 3, < (3, and define on the same probability space two processes X, X,
with the same initial value, same A\ and same « and the same jump times,
but such that the jump sizes U, , for X, are all larger than those, U, ,, for
Xy — viz. Uy, = g—TUM. Then for all ¢, X;; < X,, and the probability of
ruin for X, exceeds that for Xy). |

6.4 Likelihood functions for PDMP’s

Using the results of Chapter 4 together with the construction from Section
6.1, it is an easy matter to derive likelihood processes for observation of
PDMP’s.

Suppose given a RCM p = Zn:TMm E(T,,v,) On some measurable space
(Q,F), and let P, P be two probability measures on (Q,F) . Write P, P, for
the restrictions of P, P to Fi and write P <. Pif P, < P, forallt € Ry.

The likelihood process £¢ = (£{'),5, for observing 1 is then given by the
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results from Chapter 4, more specifically if @Q, @ are the distributions of u
under P, P respectively, then P <. P iff Q) <o @ and

£¢:£toua

where £, = jfgz is the likelihood process from Chapter 4.
Now, suppose further that X = (X;),., is a (G,G) —valued process de-
fined by X, = 2y and -

Xt - ¢Tm,t (Yﬁt) )

where each t — ¢, (y) is continuous and the ¢, satisfy the semigroup prop-
erty (6.6) and the boundary condition (6.7), cf. Theorem 6.1.2. Finally
assume that the Markov kernels generating P are as in Theorem 6.1.2, while
those generating P have a similar structure,

—(n) t
P lo (t) = exp <_/t qs (d)tn,s (yn)) dS)
%i:),t‘mo (C) = D (d)tn,t (yn) ,C) )

where ¢; > 0 and each p; is a Markov kernel on G such that p; (y, {y}) =0
for all ¢,y, cf. (6.9).

Thus X is a PDMP under both P and P and from Theorem 4.0.2 and
(6.14) we immediately obtain the following result:

Theorem 6.4.1 A sufficient condition for P <c P is that g, (y) > 0 for all
t,y, that f; Qu (Pg, (¥)) du < 0o forall s < t, ally, and that p (y,-) < pi (y, +)
for all t,y.

In that case a (}“tX) —adapted version of the likelihood process £* is £X =

(StX)tzo given by

o =

N

exp | — '@ — s ary (Xrx ) dpry (Xrx )
p< | @ q(xs»d) [T 2y e ().

Notation. Of course Nf( is the total number of jumps for X on [0, ¢] and

TX is the time of the n’th jump for X. Note that N s P—indistinguishable
from N and that for all n, T:X =T, P—a.s.

We have not given Theorem 6.4.1 in its most general form, which would
amount to a direct translation of Theorem 4.0.2. The result gives (in special
cases) the likelihood function for observing a PDMP completely on an interval
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[0,¢]. Formally, that likelihood is the Radon-Nikodym derivative between
the distributions on finite intervals of two different PDMP’s, and here it is
important to emphasize that for the likelihood to make sense at all (i.e. local
absolute continuity to hold), the piecewise deterministic behaviour of the two
processes must be the same because (some of) the ¢,, can be read off from
the sample path. Thus, as was done above, while the ¢;, p; can change into
qt, Pt, the ¢, must remain the unchanged when switching from one process
to the other.

6.5 Differential equations for transitions

Let X be a time-homogeneous PDMP with state space G as in Theorem
6.1.2 (b) with X = x for an arbitrary z, and let h : G — R be bounded
and measurable. Consider the function P;h : G — R given by

Bih (19) = E*h (Xy),

i.e. B, is the transition operator for X for time intervals of length ¢, related
to the generator A through the formal expression

—l1m (‘Bt id),

cf. (6.24). The transition operators form a semigroup, Psir = PP;, as
is (essentially) seen from the Chapman-Kolmogorov equations (5.26) in the
time-homogeneous case.

Writing x rather than x for the arbitrary initial state, we shall first quote
the backward integral equations for computing B;h(z).

For n € Ny, define

PBh(x) = B (h(X0) (20 ) -
Then clearly
B =0, @) exp (- | (6, () is) (6.33)

and recursively, conditioning on the time of the first jump and using Lemma
3.3.3 (bii),

B ) = | s £y (s,0) [ 26 ).t Bt



134 CHAPTER 6. PDMP’S

e s = (6, @) esp (= [ 4t (@) au)

is the density for the distribution of the first jump time 77. Summing on n
finally gives

Pite) = nio e (- | 4 (6, () i)
v/ s £, (5,7) [ (0, @) i) Pioih(o)

In the Markov chain case (¢,(x) = ) this after differentiation with respect to
t yields the famous backward Feller-Kolmogorov differential equations. No
simple analogue of these are available for general PDMP’s, although for A
smooth enough,

d
SBh(z) = A (Bh) (2),

(see (6.23) for the definition of the generator A).
We shall also quote the forward equations although they are more difficult
to derive and less transparent. For n > 0, conditioning on 7, we first find

P h(z) =

E* 11, ,1<0) (¢t—Tn+1 (Yos1) )GXP ( f Q( =Tt Yn+1)) du) .

Thi1

Next, condition on Z, to obtain
t
= E"1(1,<p) / ds fo(s — T, Y0) / P (¢3—Tn (Y) ,dy)
n E
b ) e (= o (0, ) du)

Use the device 1(z, <y f; ds = f(f ds 1(r,<s) to take the integral with respect
to x outside the expectation, and then use

fo(s =T, Yn) =q (¢s—Tn (Yn)) P (T > 5|Z,)
on (T,, < s) to obtain, cf. (6.33),

_ /0 s L, 1 (6, 1, (¥2)) / p (657, () dy) B h(y)

E

— /OdsE“f q(Xs)/Ep(Xs,dy) Pk (y).
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Thus, changing s to t — s,

P () = / 25, (¢ (- BOR)) ().

where

Summing on n finally gives
Poh(z) = h(o, (x))exp (— [ oo, ds)
+ /0 ds Py (g (. BOR)) ().

For Markov chains on a state space which is at most countable, after differ-
entiation this gives the forward Feller-Kolmogorov differential equations for
the transition probabilities.
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Appendix A

Differentiation of cadlag
functions

Let A be a positive measure on (Ry, Bp) such that A(t) := A ([0, ]) < oo for
all t and A(0) = 0. Let f be a Borel function on Ry such that f}O,t} |f| dA < o0
for all ¢, and define
F(t) = f(s) A(ds). (A.1)
10,¢]

Clearly F' is cadlag (right-continuous with left limits), F'(0) = 0 and F
inherits the following properties of A: (i) if for some s < ¢, A(s) = A(t) also
F(s) = F(t) (and F is constant on |s,t]); (ii) if AF(¢) # 0 also AA(t) > 0.

It is natural to say that F is absolutely continuous with respect to A
with Radon-Nikodym derivative f. For us it is of particular interest that the
derivative may be computed in a certain way.

For any function g on Ry define for k, K € N, gy x = ¢ (QLK) and gx as

the function
0
Z . 9k, K — Jk-1,K
p 1 DA P

with the convention § = 0 (where in practice we shall only have to worry
about 2).

Proposition A.0.1 If F' is given by (A.1), then [}im Fx(t) = f(t) for
—00
A—a.a. t and [}1_1)1'(1)o f]o,t] |Fx — f| dA =0 for all t.

Proof. Suppose that A is a probability measure and that fRo |f] dA < o0

and let G = o (|5, 2’2])]01. Then E(f|Gx) = Fik, hence (Fi)gs, is a
uniformly integrable martingale on (Ry, By, A) converging A—a.e. (and in

137
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L'(A)) to E(f|Gs) where Gy is the smallest c—algebra containing all the
Gk, i.e. Goo = By so that E(f |G) = f.

The argument obviously applies also if A is a bounded measure with
[1f] dA < oo, and for general A and f with f[O,t] |f| dA < oo for all ¢, by
e.g. considering the restriction of A to [0,¢y] for an arbitrarily large to, it is
seen that the A—a.e. convergence and the L'—convergence on [0, ;] remains
valid. [ |

Let now F' : Ry — R be a cadlag function, but not apriori of the form
(A.1). We say that F' is (pointwise) differentiable with respect to A if

(i) whenever A(s) = A(t) for some s < t, also F'(s) = F(t);
(ii) whenever AF(t) # 0 also AA(t) > 0;

(iii) lim Fi(t) = f(t) exists for A—a.a. t.

K—oo

We then call f the derivative of F with respect to A, and write f = D4F.

Proposition A.0.2 If the cadlag function F' is pointwise differentiable with
respect to A with D, F = f, then a sufficient condition for

F(t)=F(0)+ f(s)A(ds) (t € Ry) (A.2)

10,¢]

to hold, is that f be bounded on finite intervals and that

PO - Pl < [

Is,t

| |f| dA (A.3)

for all s < t.

Note. Clearly (A.3) is necessary for (A.2) to hold.
Proof. Given t, write tx = [2K¢] /2K (where [2] is the integer part of z),
te =tk + ZLK Using (A.3) we find for s <,

f] L]|f|d’4

o0 k—1
F <) 1y ELUSLY <
Fic () £ D Yjag ) (5) g~ < sup

and hence, by dominated convergence,

fdA = lim Fy dA.

10,1] K=o 10,
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But
5 A A1) = A (5 )
/F),t} Fiedd = kz:; (FkK N Fk,K?l) Ak,K - Ak—l,K
[2*7]
= F(ix) - F(0) = (F (tx) — F (tx)) Altx) = A®)

A (tg) — A(tg)

where (i) above has been used for the second equality. Since F' is right-
continuous, F' (tNK) — F(t) as K — oo. If AA(t) =0, by (ii) F is continuous
at t and so also F' (tx) — F(t) and since the ratio involving the A—increments
is bounded by 1, we have convergence to F'(t) — F'(0) of the entire expression.
If AA(t) > 0, let ¢ be an upper bound for |F| on [0,¢ + 1] and use

A(tx) — A®t) _ A(tx) — A®)

AG0) —Awo| = aam Y

(F (t) = F (t))

to again obtain convergence to F'(t) — F(0). |

The following useful differentiation rule is easily proved: if F}, Fy are
differentiable with respect to A, so is the product F}F5 and

Dy (F1Fy) (t) = (DaFy) (t) By (t) + Fy (t—) (DaF>) () .

Note that this expression is not symmetric in the indices 1,2. Switching
between 1 and 2 gives an alternative expression for the same derivative.
In practice one expression may prove more useful than the other. If the
conditions from Proposition A.0.2 are satisfied for (F};, D4F;), i = 1,2, one
obtains the partial integration formula

(F1F) (1) = (FuFy) (0)+/M ((DaFy) (s) Fz (5) + F1 (s—) (Dak) (5)) A(ds).
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Appendix B

Filtrations, processes,
martingales.

We shall quickly go through some of the basics from the general theory of
stochastic processes. All results below are quoted without proofs.

A filtered probability space is a quadruple (2, F, F;, P), where (Q, F, P)
is a probability space and (F;)io, the filtration, is an increasing family of
sub o—algebras of F, F, C F; if s <t. (Notation: C means ‘contained in or
equal to’).

A probability space is complete if any subset of a P—null set is measur-
able: if Fy € F, P(Fp) =0, then F € F for any F C Fy.

A probability space (2, F, P) may always be completed: define N' =
{F c Q:3F, € F with P(F,) = 0 such that F C Fy} , and let F be the
smallest o—algebra containing F and M. Then F = {FUN: F € F, N €
N} and P extends uniquely to a probability P on (€, F) using the definition
P(F) = P(F) for any F € F and any representation F' = F'U N of F with
F € F, N € N. The probability space (2, F, P) is complete and is called
the completion of (2, F, P).

A filtered probability space (2, F, F;, P) satisfies the usual conditions if
(2, F, P) is complete, if N' C Fy where now N = {N € F: P(N) = 0}, and
if the filtration is right-continuous,

ft:ft+ (tZO)a

where Fiy := 5, Fs.

Much of the literature on process theory presents results and definitions,
assuming that the usual conditions are satisfied. We shall not make this
assumption here, although we have in mind applications where the filtra-
tion is automatically right-continuous, but where we do not complete the
o—algebras.

141
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Let (G,G) be a measurable space. A stochastic process (in continuous
time) with state space (G, G), defined on (Q2, F, P), is a family X = (X;);>0 of
random variables X; : (2, F) — (G, G). A stochastic process X is measurable,
if the map

(t,w) = Xy(w)

from (Ry x 2, By ® F) to (G, G) is measurable.

The filtration generated by the process X is the family (F;¥);>o of o—alge-
bras, where F;* = 0(X;)o<s<t-

A process X with a state space which is a measurable subspace of (R?, R?)
is right-continuous if t — Xy(w) is right-continuous for P—almost all w. Sim-
ilarly, X is left-continuous, cadlag, increasing, continuous if for P—almost all
w, t — X;(w) is respectively left-continuous, cadlag (right-continuous with
left limits), increasing (in each of the d coordinates), continuous.

Let (2, F,F;, P) be a filtered probability space. A process X defined
on (Q,F, P) is adapted if it is measurable and each X; : (Q,F) — (G,G)
is F;—measurable. X is predictable (or previsible) if it is measurable, X,
is Fop—measurable and the map (f,w) — X;(w) from (Ry x Q, B, ® F) to
(G,G) is P—measurable, where P, the o—algebra of predictable sets, is the
sub o—algebra of B, ® F generated by the subsets of the form

|s,00[ x ' (s € Ry, F € Fy).

If X, X' are two processes on (2, F, P) with state space (G,G), they are
versions of each other if for all ¢, P(X; = X}) = 1. They are indistinguishable
if F[] = ﬂtzo (Xt = X{) € F and P(F()) =1.

Proposition B.0.3 Let X be a process on (0, F,F;, P) with state space
(G,9) C (RY,BY).

(1) If X is right-continuous or left-continuous, X is indistinguishable from
a measurable process.

(ii) If X is right-continuous and each X, is Fy—measurable, X is indistin-
guishable from an adapted process.

(iii) If X is left-continuous and X, is Fy—measurable for all t, X is indis-
tinguishable from a predictable process.

Notation used above: (G,G) C (R%, B%) means that (G, G) is a measurable
subspace of (R?, BY).

We shall now proceed to define martingales and submartingales in con-
tinuous time.

Let (2, F, F;, P) be a filtered probability space and let X be a real valued
process (state space (G,G) C (R, B)).
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Definition B.0.1 X is ¢ martingale (submartingale) if for all t, E|X;| <
o0, X; is Fy—measurable and

B(Xy|F) =X, (0<s<t)
(BE(X|F) > Xy (0<s <)

X is a supermartingale if —X s a submartingale.

The definition depends in a crucial manner on the underlying filtration.
We shall therefore include the filtration in the notation and e.g. write that

(Xy, Ft) is a martingale.
The next result describes transformations that turn (sub)martingales into

submartingales.
Proposition B.0.4 Let ¢ : R — R be conver.

(a) If (M, F;) is a martingale and E|o(M;)| < oo for allt, then (p(My), F)

15 a submartingale.

(b) If (X, Fy) is a submartingale, ¢ is increasing (and convez) and E|p(X;)|
< oo for all t, then (p(X}), Fi) is a submartingale.

Notation. If f is a R—valued function, write f*, f~ for the positive and
negative part of f: fT=fVvO0, f-=—(fA0).

Proposition B.0.5 Let (X;, F;) be a submartingale.

(a) If t > 0 and D C [0,t] is at most countable, then for every x >0

1
P(sup Xs>x> < —EX;
x

seD

P (inf X, < —:c) < % (EX;t — EX,)

seD

(b) If in addition X is right-continuous or left-continuous, for all t >

0, z>0
Loyt
P(sup X, >z) < —EX,
s<t X
1

P(inf X, < —z) < —(E} — EX,).
X

s<t
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Let D C Ry, and let f : D — R be a function. For a < b € R, the
number of upcrossings from a to b for f on D is defined as

Bp(fia,b) =sup{n e Ny: Tt <ty <---<ty, €D
with f(tor-1) <a <b < f(ta), 1 <k <n}.

The following analytic fact is a basic tool for establishing the main theorem
on continuous time martingales.

Lemma B.0.6 Let f: Qy — R.

(a) The following two conditions are equivalent:
(i) the limits
Ft4) = Tim f(s), f(-)= lim_f(5)

st, s>t sTt, s<t

exists as limits in R, simultaneously for all t € Ry in the case of
f(t+) and for all t € Ry in the case of f(t—).

(ii) Bo,roq(fia,b) <oo  (tERy, a <bER).

(b) If (i), (ii) are satisfied, then the function t — f(t4) from Ry to R is
cadlag.

In order to show that there are finitely many upcrossings, one uses

Lemma B.0.7 Let (X}, F;) be a submartingale, let t € Ry and let D C [0, 1]
be at most countable. For alla < b € R, fp(X;a,b) is then a F;—measurable
random variable and

1
Efp(X;a,b) < b—E(Xt —a)t.
—a

We are now ready to formulate the main theorem for martingales and
submartingales in continuous time.

Theorem B.0.8 (a) Let (M, F;) be a martingale.

(i) For P—almost all w the limits

My (w) == sutl,nsré(@g M,(w), M; (w):= sml,nsré@[) M;(w)
exists as limits in R, simultaneously for all t > 0 in the case of
My, (w) and for all t > 0 in the case of My_(w). Moreover, for

every t,
E|Mt+| < 00, E|Mt,| < 00.



(ii)

(iii)

(iv)
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For all t > 0, E(My|F) = My a.s., and for all 0 < s <
t, E(My|Fsy) = Mgy a.s. Moreover, for a givent > 0, M, = M,
holds a.s. if one of the two following conditions are satisfied:

(*) Fir = Fu, (B 1)
(xx) M s right-continuous in probability at t. '

The process My = (M );>0 may be chosen in such a way that
all My, are Fy—measurable, in which case (M, F.) is a cad-
lag martingale. Furthermore, if one of the conditions in (B.1) is
satisfied for every t > 0, then M, is a version of M.

If sup,>g EM;" < oo or if supyso EM; < oo, then

Moo = lim Mt = lim Mt+
t—o0

t—o00, t€Qp

ezrists a.s. and E|My| < oo.

(b) Let X = (X3, Fy) be a submartingale.

(i)

(it)

(iii)

For P—almost all w the limits

X = i X,(w), X; (w):= X,
)= dim o X(w), X-(w):= lim o X(w)
exists as limits in R, simultaneously for all t > 0 in the case of
Xy (w) and for all t > 0 in the case of Xy—(w). Moreover, for
every t,

E|Xt+| < 00, E|Xt,| < Q.

For allt > 0, E(Xiy|F) > X; a.s., and for all 0 < s < t,
E(Xi|Fsy) > X5y a.s. Moreover, for a givent > 0, X;, > X,
holds a.s. if (B.2x) is satisfied and X, = X; holds a.s. if (B.2xx)
15 satisfied:

(*) -,Ft-i- = fta (B 2)
(xx) X is right-continuous in probability at t. '

The process Xy = (X )i>0 may be chosen in such a way that
all Xiy are Fyy—measurable, in which case (Xyy, Fiy) is a cadlag
submartingale. Furthermore, if (B.2xx ) is satisfied for everyt > 0,
then X, is a version of X.
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(iv) If sup,so EX;" < oo, then

X = lim X, = lim X
o0 t—00, t€Qo t t—00 s

ezists a.s. and E|X | < oco.

Note. A process V = (Vy)i>o is right-continuous in probability at t, if
for every sequence (t,) with ¢, > t, lim, . t, =t it holds that V; — V; in
probability.

We next proceed with a brief discussion of stopping times and the optional
sampling theorem.
Let (9, F, F;, P) be a filtered probability space. A map 7: Q — Ry is a
stopping time if
(r<t)eF (teRy).

Let 7 be a stopping time and define
F.={FeF:Fn(r<t)ye FforalteR.},

which is a o—algebra. Note that if 7 = t; for some #y, € Ry, then F, = F; ;.
Also, if o < 7 are stopping times, then F, C F,.

If the filtration is right-continuous, F,, = F;, for all ¢, 7 : @ — Ry is a
stopping time iff (7 <t) € F, forallt e Ry and F, ={F € F: FN(1 <t) €
F; for all t € Ry}. On general filtered spaces such 7 are called strict stopping
times and are special cases of stopping times.

Now let X be a R—valued process defined on (2, F, F;, P) and let 7 be
a stopping time. Define X, by

if 7(w) < oo. This defines X, almost surely if P(7 < o0) = 1. If P(7 = o0) >
0 define X, (as an a.s. surely defined random variable) only in the case where
X = limy_, o X; exists a.s. and then put

X, =Xo on (7=00).

Lemma B.0.9 Assume that (F;) is right-continuous and let X be a R—
valued process which is right-continuous and adapted, and let T be a stopping
time such that X, s defined almost surely. Then X, is a.s. equal to a
Fr—meas-urable random variable.



147

The lemma justifies that one may always assume that X, (when defined)
is F,—measurable if X is right-continuous and adapted.
For the statement of the next result, recall that a family (U;),., of real-

valued random variables is uniformly integrable if (i) sup E |U;| < oo and (ii)
iel
lim sup f(|U_‘>m) |Ui| dP = 0. In particular, (U;) is uniformly integrable if (a)

T30 4T
there exists a random variable U € L' such that P(|U;| < |U]) =1 for all i,

(b) there exists p > 1 such that (U;) is bounded in L?: sup E |U;]" < co.
iel

Theorem B.0.10 (Optional sampling). Assume that the filtration (F;) is
right-continuous.

(a) Let (M, F;) be a right-continuous martingale and let o < T be stopping
times.

If either of the following two conditions (i), (ii) are satisfied, then
E|M,| < oo, E|M;| < oo and
E(M7|fa) = M,; (B.3)

(1) T is bounded.
(ii) (My)i>o is uniformly integrable.

(b) Let (Xy, F;) be a right-continuous submartingale and let o < T be stop-
ping times.

If either of the following two conditions (i), (ii) are satisfied, then
E|X,| < 00, E|X;| < 00 and

E(X:|Fy) 2 Xo (B.4)

(1) T is bounded.
(i) (X, )0 is uniformly integrable.

Note that if (aii) (or (bii)) holds, then tliglo M, (tll)r& X;) exists a.s. and
M. (respectively X, ) is well defined for any stopping time 7. Thus, with (aii)
satisfied (B.3) holds for all pairs 0 < 7 of stopping times, while if (bii) is
satisfied (B.4) holds for all pairs o < 7.

We finally need to discuss local martingales. We still assume that the
filtration is right-continuous.
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First note that if M is a cadlag F;,—martingale and 7 is a stopping time,
then M7 is also a F;—martingale, where M7 is M stopped at T,

M, = M.
(Note that by optional sampling, for s < ¢
E(M{ |Frns) = M.
To obtain the stronger result
E (M] |Fy) = M],
one shows that if F' € F, then F'N (1 > s) € F x5 and therefore

/Mgdp - / M;dP+/ M, dP
F FN(r>s) FN(7r<s)
— / MT dP + / M7 dP
FN(r>s) FN(7<s)

= / M dP)
F

Definition B.0.2 An adapted, R—wvalued cadlag process M is a local F;—
martingale if there exists a sequence (7,),, of stopping times, increasing to
oo a.s., such that for every n, M™ is a F,—martingale.

That (7,) increases to oo a.s. means that for all n, 7, < 7,41 a.s. and

that lim 7, = oo a.s. The sequence (7,) is called a reducing sequence for
n—00

the local martingale M, and we write that M is a local F,—martingale (7,,).
Clearly any martingale is also a local martingale (use 7, = oo for all
n). If (7,,) is a reducing sequence and (p,) is a sequence of stopping times
increasing to oo a.s., since (M™)"» = M™"x it follows immediately that
(Tn A p,) is also a reducing sequence.
It is often important to be able to show that a local martingale is a true
martingale. This may be very difficult, but a useful criterion is the following:

Proposition B.0.11 Let M be a local F,—martingale. For M to be a F;—
martingale it s sufficient that for all t,
E sup |M;| < co. (B.5)
5:5<t
Warning. A local martingale M need not be a martingale even though
E|M,;| < oo for all t. There are even examples of local martingales M that
are not martingales although the exponential moments Eexp (0 |M,|) are
< oo for all t,0 > 0. Thus moment conditions on the individual M; are not
sufficient to argue that a local martingale is a true martingale — some kind
of uniformity as in (B.5) is required.
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