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Chapter 1

Introduction

Let J be an interval in R, which may be bounded or unbounded, and open or closed at either
end. We will be concerned with regulated functions f on an interval J, having right limits
f(z+) :=limy, f(y) withright jumps A™ f(z) := f(z+)—f(z) for z € J, not equal to the right
endpoint of J, and left limits f(z—) := limyy, f(y) with left jumps A™(f)(z) = f(z)— f(z—)
for z € J, not equal to the left endpoint of J. The functions will at first be real-valued but
later may take values in a Banach algebra.

Here are two questions we will address.

1. How should integrals [’ fdg be defined?

2. For differentiability of nonlinear operators on subspaces of the space of regulated func-
tions, what are good modes of differentiability (Fréchet, compact, etc.) and for what
norms?

We have found that p-variation norms are useful. They are defined as follows. For any
interval J C R let PP (J) denote the set of all point partitions of J, namely finite sequences
{zj}}_o C J, where zg < 71 < --+ < zp, and if J = [a, ], a closed bounded interval, then zg = a
and z, = b. Let ¢: [0,00) — [0, 00) be continuous, unbounded, increasing and 0 at 0, and let
fiJ =R Foreachr = {z;: i =0,1,...,n} € PP(J), let s4(f; k) := iy &(|f(xi) — f(ziz1)])-
Then the ¢-variation of f is defined by

vy (f;J) :=sup{sg(f;K): k € PP(J)}.

In the special case of ¢(u) = uP, u > 0, for some 1 < p < oo, we write s, := 59, vp 1= Vg
and call v,(f;J) the p-variation of f. Let W,(J) and Wy(J) be the sets of all functions
f+J = R for which vy(f) < oo and vg(f) < oo, respectively. If ¢ is convex let [|fl|(g) =
inf{c > 0: v4(f/c) < 1}. Thus for ¢p(u) := P, 1 <p < oo, Il = [fllg = up ()P
Then || - ||y is a seminorm on W, (J), which we call the p-variation seminorm. For p = oo
let Wio(J) be the set of all regulated functions f on J, with ||f|/(s) := supf —inff. Let
I7llco = sup,e, |f(z)|. For 1 <p < oolet £l = [I£]g)+ [ fllo- Then |- [ is a norm
on W,(J), called the p-variation norm.

The p-variation spaces and norms have the following invariance property. Let G be any
strictly increasing, continuous function from J onto another interval M. Then f € W, (M) if
and only if f o G € Wy(J), with | f[|j; = ||f o Gl[). Of the many norms defined on spaces
of functions on intervals (e.g. Triebel [107]) we do not know any beside ¢-variation norms and
the supremum norm which share such wide invariance.



Chapter 2

How should integrals of Stieltjes
type be defined?

2.1 Definitions of integrals

We begin with several definitions of integrals [; f dg we will consider, where J is an interval
in the real line R, f is a function called the integrand and g is a function called the integrator.
The integrals will be treated in more detail in Chapter 6.

Let J be a closed interval [a, b] with —co < a < b < co. The mesh of a point partition & :=
{z;}7—0 is maxi<j<n(zj —7j-1). A tagged partition will be a pair (£,7) where n = {y;}7_, and
zj1 <y;<zjforj=1,...,n. If (&n) is a tagged partition of [a, b] and f, g are two functions:
[a,b] = R, the Riemann-Stieltjes sum Srs(f,g,&,n) is defined as 350 f(y;)[g9(z;) — g(z;-1)]-
The mesh—Riemann-Stieltjes integral (M RS) J° f dg is defined and equal to C iff (if and only
if) for every € > 0 there is a § > 0 such that for every tagged partition (¢, 7) with mesh(¢) < ¢
we have

|Sks(f.9.6m) = C| < (2.1)

A point partition {u;}i, is a refinement of {z;}7_ iff each z; = u,(;) for some i(j). The
refinement—Riemann—Stieltjes integral (RRS) ffl’ fdg is defined and equal to C iff for every
e > 0 there exists a partition 7 € PP [a,b] such that for every tagged partition (£,7n) with &
a refinement of 7, (2.1) holds. To give historical credit where it is due, Hildebrandt [50], [52]
calls the (RRS) integral the Moore-Pollard-Stieltjes integral. Clearly, if (MRS) [° f dg exists
then so does (RRS) fg f dg, with the same value. Some texts define the “Riemann—Stieltjes”
integral as the (M RS) integral, others as the (RRS) integral.

A gauge function 6(-): [a,b] — R is any strictly positive function. The tagged partition
(&,m) is called 0(-)~fine if y; — d(y;) < zj—1 < zj <y +6(y;) for j =1,...,n. A McShane
partition is a pair (£,7) where now a < y;1 < y2 < -+ < yp, < b and we do not require
Yj € [wj—1,75]-

The Henstock—Kurzweil or gauge integral (HK) fg f dg is defined to exist and equal C iff
for every € > 0 there is a gauge function 6(-) such that for every §(-)-fine tagged partition
(&,m), (2.1) holds. The McShane integral is defined in the same way with McShane partitions
in place of tagged partitions.

An interval function will mean a function defined on intervals which may be open or
closed at either end and may be singletons. An interval function v will be called finitely



additive if whenever My, ---, M}, are disjoint intervals whose union is an interval M, we have
V(M) = Y5, v(M;).

Let R(J) denote the set of all regulated functions on J. If J is a closed interval [a, b] we
write R[a,b] := R(J). Let g be a regulated function defined on a closed interval [a,b]. Let
vy({a}) == gla+)—g(a—) fora <z < b, vy({a}) == glat) —g(a), v,({B}) = g(b)—g(b-),
and vy4((c,d)) = g(d—) —g(c+) for a < ¢ < d < b. Then v, extends uniquely to a finitely
additive interval function defined on all subintervals of J. If g is of bounded variation, then v,
extends to a countably additive signed measure on the Borel subsets of J, and the Lebesgue-
Stieltjes integral [° f dg is defined here as [ f dvg. (Some other definitions in the literature take
different terms at the endpoints.)

An interval partition of J will be a collection {I;}7_; of disjoint non-empty subintervals
of J whose union is J, some of which may be singletons, and such that x < y whenever
z€l,yelj,and 1 <i < j <n. LetIP(J) be the set of all interval partitions of J.
For k,\ € IP(J), k will be said to be a refinement of A if each interval in X is a union of
intervals in k. Given a real-valued function f on J, a finitely additive interval function v
defined on all subintervals of J and A = {I;}}_, € IP(J), a Kolmogorov sum for f and A
will mean any sum >>7_ f(y;)v(I;) where y; € I; for each j. The refinement- Young-Stieltjes
integral (RYS) ° f dv is defined to exist and equal C if and only if for every e > 0 there is some
k € IP (J) such that for any refinement X of x and any Kolmogorov sum S for f and A we have
|S — C| < e. If g is any regulated function on .J then we define (RYS) [° f dg as (RYS) [ f dy,
if and only if the latter exists. We will also write #£° f dv := (RYS) [° f dv iff the latter exists,
and #° fdg := (RYS) [° f dy, iff the latter exists and g is right-continuous on (a,b). A Young
partition will be an interval partition consisting of singletons and open intervals. A Young
sum will be a Kolmogorov sum for which the partition is a Young partition. Any interval
partition has a Young partition as a refinement. On the equivalence of integrals defined from
Kolmogorov sums or Young sums, see Theorems 4.35, 6.25 and 6.26 below.

A sum ) ;- ; ; is said to converge unconditionally to S iff for every e > 0 there is a finite set
F C I such that for every finite G D F, |S —>;cq%i| <e. Asum Y, ; x; with values in R or a
finite-dimensional normed space converges unconditionally (to some S) iff the sum converges
absolutely, > ;cr|z;| < oco. In infinite-dimensional Banach spaces, absolute convergence of
a sum implies unconditional convergence but not conversely (Dvoretzky and Rogers, [31]).
We will give some definitions in terms of unconditional convergence with a view to eventual
extensions to the Banach—valued case.

For f € R[a,b] recall that

(AT f)(z) := f(z+) = f(z), a<z<b and (A f)(z):= f(z) - f(z—), a<z<b
Also let (A% f)(z) := (AT f)(z) + (A f)(z) = f(z+) — f(z—) if a < < b. Define functions
ff) and fga) on [a,b] by

{f@@%=h@%=ﬂﬁ0:mmwﬂ@ if a<z<b and fU0) =10 o,

fﬁ“) () = f-(z) := f(z—) :=limyyy f(2) if a<z<b, and f&a)(a) = f(a).
Then the L. C. Young or central Young integral is defined for f,h € R[a,b] by

b ) (@) At At - FAt
(CY)/ fdh = (RRS)/ FOdnD — (AT FA*R) (@) + (FAR)(B) — 3 AT FARR
a a (a,b)

if the (RRS) integral exists and the sum converges unconditionally.



2.2 Choices between integrals

Now, which of the integrals is to be preferred in what situations?

The Lebesgue-Stieltjes integral (LS) [° f dg is at hand if g is of bounded variation (and
right-continuous except possibly at @), but what if it is not? The other best-known integrals
are the mesh-Riemann-Stieltjes integral (M RS) [ f fdg and the refinement—Riemann—Stieltjes
integral (RRS) [ : fdg. But (MRS) [, ; fdg is not defined if f and ¢g have a common disconti-
nuity and (RRS) [, ; f dg is not defined if f and g have a discontinuity on the same side of the
same point. Thus if (RRS) fg fdf is defined, f must be continuous.

Consider, specifically, the following, which we will call the simple step example. Let F =
li1,00)- Then f02 FdF is not defined for the (MRS) or (RRS) integral. It is defined and
equals 1 for the Lebesgue-Stieltjes integral, and all the other integrals defined in the previous
section. But the classical integration by parts formula then fails: 2 = [ FdF + [¢ F dF #
F?(2) — F?(0) = 1. An alternate simple step example is given by H := 1(1,00) Where again
J¢ H dH is not defined for the (M RS) or (RRS) integral. The integral is defined and equals 0
for all the other integrals in Figure 2.1 below. Again, classical integration by parts fails since
JEHAH + [ HdH =0 # H*(2) — H*(0) = 1.

One useful application of the Lebesgue integral is the Holder inequality. An analogous
application of the less classical integrals defined above is the Love- Young inequality, as follows.

Theorem 2.1 (Love-Young inequality). Let f € Wpla,b] and g € W,[a,b] wherep > 1, g > 1,
and p ' +q 1t >1. Then

b
[ £dsl < Coalflllglo (23)

where Cy, 4 is a constant depending only on p and g, and the integral is defined as a Riemann-
Stieltjes integral if f and g have no common discontinuities, as an (RRS) integral if they have
no common one-sided discontinuities, and as an (RYS) integral always.

A proof of the Love-Young inequality with C,, = ((p™" + ¢ '), where ((s) := 302, n~*
(the Riemann zeta function), is given in Theorem 4.26.

By making seemingly slight changes in the definition of (RRS) integral — requiring intervals
to be disjoint and allowing them to be singletons — integrals (RYS) /[, f; f dg can be defined despite
common one-sided discontinuities of f and g. (Just taking disjoint intervals, e.g. left open,
right closed intervals (a,b], is not sufficient.) Also, for regulated g, whenever (RRS) [° fdg
exists, so does (RYS) [? fdg and has the same value by Theorem 6.13 below.

Why has the superiority of the (RY'S) integral over the (M RS) and (RRS) integrals only
been noticed by a small number of analysts? We venture the following historical remarks, each
to the best of our knowledge.

W. H. Young (1914), in a paper written in detail by his wife G. C. Young, first defined
what we call Young sums but only for step functions. Their daughter R. C. Young (1928)
defined the sums more generally but considered only the mesh — 0 case, where the integral
obtained does not go beyond the Riemann-Stieltjes integral (Proposition 6.35). Kolmogorov
(1930) defined a refinement integral in general spaces. The (RY'S) integral as we defined it is
the special case of Kolmogorov’s integral for interval partitions. The relation with the Youngs’
work was noticed only later. Glivenko (1936, pp. 87-117) wrote a book on the Stieltjes integral
where he defined and pointed out the superiority of the integral (RYS) [° f dg over the (RRS)
integral for g of bounded variation. Glivenko’s work seems to have passed almost unnoticed.
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L. C. Young (1936), son of W. H. and G. C. Young, first published a proof of the Love-Young
inequality, noting that E. R. Love (unpublished) had proved a form for finite sums earlier.
In 1936 Young invented and used the (CY) integral. L. C. Young [118, Section 5] adopted
the (RYS) integral. But the Love-Young inequality itself, and thus the need for a suitable
integral in it, also received relatively little notice. Hildebrandt (1938) formulated the (RYS)
integral. Gehring (1954) proved a sharp inequality for convolutions [ f(z — y)dg(y) in terms
of the (RYS) integral. Hildebrandt [52, pp. 92-96] devotes several pages to the (RYS) integral.
But Hildebrandt does not cite L. C. Young or Gehring, thus the value of the (RYS) integral
in analysis was not made evident. Hildebrandt [52, Section 11.19.3.13] states and proves the
integration by parts formula, when f and g are of bounded variation,

b b
/a fdg + / gdf = falb— 3 AtfAtg+ Y ATfATg (2.4)

a<z<b a<z<b

for the (RYS) integral only. Perhaps some analysts have been deterred from accepting the
(RYS) integral by this formula. But (2.4) also holds for the Lebesgue-Stieltjes integral when
f and g are both right-continuous or both left-continuous. In that sense (2.4) is correct. In
the simple step examples, it gives: 2 = [ FdF + [ FdF = F%(2) — F2(0) + (A~ F(1))? = 2,
0= [2HdH+ [ HdH = H*(2) — H?>(0) — (ATH(1))? = 0. The integration by parts formula
(2.4) is not so much a helpful device for evaluating [° f dg but a fact of life. For other forms
of integration by parts see [28, Theorem 4.8].

Advanced textbooks of real analysis, including one by one of us (Dudley [22]) usually
adopt the Lebesgue integral with perhaps some mention of the (M RS) and/or (RRS) integrals.
Intermediate-level texts generally treat the three integrals with little if any treatment of others.
The (MRS) and (RRS) integrals are treated as if to some degree they were the integrals
previously known by the student and their defects are perhaps taken mainly to show the
advantages of the Lebesgue integral. Thus, it is not noticed that integrals ff; fdg where g is
not of bounded variation could be useful.

It seems that in recent years more and more authors are recognizing the inadequacy of the
Riemann—Stieltjes integrals, and are presenting in detail other integrals, beside the Lebesgue—
Stieltjes integral, at not too advanced levels of study. Specifically Bartle [3] and Gordon [45],
[46] propose or give expositions of the gauge integral, while Ross [95], [96] and Love [74] present
the (rediscovered) refinement-Young-Stieltjes integral. The form of gauge integral given by
McShane [80, pp. 552-553] turns out to be equivalent to the Lebesgue-Stieltjes integral for g
of bounded variation.

What are the implications between existence of different integrals and p-variation condi-
tions? In Figure 2.1, — means that existence of the integral to the left of it implies that of
the integral to the right of it, with the same value. For “<—” left and right are interchanged.
The marking “f € R” or “g € R” means that the implication holds for regulated f or g,
respectively. “=—>" means that the condition to the left of it implies existence of the integral
to the right of it. The condition % —I—% = 1 on the right has no arrows from (or to) it, signifying

that there exist f € W), and g € W, with % + % =1,1 < p,q < oo such that [ f dg does not
exist for any of the definitions given.

It seems to us that the (M RS) and (RR.S) integrals should not be preferred because of their
weakness in case of common discontinuities. When g is of bounded variation the Lebesgue—
Stieltjes integral is available, as is its extension the (HK) integral. For more general g we still
have a choice between a few integrals. If f is not necessarily regulated then the gauge (HK)
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(LS) J? f dg (HK) [ fdg
m /
fEWpgeWy, s +4>1 = +o [ dvg 1,1_q
\ D q
(RYS) [? f dg
\ieR
(MRS) [0 fdg — (RRS) [? fdg (CY) [L fdg

Figure 2.1: Implications for integrals

Table 2.1: References to proofs of the implications shown in Figure 2.1:

(MRS) [? fdg — (RRS) [? fdg Proposition 6.1
fEWp, geW,, % + % >1= #’;fdug Theorem 4.26
(RRS) [ fdg — #L fdv,, g€R Theorem 6.13
(LS) [* fdg — fdvg, fER Lemma 3.3 of [23] and Proposition 6.22
(LS) [0 fdg — (HK) [ f dg Theorem VI.8.1 in [98] and Theorem 6.30
;g;{; I2 fdg ;K()Lfg)f fé’ fdg, £>0,g% iﬁeorem ggi
o fdvg — Pt eorem 6.
£b 7 duz — (RYS) f? fdgg immediate
(RYS) [ fdg — (CY) [ f dg Theorem 6.20
fEWp, geW,, %—I—%zl, 1 < p < oo does
not imply any of the above integrals exists Theorem 4.29

integral seems preferable among the integrals defined here. We are concerned with f and g
regulated. Let’s compare integrals in that case.

The (RYS) integral, while “stronger”, is virtually the same as the  integral. In 3&2 fdg, g
is assumed right—continuous. The existence and value of (RYS) [° f dg only depend on g(z—)
and g(z+) for a < < b, not on g(z) if it happens to differ from both limits. Thus one can add
to g a function in co((a,b)) := {X cnlyfs,}: @ < zp < b, ¢y = 0 as n — oo}, without changing
the value of the integral. Such an addition can cause (HK) f° f dg to be undefined (Example
2.1 in Schwabik [100], attributed to Vrko¢, and Proposition F.6 of [28]), but this in itself does
not show any real superiority of the (RYS) over the (HK) integral. Likewise, in our examples
where (CY) [ f dg exists but (RYS) [? f dg does not (Proposition 6.21), f € co((a,b)), so it is
not clear whether the (CY) integral has any real advantage. Its definition as an integral plus
a sum is relatively complex.

We are then left with the comparison between the # and (HK) integrals. The latter is



more inclusive, but in what directions? For f > 0 and g non—decreasing the (HK) integral is
equivalent to the Lebesgue—Stieltjes integral and thus, if f is regulated, to the # integral.

For a set of examples of functions f, g with f € W), g € W, pl4gl=1,1<p,q< o0,
all the integrals (including the (HK)) are undefined (Theorem 4.29). For p~! + 47! > 1,
1 < p,q < oo, the F integral and thus all to the right of it in Figure 2.1 are defined. For almost
all paths B; of Brownian motion, f(} By dBy does not exist for any of the integrals in Figure 2.1
(Proposition 2.2 below).

Perhaps the best-known feature of Perron-type integrals, including the (HK) integral,
which goes beyond other integrals, is the following: if f is a continuous function from an
interval [a,b] into R, everywhere differentiable on (a,b) except possibly on a countable set,
then (HK) [T f'(t) dt exists and equals f(z) — f(a) for @ < z < b (Theorem 6.33). If h is
any regulated function on [a, b], it is bounded and measurable and has an indefinite integral
f(z) := [P h(t)dt. Then f'(xz) = h(z) at any = where h is continuous, and so, except on the
at most countable set of jumps of h. Since h is continuous almost everywhere for Lebesgue
measure and bounded, it satisfies a well known criterion for Riemann integrability (Riemann
[94]). So [? h(t) dt can be any of the integrals in Figure 2.1, and the (HK) integral does not
go beyond the others for derivatives, if they are regulated. If f’ exists everywhere on (a,b) and
is regulated (having limits also at a, b), then clearly f’ is continuous on (a,b) and extends to
a continuous function on [a, b].

Summing up, if f and g are regulated, as they are if f is in W), and g is in W,, we do not
know any examples where (HK) fg fdg exists but 3&’; f dg does not. Since the definition of
;/ég f dg is simpler, we prefer it for regulated functions, at least for the present.

2.3 Stochastic integrals

We recall first a classical stochastic integral.

The Ité integral Let B = {B(t¢):t > 0} be a Brownian motion on a probability space
(2, A,Pr). For t > 0, let F; be the o-algebra generated by the random variables {B(r): 0 <
r < t}. Then for 0 < ¢ < r < oo we have {0,Q} =F CFH CF CA For0<T <
consider the class H[0,T] of stochastic processes H = {H(t): 0 < t < T} satisfying the
following properties:

(1) (t,w) — H(t,w) is B x A-measurable, where B is the Borel o—algebra on [0, T];

(2) H is Fy—adapted, i.e. H(t,-) is Fy—measurable for all 0 <t < T

(3) E[fF H%(t)dt] < .
We now define the It6 integral (I) /I H dB for each H € H([0,T]). First suppose that H is

elementary, that is
n

H(t,w) = Ho(w) 1o (t) + D Hj(w)l,_, 1,)(%)
j=1

for some 0 =ty < t; < --- < t, =T, where Hy is Fo-measurable, each Hj;, j = 1,...,n, is
Ft;_,—measurable and EH ]2 < 0. For such H define the It6 integral by

T n
(I)/0 HdB = H,[B(t;) — B(t; 1))
j=1

7



For an arbitrary H € H[0,T], there exists a sequence {H,,: m > 1} of elementary processes
H,, such that

T
lim B[ / (H(t) — Hn(t))* dt] =0.

0

m—0o0

Then the It6 integral for H is defined as the limit

T T
(1) /0 HdB = lim (I) /0 H,dB in Ly(Q,Pr),

which does not depend on the actual sequence {H,: m > 1} chosen. The proof of these
statements follows from the Itd isometry

E[(1) /OTHdB]2 - E[/OTH2(t)dt]

valid for each H € #[0,7]. This construction can be extended in several ways (see e.g.
[14, Chapter VIII]). Condition (3) can be relaxed to I H?(t)dt < oo almost surely. Then
(I) fOT H dB need no longer be square-integrable but can be an arbitrary Fr—measurable ran-
dom variable (see [21]). Researchers in stochastic analysis have some decades ago defined
[ H(t) dX; rather generally, specifically when X; is a semimartingale (for example, a right-
continuous martingale) and H (t) is a locally bounded predictable process (for example, an
adapted process with regulated, left-continuous paths): see Doléans-Dade and Meyer [16],
Dellacherie and Meyer [14].

To what extent can stochastic integrals be replaced or supplemented by integrals defined
pathwise, for fixed w?

The Love-Young inequality for f € W, and g € W, with p~! + ¢~ > 1, and the Young
[118, Section 5] inequality for f € Ws and g € Wy with 320, & 1(n " H T 1(n1) < oo,
give conditions for existence of %2 f dg and bounds for it. Since many stochastic processes on
intervals have sample paths in W, for some ¢ (see Chapter 5), one can then treat integrands
f and integrators g in suitable Wy, W,.

However, we have:

Proposition 2.2. For almost all paths B(t) := By of standard Brownian motion, (A) [3 By dB;
is not defined for (A) = (MRS), (RRS), (LS), (RYS), (CY) or (HK).

Proof. It suffices to consider (CY) and (HK) by the implications shown in Figure 2.1.
If the (CY) integral existed it would equal the (M RS) integral by sample continuity and
the definition of the integral, so 3} By dB; would exist. Brownian paths almost surely have
unbounded 2-variation on every interval [a, b], a < b (Lévy [71, Théoreme 9], Taylor [106]). By
continuity, there are arbitrarily large sums

> [B(tj) — B(tj-1)][B(v;) — B(u;)]
j=1

witha =) < - <tj1 <wuj <wvj <tj <--- <ty =b Thus the sums 37 [B(¢;) —
B(tj—1))B(wj) with t;_1 < w; < t; for each j are unbounded. Since these are Young sums,
3/5(1) By dBy doesn’t exist, nor does (HK) fol B dB; by Proposition F.3 of Dudley and Norvaisa
[28]. 0



Here is a sense in which at least the particular integral (I) /¢ B; dB; can be done pathwise.
It is a special case of the construction suggested by Follmer [34] for more general processes.
Let {A(m): m > 1} be a sequence of partitions A\(m) = {0 =" <" <--- <t =1} of [0,1].
Since By = 0, for every m > 1, we have

m

Sr(A(m)) ==Y B(t,)[B(t") — B(t)] = %[B(l)2 — 52(B; A(m))] (2.5)
i=1
and m
> BB — B(t)] = %[B(l)2 + s2(B; A(m))]. (2.6)

i=1
The right sides of (2.5) and (2.6) have limits provided the limit lim,, o s2(B;A(m)), called
the quadratic variation, exists. It is so almost surely in the two cases:
(a) the sequence {A(m): m > 1} is nested and U, A(m) is dense in [0, 1] (Lévy, [71, Section
4, Théoreme 5]) or
(b) the mesh of A(m) is of order o(1/logm) as m — oo (Dudley, [20, Theorem 4.5]), and
this condition is sharp (Ferndndez de la Vega, [32]).
If (a) or (b) holds then limy, ,c s2(B;A(m)) = 1 almost surely. From the definition of It6
integral, if S;,(A(m)) converge almost surely, they converge to (I) f; By dBy, since they converge
to it in L2, One can take A(m) := A\, = {j/m}T by (b) or its subsequence A(2™) by (a) or
(b). On the other hand, for any partition A, the supremum of s5(B; k) over refinements x of A
is 400 almost surely, so 3 B; dB; is not a left Cauchy integral, meaning that Riemann-Stieltjes
sums with y; = x; 1 do not converge as the mesh goes to 0 or as partitions are refined. Also,
to deal with jumps of a process X;, in defining an integral f& X; dX¢, jump points would need
to be included in U, A(m).
Recall that “cadlag” means regulated and right—continuous. Dellacherie and Meyer [14,
Chapter VIII, Section 15] consider a rather general stochastic integral

S(t) == /0 U, dx,, 2.7)

where U and X are cadlag processes and X is a semimartingale. They show that the integral
is a limit in probability of left Cauchy sums

2n

Sn(t) = D_U((5 — Dt/2M)[X (j¢/2") — X((7 — Dt/2")]-

=1

Taking a subsequence if necessary, Sy, (t) will converge almost surely to S(¢) for all rational
t > 0. By a different choice of partitions, letting [z] be the largest integer < z, define

(27]

Tn(t) = U([2"]/2")[X (t) — X([2"1]/2")] + X U((i — 1)/2")[X (i/2") = X ((i — 1)/2")].

i=1

Then for some subsequence, T, (t) — S(t) almost surely for all £ > 0. In this sense the
stochastic integral can be done pathwise and, more generally, stochastic differential equations
can be solved constructively — we claim no expertise in this direction, but give as references
Bichteler [6], Jacod and Protter [58].



We will just mention that there are also ways to define stochastic integrals with anticipating
integrands: Skorohod [103].

We would also suggest that integrals [Y; dX; can be defined pathwise via the Love—Young
inequality if the functions ¢ — Y; have bounded p—variation of order p < 2, or for processes X;
that have bounded g—variation, ¢ < 2, as do e.g. suitable stable processes of order a@ < 2 and
some Gaussian processes such as fractional Brownian motion with the Hurst index 1/2 < H < 1
(see sections 5.3 and 5.4). On the other hand, when the Love-Young inequality does apply,
it does not require any probabilistic conditions such as (semi)martingale properties of X; or
predictability of Y;. Still, when we come to consider integral equations and the product integral
(Chapter 7) we will in fact use left—continuous integrands.

Paul Lévy [72] took note of L. C. Young’s inequalities [117], [118] and the possibility of
applying them to “Stieltjes—Young” integrals [ Y; dX; for stochastic processes X;, Y;.

Non-random integrands and the Wiener process Historically, after Wiener (1923)
defined the Brownian motion process B; and showed its sample continuity, Paley, Wiener
and Zygmund (1933) defined a stochastic integral L(f) = [} f(t) dB;(w) for any non-random
f € H = L?[0,1] by an extension process. It turns out that L is the isonormal process on
the Hilbert space H, a Gaussian process with mean 0 and covariance E(L(z)L(y)) = (z,y),
the inner product in the Hilbert space. Any Gaussian process has its finite-dimensional joint
distributions completely determined by its means and covariances. Thus the isonormal process
is determined by the abstract geometric Hilbert space structure, which has a great deal of
rotational invariance. For example, a unitary linear transformation of L2[0,1] onto itself can
take any element with norm 1 (say, a very smooth function) into any other such element (which
may be quite non-smooth).

The isonormal process is a linear isometry, preserving inner products, of H into L? of a
probability space (£, P). If one takes L?(f), P) in turn as the Hilbert space and defines an
isonormal process M on it, then Mol has all the properties of L, i. e. it is also an isonormal
process on H. Moreover, if (X;,t € T') is any Gaussian process with mean 0 on any parameter
space T, then t — M (X;) is another version of the process X;, with the same covariances
and joint distributions. Thus sample continuity and boundedness of Gaussian processes can
be studied by way of the isonormal process, in other words, by putting the “intrinsic metric”
d(s,t) = [E(Xs — Xt)2]1/2 on T. In fact, if (T,d) is a compact metric space and ¢t — X
is continuous in probability, then X; has continuous paths on T if and only if M does on
{X;(): t € T} C L*(%, P) (Dudley [26, Theorem 2.8.2]). The focus on the isonormal process,
as “the” Gaussian process, advocated by one of us (Dudley [19], [20]) has been well accepted,
at least by use of the intrinsic metric (e. g. Talagrand [105]). One can first define the isonormal
process L, specifically on L2[0,00), then define Brownian motion simply by B; = L(1p,4), e
g. Dudley [22, p. 352]. Thus it is unnecessary to define a stochastic integral [ f(t) dB; per se
for non-random f € L2.
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Chapter 3

Differentiability of some nonlinear
operators

Let T be a function defined on an open set U in a Banach space X with norm || - ||. Let T
take values in Y, where (Y, |- |) is a Banach space. Then T is Fréchet differentiable at a point
x € U if there is a bounded linear operator D from X into Y such that

T(z+u) = T(x) = D(u)] = o([lul)  as [lul = 0. (3.1)

T will be said to have a remainder bound of order v > 1 if o(||u||) in (3.1) can be replaced by
O(J|u||”). For a smooth function 7" we will have v = 2, and no larger value is possible except
in special cases where second derivatives are 0.

3.1 Bilinear operators

If (X,]-1), (Y,]-]) and (Z, || - ||) are normed spaces, a function B from X x Z into Y is called
bilinear if B(-, z) is linear on X for each z € Z and B(z,-) is linear on Z for each z € X. B is
called bounded if for some C' < oo,

|B(z,z)| < Cllz|| ||zl forallz € X and z € Z.

Here X x Z is a normed space with the norm ||(z, 2)|| := ||z|| + ||z||. A bilinear function B is
continuous: X x Z — Y if and only if it is bounded.
For any z,u € X and z,w € Z, we have

B(z +u,z +w) = B(z,2z) + B(u, 2) + B(z,w) + B(u,w).
If B is bounded, then for fixed z and z,
(u,w) — B(u,z) + B(z,w)

is clearly bounded and linear. Since |B(u,w)| < C(||lu|| + ||w||)?, B is Fréchet differentiable
at (z,z) with remainder bound of order v = 2. Indeed B is holomorphic and a polynomial of
order 2. Thus for a bilinear operator, boundedness is necessary for continuity but sufficient for
holomorphy. So smoothness of B is rather an “all-or-nothing” issue and one will hope to find
norms for which “all” smoothness holds.
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For a measure p, the bilinear functional

LP(p) x L) > (f,9) = [ fgdp € R

is bounded by the Hélder inequality if 1 < p < oo, p '4+¢ 1 =1.
The bilinear functional

b
Wala, ] x Wyla, b 5 (f,9) = 5 fdg €R

is bounded by the Love-Young inequality for p~t +¢ 1 > 1,1 < p < 00, 1 < ¢ < 00, or for
(p,q) = (00,1) or (1,00) (see Theorem 4.26 and Proposition 4.27).
The bilinear indefinite integral operator

)
Wpla,b] x Wyla,b] 3 (f,g9) — ffdg € W[a, b]

is bounded by Corollary 4.28 for the same (p, g) as for the bilinear functional above.
Let FxG(z) := ¥, F(z — y) dG(y) for z € R. The bilinear convolution operator

Wy(R) X W,y(R) 3 (F,G) — FxG € W,(R)
is bounded forp 1+ ¢ 1 —r 1 =1,1<p<o0,1<¢g< 00,1 <7< o0, as shown by Gehring
[39], see also Dudley and Norvaisa [28, Appendix A].

For any interval J C R (possibly unbounded) and 1 < p < oo the multiplication operator

Wp(J) x Wy(J) 2 (f,9) = fg € Wp(J)

is bounded as noted by Krabbe [66], [67], and (W,(J), || - ||jp) is a Banach algebra.

3.2 Compact differentiability

Statisticians have done fundamental, pioneering work on differentiability of non—bilinear oper-
ators whose arguments f are functions that may be non—differentiable and even discontinuous,
e.g. Reeds [93], Fernholz [33], Gill [41], [42], Gill and Johansen [43], Andersen, Borgan, Gill and
Keiding [1]. It seems that analysts had overlooked the possibility of differentiability for such
f. The vehicle for most of the pioneering has been compact differentiability (in the supremum
norm), where an operator 7" is not Fréchet differentiable but in place of (3.1),

|T(z + tu) — T'(z) — tD(u)| = o(||¢]]) ast — 0,

uniformly for u in any compact set. In further forms of differentiability, sometimes x + tu
is restricted to a (non—open) set A and/or there are other restrictions. Useful theoretical
properties of compact differentiability in statistics have been shown, e.g. van der Vaart [108],
van der Vaart and Wellner [109]. While honoring the pioneers, we note that one has not only
a choice of modes of differentiability but a choice of norms. The supremum norm controls,
after all, only the supremum of a function, not its oscillation. Thus it is not surprising that
for several operators of interest, in the supremum norm, Fréchet differentiability and compact
differentiability both fail. One possibility is to consider still weaker forms of differentiability
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such as compact differentiability under restriction to subsets A, for example, sets of uniformly
bounded variation (that is, 1-variation; Gill [41], Gill and Johansen [43]). Non-normalized
empirical processes F,, — F', where F' is a probability distribution function and F;, an empirical
distribution function for it, have 1-variation uniformly bounded (by 2), but other processes of
interest do not. Also, use of both supremum (Ws,) and W; norms suggests use of intermediate
spaces Wy. As we are indicating, Fréchet differentiability with respect to p-variation norms
holds for many (though not all) of the cases previously studied for compact differentiability
and the sup norm ([28]).

We next treat three non-bilinear operators: the two—function composition operator, the
quantile operator and the product integral.

3.3 The two—function composition operator

For functions g: X — Y and f: Y — Z, and any sets X, Y and Z, let (fog)(z) := f(g(x)).
Then fog is called the composition of f and g. To treat differentiability of the operator
(F,G) — FoQG, we will take Y and Z to be vector spaces. Clearly F' — FoG is linear in F' for
fixed G, but G +— Fo(@ is not linear in G unless F' is linear.

We consider the operator in the form (f,g) — (F + f)o(G + g) as f,g — 0 since for
differentiability, the properties of the F', G at which one differentiates can differ, as will be
seen, from those of f, g.

Let (F,| - l#), (G, - llg) and (H,]| - ||#%) be normed spaces of functions from Y into Z, X
into Y, and X into Z respectively. Our question then is whether

FxG>(f,9) = (F+f)o(G+g) €H is Fréchet differentiable at f = g = 0.

If it is, then f — (F' + f)oG must be Fréchet differentiable at f = 0 from F into . The
derivative must be f +— fo@, which is clearly linear, and must be a bounded operator from F
into H. Also, the operator g — Fo(G + g) must be Fréchet differentiable from G into H. The
more general operator g — [z — F(z, (G + g)(z))], where F is a function of two variables, is
sometimes called a Nemitskii operator. It has been much studied, see Appell and Zabrejko [2],
Runst and Sickel [97]. Let (X, S, 1) be a measure space. We have the spaces LP = LP(X, S, u)
with their norms ||¢||, :== ([ |¢[P d,u)l/p, 1<p<oo. LetY =Z=R let 1 <p<s<ooand
let G := L5(X,S,u), H := LP(X,S, n). It turns out that if F' is continuous and G € L* then
for differentiability of g — Fo(G + g), F must be differentiable (uoG!)-almost everywhere
and the derivative linear operator is g — (F'oG)g with F'oG € £%/(5~P) (Theorems 3.12 and
3.13 and the sentence after (2.56) in Appell and Zabrejko [2]). There will then be a remainder

Ry(g,G, F) i= Fo(G + g) — FoG — (F'sG)g.
Now for the two—function operator we will have
(F + f)O(G—I—g) — FoG — fOG— (FIOG)g = RZ(gaGaF) +R1(faGag)7

where Ri(f,G,g) := fo(G + g) — foG. We will take f € F := W,(R). Since our interest is
in applying p-variation, while Ry doesn’t depend on f, we will focus on the remainder term
Ri(f,G,g). This does not involve F. For 1 < p < oo, let v(p,s) := 1+ s/[p(1l + s)] for
1 < s < ooand vy(p,0) :=1+1/p. For R; we have:
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Theorem 3.3. Let (X,S,u) be a finite measure space and let G be a bounded measurable
real-valued function on X. Let b := ess.supG and a := ess.inf G. Then the following are
equivalent:

(A) there is a C < oo such that for some p € [1,00) and s € [1,00],

1Rully = [1fo(G + g) = foGlly < C||fllp)llgll7®*)~" (3.2)

for f € Wp(R) and g € L*(X, S, p);
(A") (A) holds for all p € [1,00) and s € [1,00];
(B) a < b and there is a K < oo such that

(1oG™)((e,d]) < K(d—c¢)
fora<c<d<b.

Remark. Proposition 3.5 will show that in (3.2) the power y(p,s) — 1 on ||g||s, the power 1
on || f|lp) and the norm || - || itself are all optimal.

Proof. We can assume p(X) = 1, changing only the constants C' and K.

(B) implies (A’). Fix p € [1,00) and s € [1,00]. By definition of a and b, yoG ! is
concentrated on [a,b]. Let H(z) := (uoG )([a, z]) for a < x < b. Then H is a non-decreasing
function from [a, b] into [0, 1] with H(b) = 1and 0 < H(z)—H(u) < K(z—u) fora <u < z <,
a Lipschitz property. Let H (y) := inf{z: H(z) > y}. Then H¢ is strictly increasing from
[0,1] into [a,b]. Since H is right—continuous, H* (y) < z if and only if H(z) > y. Thus for
X := Lebesgue measure on [0,1], and a < x < b, Ao(H*)"!([a,z]) = H(z) = (uoG~1)([a, z]).
Thus Ao(H*)~! = oG~! on the Borel sets of [a,b]. We have H* (u) — H (v) > (u —v)/K
for0<v<u<l.

Take the unit square I? := I x I with I := [0,1] and Lebesgue measure A\? on I?. For
any g € L5(X,S, ) there is a measurable function v on I? such that (H* (¢),7(t,u)) have
the same joint distribution for A\? as (G, g) for u (Skorohod [102, proof of Theorem 1]; Dudley
and Philipp [30, Lemma 2.11]). For s < oo, by Theorem 2.2 of Dudley [24] there is a constant
C < oo depending only on K (and p(X)) such that for each u € I,

[ £ +7) = foH Pty dt < CPuy () | hara) . @)

The statement and proof in Dudley [24] would give || f ||ﬁ)] rather than || f ||€p) = vp(f), but note
that we can subtract a constant from f to get sup f = —inf f and then ||f|lec < [|f|()/2-
Integrating with respect to u, we have

! ! s 1 r1 s
/(/ |7(t’“)|sdt)1/(1+)duﬁ(/ / |7(t,u)|3dth)1/(l+)
0 0 0 J0

by Jensen’s inequality. Taking pth roots gives

1fo(G +9) = foGlly = [Ifo(H +7) — foH" |,
< Ollfllg I[P = O£l gl 0.

For s = oo we apply instead Theorem 2.5 of Dudley and Norvaisa [28]. So (A’) is proved.

14



Clearly (A’) implies (A). Lastly, to show (A) implies (B), assume (A). If a = b, then G = a.
Let f(z) := 1 for z > a and 0 for z < a. Let g := g, = —1/n. Then ||f||,) = 1 and
|fo(G + gn) — foG|lp = 1, but ||gnlls = 0, contradicting (A). So a < b. If (B) fails, then for
n=1,2,..., there exist ¢,, d, with a < ¢, < d, < band g, := (u0G~1)((cn,dn]) > n(d, — cp)-
Let gn := 2(cy, — dn) on G™((cn,dy]), gn = 0 elswhere, and let f, = Li¢,,00)- Then for all
n, [ Fallpy = 15 11£n0(G + gn) — faoGllp = au/”. For s < 00, |lgnlls = 2(dn — cn)qn/*. Letting
8p = dn — ¢, > 0 gives g, > nd, while by (A), /P < C(26n)5/(1’(1+5))q}/(p(lﬂ)), giving
qf/(Hs) < C(26,)8049), q, < 206+1/355,, a contradiction. For s = oo, q,ll/p <C-1-(26,)4P
0 qn < 2CP4, while again ¢, > nd,, a contradiction. So (B) holds. O

The bound (3.2) implies the bound
1fo(G +g) = foGllp < CUIfII + llglid)

for v := v(p, s).
If 4oG~! has atoms, the above proof shows that || fo(G+g)— foG/||, need not even approach
0 as ||g]lc — O for fixed f € W),. Consider the following

Example 3.4. Let G(z) = z, 0 < z < 1. Let fi(z) := 1{z<1/2). Let J(n) be the interval
[1/2,1/2 4+ 1/n), and g, := —n"'1;4,, n = 2,3,.... Then for 1 < p < oo, [fio(G + ga) —
f10G|, = n~'/P and [ fill) = 1. Also [|gnlls = n~(+9)/5 for 1 < s < 00, ||lgnllec = 1/n and
lgnllpr = 217 /n, 1 < r < co. We can also take multiples f = tf; with ¢ — 0.

The example gives the following

Proposition 3.5. If (Y,||-||) is a normed space of functions on [0,1] containing f1 of Ezample
3.4, and for some C < oo

1£o(G + gn) — foGII < CIIf 1P lgnlls

for f, G, and g, as in the example, then A <1 and a < s/(p(1+s)) for 1 <s<oo,a<1/p
for s = co. Thus the powers A = 1 in Theorem 3.3 (A) and a = s/(p(1 + s)) for s < oo,
a = 1/p for s = oo, are separately optimal, and no norm on f allows a better exponent than
| ll(py does.

On the other hand the exponents for s = 0o are not improved if we replace || - || by a
stronger r-variation norm ||g[j,}, 1 <7 < oo.

3.4 The quantile (inverse) operator

Let J be an interval in R and F' a function from J into R. For any y € R, let F< (y) :=
Fi (y) := inf{z € J: F(z) > y}, or the right endpoint of J (which may be +o00) if there is
no such z. F* is called the quantile function of F. We use the notation F<~ when F is not
necessarily 1-1, while F~! is reserved for the inverse image of sets, or a point function in case
F is 1-1.

For any function F' from J into R let GF(z) := supy<, yes F(y). Then GF is a nonde-
creasing function and clearly G§; = F* except possibly at some of at most countably many
jumps of Gp. For differentiability of ¢ — (Gp + ¢)¢ into LP for p > 1 at ¢ = 0 along constant
functions, Gr must be strictly increasing. In fact we have the
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Proposition 3.6. Let 1 < p < oo and q :=p' :=p/(p—1). Let F be a real-valued function
from an interval J C R into an interval [a,b], —0o < a < b < co. Suppose that ¢ — (F + ¢)*
is Fréchet differentiable at ¢ = 0 along constant functions c into LP[a,b]. Then for some § > 0,
Gr(z) — Gr(u) > 6(z —u)? for any u < z in J.

Proof. Suppose that for some u, < z,inJ,andn =1,2,..., Gp(z,)—Gr(u,) < (zn—up)l/n.
Then for ¢ > 0,
(F+ ) (Gplup) +v) < uy, for v < ¢,

and
(F =) (Gglun) +v) > zp for v > (x5, — up)in ! —c.

Taking ¢, := (z, — un)?/n we get
I(F +¢n)” — (F — C'ﬂ)<_||p > (zn — un)C}z/p = nl/qcn’
contradicting differentiability. O

Regarding regularity conditions on F' in the following theorem note that F' can be chosen
quite regular (the identity function) in some applications to probability and statistics, see
Theorem 3.11 below. Dudley [24, Corollary 2.4], gives the following:

Theorem 3.7. Let 1 < p < oo and let F be a continuous function from an interval [a,b] onto
an interval [c,d]. Suppose that F is differentiable on (a,b) with for some k > 0, F'(z) > k for
a <z <b, and such that F' satisfies the Holder condition sup,.ycycp |[F'(u) — F'(z)]/(u —
z)1/? < oco. Then f — (F + f)* is Fréchet differentiable at f = 0 from Wpla, b] into LP[c,d]
for Lebesgue measure, with derivative

for —(foF)/(F'oF ™)
and such that the remainder
Ry = (F+ )T —F“ + (foF")/(F'oF™). (3.4)
satisfies, for some constant K, < oo,

IRsllp < Kl FIETP for all f € Wyla, b] with || |5y < 1. (3.5)

The remainder bound O(||f||g]+1)/p) in (3.5) cannot be replaced by o(||f||®T1)/P), for the

p-variation norm or any other norm || - || on a space containing indicators 1, ,| of intervals, as
the following easily checked example (Dudley [24, Proposition 2.5, with y := Y]) shows:

Proposition 3.8. Let 1 < p < o0, [a,b] = [¢,d] = [0,1] and F(z) =z, 0 < z < 1. Let
h = 1 for any fized 0 < uw < v < 1. Then there is a constant C, > 0 such that for
0 <t < min(v — u,1 — ), we have ||Ry]l, = CptP+D/P.

Here is a fact about combining the composition and quantile operators.
Proposition 3.9. (a) For any two functions F,G from R into R, and any y € R,
(FoG)™ (y) = (G oF7)(y).
(b) If F is non-decreasing and right-continuous, then for any G,

(FoG)* =G oF*. (3.6)
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Proof. For (a), if F(G(z)) >y, then G(z) > F* (y), so z > G (F* (y)) and (a) follows. For
(b), we have F(z,,) > y for some z,, | F< (y), so since F is right-continuous, F(F* (y)) > y.
If G(z) > F* (y), then since F is non-decreasing, F(G(z)) > y and with (a), now (b) follows.
O

Examples. If F(z) = G(z) = —z then (FoG)(z) = z so (FoG)* (y) = y for all y, but
F<(y) =G (y) = —oo for all y.

Let F := 1(p,o0) and G := 11 o). Then F and G are non-decreasing but only G is right-
continuous. For 0 < y <1, we have (FoG)“ (y) = 1 while G*(F*“ (y)) = G*(0) = —oo. Thus
the right-continuity of F' in Proposition 3.9 cannot be dispensed with.

We also have the following right and left inverse properties, whose proofs are straightfor-
ward; (a) is stated e.g. by M. Csorgé [12, p. 1].

Proposition 3.10. (a) Let F' be a non-decreasing, continuous function on a possibly un-
bounded interval J C R. Then for all y in the range of F, F(F5 (y)) = y where if u is
the left endpoint of J and —oo <u & J, we let F(u) := lim,, F(v).

(b) If F is strictly increasing: J +— R then F< (F(z)) = x for all x € J.

For the quantile operator, as shown in Dudley [24, before Theorem 2.6], we get via p-
variation, and letting p | 2, for F' smooth enough, that the remainder in differentiating
f = (F+f)< at f = F,—F is (in L? norm) of order Oy (n~%/) for any € > 0, where —3/4 is the
Bahadur-Kiefer correct exponent. It can be shown by other methods that the € is unnecessary
(Dudley [24, Theorem 2.6]). Kiefer [61] shows that for f := f, := F, — F, for the supremum
norm, |Ry||w is of exact order (logn)'/?/n®* in probability and (logn)'/?(loglogn)'/*/n3/*
almost surely.

For the composition operator, statisticians’ interest has been not so much in F,oG,, but
rather in the so-called procentile-procentile or P-P plot F,, oG : (0,1) — [0, 1], where F),, Gp,
are empirical distribution functions for F', G, respectively, see e.g. Beirlant and Deheuvels [5].
Let Uy, and V,, be empirical distribution functions for the U|0, 1] distribution function U. Then
we can write F,, = U, o F and G, = V,, o G. The following is known:

Theorem 3.11. If F = G is continuous, then the P-P process F,oGy for 0 <y <1 has the
same distribution as when F =G =U for0 <z <1.

Proof. By Propositions 3.9 and 3.10, we can write
FroG, = UpoFo(GToV,") = UpoV, ,
and the conclusion follows. O

So, for F = G continuous, only the case F' = G = U needs to be studied: Reeds [93],
Fernholz [33].

3.5 The product integral

Let f be a function from an interval [a, b] into a Banach algebra B with identity I, for example
the algebra M} of real k x k matrices. For any partition « := {z;}", € PP ([a,b]) we have a
product

P(f;k) =[] (T+ flzs) — f(ziz1)),

=1

17



where [, a; := a, ---aga;. If as partitions are refined, the products converge to a limit,
it is called the product integral ﬂg(ﬂ + df). In Chapter 7 it will be seen how the product
integral solves some differential and integral equations. We can define p-variation of B-valued
functions by putting norms in place of absolute values. It turns out that f +— ]IZ(]I +df) €
B is defined for f in the space Wy([a,b];B) of B-valued functions of bounded p-variation if
p < 2 (Freedman, [35], for f continuous; in general [29]) and holomorphic into the same space
([29]). Some inequalities of T. Lyons [76] allow a proof that the product integral operator
f = [z — J{(I+ df)] has a Taylor series with infinite radius of uniform convergence from
Wy to W,, p < 2 (Theorem 7.18 below). For a real-valued function to have a non-zero
product integral it is necessary, but not sufficient, that f € W, (Theorem 7.6). Another
form of product integral, f — H[a,.}edf , is holomorphic from the supremum norm to itself for
regulated functions into any commutative Banach algebra (Theorem 7.21). But on My (the
2 x 2 matrices) neither f > Jj(I+df) nor f H[O,l]edf is continuous from W)([0, 1]; M) to
My for p > 2 (Proposition 7.22). Thus, p-variation conditions around p = 2 are critical for
existence of product integrals and continuity and differentiability of product integral operators.
Lyons [76] applied his inequalities to solution of non-linear ordinary differential equations by
Picard iteration, also using p-variation for p < 2.
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Chapter 4

The p-variation

The discovery by Weierstrass and by Cellérier of curves without tangents marks indeed an
epoch in the history of Mathematics. We of the twentieth century are bound to recognise it in its
full importance. It is not only as Du Bois Reymond and a few thinkers of the 19th century pointed
out, a remarkable addition to the philosophy of Mathematics. These curves afford us a means of
rendering more veracious the representation of the physical universe by the realm of Mathematics.
I cannot but think that these curves will serve as the basis of the geometrical theory of molecular
phenomena, in the same sense as the conic sections have served as a first approximation to the
movements of the planets.

Nevertheless the apparent trajectory of an element in the ultramicroscope is not a curve
without tangents. We cannot follow all the details; a mental effort is required to coordinate the
impressions made on the retina by the sparking molecules as they pass. But neither is the path of
a planet really an ellipse.

At the present moment the reduction of the trajectory of an atom to a question of analytical
geometry is not possible. But who knows whether there will not arise a Newton to illuminate our
subject? Let us then patiently attack the study of these remarkable curves, leaving to others the
work of making the discoveries which may lead to the application of our results in the world of
atoms.

G. C. Young. “On infinite derivatives”. An Essay' [116, p. 140].

4.1 Elementary properties

If f € Wpla,b] for 0 < p < 1 then f is a pure jump function as shown in Proposition 4.14.
Thus we will concentrate on the range 1 < p < co. For such p recall that || f[|,) = up ()P,

[[flloo := sup [f[ and |[f][p] := [|f[l(p) + [/ lloo-

The next two facts are easy to prove.

Lemma 4.1. Forp > 1, || - || is a seminorm on Wy, 0 only on constants, and || - || is a
norm.

Theorem 4.2. Forp > 1, (Wp, || - ||jp) is complete, thus a Banach space.

Lemma 4.3. For1<p < oo, f € Wpla,b] if and only if f = goh for a bounded nondecreasing
nonnegative function h on [a,b] and a function g defined on [h(a),h(b)] satisfying a Holder
condition with exponent 1/p.

!The Gamble Prize (October, 1915) for Mathematics at Girton College, Cambridge, was awarded for this
essay to the author, Dr. Grace Chisholm Young.
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Proof. For each z € [a,b], let h(z) := vy(f;[a,z]). Then h is bounded, nondecreasing and
nonnegative function on [a,b]. By Lemma 4.6, for each z,y € [a, b], we have

[f(y) = f(2)” < |h(z) — h(y)l-
Define g on {h(z): z € [a,b]} by g(h(z)) := f(z) and extend by linearity elsewhere. Thus the
“only if” part of the statement holds. The proof is complete because the “if” part is clear. O
The proof of the following is immediate:
Lemma 4.4. For 0 < p < oo and f: [a,b] = R, vp(f) = vp(foH) for any increasing continu-
ous function H from [a,b] onto itself.
Lemma 4.5. ||f|p) is a non-increasing function of p.

Proof. This follows from the inequality

n

(3et) < ()

1
valid for 0 < ¢ < p < oo and any {a;}. O

Lemma 4.6. Leta <c<band1<p<oo. Then

vp(f3 [, c]) +vp(f3 [e,b]) < wp(fifa, b)) < 2P op(f3 [as o]) + (S5 [e, ).
Proof. The first inequality is immediate. For the second, if a < s < ¢ <t < b we have
1 p 1
F@O = FOP < (F@®) = F@I +1£(@) = F@)), and (Fa+b)" < (@ +)
for a,b > 0 by Jensen’s inequality (e.g. Theorem 10.2.6 in [22]) since z +— 2P is convex,
1 <p <00, z>0. Then conclusion follows. O

Lemma 4.7. Let f € Wy[a,b] and ¢ > 0. There exists {z;: i = 0,...,n} € PP ([a,b]) such
that max)<i<p vp(f; (zi—1,2:)) < c and n <1+ vy(f;[a,b])/c.

Proof. Let p(x) := vp(f;[a,z]) for z € [a,b]. The lemma holds if ¢ > p(b). Suppose ¢ < p(b).
Let M be the minimal integer such that cM > p(b) and let 2o := a. For each m =1,..., M,
let 2T := inf{z € (z,b]: p(z) > mc A p(b)} and let my := min{m = 1,...,M: 2T > zo}. If
mi = M let z1 := b. Then p(a+) > Mc and p(b—) — p(a+) < Mc— Mc = 0. Thus the lemma
holds with n = 1 in this case. If m; < M let z;1 := z7"'. It then follows that p(z1—) < mic
and p(zo+) > (m1 — 1)c.

Suppose z; < b is chosen such that mi +--- +m; < M, p(z;—) < (m1 + --- + m;)c and
p(zi—1+) > (m1+---+m; —1)c. Foreach m =my+---+m;+1,..., M, let ]}, := inf{z €
(z5,b]: p(x) > mc A p(b)} and let m;iy := min{m =my + - +m; +1,...,M: 278, > z;}. If
miy1 = M let ;41 := b. Otherwise let z;4; := xﬁff ' and proceed further. The recursion stops
after at most M steps. Thusn < M < 14 p(b)/c and vp(f; (zi—1,2;)) < p(zi—) —p(zi-1+) < ¢
for each 7 = 1,...,n by Lemma 4.6. This completes the proof. O

The following properties are proved in Lemmas 2.18 and 2.19 of [29].
Lemma 4.8. Let f € Wpla,b]. For any y € [a,b),

liinfup(f; (y,2]) =0 and  limuy(f;[y,z]) = [(ATF)(y)[P-
zly zly

For any y € (a,b],

limvy(f;[2,9)) =0 and  limuvy(f;[z,y]) = (A7)
zTy zty
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4.2 Regulated functions

Recall that a function f: [a,b] — R is called regulated if, for each a < z < y < b, there exist
finite limits lim,q, f(2) and lim,|, f(z). The class of all regulated functions on [a, b] will be
denoted by R[a,b]. Jumps of the regulated function f on the closed interval [a, b] are defined
by:

AL 1) = 1)~ 1) = { S dm) ey st (41)
and .
A} @) 1= 1D ) - f(0) = { St =il e o<t 42)

The following fact was noted by Wiener [113, p. 75].
Proposition 4.9. If v,(f;[a,b]) < co for some 0 < p < oo then f € Rla,b.
Proof. This follows from Lemma 4.3. O

In the following, a step function is a linear combination of indicators of intervals, some of
which may be singletons.

Theorem 4.10. The following properties are equivalent for a function f: [a,b] — R:

1. f € R([a, b]);
2. for € > 0 there exists {z;: 1 =0,...,n} € PP([a,b]) such that Osc(f; (zi—1,zi)) < € for
eachi=1,...,n;

3. f is a uniform limit of step functions.

Proof. (1) = (2). Let € > 0. For each y € (a,b) there exists §;, > 0 such that Osc(f;(y —
8y,y)) < € and Osc(f;(y,y + &y)) < €. Also, there exist §, > 0 and d, > 0 such that
Osc(f;(a,a + 64)) < € and Osc(f; (b — dp,b)) < €. The sets

[a,a+64),.--,(y — 8y, y +8y),...,(b— b,

form an open cover of the compact interval [a,b]. Thus, there is a finite subcover

[aaa + 511)7 (yl - 5y1ay1 +5y1)7"' ’ (y’m - 6ym7ym + 5ym)a (b - 6b7b]'

Let To:=a, T1 € (yl - 5y1>a + 5(1)7 T2 = Y1, -y L2m—1 = Ym, T2m € (b - 5baym + 5ym) and
ZTom+1 := b. So that (2) holds with n = 2m + 1.

(2) = (3). Let € > 0. Choose {z;:1 = 0,...,n} € Q([a,b]) such that (2) holds. Let
fe(x) :== f(y;) withy; € (x;-1,2;) if x € (z5-1,2;) and fe(z;) := f(z;) fori =0,...,n. Then f
is a step function and |f(z) — fc(z)| < € for each z € [a, b] by construction. Since € is arbitrary
(3) holds.

(3) = (1). For each € > 0 choose a step function f. such that |f(z) — fe(z)| < € for each
z € [a,b]. Let = € (a,b] and z,, T z. Then, for all integers n, m, we have

|f(@n) = f(@m)| < |f(@n) = fe(@n) |+ fe(zn) = fe(zm) |+ fe(zm) — f(zm)] < 2e+|fe(zn) — fe(zm)]-

Since f. is regulated, the right side of the last inequalities can be made arbitrarily small. Thus
f(z—) exists. Similarly it follows that f(z+) exists for each = € [a,b). This proves (1). The
proof of Theorem 4.10 is complete. O
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Corollary 4.11. For each f € R([a,b]) and € > 0,

card{z € [a,b]: |A; f(z)| > € or |A) f(z)] > €} < o0

Definitions. Let f be a real-valued function on an interval J and ¢ > 0. For a subinterval
[e,d] € J let |f([c,d])| := |f(d) — f(c)|- Subintervals of J will be called nonoverlapping if
they are disjoint except possibly for their endpoints. Let sup {J;} denote the supremum over
all sequences {J;} of nonoverlapping subintervals of J. Then let

n(f,e) = sup{n: |f(J;)| >e fori=1,...,n}

?

Forn=1,2,..., let
v(f,n) = ?}]11;{2?:1 |F(Jo)l}-

For a sequence A := {)\;};>1 of positive numbers, the A-variation of a function f on J is
supyz,y 2o; |f(Ji)l/Ai- Then f is of bounded A-variation, or f € ABV, iff its A-variation is
finite.

An M-function will be a strictly increasing, convex function ® on [0, c0[ with ®(0) = 0.
Recall (from the Introduction) that for a real function f on J, the ®-variation ve(f) is the
supremum of sums », ®(|f(J;)|) over all interval partitions {.J;}. Also, as before, a step
function on an interval J is a finite linear combination of indicator functions of subintervals of
J (which may be open or closed at either end).

Among M-functions are, of course, the functions ®(z) = z" on 0 < z < oo, where 1 <r <
00.
Proofs of the following known equivalences are given by Dudley [27, Theorem 2.1].

Theorem 4.12. For a real-valued function f on a closed, bounded interval J = [a,b], the
following are equivalent:

[ is regulated on J (f € E(J)).

For any € > 0, n(f,e) < oc.

v(f,n) =o(n) as n — oo.

For some {\;}i>1 such that X\; > 0 for all i and };1/X\; = 400, f € ABV.

ve(f) < oo for some M-function ®.

f = g o h where g is continuous on R and h is nondecreasing and real valued on J.

f = goh where g is continuous on R and h is strictly increasing and real valued on J.
f is a uniform limit of step functions on J.

~

R RS I Lo

4.3 The Wiener class

Let 0 < p < oo and f: [a,b] = R. For each k = {z;: 1 = 0,1,...,n} € PP([a,b]), recall that
sp(fir) = 2ita [f () — f@ia)P. Let

vp(fi1) = sup {5, (f )i A D w) = 3 v (fs [rics, ). (43)

=1
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Notice that v,(f;[a,b]) = vp(f; {a,b}) = sup{sp(f;«): &K € PP([a,b])}. Then let
vy (f) = wy(fila,b]) := inf {v,(f; k): k € PP([a,b])}

= inf{ ;vp(f; [i1,2]): {z;: 1 =0,...,n} € PP([a,b])}-

Lemma 4.13. v;(f) < wp(f), and if either is finite then so is the other.

Proof. The inequality is clear, so we only need to show that if v;(f) < oo then v,(f) < oo.
Now v, (f) < oo implies vy(f;k) < oo for some £ = {z;:4 = 0,...,n} € PP([a,b]). By
iterating Lemma 4.6 we get v,(f; [a,b]) < 2(P~D(=Dy (f: k) < 0o, proving Lemma 4.13. O

Since a function f with bounded p-variation for some 0 < p < 0o is regulated, there are at
most countably many discontinuity points of f. One can enumerate the points of discontinuity,
say D(f) == {&,&,...}, & = &(f), 7 = 1,2,..., so that the sequence {w;: j > 1} is non-
increasing, where

wh = AL (G +1ASF(EIF forj=1,2,....

Let
Su(1) = &5l b)) o= (X018, 77 + 187 71) 7 = (S wr) .
[a,8] 7=l
Then the relation
6p(f)P < vp(f) (4.4)

always holds. We will see that functions f for which the equality holds instead of < constitute
a proper subspace of W, if p > 1, and they have nice properties if p > 1. First we consider
the case when 0 < p < 1. The proofs of the following two statements can be found in [29]
(Propositions 2.12 and 2.13, respectively).

Proposition 4.14. If0 < p <1 then f € Wpla,b] if and only if there exist at most countably
many real numbers vq, up, and uy, vy for a <y < b, such that, for a <z <b,

f(z) = f(a) +vo + Z (uy + vy) + ug,

a<y<zx

where each sum converges absolutely, and

Z [[uy[? + [vy|P] < oo
a<y<b

Then AT f(z) = vy fora <z <b, A~f(z) =ug fora <z <b and

vy (f) = vp(f) = Sp(f)P = [val? + D [uy[? + |vg[P] + [up|”.
a<y<b

Thus the only continuous functions in Wj[a,b] if 0 < p < 1 are constants. Next we look at
the case p = 1.

Proposition 4.15. For any function f: [a,b] — R, the following holds:
1. vi(f) = vi(f);
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2. vi{(f) = &1(f) if and only if fora <z <b,
flx) = fla)+ AT f(a)+ D [ATf(y) +ATf(y)] + A7 f(2),

a<y<zx
where the sum converges absolutely.
For the rest of this section we consider the case p > 1.

Definition 4.16. For 1 < p < oo, let Wy := Wyla,b] := {f € Wy[a,b]: v;(f) = &,(f)P}. We
call W; the Wiener class.

The rest of this section is based on the results of Love and Young [75].
Theorem 4.17. The Wiener class Wy is closed, hence complete for || - |-
For the proof we need the following;:

Lemma 4.18. Let f € Rla,b] and 1 < p < oco. Then the following statements are equivalent:
1. f € Wya,bl;

2. for every € > 0 there is a partition A = {z;: i = .,n} of [a,b] such that
n
> vp(fi (mic1, @) < € (4.5)
i=1

Sp(f;a,b]) < oo and for every € > 0 there is a partition X of [a,b] such that
Z |f(zi—) — f(zima+)|P <e (4.6)

for each refinement {z;: i =0,...,n} of A.

Proof. (1) = (2). Let f € Wy[a,b] and € > 0. It is enough to show that (4.5) holds for some
partition of [a,b]. By (4.3) and (4.4), there exists A = {z;: j = 0,...,m} € PP([a,b]) such
that

> vp(filzi-1, 7)) < vp(f) +€/2

i=1
and
m
YA (z—0)P + AT F(2)P] > 6, (f)" —€/2.
Jj=1
Let {uj_1,v;: j = 1,...,m} be a set of points in (a,b) such that z;_1 < u;j_; < v; < z; for
j=1,...,m. Then we have

m

Z'Up(f; ['U'j—la'U] Z f [Z] lazg Z Up f [ZJ 1, Uj— 1])+'Up(f [UJ’ZJ])]
Jj=1 Jj=1

For each j =1,...,m letting uj_1 | zj_1 and v; T 2;, by Lemma 2.19 in [29], it follows that

Z $(zi-152)) <Y wp(filzi-1,2]) = DO IATF(z—) P + 1A ()P
j=1 j=1 j=1
< v (f) +e/2—-6,(f)P +e/2 =
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This proves statement (2).

(2) = (1). Let statement (2) hold. Then f € W, by iterating Lemma 4.6. Assume however
that f ¢ W,. Therefore, since (4 4) always holds, v;(f) — 6,(f)P > C for some positive
constant C. Let k=A{z;ii= .,n} € PP([a,b]). Then we have

YA (@) + vp(f; (i1, ) + |A7 f(@i)[P] > vy (f)-

i=1
It then follows that

va (wim,2) 2 03(f) = SDIAT flaia) P+ A7 (@)P]

> wi(f) - &,(f) > C > 0.

Since £ is arbitrary, (4.5) can’t hold for every ¢ > 0. This contradiction implies that f € W;.

(2) = (3). Let statement (2) hold. Then it holds for any refinement of A by Lemma 4.6.
Then it is easy to see that f € W), and hence &,(f) < oo by Lemma 4.13 and (4.4). Let ¢ > 0
and let (4.5) hold for {z;: i =0,...,n} € PP([a,b]). Then we have

n n

Sf@i-) — faia Dl = S lm |fw) — flyin)”
i=1 i=1 Yi—1dTi—1,yi 1w
< D op(fs (mic1, 1)) < e
i=1

Therefore statement (3) holds.
(3) = (2). Let € > 0 and let A € PP([a,b]) be such that (4.6) holds for all its refinements.
There exists a finite set v C [a, b] such that

Y IATf@)P + AT f(@)P] <e

TCU
for each finite set 4 C (a,b) with uNv = 0. Let {2;:  =0,...,m} := AUv € PP([a,b]) and,
for each j = 1,...,m, let k(j) = {zl:i=0,...,n(j)} be a set of points in (a,b) such that

Zzig<azh << y < %j- Then we have

n(j
m m n(j)
Yosp(fiu() < TN [AT (@) P + AT f ()]
j=1 j=1li=1
+4p122|fm— — flzl )P < 4Pe/2.
j=11=1

Since each partition k(j) of (2j_1,2;) is arbitrary, it follows that
Z'up (zj—1,25)) < 4Pe/2.

This proves statement (2). The proof of Lemma 4.18 is complete. O
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Proof of Theorem 4.17. Let ¢ > 0 and let ¢ € W, be such that ||f — ¢|) < €'/P /2.
By Lemma 4.18, there is a partition X of [a, b] such that Y7 v,(¢; (zi—1,2;)) < €/2P for each

refinement kK = {z;: ¢ =0,...,n} of \. Then for any such x, we have
n
Z’Up (zic1,2i) < 22703 op(f — &5 (mim1, @) + vp(; (wim1, 24))]
i=1
< PIf - Gl + v (@1, 3))] <
i=1

Therefore statement (2) of Lemma 4.18 holds, and hence f € W;. The proof of Theorem 4.17
is complete. O

A function ¢: [a,b] — R is a step function as in Theorem 4.10 if and only if there exists a
partition {y;: j = 0,...,m} of [a,b] such that ¢ is constant on each open interval (y;_1,¥;),
j=1,...,m. For such a function ¢ and any 0 < p < oo, we have

Z (AT Gy ) + 1A~ ;)] = Sp()".

Thus each step function ¢ € Wy for any p > 1.
Theorem 4.19. Siep functions based on interval partitions are dense in the Wiener class Wy .
For the proof we need:

Lemma 4.20. Let f: [a,b] — R be such that f(z;) =0 fori=0,...,n, where a =9 < 1 <
o< xzp=0b,andlet 1 <p<oo. Then

vp(f;[a, b)) <szvp s @io1, m5]), (4.7)
=1

where ¢, = 2P, and ¢, = 1 if in addition f > 0.

Proof. Suppose in addition that f > 0. Then fora <z < z <y < b,

[f (@) = fFWIP <|F@)P +[f Q)P = [f(2) = FP +1f(z) = fF)P
if f(2) = 0. Therefore (4.7) holds in this case. Let fi := max(f,0) and f_ := —min(f,0).
Then without the additional hypothesis, we have
vp(f) = wp(fr = F) S22 up(f4) + vp(f-)]

< PN (s i1 mi]) +vp(fs i)
=1

n
< 27N o (fs [mic1, mi]) + vp(f [mim1, 7).
=1
Thus (4.7) holds with ¢, = 2P. O

Proof of Theorem 4.19. Let f € W;. Let € > 0 and 0 := €/2%F4, There exists k1 €
PP([a,b]) such that for all kK D k1,

0p(f5) < v3(f) +0.
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Choose an integer k so large that both

k
= Y0l > (1~
=1

and j < k for each &; = &;(f) € k1 N D(f). We claim that for all j > 2k,
w? < why, < 0/k. (4.8)

If not then
2k

0<kw2k<2'wp<6(f) —6Sp(f; k)P <0
k+1

Thus (4.8) must hold for all ;7 > 2k. By (4.8), it follows that

1A, f(&5)V |A+f(fy)| <w; < (H/k)l/l’

for each j > 2k. Therefore using Theorem 4.10, one can find a partition xo, containing all &;,
j=1,...,2k, and such that Osc(f; J) < 2(0/13)1/” for each interval J formed by adjacent points
of K2, being open at either end-point if that end-point is §; with j < 2k. Let k. be the partition
consisting of all points of x; and k2, and all points (n;—1 +7;)/2 such that n; = ¢; and n;_1 = &,
are adjacent points of k1 U kg for some j,r < 2k, j #r. Let k = {z;: 1 = 0,...,n} D k. and
let fi e be the step function defined by

fly;) with y; € [z;-1, ;] and y; & D(f) N ke
frelz) = ifx € (xj_1,z;) forsomei=1,...,n (4.9)
f(z;) ifz=uz; forsomei=0,...,n

Let {z;: j =0,...,m} € PP([®i—1,;]) withm > 1forsomei =1,...,n,and let ¢ := f — f, .
Then

m m—1
DoIz) = d(zi-)lP = (f(21) = Fua)P + D 1F(2) = F(zi=0)IP + [ f (i) = f(zm—1) [P
j=1 j=1

< Bup(fs[mio1, zi])-
Thus for each 1 =1,...,n,
Vp(f — fres [iz1, 2:]) < 3vp(f; [@iz1, %))

If z; is a &; with j < 2k, then z;_ is not, and y; < z;. So given {z;: j =0,...,m} € PP([a,b])
with m > 1, we have

m m—1
Z bz )P+ AT F@)P = [f(21) = F)P + D |f(z) = f(z- )P
j=1 j=1
+ (A f(zm) P + | f(yi) — fzm-1)["
< 2%(0/k) + vp(f; [mi1, 7)) + 2°(0/F).
Thus for each 1 =1,...,n,

vp(f — frei [Zim1, mi]) < vp(fs [mim1, mi]) — |A7 ()P + 2PTH(0/k).
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Similarly, if z; 1 is a §; with j < 2k, then for each i =1,...,n

7

vp(f = frse [Tim1, %)) < vp(f; [mic1, m3]) — |AT fmima) P + 2PTH(0/E).

Let I be the set of indices ¢ = 1,...,n such that neither z;_; nor z; is a {; with 5 < 2k. Then

Gp(f32k)° + D vp(f; [wic1, 3i]) < vp(fs k).

el

Therefore by Lemma 4.20, it follows that

Hf _fn,eH?p) < 2pZ'Up(f _fn,e§ ['Ti*lawi])

=1
n
< 2L up(fslwi,mi)) + 23 vp(f i1, 1)) — S,(f326)° + 46216/}
i=1 el
< 2{vy(f;5) + 2[vp(f; 8) — Sp(f3 2K)7] — S,(f3 2k)7 + 2720
< 2{3[}(f) + 0 &,(f)" + 0] + 2730}
= 2P(6+2P7)0 <.
The proof of Theorem 4.19 is complete. O

The following statement follows from Theorems 4.17 and 4.19.
Corollary 4.21. The Wiener class Wy |a, b] is the closure for ||-||;) of the set of step functions.
It then follows from Lemma 4.22 below that, for each 1 < p < oo
Wp DW, D Wy = UgepWp. (4.10)

The following examples of functions on [0, 1] show that the Wiener class W, is identical with
neither W, nor W,_:

(x) =3¢ /Psin(ciz) and h(z) =

If ¢ is a sufficiently large positive integer then g is in W, but not in Wy, while & is in Wy but
not in W,_.

Lemma 4.22. Let f € Wya,b] for some 1 < ¢ < p < oo. Then given € > 0, there is a

partition a = 19 < 21 < T1 < 22 < +++ < Tp-1 < 2y < Ty = b such that [|f — ¢llp) < € and
T —xi—1 <€ fori=1,...,n, where ¢ is the step function defined by

f(zi) ifzioy <z <z{ for somei=1,...,n

= 411

$(@) { f(zi) if x =z for somei=0,...,n. (411)

Proof. Given € > 0, let 6 > 0 be such that 6?93 - 2Py,(f) < e. By Proposition 4.9 and
Theorem 4.10, there is a partition {z;: i = 0,...,n} of [a, b] such that max;(z; —z;_1) < € and
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Osc(f; (zi—1,i)) < 0. Let ¢ be the step function defined by (4.11). By Lemma 4.20, it follows
that

n n
vp(f — @) S22 wp(f — @3 [wimr, mi]) S 2P P g (f — s [mi1, wi)),
i=1 =1
because f — ¢ has oscillation less than ¢ in each closed interval [z;_1,z;]. To bound v4(f —
&5 [zio1, i), let 9 := f — ¢. Given any partition x; = {y;: j =0,...,m} € PP([z;_1,;]) for
which m > 1, we have

m—1
sqWimi) = [yl + D [$(y) — (y—0)|? + [ (ym-1)|°
j=2
m—1
= |f) = F)l+ D 1f(yg) = Flyi-D)IP < 3vg(f; i1, 2:)).

=2

Since k; is arbitrary partition, it follows that ve(f — ¢;[zi—1,2:]) < 3vg(f;[zi—1,2;]) for i =
1,...,n. Therefore

vp(f — @) < 2P8P 1Y Bug(f; [wim1, i) < 3207 Tuy(f;[a,b]) < e.
=1

This completes the proof of Lemma 4.22. O

4.4 Love—Young inequalities
Lemma 4.23 (Love-Young inequality). Let f,h: [a,b] — R and let K = {z;: i = 0,...,n} be
a partition of [a,b]. Then for any y € K,

n

| Fla)lhes) — hlaims)] — F@) D) — @] < CpgVo(/)Va(h) (4.12)

=1
provided p,q >0 and p~' + ¢! > 1, where Cp = (™t +q7 1) and {(s) == Yon>1nC

Proof. Let k = {z;: i =0,...,n} € PP([a,b]), and let A;g := g(z;) — g(z;—1) fori=1,...,n
and g = f or h. Also, let S(f,h;k) := > i, f(zi)[h(z;) — h(x;—1)]. Then we have

S(f,h;k) = f(a)[h(b) —h(a)] + > AifAjh. (4.13)

1<i<j<n

On the other hand, since f(z;) = f(b) — Xj<;<, Aif, we also have

S(f,h;k) = FO)RB) —h(a)] = Y AifAjh. (4.14)

1<j<i<n

Now let y = z for some 0 < k < n. Then (4.13) for a = y gives

n

> fl@)Aih = f)[h(b) —hy]+ D AifAsh. (4.15)

i=k+1 k<i<j<n
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Also, (4.14) for b = y gives

k
Y f@)Aih=fYh(y) —h(@)] - Y AifAjh. (4.16)

i=1 1<j<i<k
Adding (4.15) and (4.16) gives the representation
S(f,hsk) = F@WRO) —h(a)] == Y Aifdjh+ )Y AifAjh. (4.17)
1<j<i<k k<i<j<n

of the quantity we are aiming to bound. Therefore it is enough to bound the absolute value of
the right side of (4.17). To this aim we replace A;f by a number ¢;, Ajh by a number 1; and
apply the following lemma. This completes the proof of the Love-Young inequality. O

Let ¢ = (¢1,---,¢n) and ¥ = (91,...,1y) be finite sequences of real numbers. For p,q > 0,
let

0(5)

V) =yt —max{(X] X

Jj=1 i=0(j—1)+1

and let V(1) be defined similarly. Then the following holds:

)7 0= 6(0) <6(1) < - < (m) = n),

Lemma 4.24. Let p, q and Cp 4 be as in the Love-Young inequality. For finite sequences
d=(P1,.--,¢n) and p = (Y1,...,%y), and for any integer k =0,...,n

‘_ > ¢+ ) ¢i¢j‘§0p,q%(¢)%(¢)- (4.18)

1<j<i<k k<i<j<n

Note. This is an extension of inequality (5.1) of Young (1936, p. 254) which is the case k = 0.
Also, it improves the same inequality by having the constant factor Cp, = ¢ (p~' +¢7!) in

(4.18) instead of 1+((p~!+¢~1). To obtain this improvement we used the argument suggested
by Love [74, Theorem 17].

Proof. Let ¢ = (¢1,...,¢n) and ¢ = (¥1,...,1,) be two sequences of real numbers, and let
k € {0,...,n}. Then let
Sp(gsk):= > dipj= . ¢ap; and Sg(d,ik,n) = D ¢y,
0<j<i<k 1<j<i<k k<i<j<n
where 1y := 0, S(¢,1;0) := 0 and Sr(¢,¥;n,n) :=0. For 1 <[ < n, let
¢ii=¢; for 1<j<I-1, g =d+d1, ¢j:=¢j1 for I<j<n
Y=y for 0<j<i=1, o =11+, Pj=1;1 for 1<j<n,

where ¢y, 11 := 0 for the case when [ = n. Then ¢ = (¢},...,¢,,_1) and ' = (Y},..., ¥ _1)
are two sequences of real numbers dependent on [. If 1 <[ < k then Sg(¢/,¢';k—1,n—1) =

SR(¢7 wa ka ’I’l) and

Sp(@,sk—1) = > ¢+ Fdi) =Y, il +-..+ i)
0<i<k-1 1<i<l
o+ o)W+ )+ D i+ )
I<i<k—1
= g+ D> dilhr+ ...+ 1) = iy + SL(, i k).
1<i<k
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If k <l <mnthen Sp(¢',v'; k) = SL(¢,; k) and

Sp(@, ¢skn—1) = Y i+ )= D bt + )

k<i<n—1 k<i<l
F(h+ b)) W1+ -+ n) + D bi1 (i1 + .+ )
I<i<n
= —dhi+ D il + ... +hn) = —dh + Sk, ¥; k,n).
k<i<n

Letting Sp := Sp k := —SL(¢, 9 k) + Sr(¢,9; k,n) and

T T e —Sp(¢, Yk —1)+ Sp(d, 5k —1,n—1) ifl<k
wET IR —SL(e, 95 k) + Sr(#, ¢ k,n — 1) if k<1
we obtain that S, — T,; = ¢3py for I € {1,...,n} \ {k}. Next, we need the following fact:
given two ordered m—tuples of real numbers & = {&1,...,&,} and n = {n1,...,n,} there is an
index r, 1 < r < m, such that
1/p
&y | < ( Z &17) ( Z ms1)". (4.19)

To see this take the least r such that |£,n,| = min{|{;n;|: j =1,...,m} =: L. Indeed, we then
have

[Em) - Emnn) ™ = [(ENP - L&) ™ P . 7| ™
< (%Zéﬂp)l/p(%z )1/(1

where the last inequality holds by the theorem of the arithmetic and geometric means (Theorem
9 in [47]). Apply (4.19) tom =n—1, & = {1l € {1,...,n} \ {k}} and n = {2 | €
{1,...,n}\{k}} if k > 1orm =mn, { = ¢ and n = ¢ if k = 0. This gives an index
U'e{1,...,n}\ {k} such that |¢pypy| < Cpq(n)Vp(¢)V4(1)), where

L

IN

n—(1/p)—(1/9) k=0

Craln) :{ (n—1)-WP=0/0 itk e {1,... n}. (4-20)

Then let S, 1 := T, . Since S;, — S, 1 = ¢py, this yields the bound

|Snl < Cpg(n)Vp(9)Vo(¥h) + [Snl-

Next, instead of ¢, 1 and k, consider ¢("=1) := ¢, ("= .= ¢/ and k(=D equal to k — 1 if
k> 1, or equal to k if k < I. Notice that k"~Y =1if k =1 and k("D = 0 if k = 0. Applying
the same argument to (=1 (=1 and k=1 one gets a similar inequality for the sum
S,—1 in terms of a sum Sy,_5 of the same kind and a term Cj, 4(n — 1)V, (¢"~1)V, (¢p(»~1)). By
the definitions, V, (4™ ) < V,(¢) and V,(p(» 1)) < V,(1). Proceeding in this way we obtain
sums S,, for m =n,n—1,...,2 and the bound

1Sn] < {Cpg(n) + Cpgn = 1) + -+ + Cp g (3) IV (9 Vo () + |3, (4.21)
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To bound S consider two cases depending on whether ¥ = 0 or £ > 1. In the first case,
k® = 0. Then applying the preceding argument again we obtain for | € {1,2}, T, =
Sr((¢@), (2);0,1) = (6@); (@)} and Sy — Toy = ¢4 Thus applying (4.19), we get
the bound

|S2] < (82 = To| + [T < {27020 L 13V, () Vy ().

In the second case, Sy = Sp(¢?,yp(?):1,2) = q52 ¢ if 52 =1 and So = —S(¢@,p@):1) =
— Py if £ = 2. Then the bound

92| < Vp(8)Vq ()

holds. Inserting these bounds and (4.20) into (4.21) we obtain the desired inequality (4.18). O

The Love-Young inequality will be used to establish the existence of the (M RS), (RRS)
and (RYYS) integrals. It will also yield similar inequalities for the corresponding integrals
provided they exist. To prove the existence of these integrals we have to consider more general
sums than those in the Love-Young inequality. Let k = {z;: i = 0,...,n} be a partition of
[a,b] and let 0 = {y;: i = 1,...,n} be an intermediate partition of k; that is, (k, o) is a tagged
partition as defined in Section 2.1. Recall also from there that for functions f and & defined
on [a,b], the sum

n

Srs(k,0) := Srs(f,h;k,0) ==Y f(yi)lh(zi) — h(zi-1)] (4.22)

=1

is called the Riemann-Stieltjes sum based on (k,c). The following corollary of the Love-Young
inequality will be used in conjunction with Cauchy criteria to prove the existence of the three
integrals.

Corollary 4.25. Let ' = {z}: j = 0,...,k}, " = {z: 1 = 0,...,1} be partitions of [a,b]
and let o', o” be two intermediate partitions of ', K", respectively. With the hypotheses of
Theorem 4.23, the inequality

|SRS(fa h7 K',a OJ) - SRS(fa ha K'”’ 0H)|

l

k
< Cp{ S Vol F [, &) Va s 1851, 25)) + 30 Vo [y ) Va (B [y 2]) }
Jj=1

=1
holds, where Cpq = C(p~ ' + ¢ 1) and ((s) := Yasin’

Proof. Let k = {z;: i =0,...,n} be a partition of [a,b] containing each point from «', o',
and ¢” and let

n
S(k) == Srs(f bk, {zi:i=1,...,n}) = Zf(wz)[h(xz) — h(z;—1)]. (4.23)

i=1
For each index j € {0,...,k} of the partition &', let i(j) € {0,...,n} be the index of x such
that z;;) = . Suppose {y: 5 =1,...,k} are points of the 1ntermediate partition o' of k'
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Since y; € {zi(j_1),.., 2y} for j = 1,..., k, by Theorem 4.23, we have

k i(5)
Srs(fhin', o) = S(9)| < 3 |Fhh) bl = D fl@)h@) k()]

i=i(j—1)+1

k
S Cp,q Z V},(f, [‘T;'—la "If'g])VII(hﬂ [CE;_l,CE;])

=1

This and a similar bound with (k”,¢") instead of (', ¢"), yield Corollary 4.25. O

Theorem 4.26. Let f € Wpla,b] and h € W,a,b] for some p,q > 0, p~t + ¢~ > 1. Then
the integral fg f dh exists
(1) in the mesh—Riemann—Stieltjes sense if f and h have no discontinuities at the same point;
(2) in the refinement—Riemann—Stieltjes sense if f and h have no common discontinuities on
the right of the same point and no common discontinuities on the left of the same point;
(3) in the refinement—Young-Stieltjes sense always.
In whichever of the three senses the integral exists, the inequality

b
1 dh] < Coal gkl (424
a

holds, where Cp 4= ((p™! 4+ ¢71) and ((s) := Yn>1nC

Proof. To prove (1) we show that given ¢ > 0 there is a positive § such that a difference
between two Riemann—Stieltjes sums is small depending on € whenever the mesh of partitions
is less than 4. To this aim we use the bound of Corollary 4.25 for p' and ¢’ such that p' > p,
q > qand (p')~! + (¢')~! > 1. For any subinterval [u,v] of [a,b], we have

vy (3 [,0]) < Osc(f3 [u, ]} Pop(f;[u,0])  and vy (hs [u,v]) < Osc(h; [u, o))~ wq(h; [u, v]).

By Proposition 4.9, f and h are regulated functions on [a,b]. Let € > 0 be given. Then by
statement 2 of Theorem 4.10, there is a finite set of open interval (z;_1,2;), j = 1,...,m
separated by singletons ¢ = zp < 21 < :++ < 2, = b and such that

Osc(f;(zj-1,2)) <e and Osc(h;(zj-1,2;)) <e forj=1,...,m. (4.25)

Choose a positive d such that whenever a closed subinterval has length less than § then it
contains at most one of the points z;, § = 0,...,m. Since f and h have no discontinuities at
the same point, either f or h has an oscillation less than € over each closed interval of length
less than 6. Let «' = {z}: j = 0,...,k} be a partition of [a,b] with mesh less than J. Using
Lemmas 4.6 and 4.5 and Hoélder’s inequality, we obtain the bound

k
]=

k
Vo (f3 [0, o)) Vg (Bs [y, 25]) < 0(e) Y up(f; [2_y, 7)) /P wg (hs [2_y, 2f]) O
1 j=1

< 0(e)vp(f; [a, b)) /7 vy (hs [a, b)Y,

where 0(e) := €' ~(?/?) v 1=(0/4) A similar bound holds for a partition x” = {zf:7=0,...,0}
with mesh also less than §. Thus by Corollary 4.25, it follows that

|Srs(f,h; K, 0") — Srs(f, h; k", 0")| < 20(€)Cpr g0y (f; [, b]) /P vy (B; [a, B]) /9 . (4.26)
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Since € is arbitrary, by the Cauchy criterion for Riemann-Stieltjes integrability (the analogue
of Proposition 6.6 below for (RRS)), the integral (M RS) [ f dh exists.

Let {Km: m > 1} be a sequence of partitions k,, = {z]": 4 =0,...,n(m)} € PP([a,b]) such
that the mesh |k,| — 0, and let oy, := {z": i = 1,...,n(m)}. By the Love-Young inequality
(4.12), we have for each m > 1,

|Srs (fs 15 Ky om)| < Cp Vo (F)Va(h) + [ fllooVa(h) = C

Taking the limit on the left side as m — oo we get inequality 4.24 for the (M RS) integral.

To prove (2) suppose that f and h have no common one-sided discontinuities. As before,
given € > 0 one can choose a partition A = {z;: j = 0,...,m} of [a,b] such that (4.25) holds.
By adding additional points if necessary, we can assume that every second point of X is a
continuity point of f and h. On each side of each other point of A, either f or h is one-sidedly
continuous. Therefore either f or h has an oscillation less than € over any closed subinterval of
[#j-1,2j], § = 1,...,m. Taking a refinement &' = {z}: j =0,...,k} of X it follows that (4.26)
holds. Thus the (RRS) integrability follows by the Cauchy criterion (Proposition 6.6 below).
The inequality (4.24) for the (RRS) follows similarly as for the (M RS) integral.

To prove (3) we observe that each Young sum can be approximated by corresponding
Riemann-Stieltjes sums. Indeed, for k = {z;: ¢ =0,...,n} € PP([a,b]) and open intermediate
partition o = {y;: i =1,...,n} of s, let K := Kk U{u;—1,v;: 1 =1,...,n}, where a = zy < up <
P < <1 <UL << Tp1<Up1<Yp <Up <y, =>0 and & := 0 U k. Then letting
vi—1 4 zi—1 and v; 1 z; for i = 1,...,n, it follows that Srs(k,5) — Sy(k,0). To prove the
existence of the (RYS) integral, let ¢ > 0 and let ¢’ > g be such that p~! + (¢/)~! > 1. By
(4.10) and Lemma 4.18, there exists A = {2;: j =0,...,m} € PP([a,b]) such that

(9)-

qu ; (zi-1,77)) < [6/2Cpa |f 1)

For j = 1,...,m, let % be the function on [zj_1,2;] equal to h on (zj_1,%;), h/(zj_1) =
h(zj—1+) and h/(z;) := h(z;—). Let &', K" be two refinements of A, let o', ¢ be open
intermediate partitions of ', ", respectively, and for j = 1,...,m, let s}, o3, Kj, o7 be

the restrictions of &', o', k", 0" to [zj_1,2;]. Approximating Young sums by corresponding
Riemann-Stieltjes sums, then using Corollary (4.25) and Hoélder’s inequality, we get

‘SY(fa h; h;,a OJ) - SY(fa h; "3”70'

Z‘SY fah a'%]’o']) SY(fah’J ]a ;,)

1/q
< 200 Sy 51,2 ) Y2 gy < 2G| p)(zvq (i 1,7)) " <e
j=1

Therefore the (RYS) integral exists by the Cauchy criterion (Proposition 6.10 below). The
inequality (4.24) for the (RYS) integral follows, approximating Young sums by Riemann-
Stieltjes sums, from (4.12). The proof of Theorem 4.26 is complete. 0O

In the cases p =1 or ¢ = 1 one can improve the preceding theorem as follows.

Proposition 4.27. Let f € Wy[a,b] and h € Wy[a,b] for (p,q) = (1,00) or (00,1). In either
case the (RYS) integral exists and has the bound

b
(BYS) [ db] < 1oy (4.27)
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Proof. A proof for the case (p,q) = (o0,1) is simple (see 11.19.3.11 in Hildebrandt [52]) and
we omit it. Let (p,q) = (1,00) and let € > 0. By Theorem 4.10, there exists A = {z;: j =
0,...,m} € PP([a,b]) such that Osc(h; (zj-1,2;)) <efor j=1,...,m. Fixany j =1,...,m
and let h/ be the function on [z;_1,2;] equal to h on (2;_1,2;), h'(zj—1) = h(zj_1+) and
h(z;) == h(zj—). Let k; € PP([zj—1,%;]) and let o; be an open intermediate partition of ;.
Then exists 5; € PP([zj—1,z;]) and an intermediate partition &; of £; such that

Sy (f, W5 kj,05) — Srs(f, B &5, 55)| < e/m.
For the sum S(%;) defined by (4.23), we have

|Srs (£, 73 &1,65) — S(Rj)| < evi(f;[zj-1, 7))
By the representation (4.14), it follows that

|S(R5) = £(2)[I (2)) = B (z-1)]| < evr(f; [zj-1, 2)])-
Therefore for any refinement s of A and open intermediate partition o of k, we have

m

‘SY(fa h;k,0) — Z (% [hj zj) hj(zjfl)]‘ < 6+26||f||(1)-

Thus the (RYS) integral exists by the Cauchy criterion.

To get the bound (4.27) we apply summation by parts to a Young sum similar to rep-
resentation (4.13). For k = {z;: i = 0,...,n} € PP([a,b]) and open intermediate partition
o={yiri=1,...,n}ofk, let {z],y,: [,k =0,...,2n+1} be z( := zg, &} := To+, Top = Tp—,

i ——
Lop+1 = Tn,

i) zi— forl=2i . B i)y fork=2i
i ‘_{ zit forl=2i41, ori=l..,n—land g '_{ z; for k=2i+1,
fori=1,...,n, yy =y} = zo. Then we have
Sy (f h;k,0) — f(a)[h(b) —h(a)] = Sv(f—f(a) h;k,o0)
2n+1

Z [f( yz yl V][R(b) — (37;71)]-

This yields the bound

1Sy (£, h; 5, 0) | < | flloollPll o0y + Ilf [y 1Pell(o0)-

The proof of Proposition 4.27) is complete. O
Theorem 4.26 and the preceding statement yield that the indefinite (RY'S) integral

fh I(fh),  where  I(f,h)(z):= (RYS)[fdh,  z € [a,b],

maps W, x W, into W, provided p™' + ¢ ' >1ifpvg<oocorp !l +¢ ' =1ifpVg=c0
Namely, the following is true:
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Corollary 4.28. Let f € Wyla,b] and h € W,[a,b] for (p,q) such that p~* + ¢t > 1 if
pVq<oo, or(pq)=(1,00), or (p,q) = (00,1). Then

(£ W)ll(q) < Cp gl fllp 1Pl g (4.28)
where Cp 4 is the same constant as in (4.24) if pV ¢ < 00 and C1 0 = Coo,1 = 1.

Proof. We give a proof only for the case when p V ¢ < 0o because proofs for the other two
cases are similar. Let k = {z;: = 0,...,n} € PP([a,b]). By additivity of the (RYS) integral
(Proposition 6.11 below) and (4.24), it follows that

n T; q
slI(f0im) = SO|RYS) [ fan) SC"qZIIfIIq vq(h -1, 1)
i=1 Ti-1
< Co AL A,

where the last inequality follows from Lemma 4.6. Thus (4.28) holds. O

The following examples, from L. C. Young [117, Section 7] and Le$niewicz and Orlicz [70],
will show that the hypothesis p~—' +¢~! > 1 in the Love-Young inequality cannot be weakened
top™'+¢ ! =1 For 1 <p,q<ooand0 <z <1, define the “Weierstrass functions”

Sp(z 22 k/p gin 261y and Cy( 22 k/4 cos 26+ ny
k=1 k=1

Then |Sp(z + h) — Sp(z)| = O(hYP) and |Cy(x + h) — Cy(z)| = O(hY9) for 0 < h < 1 and
0 <z <1— h by Theorem I1.4.9 in Zygmund [121]. Therefore S, € W, and C; € W,,.

Theorem 4.29. If 1/p +1/qg = 1 and 1 < p,q < oo then (A) [g SpdC, doesn’t exist for
(A) = (MRS), (RRS), (LS), (RYS), (CY) or (HK).

Proof. Forn=1,2,..., let z; := 42 ",4=0,...,2". Then {z;: i =0,1,...,2"} is a partition
of [0,1], and

2n

T, := Z Sp(2i)[Cq(x;) — Cy(xi-1)]

=1

2" n—1 n—1
=33 27 #/Psin(2b i) {Z 2 Y [cos(2" i) — cos(2 (i — 1))]}
=1 k=1 =1
n—1ln—1

=Y S 2k l/qzsm 2k ri) [cos (28 ) — cos(28 (i — 1))

k=11=1

Recall the following identities (Chapter I, §1 in Zygmund, 1959):

1 & sin(m + 3)t cos 1t — cos(m + 1)t
— + cosjt = ———2°  and sin jt = 2 27
jzzl J 2sin %t ; J 2sin %t
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valid for any positive integer m and ¢ € (0,27). Using trigonometric formulas, for k # [, we
get

2n
> sin(25 i) [cos (25 i) — cos(28 (i — 1))
=1

1

= Y {5(1 —cos 2 ) [sin 2 (28 + 21)i + sin2 (28 — 28)4]
1

+3 sin 27" [ cos 27" (28 4 21)i — cos 27 (2F — 21)1']} =0.

Similarly, for k = [, we get

2n
> sin(25 7" i) [cos (258" ) — cos (25 (i — 1))
=1

2n
=y {_(1 — cos 28 ) sin 28 g 4 5 sin okt lpl cos 28 g — 1]}
i=1
— 27'L Sln2k ”+17T > 2n . 1 . g . 2k—n+1 2k+1
- T

Thus

n—1
T, > 2 2k0=1/P=1/0) = 9(n — 1)
k=1

if 1/p +1/q = 1. Therefore the integral (A) [§ SpdC, is undefined for (A) = (MRS). For
continuous functions, as S, and Cj are, the (CY') integral by its definition after (2.2) reduces
to the (RRS) integral which in turn equals the (M RS) integral by Theorem 6.3 below. Thus
the integral is also undefined for (4) = (RRS), (RYS) and (CY) by the implications shown
in Figure 2.1. Since S, and C, both have unbounded variation the (LS) integral is undefined.
The integral (HK) [; S,dC, is undefined by Proposition F.3 of [28] and comments following
it. O

4.5 Interval functions

Functions having as arguments either real numbers or certain sets of real numbers give rise to
different ways of defining integrals. In some cases it is possible to establish a correspondence
between the resulting integrals. For example, let [a, b] be a closed interval of real numbers, and
let Bla,b] be the o-algebra of Borel subsets of [a,b]. Let A(Bla,b]) be the class of o-additive
set functions on [a, b]; that is, real functions defined and countably additive on B[a,b]. There
is a one-to-one correspondence between A(B[a,b]) and the class Wi[a,b] of real functions h
defined and of bounded total variation on [a,b] such that h(a) = 0 and h is right-continuous
on (a,b). Let pp((u,v]) := h(v) — h(u) for u,v € [a,b]. The correspondence is given by the
Lebesgue-Stieltjes measure p} generated using the Carathéodory construction from the interval
function pp. This correspondence leads to the Lebesgue-Stieltjes integral (LS) [, f dh for
a |dh|-integrable function f and a function h € W[a,b]. On the other hand the refinement—
Young-Stieltjes integral (RYS) fg f dh exists and has the same value as the Lebesgue-Stieltjes
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integral provided h € Wi[a,b] and f is regulated on [a,b] (see 11.19.3.11 in Hildebrandt [52]
for the first statement, and Dudley [23, Lemma 3.3] together with Proposition 6.22 below, for
the second statement, as in Figure 2.1). However the (RYS) integral may exist when neither
the integrand f nor the integrator h is of bounded total variation.

In this section we discuss functions defined on intervals and describe a correspondence be-
tween regulated point functions and upper continuous additive interval functions (Proposition
4.37 below). The results of this section are used in Section 6.4 to establish a relation between
the Kolmogorov integral defined for interval functions and the (RYS) integral. Also, the re-
sults of this section are used in Chapter 7 for the product integral with respect to an additive
interval function.

An interval in R is a set of any of the following four forms: for —co < ¢ < d < o0,
(cd) ={z€eRc<z<d},[c,d) ={z€eR c<z<d} (¢d :={z € R c<z<d} and
[c,d] .= {x € Rt ¢ <z < d}. Thus for ¢ € R, [c,c] = {c} is a singleton and (c,c] = [¢,¢) =
(c,c) = 0. Let —o0 < a < b < +00. Define the following two classes of subintervals of the
closed interval [a, b]:

1. Jps([a, b]) :={(c,d),{c}: a < ¢ < d < b} (open intervals and singletons),

2. 3([a,b]) := {[c, d], (¢, d],[c,d), (c,d): a < ¢ < d < b} (arbitrary subintervals).
Kolmogorov [63, p. 680] mentioned the class J,5([a, b]). His results apply to both classes. Many
texts on measure theory consider the class {(c,d]: a < ¢ < d < b}.

Any function p: 3([a,b]) — R will be called an interval function on [a,b]. In Chapter 7
interval functions are considered with values in a Banach algebra B with identity I. The class
of all B-valued interval functions on [a, b] is denoted by Z([a, b]; B), and it is denoted by Z]a, b]
if B = R All the definitions and results in this section are stated for real-valued interval
functions. They also hold for B-valued interval functions when absolute value is replaced by
the norm and 1 is replaced by the identity I.

Definition 4.30. An interval function u on [a, b] will be called additive if u(AU B) = u(A) +
p(B) whenever A, B € 3([a,b]) are disjoint and AU B € 3([a, b]).

If p is an additive interval function then clearly u(() = 0.
For two disjoint intervals A and B, A < B will mean that z < y for all z € A and y € B.

Definition 4.31. An interval function y on [a, b] will be called multiplicative if for any intervals
A, B such that A < B and AU B is an interval, we have u(AU B) = u(A)u(B), and u(@) = 1.

If 4(0) = 1 were not assumed, it would hold if and only if there is A € J([a,b]) such that
p(A) # 0 (u(A) is invertible in the case p has values in a Banach algebra). Indeed, if such an
A exists then

1= u(A) A = p0 U A(A)] ™" = (@) - 1= u().

The converse implication holds because p(#) =1 and @ € 3([a, b])-

For intervals as for other sets, A, T A will mean A; C Ay C --- and U2 A, = A, while
Ap L Awillmean A; D Ay D ---and N2, A, = A, and A, - A willmean 14, (z) — 14(z) as
n — oo for all z € R

Definition 4.32. 1. An interval function y on [a, b] will be called upper continuous if pu(A,) —
p(A) for any A, A1, As, ... € 3([a,b]) such that A, | A.

2. An interval function y on [a, b] will be called upper continuous at 0 if u(A,) — p(0) for
any Ay, Ag, ... € ¥([a,b]) such that A, | 0.
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An additive or multiplicative interval function p on [a,b] is uniquely determined by its
restriction to the class Jos([a, b]).
For an interval function x on [a, b], define two functions R, , and L, , on [a,b] by

. (0) fr=a . ([a,z)) ifz € [a,b)
Bya(2) '—{ aa) ey M9 Tual® '_{ o) ifa—p 429

If p is upper continuous then R, , and L, , are both regulated point functions on [a,b]. The
converse is not true as the following shows:

Example 4.33. Let u([c,d)) := u((c,d]) := 0 and p([e,d]) := 1 for a < ¢ < d < b, and
p((c,d)) := —1 for ¢ < d. Then y is an additive interval function, R, = 1(44) and Ly, = 13
are regulated, but u is not upper continuous at 0.

Example 4.34. Let u be an additive interval function on [a,b]. For A € 3([a, b)), let v(A) :=
exp{u(A)}. Then v is a multiplicative interval function on [a, b]. If y is upper continuous then
v is also upper continuous. Indeed, letting A, | A we have

v(An) —v(A)] = |exp{u(An) —p(A)} — 1 exp{u(A4)}
< |u(An) — p(A)| exp{|u(An) — n(A)|} exp{u(4)},

and the claim follows.

An interval A will be called right-open at d or in symbols A = {-,d) if A = [¢,d) or (¢, d) for
some ¢ < d, otherwise right-closed at d, or A = {-,d|, if J = [¢,d] for some ¢ < d or A = (c,d]
for some ¢ < d. An interval A will be called left-open at c or A = (c,-} if A = (¢,d) or (c,d] for
some ¢ < d, otherwise left-closed at ¢, or A = [c,-}, if A = [¢,d] for some ¢ < d or A = [c,d)
for some ¢ < d.

We say that an interval function p on [a,b] is bounded if sup{|u(A)|: A € 3([a,b])} < oo
and p is non-degenerate if u([a,b]) # 0 (u(A) is invertible for each A € 3([a,b]) in the case u
has values in a Banach algebra).

Theorem 4.35. Let y € Z[a,b] be either additive or bounded and multiplicative. Then the
following five statements are equivalent:

(a) p is upper continuous;

(b) u is upper continuous at (;

(c) u(Ay) — (D) whenever open intervals A, | 0 and

card{z € [a,b]: |p({z}) — u(B)| > €} < oo  for all e > 0; (4.30)

(d) Ry is regulated, R, .(z—)=p([a,z)) for z € (a,b] and R, (z+)=pu([a, z]) for z € [a,b);

(€) Ly is regulated, L, o(x—)=p(la,z)) for z € (a,b] and L, qo(z+)=p(la, z]) for z € [a,b).
If, in addition, the multiplicative interval function u is non-degenerate, then any of the above
statements are equivalent to the following two statements:

(f) u(An) — p(A) whenever intervals A, T A;

(9) u(A,) — p(A) whenever intervals A, — A # 0.
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Proof. The proofs will be given mainly in the additive case. Those for y multiplicative are
similar.

(a) & (b). Clearly, (a) implies (b). For (b) = (a), let intervals A, | A. Then A, =
B, UAUCQC, for intervals B, < A < Cy, with B, | 0 and C,, | 0. So u(A,) — u(A) by
additivity or multiplicativity.

(b) = (c). The first part of statement (c) is clear. For the second part, suppose there exists
€ > 0 and an infinite sequence {u;: j > 1} of different points of (a, b) such that

lp({u;}) — p(@)] >e forall j >1. (4.31)

Then there exists u € [a,b] and a subsequence {u;: ' > 1} such that either u; | u or uj T u
as j' — oo. In the first case, if p is additive then

p{ug}) = pl(u, upl) — p((u,ujr)) =0 as ' = oo

because both (u, u;s] | § and (u,u) | . This contradicts (4.31). Similarly, if 4 is multiplicative
then we have

p((ws ugr]) =1 = p(uw, ugr))p({uy}) =1 = [p((u,uyp)) = U p({u}) +p({uy}) - 1.

Due to the boundedness assumption, sup; |#({u;})| < co. Thus the left side and the first term
on the right side tend to zero. Hence p({u;}) = 1 as j' — oo, also a contradiction. Therefore
(4.30) holds in the first case. The proof in the second case is symmetric.

For (¢) = (b), let intervals Ay, | (. Then for some u, either for all sufficiently large n, A,
is left-open at u € [a,b), or A, is right-open at u € (a,b]. Using additivity if p is additive, or
continuity of the multiplication if g is multiplicative, in each of the two cases u(A,) — u(0)
follows by (c).

(b) & (d) < (e). Taking into account the boundedness assumption when 4 is multiplicative,
the implications (b) = (d) and (b) = (e) are clear. We prove (d) = (b) only, because the proof
of () = (b) is similar. Let intervals A, | . Then for some u, either for all sufficiently
large n, Ay is left-open at u € [a,b), or A, is right-open at u € (a,b]. By assumption, in
the first case we have lim,, 1(A,) = Ry qo(u+) — Ry q(u) = 0 and in the second case we have
limp, 4(An) = Rya(u—) — Ryalu—) = 0.

For (b) = (g), let intervals A, - A # 0. If A = (u,v) then {u} < A, < {v} for n
large enough. For such n, there are intervals C,, and D,, with {u} < C, < A, < D, < {v}
and C, U A, UD, = A. Also for such n, we have either C,, = 0§ or C,, = (u,-}, and either
D, =0 or D, = {-,v). Clearly C, = 0. If N := {n: C, # 0} is infinite, there is a function
j = n(j) onto N such that Cy;) | 0. Thus u(Cp) — 0. Similarly u(D,) — 0. Therefore
p(Ap) = u(A) — u(Cp) — u(Dp) — p(A). A similar argument works for other cases A = (u,v],
[u,v) and [u, v].

Clearly, (g) implies (f). For (f) = (b), let intervals A, | . Then A; = B, U A, UC,
for some intervals B,,C, with B, < A, < C,, and B, T B, C, 1 C for some intervals
B,C with Ay = BUC. If y is additive then u(A,) — 0 = p(0). If x is multiplicative then
#(Bn)p(An)p(Cr) = p(B)p(C), so p(An) = p(Bn)~ ' u(B)p(C)u(Cn)™" = 1 = p(0). The
proof of Theorem 4.35 is complete. O

Let R[a,b] be the set of all regulated functions on [a,b] considered in Section 4.2. Next
we show that there is a one-to-one correspondence between additive upper continuous interval
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functions on [a, b] and classes of regulated point functions on [a,b]. For h € R]a,b] define an
interval function py on [a, b] corresponding to h by

pn((u,v)) :== h(v—) — h(u+) for a <u < v <b,
uh({u}) = h(u+) — h(u—) for a < u < b, (4.32)
pn({a}) == h(a+) and pn({b}) := h(b) — h(b—).

Theorem 4.36. The following statements about an additive interval function p on [a,b] are
equivalent:

(a) p is upper continuous;

(b) there ezists h € Rla,b] such that h(a) =0 and pp = p on I([a,b]);

(c) there ezists h € R[a,b] such that h(b) =0 and pp = p on I([a, b)).
Proof. (a) = (b). By statement (c) of Theorem 4.35, the set D, := {z € (a,b): p({z}) # 0}
is countable. Let D be a countable subset of (a,b) which includes the set D,. Let {h,: z € D}
be any set of real numbers such that card{z € D: |hy — p([a,z))| A |hy — p([a, z])| > €} < 00
for each € > 0. For example, one can take h, equal either to u([a,z]) or to p([a,z). Define a
real-valued function h on [a, b] by

h(z) := u(la, z)) = p([a, z]) for z € (a,b) \ D
h(a) := 0, h(b) := p([a,b]), (4.33)
h(z) := hy for z € D.

To show that h € R([a,b]) let z € (a,b] and € > 0. There exists z € [a,z) such that
lp((y, )| < € and |hy — p([a,y])| < € for all y € (z,2) by (a) and by the definition of
{hy: x € D}, respectively. Thus |h(y) — u([a,z))| = |p((y,z))| < € for y € (z,z) \ D and
1) — (e, )| < [hy — (]| + |6((5,2)] < 2% for y € (5,2) N D. Since ¢ > 0 is
arbitrary, h(z—) = limy, h(y) = p(fa,z)) for € (a,b]. Similarly it follows that h(z+) =
limy|, h(y) = p([a,z]) for = € [a,b). Thus h € R[a,b] and h(a) = 0. Concerning the interval
function py, corresponding to h, it now follows that up((u,v)) = h(v—) — h(u+) = u((u,v)) for
a<u<v<band pp({u}) = h(ut+) — h(u—) = p({u}) for a <u < b. Therefore (b) holds.

(b) = (a). To show that p is upper continuous, by Theorem 4.35, it is enough to show
its statement (c). Let open intervals A, | 0. Then there exist {u,v,: n > 1} C [a,b] such
that, for all large enough n, either A, = (v,,u) with v, T u or A, = (u,v,) with v, | u. By
(c), for some h € Rla,b], we have u(A,) = h(u—) — h(v,+) — 0 as n — oo in the first case
and p(Ap) = h(vy,—) — h(u+) — 0 as n — oo in the second case. Similarly, it follows that
card{z € [a,b]: |u({z})| > €} < oo for all € > 0. Thus (a) holds by Theorem 4.35.

The proof of the equivalence (a) < (c) is similar to the above proof and therefore is omitted.
The proof of Theorem 4.36 is thus complete. O

For an additive upper continuous interval function y on [a, b, let
[1]q := {h € R[a,b]: h(a) =0 and pp = p on I([a,b])}. (4.34)

By property (b) of Theorem 4.36, the set [u], is nonempty. If h € [u], then any regulated
function equal to h except possibly at jump points of h also belongs to [u],. For an additive
upper continuous interval function p on [a,b] one can single out two elements from [u],. Let
R, o and L, , be defined by (4.33) using hy = p([a,z]) and hy = p(fa,z)) for £ € D = D,,,
respectively. Then R, , is right-continuous on (a,b) and L, , is left-continuous on (a,b). Also
both functions coincide with the functions in (4.29).

The next fact then follows.
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Proposition 4.37. Let a < b. Then one-to-one linear operators between the vector spaces:

(a) the set of all additive upper continuous interval functions on [a, b];

(b) {h € Rla,b]: h(a) =0 and h is right-continuous on (a,b)};

(¢) {h € Rla,b]: h(a) =0 and h is left-continuous on (a,b)},
are given for (a) and (b) by h = R, , and p = pp, and between (a) and (c) by h = L, , and
1= ph-

The p-variation for interval functions is defined similarly to the p-variation for point func-

tions.

Definition 4.38. Let u € Z[a,b] and 1 < p < oo. The p-variation of u will be defined by

i) = v 8 = sup { 3 [ 45) - (UA)\ (A1, Aw) € TP (fa, 8]},
=1 j=1

where a union over the empty set of indices is defined as the empty set, and as before IP ([a, b])
is the set of interval partitions of [a, b]. The class of all interval functions on [a, b] with bounded
p-variation will be denoted by Z, = Z,]a, b].

For an additive interval function y, clearly

_sup{zm P (Ar,-.., Ay) € TP ([a,0]) }.

The next statement relates the p-variation for interval functions and point functions.
Theorem 4.39. Let y € Z[a,b] be upper continuous. Suppose that u is either additive, or
bounded and multiplicative. Then the following three statements are equivalent for u:

(a) p € Ipla,b); (b) Rya € Wyla, bl; (¢) Lya € Wpla, b).
Also, if any of (a), (b) or (c) holds, then vp(n) = vp(Lye) = vp(Ryua)-

Proof. Let p be an additive upper continuous interval function on [a,b]. Since R, ,(a) =
pu(0) =0, for any a = 29 < z1 < --- < z,, = b, we then have

5 1Rualw) = Rualai-)P = lolla,a) = pOF + 32 latla, ) — s icaDP < oy

Thus vp(Ry,q) < vp(p). Likewise, v,(Lyq) < vp(p). Conversely, by statement (d) of Theorem
4.35, for an interval A = [a,-} left-closed at a, we have u(A) = Ry 4(t), where t = v— if
A = [a,v), t =v if A = [a,v]. Thus for any J-partition {4;: 4 = 1,...,n}, with A; ordered
from left to right, there are a = uyp < u; < --- < u, = b (where we write u— < u < u+ by
definition) such that pu(U;<;A;) = R, 4(u;) for each ¢, where u; = v;— for some v; if A; = {-, v;).
Replacing each u; by w;m, T u; if u; = v;,— and u; by wi,, | a if u1 = a+, letting w; ,, = u;
otherwise, we get

n 7 i—1 n
S le(UA) —u(U4)[ = Jim S IRya@wim) ~ Rua@i-im)lP < up(Ria)-
i=1 j=1 j=1 i=1

Thus vp(p) < vp(Rye). Likewise, vp(p) < vp(Lpya). So vp(p) = vp(Rye) = vp(Ru,e) and (a),
(b), (c) are equivalent. O

An interval function need not be upper continuous even if it is additive and has bounded
p-variation for some p < oco.
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Example 4.40. On [0,2], let z be an interval function such that p(J) = 0 for any interval
included in [0,1] or in [d, 1] for any d > 1. Let u((1,¢}) =1 for 1 < ¢ < 2. Then y is additive
and of bounded p-variation for any p, but not upper continuous at .

For 1 < p < oo and p € Ty, let [|ullp) = vp(1) "7, ||slloo == sup{|u(J)]: J € 3([a,b])} and
lellip) == llesllpy + l|tll o~ Similarly to Theorem 4.2, the next fact is easy to prove.

Theorem 4.41. For 1 <p < oo, (Zp, | - |ljp) is a Banach space.

4.6 On the order of decrease of Fourier coefficients

Much of the early work on Holder conditions and on p-variation was done with Fourier series
as one application in view, e.g. Lipschitz (1864), Wiener (1924), L. C. Young (1936). Let
T' := {z: |z| = 1} = {€!%: 0 < 6 < 27} be the unit circle in the complex plane C. On T let
du = df/2m be the rotationally invariant probability measure. For Z = {0,+1,+£2,...}, the
functions z + 2", or @ — ™ for n € Z form an orthonormal basis of complex L2(T, u) (e.
g. [22], Proposition 7.4.2). For f € LY(T", ), the Fourier coefficients ¢, := [ f(z)z ™ du are
defined, yielding the Fourier series
f~ Z cn2™.

NezZ

Kolmogorov [62] showed that for f € £!(T', ) the Fourier series may diverge everywhere.
Carleson [10] for p = 2 and R. A. Hunt [56] for p > 1 showed that if f € LP(T", 1), then the
Fourier series converges almost everywhere to f.

If f is real-valued then it is usual to rewrite the Fourier series as

o
f~ap+ Z an, cos(nB) + by, sin(nh),

n=1

where a,, = (¢, + ¢_p)/2, by, = (cn, — c—p)/(2i), n > 1, with a,, and b, real. For 1 < p < 2,
the Hausdorff-(W.H.)Young inequality states that if f € LP(T", 1) then the sequences {a,},
{bn} and {cp} are in £7 = {{dp}: 3, |dn|? < oo}, where 1/p +1/q = 1. For 2 < p < o0,
stronger integrability conditions do not provide any improvement beyond #? on the order of
the Fourier coefficients. For f continuous on T (= continuous in § and periodic of period 27),
Carleman [9] showed that {c,} need not be in £2=¢ for any € > 0. Orlicz [87] showed that for
any {d,: n € Z} € £? one can have ¥, |cndy| = +00. Bary [4, pp. 338-340] gives a proof.
If f is periodic of period 27 and on [0, 27| satisfies the Holder condition

(6" — f(0")] < K|6' — 6"]°, (4.35)
where 0 < a < 1, then |c,| = O(Jn|™®) as n — oco. Functions Holder of order a on a bounded
interval have bounded 1/c-variation. So more generally, let f € W, for some 1 < p < oo and

let g, (0) = cos(nf) or sin(nd) on [0,27]. It is easily seen that v4(g,) = 2n - 29 for any ¢ < oo,
so that one can take ¢ such that p~! + ¢! > 1. Then by the Love-Young inequality

1 2m . _ —r
anl = | [ 10 dsin(n) | < 227G, | m™ % = O(n ™)
for any r < 1/p.
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In fact, Marcinkiewicz [78, Theorem 3] proved that this is true for » = 1/p. Indeed, due to
periodicity

n=antib=o [ f@e 0= [T 50 j0+ D))o " as

47
2
41 Jo

On the other hand, Marcinkiewicz [78, Theorem 4] proved (see also p. 260 in [117]) that for
some C < 00,

for n > 1, so that

FO) =50+ 7)) de. (4:36)

2
([T 10+ 0) - r0) ds) ™" < Clof 711 (4.37)

for any ¢. This together with (4.36) implies |c,| = O(n~'/7).

Marcinkiewicz [78, Theorem 5] also proved that the Fourier series of f converges pointwise
everywhere to [f(z—) + f(z+)]/2 if the p-variation of f is bounded for some p < co. Wiener
[113] had proved this fact assuming that p < 2. Recall that the Fourier series of a continuous
function can diverge at some points as shown by du Bois—Reymond in 1876, see e.g. [22,
Proposition 7.4.3]. A continuous function f has its Fourier series converging to it uniformly
if f is of bounded p-variation for some p < oo or if f is of bounded ¢-variation for ¢(u) :=
exp{—u~%}, where 0 < a < 1 (Salem [99], see also p. 310 in Bary [4]).
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Chapter 5

Stochastic processes and p-variation

It will be seen that several classes of stochastic processes have sample functions of bounded
p-variation for some p. But we did not find any results on p-variation for general Markov
processes, which do have regulated and right—continuous paths under mild conditions.

5.1 Stochastic processes with regulated sample functions

As usual, a stochastic process X = {X (t): t > 0} is a family of random variables X (t) = X (¢, -)
defined on a complete probability space (2, F, Pr). For each w € €, the function X (-) = X (-,w)
is called a sample function of X. A stochastic process X = {X (¢): t > 0} has regulated sample
functions if X (-,w) € R[0,00) for almost all w € Q. In this case we write X € R[0,00).

Let X € R[0,00) and let Qx := {w € Q: X(-,w) € R[0,00)}. Due to completeness of the
underlying probability space, Qx € F and Pr(Q2x) = 1. For each t € [0, ), let

B | X(t+w) ifwex
Xi(t) =Xy (tw) := { X(t,w)  otherwise.

Similarly define X_(t) for each ¢t € (0,00) and let X_(0) := X(0). For each t € [0,00),
X (t) is a random variable because it is the limit for w € Qx of the random variables X (r,,)
for r, rational, r, | t, and equals X (¢) otherwise. Likewise, X ({—) is a random variable.
Therefore X, = {X(t): ¢ > 0} and X_ = {X_(¢): ¢ > 0} are stochastic processes on the
same probability space as X.

Recall that AT X (t) := X (¢) — X(¢) and A~ X (¢) := X (t) — X~ (t). For each t € [0, 00),
let

Qq(t) := {w € Q: either A=X(t) # 0 or AT X (t) # 0}.

A point ¢ € [0,00) is called a point of fized discontinuity if Pr(Q4(t)) > 0. If ¢ is not a point of
fixed discontinuity then
lim X (s) = X(t) almost surely. (5.1)

s—t

Indeed, for each ¢ € (0,00) and w € Qx \ Qq4(t), we have

ling(s,w) =X({t—w) =X(t,w) = X(t+,w) = ling(s,w).
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Since Pr(Qx \ Q4(¢)) =1, (5.1) holds when ¢ € (0,00). The same argument yields (5.1) when
t = 0. If the stochastic process X has no points of fixed discontinuity then the three processes
X_, X4 and X are modifications of each other, that is

Pr({X(t) = X(¢t-)}) = Pr({X(¢) = X(t+)}) =1

for each t € [0, 00).
A point ¢ € [0,00) is a point of stochastic continuity of X if X (s) — X (¢) in probability as
s —t.

Theorem 5.1. Let X € R[0,00). The set of points of fized discontinuity of X is at most
countable and coincides with the set of points of stochastic discontinuity of X.

Proof. Since the limit of a sequence convergent in probability is unique almost surely, one
can show that X is not stochastically continuous at some ¢ € [0,00) if ¢ is a point of fixed
discontinuity. Also, X is stochastically continuous at ¢ whenever ¢ is not a point of fixed
discontinuity. This yields the second part of the claim. The first part follows from Theorem
11.1, Ch. VII, of Doob [18]. O

By the preceding theorem, the set of fixed discontinuities of any stochastic process with
regulated sample functions is at most countable. However, almost every sample function of
such a process may have a non-fixed discontinuity, e.g. X;(w) = 14>, where w has a uniform
distribution in [0, 1].

5.2 Martingales

Let 91 (u) := u?/loglog(1/u) for 0 < u < e €. Then )1 (u) can be defined for u > e ¢ so that
11 is a strictly increasing continuous convex function from [0,00) onto itself. For Brownian
motion B(t) := B; and 0 < T' < oo, Taylor [106] showed that vy, (B;[0,T]) < oo almost surely
while if 1 (t) = o(¢(t)) as t | 0, v4(B;[0,T]) = +o00 almost surely. Thus almost surely

<40 ifp>2

Let (2,.A,Pr) be a probability space. Then a filtration F = {F;: t > 0} is a family of
sub—o—algebras of A such that F; C F; for 0 < s < t. The filtration F is right—continuous iff
Fi+ = NgstFs = Fy for all t > 0. A real-valued stochastic process X = {Xy: t > 0}, is adapted
to F iff Xy is F; measurable for each ¢. A pair (X,F) is a martingale iff E(X;|F;) = X, almost
surely for 0 < s <t. Thus X is automatically adapted. It is a supermartingale if it is adapted
and E(X;|Fs) < X, almost surely for 0 < s < t. A stochastic process Y = {Y;: ¢ > 0} is a
modification of X iff for each t > 0, X; = Y; almost surely.

It is known that if F is right—continuous, then a supermartingale (X,F) has a modification
whose paths ¢ — Y(w) are regulated and right—continuous if and only if ¢ — EX; is right—
continuous (Meyer, [82, p. 95]). For a martingale EX; is constant, so every martingale (X, F)
with F right—continuous has a right—continuous modification M = {M;: ¢ > 0}. For any
martingale (X,F) and almost all w € Q, the function ¢t — Xy(w) has left and right limits at
each point through the countable dense set of rational numbers. Thus since ¢ — M(w) is
right—continuous, it is automatically also regulated (has left limits).
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Theorem 5.2, Let p > 2, 0 <T < oo and let M = {M;: 0 < t < T} be a right—continuous
martingale. Then M has almost all paths of bounded p-variation.

Proof. Monroe [84] showed that in distribution, M; = B.(;), 0 <t < T, where B = {By: u >
0} is a Brownian motion and 7(t¢) are stopping times with 7(s) < 7(¢), 0 < s <t < T. It
follows that v, (M;[0,T]) < vy(B;[0,7(T)]) < 4+o00 almost surely. O

While a local martingale plus a process locally of bounded variation yields a semimartingale
(Doléans—-Dade and Meyer [16] and Dellacherie and Meyer [14]) Theorem 5.2 allows one to add
a process of bounded p-variation for p > 2 and get a sum with the same p-variation property.

If EM; = 0,0 <t<T,and EM? < oo then E7(T) = EM? (Monroe, [84, Theorems 5
and 11]). Thus for any set of martingales M; = {M;: 0 < ¢ < T}, if sup;, EMZT < +o00 then
vp(M;;[0,T]) is bounded in probability uniformly in 3.

5.3 Gaussian stochastic processes

Let X = {X(¢): t > 0} be a Gaussian stochastic process, and let ox(s,t) := E|X(s) — X (¢)|.
For 0 < T < 00, let

vp(ox;[0,T)) == sup{iax(ti_l,ti)p: {tir1=0,...,n} € PP([0,T])}

For a function f on [a,b], define the indez of p-variation by

inf{p > 0: v,(f) < oo} if the set is nonempty
+o0 otherwise.

v(f;la, b)) = {

Using the p-variation index the result of Jain and Monrad [59, Theorem 3.2] can be stated as
follows:

Theorem 5.3. Let X be a separable mean zero Gaussian process. Then with probability 1

v(X;[0,T]) = inf{p > 0: v,(0x;[0,T]) < oo}

Fractional Brownian motion A fractional Brownian motion By = {Bg(t): t > 0} with
the Hurst index H € (0,1) is a mean zero Gaussian process with the covariance function

1
E[By(t)Bu(s)] = ; [T+ 82—t —s?"]  fort,5>0 (5.2)
and By (0) = 0 almost surely. Since the right side of (5.2) is equal to t A s for H = 1/2, By is
a Brownian motion in this case. It follows from (5.2) that the incremental variance op of By
is given by
ou(u)? := E[By(t +u) — Bg(t)]> = u*¥ for ¢t,u > 0,

and that By has stationary increments. For 0 < T < oo and for each € > 0, let Ny ([0,T];¢€)
be the smallest integer n such that intervals {[a;,b;]: i = 1,...,n} with og(b; — a;) < 2¢ for
i=1,...,n, cover [0,T]. Then there is a finite constant C such that Ny ([0,7];¢) < Ce '/ for

all € € (0,1]. By Theorem 1.1 of Dudley [20], there is a version of By with continuous sample
functions on [0,7]. We assume throughout that By is such a sample-continuous version. A
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stronger statement follows from Corollary 2.3 of Dudley [20]. Namely, the function pg(u) :=
H,/logu| for u > 0 is a sample modulus for By. That is for almost all w € Q there is a
K, < oo such that

|By (t,w) — Bu(s,w)| < K,pu(|t — s|) for t,s € [0, 7). (5.3)

Let k = {t;: i =0,...,n} be a partition of the interval [0, 7], and let

u) == [u/\/|logu|] i if u> 0 and pg(0) := 0.

For each w € () satisfying (5.3), we then have

n n

ZQH(|BH(tia ) BH ti—1,w < ZQH pr —ti— 1) <C Z i — i 1) TC,
for some finite constant C,, which does not depend on k. Therefore with probability 1,

v¢(Bm;[0,T]) = sup{vy(Bm;k): & € PP ([0,T])} < o0 (5.4)

whenever ¢ = pg. Since this function ¢ is bigger as u | 0 than u? for any p > 1/H, it follows
that the p-variation index v(Bgy) < 1/H for almost all sample functions of By.
However (5.4) also holds for the function ¢ = ¢y defined on [0, 4+00) by

= [t/\/2LL (l/t)]l/H for t >0 and ¢y (0):=0.

Define 9y on [0, +0c) by

Y (t) ==t /2LL (1/t) fort>0and %g(0):=0,

where L(u) := 1V logu. The function ¢y is continuous and stritly increasing. Let 95" be its
inverse function. Then ¢p is asymptotic to 15" near the origin, that is ¢z (u)/vy" (u) — 1 as
u J 0. The following statement is a special case of the result of Kawada and Ko6no [60]. In the
case when H = 1/2, that is for a Brownian motion, it was proved by Taylor [106].

Theorem 5.4. Let 1/2 < H < 1 and let ¢g be regularly varying and asymptotic to w;{l near
0. For 0 < T < oo, with probability 1,

lﬁiﬁ)lsup {s¢n (Bu;k): & € PP([0,T), |s| <é} =T. (5.5)

By the same result of Kawada and Koéno [60], the relation (5.5) with “=" replaced by “<”
also holds when the Hurst index H € (0,1/2).

It follows from the preceding theorem that if 1/2 < H < 1 and ¢g(u) = o(p(u)) as
u |} 0, then (5.4) fails. Thus the p-variation index of the fractional Brownian motion By,
1/2 < H < 1, is given by

v(Bg) =1/H  with probability 1.

48



5.4 Lévy processes

Homogeneous Lévy processes Let X = {X(¢): ¢t > 0} be a continuous in probability
stochastic process with independent increments. If almost all sample functions of X are right
continuous with left limits and X (0) = 0 almost surely then X is called a Lévy process (cf. It6
[67, Section 1.3]). A Lévy process X is called homogeneous if the distribution of X (t+s)— X (t)
with £, s > 0 does not depend on ¢t. Given a real number a, a number b > 0, and a measure L
on R\ {0} such f5,(o3(1A z?) L(dz) < oo, let

n(w) = Nap,r(u) = iau — bu® + (€™ — 1 — juh(z))L(dx) (5.6)
R\{0}

for u € R, where h(z) := z/(1 + 2?). The essential properties of h are that it is bounded
on R and is z + O(z?) as * — 0. Then 7 is called a characteristic ezponent and L is called
a Lévy measure. The characteristic function of a homogeneous Lévy process X is given by
Eexp{iuX(t)} = exp{tn(u)} for each t > 0 and u € R.

It is well-known that sample functions of a homogeneous Lévy process X with the charac-
teristic exponent (5.6) are of bounded variation if and only if b = 0 and

/ (1A 2|) L{dz) < oo (5.7)
R\{0)

(cf. e.g. Gikhman and Skorokhod [40, Theorem 3, p. 279]). The following result of Bretagnolle
[8, Théoréme III b] is less well-known. It sharpened an earlier result of Blumenthal and Getoor
[7] and Monroe [83].

Theorem 5.5 (J. Bretagnolle). Let 1 < p < 2 and let X = {X(t): t > 0} be a mean zero
homogeneous Lévy process with the characteristic exponent (5.6) such that b = 0. Then
vp(X;[0,1]) < oo with probability 1 if and only if

/ (1A |z]?) L(dz) < oo. (5.8)
R\{0}
If (5.8) fails then vp(X;[0,1]) = +o0 almost surely.

a-stable Lévy motion A homogeneous Lévy process X is an a-stable Lévy motion of index
a if its characteristic exponent (5.6) is given by b = 0 and the Lévy measure L = Ly = Lq g,
where
Y .
rT dx ifx>0
L dx) := .
aria(d) { g(—z) 1%z ifz <0

for @ € (0,2) and r,q > 0 with 7 + ¢ > 0. It is easy to see that (5.8) with L = L, holds if and
only if p > a. Therefore v,(Xq;[0,1]) < co with probability 1 for each p > «. Below we give
a more exact result for a-stable Lévy motion.

Recall that h(z) := z/(1 + z2). If a < 1 then (5.7) holds and [ hdL < co. In this case, it
is said that an a-stable Lévy motion has no drift if a + [ hdL = 0. The following result is due
to Fristedt and Taylor [38, Theorem 2].
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Theorem 5.6 (B. Fristedt and S. J. Taylor). Let X, = {X,(t): t € [0,1]} be an a-stable Lévy
motion with o € (0,2) having no drift if « < 1 and with r = q if « = 1. For an increasing
function 1p: [0,00) — [0, 00), with probability 1

n

lim > (| Xa(t:) — Xa(ti-1)]) = D (1A Xa). (5.9)

|£]—0 P (0.1]

By [38, Proposition 3] the right side of (5.9) is finite almost surely if and only if

/1 P(u)u % du < oo,
0

Xu [115, Section 3] established necessary and/or sufficient conditions for the boundedness of
the p-variation of a symmetric a-stable processes with possibly dependent increments. More
information about p-variation of stable processes can be found in Fristedt [37].

5.5 Empirical processes

Let P be a probability distribution on R with a continuous distribution function F. Let
X1,X5,...,X,, be independent with law P and let let F;, be the empirical distribution function
Fo(t) == n~1 30, lix,<sy for t € R Let U be the U[0,1] distribution function U() :=
max(0, min(1,t)), and U, an empirical distribution function for it. Let o, := n'/?(F, — F),
the classical empirical process. Clearly UoF = F and take F,, = U,oF. Then a,, = nt/ (U, -
U)oF. Almost surely U, is continuous at 0 and at 1. Then the p-variation of o, on R equals
that of 3, := n'/?(U, — U) on [0,1]. In studying the p-variation of o, we can thus assume
F =U and a, = B,. Qian [92, Theorems 3.2 and 4.2] proves the following

Theorem 5.7 (J. Qian). Let 1 <p < 2. Then there are constants Cp, A\, < oo depending only
on p such that Evy(ay) < Cpn'~P/2 and limsup,,_, o vp(ay)/nt P2 < X\, almost surely.

Conversely, since the X; are almost surely distinct, we have v,(ay,) > n'~P/2 o the above
theorem is sharp up to the constants C, and A,.
For p = 2 we have:

Theorem 5.8. (a) vs(ay,) = Op(loglogn) as n — oo.
(b) If 0 < ¢ < 1/12, then P(va(ay,) > cloglogn) — 1 as n — co.
Proof. Dudley [25] proved (a) and Qian [92, Theorem 3.1] proved (b). O

Let by, 0 <t <1, be the Brownian bridge process, a Gaussian stochastic process with mean
0 and Ebib, = t(1 —u) for 0 < ¢t < s < 1, and such that ¢ — b;(w) is continuous for almost
all w. As for Brownian motion v,(t — by(w)) < oo almost surely for p > 2 and = +oco almost
surely for p < 2. Y.-C. Huang [54], [55] proved the following:

Theorem 5.9 (Y.—C. Huang). Let2 < p < co. On some probability space there exist empirical

processes oy, and Brownian bridges b™ such that E||oy, — b(")||[p] = O(n%_%)

The rate of convergence is best possible up to a constant multiple since b is continuous:
11
if the X; are distinct, as they are almost surely, ||c,, — b ) =mn» 2.
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5.6 Differentiability of operators on processes

Some of the operators described in Chapter 3, e.g. the product integral operator (treated in
Chapter 7 below), are only Fréchet differentiable with respect to p-variation norms for p < 2.
In the Love-Young inequality and an inequality for convolutions (Gehring [39], see Appendix
A in [28] for a detailed proof) at least one of the two functions must be in W, for p < 2.
On the other hand paths of Brownian motion and certain other processes only have bounded
p—variation for p > 2, and the empirical process only converges in p—variation norm to the
Brownian bridge for p > 2. The question arises how the differentiability can still be useful.
We have examined this question for the empirical process.

Let T' be an operator on distribution functions, Fréchet differentiable with respect to the
p—variation norm at a distribution function F with a derivative linear operator DT and a
remainder bound of order 4 > 1. Then for empirical distribution functions F,,

T(F,) = T(F) + (DT)(F, — F) + O(|F — F|,).
It follows from Theorem 5.7 that
VA(T(Fa) — T(F)) = (DT)(Vn(Fy — F)) + Ope(nl 7®-11/2),

For v =1 and p < 2, the remainder term would not approach 0 as n — co. But if for a fixed
v > 1 we take p < 2 close enough to 2, then 1 — y(p — 1) < 0 and the remainder becomes
small as n — oo. For the bilinear operators and the product integral we have v = 2, so
that the remainder becomes Op;(n€~1/2) for any € > 0. For the quantile operator, one has
v=(p+1)/p13/2as p? 2 by Theorem 3.7, so that the remainder is Op,(n¢ /%) for any
€ > 0, where —1/4 is the best possible exponent by Bahadur—Kiefer theorems, cf. Section 3.4
above. Also for the composition operator (Theorem 3.3), v does not approach 1 as p 1 2.

Whenever 1 —y(p — 1) <0, if (DT)(y/n(F, — F)) converges in distribution to (DT')(boF)
for a Brownian bridge b, then so does /n(T(F,) — T(F)).
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Chapter 6

Integration

A whole world, created by the Young dynasty, with its own ideas, methods and language.

Transl. from F. A. Medvedev. Development of the Concept of Integral (in Russian) [81, p.
378].

6.1 The refinement—Riemann—Stieltjes integral

In this section we consider an extension of the mesh—Riemann-Stieltjes integral suggested by
in S. Pollard in 1923. The idea of the extension is to replace the convergence as the mesh tends
to zero used to define the (M RS) integral by a type of convergence now called net convergence
or, from another angle, filter convergence. Net convergence had previously been introduced
by Moore [85], Moore and Smith [86]. In his paper [91] Pollard shows that the new integral
extends and improves the mesh-Riemann-Stieltjes integral in some ways.
Throughout the chapter f and h are real-valued functions on a closed interval [a, b]. Let
k ={z;: 1 =1,...,n} be a partition of [a,b] and let o = {y;: i = 1,...,n} be an intermediate
partition of k, that is z; 1 < y; < x; for ¢ = 1,...,n. As before the set of all partitions
k of [a,b] is denoted by PP ([a,b]) and the Riemann-Stieltjes sum based on (k, o) is defined
by (4.22). Recall that the refinement-Riemann-Stieltjes integral or (RRS) integral of f with
respect to h exists and equals the number A, if for each € > 0 there is a partition X of [a, b]
such that
|5R5(f, h; K, o) —A‘ <e (6.1)

holds for all refinements x of A and all intermediate partitions ¢ of x. If the refinement—
Riemann-Stieltjes integral is defined then we write (RRS) [ f dh := A.

Proposition 6.1. The (RRS) integral is an extension of the (M RS) integral.

Proof. Suppose (MRS) [’ fdh exists with a value A. Then given any positive number
€ > 0, one can find a § > 0 such that (6.1) holds whenever the mesh |x| < d. Let A\ :=
{a,a+68/2,a+6,a+35/2,...,a+nd,b} for the minimal integer n such that a +nd + /2 > b.
Then (6.1) also holds for each refinement s of A. Thus (RRS) [° f dh exists and has the same
value A. a
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Example 6.2. Let f be a function on [a,b] and let £. := 1.5 be the indicator function
of [¢,b] for some a < ¢ < b. For any kK = {z;:4 = 1,...,n} and intermediate partition
o={yiri=1,...,n}of k, we have Srs(f,lc;K,0) = f(y;) forz;_1 < c < z; and y; € [z;—1,z;]-
The integral (MRS) [ f df. exists and equals f(c) if and only if f is continuous at c. Taking
¢ € & it follows that the integral (RRS) [? f dl. exists and equals f(c) if and only if f is
left-continuous at ¢. Therefore (RRS) [° 1{g,c] d¢c exists and equals 1 while the same integral

in the mesh-Riemann-Stieltjes sense doesn’t exist. However the other integral (RRS) [° £, d¢,
also doesn’t exist.

The following is proved in Hildebrandt (1963, Theorem II1.10.9).

Theorem 6.3. Let f and h be bounded functions on [a,b]. The integral (M RS) [° f dh exists if
and only if both (RRS) fg f dh ezists and the two functions f, h have no common discontinuities
on [a,b].

Properties 6.4. Consider the following properties of an integral fgfdh:
L 21,4 dh = h(b) — h(a).
II. For uy,uz € R and f1, fo: [a,b] — R,

b b b
[t +wpydv=a [ frdhtu [ g

where the left side exists provided the right side does.
III. For vi,v2 € R and hy, ho: [a,b] — R,

b b b
/ Fd(vih + vahy) =u1/ £ dh, -I-’UQ/ fdhy

where again the left side exists provided the right side does.
IV. For a <c < b, fgfdh ezists if and only if both [; f dh and fffdh exist, and then

/abfdh:/:fdhnt/cbfdh.

V. Let [° f dh exzists and let F(y) := [Y f dh for y € [a,b]. Then for each = € [a,b],

lim {F(y) ~ F(z) — f(2)[h(y) — h(@)]} = 0. (6.2)

Pollard [91, p. 80] showed that the “if” part of IV does not hold for the (M RS) integral.
Indeed let f := 1j; 9] and h := 1(; 9] be indicator functions on [0,2]. Then (M RS) JLfdh=0
and (MRS) [ f dh = h(2) — h(1) = 1. For any s = {z;} € PP ([a,b]) such that 1 ¢ x and an
intermediate partition o = {y;} of x, we have

Sas(f. hi w,0) = Flyo) [R(e:) = Awim)] = { 0l o

where 7 is such t?aff zi—1 < 1 < z;. Clearly x can have in addition arbitrarily small mesh.
Thus (MRS) [3 f dh doesn’t exist. A sufficient condition for the (M RS) integral to satisfy
condition IV is given in Theorem I1.4.4N of Hildebrandt [52, p. 34].
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Theorem 6.5. The (RRS) integral satisfies the above properties I-V.

Proof. Pollard [91] proved the first four properties. One can also find proofs in Hildebrandt
[62, Section II.11]. Here we prove the fifth property for the (RRS) integral.

Suppose the integral (RRS) [° f dh exists. Let ¢ > 0 and x € (a,b]. There exists A €
PP ([a, b]) such that (6.1) holds for all refinements ~ of A and all intermediate partitions o of «.
We can and do assume that z = z; € X for some 0 < i < card\. Let y € (z,z;+1]. By property
IV for the (RRS) integral, there exists a partition s, 4 of [z, y] such that the Riemann-Stieltjes
sum Sgs(Kg,y, 0s,y) differs from F(y) — F(z) by less than e. Let 51 and k3 be two refinements
of X\ which coincide with s,y and {z,y} when restricted to [z,y]. By (6.1), it then follows that

) = Fla) = f@h) = ha)]| < [(BRS) [ Fdh = Sns(ays 00|

+[Srs(k1,01) — Srs(k2,02)| < 3e,
where the intermediate partition o7 of k1, when restricted to [z,y], coincides with the in-
termediate partition o, of k.4, and the intermediate partition o2 of k2 has an element x
corresponding to the interval [z,y]. Thus (6.2) holds for y | z instead of y — z. Similarly,

given z € (a,b], one can show that (6.2) also holds when y 1 z. The proof of property V for
the (RRS) integral is complete. O

Proposition 6.6 (Cauchy criterion). The integral (RRS) [° f dh exists if and only if, for each
e > 0, there exists A € PP ([a,b]) such that

|Srs(f:hsk1,01) — Srs(f, h; ke, 02)| <€ (6.3)
for any refinements k1, ko of A and any intermediate partitions o1, os.

Proof. The “only if” implication is clear. To prove the “if” part let €,, | 0. For each m > 1,
let Ay, be a partition A existing by the hypothesis for € = ¢,,. One can and does assume that
Am C Amy1 for each m. Let {oy,: m > 1} be any sequence of intermediate partitions of A,
m > 1. Then {Sgrs(Am;om): m > 1} is a Cauchy sequence of real numbers. Let A be its limit.
Given m > 1, let k be a refinement of A, and let ¢ be an intermediate partition of k. By
(6.3), we then have

|SRS(K'70') - A| < |SRS(K'70') - SRS()\m—I—nao'm—l—n” + |SRS(>\m+n,Um+n) - A| <2

for large enough integers n > 1. Therefore (RRS) [° f dh exists and has value A. O

Proposition 6.7. If (RRS) fgfdh exists then both f and h can’t have discontinuities on the
same side at same point; that is, for x € (a,b|, either

lim f(y) = f(x) or lim h(y) = h(x), (6.4)
ytz ytz

and the same for x € [a,b) with y T = replaced by y | x.

Proof. Let z € (a,b] and € > 0. Then there exists A € PP ([a,b]) such that (6.1) holds for
each refinement x of A\. We can and do suppose that x € A\. Subtract two Riemann-Stieltjes
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sums based on the same x and two intermediate partitions of x having all points equal except
two of them in the interval with the right endpoint z. This gives the bound

1f() — Fy")IIh(a") — h(z)] < 2¢

for any ' <y’ < ¢y’ < z and 7’ close enough to z. Thus (6.4) holds. A symmetric argument
yields the second part of the Proposition 6.7. O

Naturally the preceding necessary condition on discontinuities is stronger in the case when
the integral exists in the mesh—Riemann-Stieltjes sense.

Proposition 6.8. If (MRS) fgfdh exists then both f and h can’t have a discontinuity at the
same point; that is, for = € [a,b], either limy_,; f(y) = f(z) or limy_,; h(y) = h(z).

Proof. Let z € [a,b] and € > 0. Then there exists § > 0 such that (6.1) holds for each
partition k with mesh || < §. Subtract two Riemann-Stieltjes sums based on the same x and
two intermediate partitions of k having all points equal except two of them in the interval
containing the point z. This gives the bound

IF (") — fy")I|h(z") — h(z")] < 2¢

for any z’, 2" € [a V (z — §),b A (z + §)] and ¢/, 3" € [2',2"]. Thus Proposition 6.8 holds. O

6.2 The refinement—Young—Stieltjes integral

Recall the (RYYS) integral as defined in Section 2.1. Let f be any function on [a,b], and let
h € Rla,b]. Given a partition K = {z;: i =0,...,n} € PP ([a,b]), we say that an intermediate
partition 0 = {y;: i = 1,...,n} of K is open if z; 1 < y; < z; for i = 1,...,n, or left-open if
zi—1 < y; < z; for i = 1,...,n. Then the Young sum Sy (f,h;«,o) based on (k,o) is defined
by

n

Sy(fihik,0) = Y {[fATR(zio1) + fya)[h(zi—) — h(wim1+)] + [FATR)(z:)} (6.5)
=1
n n—1
= [fATR)(a) + [fARI(0) + Y f(yi)[h(zi—) — Az H)] + D [fATH](2:).
i=1 =1

Example 6.9. As in Example 6.2, for a < ¢ < b, let £, be the indicator function of [¢, b] and
f be any function, both on [a,b]. For each partition x containing ¢ and an open intermediate
partition o of x, we have Sy (f,%;k,0) = f(c). Therefore the integral (RYS) [ f d. exists
and has value f(c). In particular, (RYS) [°£.dl. exists and has value 1, while the (RRS)
integral doesn’t exist as shown in Example 6.2. More generally, for any real number r, let
05(x) = L(x) for z # ¢ and £5(c) := 7, so that £, = £.. Then (RYS) [ f d/% exists and has
value f(c) for any 7.

In fact the (RYS) integral [ g f dh does not depend on values of the integrator h at jump
points in (a,b). This is because the value of the Young sum (6.5) does not depend on values of h
at jump points of the open interval (a,b). The same is not true for the (RRS) integral. Indeed,
by changing the value of the integrator h at a point £ one can make h either right-continuous
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or left-continuous at z and so destroy the necessary condition of Proposition 6.7. Unlike the
(RRS) integral, the (M RS) integral shares the same property of independence of values of
the integrator at discontinuity points with the Young integral. Indeed, by Proposition 6.8, if
(MRS) [° f dh exists and h has a jump at z € (a,b) then f must be continuous at z. For
£ €ER, let he := h on [a,z) U (x,b] and h¢(x) := £. Then for the two Riemann-Stieltjes sums
we have

fzxexr

Ss(f, 1 5, 0) — Sgs(f, hes ko) = { /) = f ) — 4] it <

where ¢/ € [z — 6, z] and y" € [z,z + 0] for § := |k|. Due to continuity of f at z the preceding
difference can be made arbitrarily small if the mesh |x| is small enough.

Properties of the (RYS) integral.

Proposition 6.10 (Cauchy criterion). The integral (RYS) [° fdh ezists if and only if, for
each € > 0, there exists A € PP ([a,b]) such that

|Sy (fshs61,01) — Sy (f, by k2, 02)| <€
for any refinements k1, ko of A and any open intermediate partitions o1, oa.

The proof of the Cauchy criterion for the (RYS) integral is the same as for the (RRS)
integral given by Proposition 6.6 above.

Theorem 6.11. The (RYS) integral satisfies statement IV among Properties 6.4, that is, for
a < c<b, (RYS) [° fdh exists if and only if both (RYS) [ f dh and (RYS) [° f dh exist, and
then

b c b
(RYS) / fdh = (RYS) / fdh + (RYS) / £ dh. (6.6)
a a c
Proof. To see that the “if” part holds notice that the additivity relation

Sy (f,hyk,0) = Sy (f, h;k1,01) + Sy (f, h; k2,02) (6.7)

holds for each k € PP ([a,b]) containing ¢, k1 € PP ([a,(]), k2 € PP ([c,b]), k1 Uk = K (as a
set), and for corresponding intermediate partitions such that o1 Uos = 0.

For the converse suppose that the integral exists over [a,b]. Then the Cauchy condition
of Proposition 6.10 holds. We can and do assume that ¢ € A € PP ([a,b]). Then using this
condition when intermediate partitions have the same points from the interval [c, b], one gets
that the Cauchy condition holds for the integral over [a,c|. A symmetric argument yields that
the integral over [c,b] also exists. The additivity relation (6.6) then follows from (6.7). The
proof of Theorem 6.11 is complete. O

Let F' be an indefinite (RY'S) integral defined for a constant C' by
T
F(z) ::C'—I-(RYS)/ fdh  for z € [a,b].
a
According to the following theorem, F' is a regulated function, and for a <y < z < b,

(ATF)(z) = [fATh](z) and (ATF)(y) = [fATR(y). (6.8)
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Theorem 6.12. The (RYS) integral satisfies statement V' among Properties 6.4, that is, if
(RYS) [ f dh exists then, for each x € [a, D],

lim { F(z) — F(y) - f(z)[h(z) — h(y)]} =0.

Yy—z

Proof. Suppose (RYS) [° f dh exists. Then the indefinite integral F' exists by Theorem 6.11.
We prove that, for a < z < b,

lim { F(z) — F(y) — f(=)[h(z) — h(y)]} =0. (6.9)

ytz

The proof when y | z for a < z < b is symmetric and is omited. Taking u, € (y, ), we have

tim {Sy (£, {2}, {1, 1) — (&) [b(a) — h(o)]}

= lim {[/(uy) — F(@)][h(a=) = h(yH)] + [/ () ~ F@) A h(y)} =0.
ytz

Therefore it is enough to prove

lim {F(2) = F(y) = Sy (£, {y, 7}, {uy}) } = 0
for uy € (y,z). Let a < z < b and € > 0. By definition of the (RYS) integral, there exists
A={z;:j=0,...,m} € PP ([a,z]) such that

Sy (. hi,0) = (RYS) [ fdb] < e

for each refinement x of A\ and intermediate partition o of k. Let y € [z,—1,2). Within € of
(RYS) [ f dh, choose a Riemann-Stieltjes sum S, , based on a partition ky, of [y,z]. Let
k1 and ko be two refinements of A which coincide with ,, and {y,z}, respectively, when
restricted to [y,z]. Then taking u, € (y,z), we have

IF(@) = F(y) = Sy (. b ) ()] <[ (RYS) [ an— 5,

+|Sy (f, h; k1,01) — Sy (f, h; K2, 02)| < 3e

Therefore (6.9) holds, and the proof is complete. O

Connection with the (RRS) integral.

Theorem 6.13. Let f be a function on [a,b], and let h be regulated on [a,b]. If (RRS) [° f dh
exists then so does (RYS) [0 f dh, and both have the same value.

Proof. Let k = {z;: i =0,...,n} be a partition of [a,b] and let 0 = {y;: i = 1,...,n} be an

open intermediate partition of k. Let p = {u;_1,v;: 4 = 1,...,n} be a set of points in (a,b)
such that 79 < ug < y1 < v <21 < - < Tp_1 < Up_1 < Yp < Vp < Tp. Then &' := KU p
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is a partition of [a,b] and o' := {zg,y1,%1,%1,Y2,- -+ Tpn—1,Tn—1,Yn,Tn} iS an intermediate
partition of x'. Letting u;_1 | z;_1 and v; 1 z; fori =1,...,n, we get

WE

Srs(fihsw's0') =) fys)[h(vi) — h(ui—1)] + f(w0) [h(uo) — h(zo)]

1
-1

+ D f@)h(ws) = h(vi)] + f (@) [h(zn) = h(vn)] = Sy (f, s K, ).
=1

3 .
Il

Therefore for each k € PP ([a,b]) and open intermediate partition o of x, the Young sums
based on k and o can be approximated arbitrarily closely by Riemann—Stieltjes sums based on
refinements of x, and the theorem follows. O

Lemma 6.14. Let ¢, € R|a,b] be such that ¢ is left—continuous on (a,b] and v is right—
continuous on [a,b), or vice versa. If (RYS) [° ¢pdip exists then so does (RRS) [° ¢pdip, and the
two integrals have the same value.

Proof. Let f,h € Rla,b]. The proof is given only when ¢ = fﬁ“) and ¢ = hg_)). A proof for
the other case is similar. Let kK = {z;: i =0,...,n} € PP ([a,b]) and let 0 = {y;: i = 1,...,n}
be an open intermediate partition of k, that is z;_1 < y; < z; for i = 1,...,n. Then we have

Srs(f9, 0k, 0) — Sy (F, 1 D; 5, 0) Zf () () — B (i)

3 { Pl — ) + @) ) — o))

n

= f[ﬂyi—)—f(wz-—)][hs{”(wi)—h(xi_1+>1—z[f<yi—)—f(m—)][h(sci—)—h(xi_1+)1. (6.10)

i=1 i=1
Let € > 0. There exists A = {z;: j =0,...,m} € PP ([a,b]) such that

Sy (£, h; 5, 0) - /f dh)| < e (6.11)

for all refinements k € PP ([a,b]) of A and all open intermediate partitions o of k. Choose
v=A{vj_1,u;: j=1,...,m} C[a,b] such that z;_1 <wvj_1 <u; <zjforeach j=1,...,m,

Osc(f; [uj, zj—]) <€/(2mlhllo) and — Osc(h;[zj-1+,vj-1+]) < €/2m|/flleo)-  (6.12)

Let k ={z;: i =0,...,n} € PP ([a,b]) be a refinement of \Uv C andlet o = {y;: i =1,...,n}
be an open intermediate partition of k. We show that the absolute value of the right side of
(6.10) is small. Let o' = {y: i = 1,...,n} be another open intermediate partition of k. Using
(6.11) for two Young sums based on (k,0) and (k,0’), we get

n

‘ > I (wi—) — fyi—)h(zi—) — h(-Tz'—l-i-)]‘ < 2.

i=1
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Then letting y; 1 z; for i = 1,...,n, it follows that the second sum on the right side of (6.10)
has the bound

n

Y[ @wi-) = f@im)h(zim) — hlwia+)]| < 2. (6.13)
i=1
To bound the first sum on the right side of (6.10) we invoke an auxiliary partition ' = {z}: i =
.,n} € PP ([a,b]). For each j = 0,...,m, let i(j) € {0,...,n} be such that z;; = z;.
Let J := {i(j — 1) + 1,i(j): j = 1,...,m} and let I := {0,.. n}\J Define k' by z} = z;
for i € J and 2 € (z;,yi+1) for i € I. Notice that &' D A and oc={y:i=1,...,n} is an
open intermediate partition of ’. Let ¢/ = {y}: i = 1,...,n} be another open intermediate
partition for £’ defined by y; := y; for i € J and y; := z; for € I. Then using (6.11) for two
Young sums corresponding to (x',0) and (', 0’) we get the bound

S i-) — FlaiNhlai-) - bk 4| < 26
i€l
Letting z} | z; for 7 € I it follows that
|1 i) — i Nhlit) — b+ < 2
i€l

Since u; < zi(jy—1 < Yi(j) < 2j and T(j_1)41 < vj—1 for each j =1,...,m, by (6.12), we get

| S (0i) — £ () — haica 1] < 2l S Ol 5,75

420w Y Oselhs [z, 05H]) + | i) — (el [hait) — i) < e
4=0 el

This in conjunction with (6.13) yields that the absolute value of the right side of (6.10) does
not exceed 6e. Therefore, by (6.11), we have the bound

Srs (1, hY; ,0) - /f anP)] < 7e (6.14)

for all kK € PP ([a,b]) with K D AU v and all open intermediate partitions o of k. For any
such k = {z;: 4 = 0,...,n}, since f&a) is left—continuous, (6.14) also holds for all left-open
intermediate partitions o0 = {y;: 1 =1,...,n} of k, that isz; 1 <y; < z; fori =1,...,n.

To finish the proof we need to extend the above bound to an arbitrary intermediate partition
o of k. Given € > 0, let X be the partition {z;: j =0,...,m} of [a,b] satisfying (6.11), and let

v be the set of points {v;_1,u;: j =1,...,m} such that z;_1 <vj_1 <u; <zjforj=1,....,m
and (6.12) holds By the above proof, (6.14) then holds for any refinement s of AUv' for some
vi={vj_pup i =1,...,m} with 2,1 <v;_; <wvj1 <wuy <up <z, j=1,...,m, and

left—open intermediate partition o of k. Let K = {z;: 1 = 0,...,n} € PP ([a,b]) be such that
kD AUvU{(zj+v)/2:j=0,...,m—1} and let 0 = {y;: i = 1,...,n} be an intermediate
partition of x, that is z;_1 < y; < x; for: = 1,...,n. Let o, be the same as o except that each
y; € o with ¢ even is replaced by z;. Similarly, let o, be the same as o except that each y; € o
with ¢ odd is replaced by z;. Also, let o, := {z;:i=1,...,n} and S(o) := SRS(f( @) h@,/ﬁ o).
Then we have S(o) + S(om) = S(oe) + S(0,). Hence

|S(o) — A| < [S(om) — Al + |S(oe) — A| + |S(0,) — 4] (6.15)
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with A = (V) f? fﬁ“) dhs{)). The first term on the right side of (6.15) does not exceed Te by
(6.14) because oy, is a left-open intermediate partition of k. To bound the second term on
the right side of (6.15), let I, be the set of indices ¢ € {1,...,n} \ J such that y; € 0. and
Yi = i1, where J = {i(j — 1) + 1,i(j): j=1,...,m}. So,ifi € I, theni € {2,...,n — 1} is
odd and

f@i=)[h(zit) — h(zim1+)] + f(Yim1 =) [R(@io1+) — h(zim2t)] = f(zi1-)[M(zit) — h(zi—2+)]

because y; = yi—1 = Z;—1 by the construction of o.. Let k' := k \ {z;—1: 7 € I,}. Notice that
' DAU{v;_q,uyj = 1,...,m} with vj_; = z(j_1)41 < vj—1 OF Vi = Tj(j_1y42 < vj—1 for
j=1,...,m. Also, let o, be the same as o, except that each y;, i € J, such that y; = z;_1,
is replaced by z;, and one of the two points x;_1, i € I, is removed. Then o, is a left-open
intermediate partition of . By (6.14) and (6.12), it then follows that
@ 0 £
S(00) = Al < 18as(F W3 1,01) = Al + 20 e Y- Osclls [+,
i=0

+2{|hllos D Osc(f; [uj, zj—]) < 9e.

j=1
The same reasoning yields the bound |S(o,) — A| < 9e. Therefore, by (6.15), |S(o) — A| < 25¢
for an arbitrary intermediate partition o of k. The proof of Lemma 6.14 is complete. O

6.3 The central Young integral

L. C. Young [117] defined (and Dudley [23] specified the endpoint terms of) the integral which
we call the Central Young integral, or the (CY") integral. The idea of the (CY') integral is to
use the (RRS) integral, avoiding its lack of definition when f and h have common one-sided
discontinuities by taking a right—continuous version of f and left—continuous version of A, or
vice versa, and adding sums of jump terms to restore the desired value of [ f dh. In general
the (CY') integral extends the (RYS) integral. However, if the integrand and integrator have
bounded p- and p’-variation, respectively, with 1/p + 1/p’ = 1, then the (CY) integral is
defined only if the (RYS) integral is (see Proposition 6.22 below).

Recall the definitions (2.2) of functions fj(Lb) and f&a), as well as unconditional convergence
as defined in Section 2.1. The (CY) integral has two equivalent forms defined next:

Definition 6.15. Let f,h € R([a,b]). If a < b define the (Y7) integral
b b
(V) / fdh = (RRS) / £ an@ — [AYfATR)(a) + [FATRI(B) — 3 AT AR (6.16)
a a (a,b)

if the (RRS) integral exists and the sum converges unconditionally. If ¢ = b define the (Y1)
integral as 0. Similarly, if a < b define the (Y2) integral

b b
(Ya) / fdh = (RRS) / 9D + [fATR)(a) + [ATFATR)B) + 3 AT FAER (6.17)
a a (a,b)

if the (RRS) integral exists and the sum converges unconditionally. If ¢ = b define the (Y53)
integral as 0.

60



By Theorem 6.19 below, the two integrals both exist and have the same value when either
exists. To prove this theorem we replace the (RRS) integral in (6.16) and (6.17) by the (RYS)
integral. Let

fla) forz=a fla) forz=a
f&a’b) () :=<¢ f(z—) fora<z<b and f(a 2 () :=4 f(z+) fora<z<b
f(b) forx=1b f(b) forx=hb

Lemma 6.16. Let f,h € R([a,b]). The integral (RRS) [° fg_b) dh'®  ezists if and only if
(RYS) f? fg_a’b) dh does, and if they exist, they satisfy

(RYS) / £ 4 = (RRS) / £O an® (AT fATR] (@) + [FA (D). (6.18)

The integral (RRS) fa dhg’_)) exists if and only if (RYS) fa (@b gp, does, and if they exist,
then

(RYS) / " 199 g — (RRS) / " 19 gh® 4 [FATRI(a) + [A- FAH(). (6.19)

Proof. By Theorem 6.13 and Lemma 6.14, the integral (RRS) [° fg_b) dh'¥ exists if and only

if (RYS) [? fg_b) dn'® does, and then both have the same value. Let k = {z;: 1 = 0,...,n} €
PP ([a,b]) and let 0 = {y;: i = 1,...,n} be an open intermediate partition of k. Then

(f 1Yk o) = > Flyi — h(zi14)] + [f+ATR](a +Z[f+A h](z;)

=1 =1

= Sy(fY h;k,0) + [AT FATR](a) — [fATH](D).

Therefore, (RYS) 0 f1 ®) gh exists if and only if (RYS) [ f T Y dh does, and (6.18) holds.
This proves the first statement. The proof of the second one is similar and is omitted. O

The following is an easy consequence of the preceding lemma.

Proposition 6.17. For f,h € R([a,b]), the relations

(Y1) / "t dh = (RYS) / £ an — 3 At fAtR (6.20)
@ (@h)
and
(Ya) / fdh = (RYS) / F9Ydh+ 3 A= fath (6.21)
(@h)

hold; that is, the integral on the left side exists if and only if both the integral on the right side
erists and the sum converges unconditionally.

For the proofs of Theorems 6.19 and 6.20, as well as for later use, we prove the following
fact:
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Lemma 6.18. Let f,h € R([a,b]). The following three statements are equivalent:
(1). (RYS) [2 f dh exists;
(2). (RYS)[?f +“”’) dh and (RYS) [0 AL, f dh exist,
(3). (RYS) fa " dh and (RYS) b ALy f dh ezist.

If any one of the preceding three statements holds then

RYS/fdh RYS/f dh— 3" A fAth = RYS/f(ab)dh+ZA fA=R,
(ah) (wb)

where the two sums converge unconditionally.

Proof. We prove only the implication (1) = (2), because the converse follows from linearity
of the (RYS) integral and the proof of (2) < (3) is similar. Suppose (1) holds. First we show
that the sum
Z AT fA*Eh converges unconditionally. (6.22)
(a;b)

Let € > 0. By hypothesis, there exists A € PP ([a, b]) such that

b
Sy (f, s w,0) — (RYS) / fdh| < (6.23)

a
for any refinement x of A and open intermediate partition o of k. Let v = {u;: l = 1,...,k}
be a finite set of points in (a,b) disjoint from A. Choose a refinement k = {z;: i = 0,...,n}

of A such that for each I = 1,...,k — 1, and some i(l), | = 1,...,k, z;5—1 < w < zj) <
< ‘/Ei(H—l)—l < U < xi(H—l), where xi(l)—l,xi(l) ¢ X. Let o/ = {y;‘l = 1,...,77,} and

o ={y!:i=1,...,n} be two open intermediate partitions of x such that yé(l) > yé'(l) =y for

l=1,...,k and y; =y € (zi_1,2;) for each i & {i(1),...,4i(k)}. By (6.23), it follows that

k
|SY(fah;"$70-,)_SY7h; K;,O’ ‘ Z yz(l ’U,l)][h(iL'Z ) h(wz(l)fl+)]| < 2e.
=1

Letting yg(l) b ug, Tigy—1 T ug and T | uy, as is possible, one gets | Sk AT F(u) ATh(uy)| < 26
for any finite set v = {u;: I = 1,...,k} C (a,b) which is disjoint from A. Since € > 0 is arbitrary
one can conclude that (6.22) holds.

Next we show that A;L,b f is (RYS) integrable with respect to h and

b
(RYS) / AL fdh =Y ATfA%R. (6.24)
¢ (a,b)

For each partition K = {z;: 4 = 0,1,...,n} € PP([a,b]) and open intermediate partition
o={yiri=1,...,n} of k, we have

Sy (ALufhim,0) = 3 ATFAER] <| 30 AT F(y) h(ai-) — h@ia b))
(a,b) =1

n—1
\ S AFATR = SOIATFARR)(z)| = Ti(k, 0) + To(k). (6.25)

(a,b) i=1
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Given € > 0 choose A € PP ([a,b]) such that (6.23) holds and T5(k) < € for all refinements
k={z;:i=0,1,...,n} of A and all open intermediate partitions o = {y;: i = 1,...,n} of «.
Then

\Z[f vi) = F@llh(zi—) — hzioa )] < 26
whenever y; € (y;,z;) for i = 1,...,n. Letting y; | y; for each ¢ = 1,...,n, yields the bound
T1(k,0) < 2¢. Therefore the right side of (6.25) does not exceed 3e for each refinement x of A

and each open intermediate partition o of k. Since € > 0 is arbitrary (6.24) holds. By linearity
of the (RYS) integral, (2) follows and the last conclusion holds. O

Theorem 6.19. Let f,h € R([a,b]). The integral (Y1) [° f dh ezists if and only if (Y2) [° f dh
does, and then they are equal.

Proof. Suppose the (Y) integral exists. By Proposition 6.17, (RYS) [° £ (@ dh exists and
(6.21) holds. By Lemma 6.18 applied to f = fS“’b), (RYS) f? f_('—ab dh exists and

(RYS) / £ an = (RYS) / £ dn — 3" A*fAE,
(a,b)
where the sum converges unconditionally. Also by linearity, the sum
SOATFATh =Y AFfA*h - Y AT fATR
(a,b) (a,b) (a,0)

converges unconditionally. Since the right side of (6.20) is defined, the (Y1) integral exists and

b
(YQ)/ fdh = (RYS) / £V dn + 3 A= fa*h
¢ (a,b)
— (RYS) / £ an = 3 ATFARL + 3 AT fAth
(a,b) (a,b)
— (RYS) / £ an — 3T At FAER = (v7) / fdh.
(a,b)
The proof of the converse implication is symmetric and we omit it. O

Theorem 6.20. For f,h € R([a,b]), the integral (RYS) [ f dh exists if and only if the two
integrals (Yz) [° f dh and (RYS) [° A, f dh ezist. Also, the relations

(RYS) / fdh = (Ys) / fdh and (RYS) / A, pfdh = Z A fATH (6.26)
(a;b)
hold with the sum converging unconditionally, whenever the three integrals exist.

Proof. Suppose that (Y3) [° fdh and (RYS) [° Ay, f dh exist. Then by Proposition 6.17,

(RYS) b fga’b) dh exists. Thus (RYS) [? f dh exists by linearity of the (RYS) integral. The
relations (6.26) then follow from (6.21).
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Suppose that (RYS) [ f dh exists. By statement (3) of Lemma 6.18, (RY'S) [0 A, f dh and

the right side of (6.21) exist. Thus (Y3) [ f dh exists and equals (RYS) [° f dh by Proposition
6.17. The proof of Theorem 6.20 is complete. O

Notation. For a set E of real numbers, let cy(E) be the set of all functions f: E — R for
which there exists a set {;: i > 1} C E of distinct numbers such that f(&;) — 0 as ¢ — oo and
f(z)=0ifz € E\{&:i>1}. Then

co(E) = {Zm{&}; Ei#Ejfori#j, & €E, fi »0asi— oo}. (6.27)

If f € co(J) for an open interval J then f € R(J) with f1 = f- = 0. If f € ¢y((a,b)) then
f+(a) = f—(b) = 0. Thus defining f(a) = f(b) := 0, we have f&a) = fg_b) =0 on [a,b].

Proposition 6.21. There ezist functions f and h on [0,1], where f € co((0,1)) and h is
continuous, for which (Y3) [§ f dh ezists, while (RYS) [4 Agqfdh and hence (RYYS) JP fdh
don’t exist.

Proof. Let f(z) := k='/2 if £ = 1/(3k) for k = 1,2,..., and f(z) := 0 otherwise. Let
h(1/(3k+1)) :=0and h(1/(3k—1)) := k /2 fork = 1,2,.... Let h(0) = h(1) := 0 and let h be
“linear in between”, i.e. on each closed interval where h is so far defined only at the endpoints.
Since h is continuous and f&o) = fj_l) =0, (Y2) J§ f dh exists and is 0. Since fgo’l) =0itis
enough to show the non-existence of the integral (RYSS) fg f dh. Let A = {z;: j =0,...,m} be
any partition of [0, 1]. Take the smallest m such that z,, :==1/(3m+1) < z;. If k1 := AU{zp}
then the contribution to any Young sum based on k; coming from [0, z,,] is 0. For n > m,
consider partitions

k= AU{1/Bk+1),1/8k —1): k=m+1,...,n}.

We form a Young sum based on x,, by letting it be the same as one for 1 on [z,, 1], and by
evaluating f at 1/(3k) for k = m + 1,...,n. Thus the part of our Young sum for s, coming
from [0, z,,] is

= i 1 B 1 - 1 B 1 B n a1
k§+1f(3k)[h(3k_1) h(3k+1)]+0 [h(3k—2) h(3k+1)]_k:§;ﬂk Y25-1/2 _, o

as n — 0o. Thus two Young sums for (RYS) [¢ f dh, both based on refinements of ), differ by
an arbitrarily large amount. So (RYS) [j f dh doesn’t exist. O

For a set £ and 0 < p < 00, let
) (E) = {f =Y filgey € co(B): S |filf < oo}.
% %

Proposition 6.22. Let f,h € R([a,b]) be such that A~ f € £,((a,b)) and h € Wy ([a,b]) for
some p, p' with 1/p+1/p' =1,1 < p < oo. Then (RYS) [° f dh ezists if and only if (Y2) [° f dh
does, and the two integrals are equal.

Proof. The proof is given only for the case p < oo because a proof for the case p = oo is
similar. By Theorem 6.20, it is enough to prove that (RYS) [° Ay, f dh exists. By Holder’s
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inequality, the sum 3, 5 A" f A*h converges unconditionally. Let € > 0. Then there exists a
finite set A; C (a,b) such that

| SIATFATR(z) - D AT FATH| <€

zEW (a,b)

for any set u C (a,b) containing A\;. Since A~ f € £p((a,b)) and h € Wy ([a,b]), there exists a
finite set A2 C (a,b) such that

S IATFW)P < (/ Vi (hs[a,8]))”

yev

for any set v C (a,b) disjoint from Ag. Let A := {a,b} UAX; UXy. Then X\ € PP ([a,b]). For any
refinement kK = {z;: i = 0,...,n} of A and open intermediate partition o = {y;: i = 1,...,n}
of k, we then have

‘Sy(A;bf,h;m,o S A fAih‘ ‘Z[A FAER)(z) — S A fAih‘
(ab) (a,b)

YA ) — )] < e+ (1A 1wP) Vi (hslab) < 2e.
=1

=1

Therefore the integral (RYS) [° A;b f dh exists, and the proof is complete. O

6.4 The (7)—integral of A. N. Kolmogorov

Kolmogorov [63] suggested a unified approach to a class of integrals with respect to interval or
set functions. The Kolmogorov integral includes the Lebesgue, Lebesgue-Stieltjes and several
other integrals. Some of them are considered below. We recall and use Kolmogorov’s definition
(Definition 6.24 below) in the case when only finite partitions are used.

Let 99t be a multiplicative system of sets; that is, J; N Jy € M whenever Ji, Jo € M. For
J € M, a vector D = (J1,...,Jy) of pairwise disjoint sets in 9 will be called an 9M-partition
of J if J = U —,Ji. The sets J1, ..., Jn are called elements of the M-partition ® and written
J; €9, 1 = 1 ,N. Let IP (9) be the set of all 9M-partitions D of J. For example, if I
consists of a single set J # () then IP (9M) consists of the single partition of J into itself. An
IM-partition D" is an M-refinement of an M-partition D' if, for each element J” of D", J" C J'
for some element J' of ®'. In this case we write ® C ®”. Then (IP (9),C) is a partially
ordered set (a poset). For ®',@" € IP(M) let ® := {J'nJ":J € D ,J" € ®"}. Then
D' CD,9"CDandD € IP (M) because M is multiplicative. Therefore the poset (IP (M), C)
is upwards directed.

Definition 6.23. Let S be a function on the set of 9i-partitions of J € M whose values are
sets of real numbers. We say that a real number A is the limit of S under refinements of
M-partitions of J and write A = limgp4 S(D), if for each € > 0 there is an M-partition D of J
such that for all ®' J D, we have sup{|z — A]: z € S(D')} < e.
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For J € 9, let M(J) be the collection of elements of all partitions @ of J. Then M(J)
is a multiplicative system. For a function v defined on all elements of an 9-partition ® =
(Jl, ces ,Jn), let

Som(v; D) == Z v(J;).
i=1

Definition 6.24. Let v be a function on 9M(J) for some J € M whose values are sets of real
numbers. The (9)-integral of v on J will be defined by

(SJI)/JdZ/ = liQHT].Sg_)’{(V;Q)

provided the limit of Sgy(v;-) exists under refinements of M-partitions of J.

We refer to Kolmogorov [63] for elementary properties of the (91)-integral.

Recall that in Section 4.5 we considered two classes of subintervals of [a,b]: Jos([a,b]) :=
{(c,d),{c}: a < ¢ < d < b} and I([a,b]) := {[c,d], (c,d],[c,d), (c,d): a < ¢ < d < b}. Next we
shall consider the (9)-integral when IM(J) = Jys([a, b]) or M(J) = I([a,b]), and v is a point
function f multiplied by an additive interval function yu.

Let J be either of the two classes Jy5([a, b]) or J([a, b]). These classes possess the following
decomposability property (used in Chapter 3, §2 by Kolmogorov [63]): if J',J € Jand J' C J
then there is an J-partition © of J such that J' is an element of ®. Let f: [a,b] — R be
a point function and let p € Z[a,b] be additive. For each ® = (Ji,...,Jn) € IP(J) and
0= (yl,...,yN) € Jy X x Jy, let

N
Sy(f, D) (0) == fly;)u(J;).
7j=1

According to Definition 6.24, the (J)—integral of f with respect to an additive interval function
p on [a,b] is defined by
(3) | fdp:=1lmS5(f, ;D)
[a,b] ot
provided the limit exists under refinements of J—partitions of [a,b]. Thus the (J)-integral with
J = J([a,b]) is the same as the (RYS) integral and the class of partitions IP (J([a,b])) is the
same as IP ([a, b]), both defined in Section 2.1.

Next we describe a relation between J,s,—partitions from IP ys([a, b]) := IP (J4s([a, b])) and
corresponding point partitions of [a,b]. Let ¢ = 29 < 1 < --- < z, = b. Then kK =
{z;:1 = 0,1,...,n} is a partition of [a,b] by points and PP ([a,b]) is the set of all point
partitions & of [a,b]. For each ® = (J1,...,Jn) € IP ,5([a, b]), we have J; = {a}, Jo = (a,z1),
J3 = {.’L‘l}, J4 = (.’L‘l,.’L'Q), sy Jgn = (.Tn_l,b), J2n+1 = {b} and N = 2n + 1. Let © be the
mapping from IP ,s([a,b]) into PP ([a,b]) defined by p(D) := {zo,z1,...,2n} € PP ([a,b]).
Then g is an order isomorphism between (IP ,s([a,b]),C ) and (PP ([a,b]),C ), that is, for
each D1,D2 € IP y5([a,b]), D1 C D9 if and only if p(D1) C p(D2).

Let h € Rla,b], K = {z;: 1 =0,...,n} € PP([a,b]) and let ¢ = {y;: i = 1,...,n} be an
open intermediate partition of x, meaning that z; 1 < y; < z; for i = 1,...,n. Recall that the
Young sum is defined by

n

Sy (f, hs k,0) := Y {[fATR)(zic1) + f(yi)[h(zi—) — h(zio1+)] + [fAh](z:)}.

=1
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Notice that the value of the Young sum is the same for each function h € [up), (cf. (4.34)
above); that is, the value of the integral (RYS) [° f dh does not depend on the values of h
at its jumps. Also, the existence of (RYYS) fgfdh implies the existence of (J,s) a5 f dpin.-
This follows by comparing the Young sum Sy (f, h; k, o) with the sum Sy, (f, un; D) (6), where
©(®) = k and the coordinates of 8 corresponding to the open intervals of D are the coordinates
of . We show next that the converse implication holds whenever an additive interval function
@ is upper continuous (see Definition 4.32).

Theorem 6.25. Let u € Z[a,b] be additive. The following statements about u are equivalent:
(a) p is upper continuous;
(b) for any f: [a,b] = R, if (Jos) [lap) f dp ezists then so does (RYS) J8 fdh for each h € [p]a,
and the two integrals are equal;
(c) there exists h € Rla,b] with h(a) = 0 such that, for any f: [a,b] — R, (RYS) [° fdh
ezists whenever (J,s) f[a’b] fdu does, and the two integrals are equal.

Proof. (a) = (b). Let ® = (J1,...,Jn) € IP1([a,b]) and Jo; = (zj—1,2;) for i = 1,...,n
with N = 2n 4+ 1. Then p: ® — p(®) = {z;:1 = 0,1,...,n} =: k € PP([a,b]) is an
order isomorphism between IP ,s([a, b]) and PP ([a,b]). Let 8 = {z¢,y1,21,---,Yn,ZTn}, Wwhere
yi € (xi—1,2;) for : = 1,...,n. Since y is upper continuous and h € [ul],, by Theorem 4.36,
we have p((zi—1,i)) = pr((zi-1, %)) = h(z;—) — h(zi—1+) for i = 1,...,n, u({a}) = h(a+),
p({zi}) = pn({zi}) = h(zi+) — h(zi—) for i = 1,...,n — 1 and p({b}) = h(b) — h(b—). Then
we have

n n

S, (F,10)(0) = Y fyi)p((wi1,23)) + ) fza)u({zi}) = Sy (f, hs s, 0),

i=1 =0

where o = (y1,---,Yn). Therefore (RYS) [ f dh exists whenever (J,s) Jja,5 f dpp does, and the
two integrals are equal.

(b) = (c). This implication is clear because h € R[a,b] and h(a) = 0 for each h € [u], by
definition (4.34).

(¢) = (a). Let a <u < v <b. Then we have

I

b
pn((u,v)) = h(v=) = h(ut) = (RYS)/a L(u,w) dh = (Jos) /[a ' L) dpp = p((u; 0))-

Similarly, it follows that up({w}) = p({w}) for w € [a,b]. The implication then follows from
Theorem 4.36. The proof is complete. O

Since IP o4([a, b]) C IP ([a,b]) and each J-partition can be Jos-refined, if (J) [i, ) f dp exists
then so does (J,5) [ la,b) / dp, and the two integrals are equal. We show next that the converse
holds for upper continuous additive interval functions.

Theorem 6.26. Let y € Z[a,b] be additive and upper continuous, and let f: [a,b] — R. If
(Jos) Jap) f dp exists then so does (3) [1qp) f dp, and the two are equal.

Proof. Let € > 0. There exists Dy € IP ,4([a, b]) C IP ([a, b]) such that

1S5, (£,152)(6) ~ (3s) |

a,b

]fdu\ <e (6.28)
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for all J,s-refinements ® = {Jy,...,JJy} of Dg and all € J; x --- x Jy. It will be shown that
(6.28) also holds for J in place of J,,, with the integral having the same value.

Let ®1 = (Ji,...,Jn) be an J-refinement of Dy, 0 = (y1,...,yn) € J1 X -+ X Jy and let
A= (Do) = {z20,...,2} € PP ([a,b]). Let k:= {x;: i =0,...,m} be the set of endpoints of
intervals in ®;. So k € PP ([a,b]). For each i = 0,1,...,m, define a sequence {z;,: n > 1} as
follows. If {z;} is a singleton in D; then let z;, := z; for all n > 1. If an interval {-, z;] € D1 let
Zin, } z; or if some [z;,-} € D1 let z;,, T x;, where in either case z;;, are not atoms of y. This can
be done by statement (e) of Theorem 4.35. For n large enough, zo, = a < 21, < *++ < Ty = b.
Then there is a unique J,s-partition Dy, having p(D2,) = {zin: ¢ = 0,...,m} € PP ([a,b]).
Since each singleton {z;} = {z;} € D, for some i, Dy, is a refinement of Dy. The intervals in
D9, converge to the intervals in ©; as n — oo, except for singletons in 5, with y = 0 which
do not contribute to sums. Each point y; is eventually in the interval of D5, corresponding
to the interval of ®;. Thus there are sums Sy, (f, 1t;D2,,)(6,) converging to Sy(f, u;01)(0),
where the coordinates of 6, are those of #, and possibly some y;, with {y;,} € D3, and
p({yin}) = 0. Theorem 6.26 then follows. a

6.5 The Ward—Perron—Stieltjes and gauge integrals

The Henstock integral is designed to integrate highly oscillatory functions which the Lebesgue
integral fails to do. It is known as nonabsolute integration and is a powerful tool.

— Lee Peng—Yee [89, p. vii].

If we think of the Lebesgue integral as God sent, then differentiable functions whose derivatives
are not Lebesgue integrable may appear evil. The challenge is to resolve the conflict ...

— unattributed aphorism in Pfeffer [90, p. xii].

Ward (1936) defined a Perron-Stieltjes integral which includes both the Lebesgue—Stieltjes
and Moore-Pollard—Stieltjes (RRS) integrals. Given two real-valued functions f, ¢ on [a,b],
say M is a major function of f with respect to g if M(a) = 0, M has finite values on [a, b],
and for each z € [a, b] there exists §(z) > 0 such that

()] if z<z<min{b,z+d(z)},

M(z) > M(z) + f(z)[g(z)
{ ()] if max{a,z—6(z)} <z<z. (6.29)

-9
M(z) < M(z) + f(z)[9(2) — g
Thus for each major function M there exists a positive function dx/(-) = é(-) on [a,b] which
satisfies (6.29). Let U(f,g) be the class of all major functions of f with respect to g, and let

_ ) inf{M(b): M eU(f,g)} if U(f,g)#0,
Ul1,9):= { +00 it U(f,9) =0

A function m is a minor function of f with respect to g if —m € U(—f, g). Let L(f,g) be the
class of all minor functions of f with respect to g. Thus m € L(f,g) provided m(a) = 0, m
has finite values on [a, b], and there exists a positive function §(-) = §,,(+) on [a, b] such that

{ m() <m(@)+ f(@)loz) ~g(@)] i @ <z<min{bati@) oo
>m ’

(z) + f(2)lg(2) —g(x)] if wmax{a,z—6(z)} <2<z
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Then the following is true:
Lemma 6.27. L(f,g) <U(f,9).

Proof. The statement is true if at least one of the sets L(f, g) or U(f,g) is empty. So suppose
that L(f,g) and U(f, g) are not empty. Let m € L(f,g) and M € U(f,g). Also, let § := d,,Adps
and w(z) := M(z) — m(z) for z € [a,b]. By (6.29) and (6.30), for each = € (a,b], it follows
that

w(z) >w(z) if z<z<min{bz+d(z)},

w(z) < w(x

(2) () if max{a,z—d(z)} <z<uz.
Therefore inf {M(z): M € U(f,g)} —sup{m(z): m € L(f,g)} is a nondecreasing function of
z. Then the statement of the lemma holds because m(a) = M(a) = 0. O

IfU(f,g) = L(f, g) is finite then denote the common value by (W PS) [° f dg and call it the
Ward—Perron—Stieltjes integral, or the (W PS) integral. The following is Theorem 5 of Ward
[111]. Note that in it, f and g are not necessarily regulated.

Theorem 6.28. If (RRS) [? f dg ezists then so does (W PS) [° f dg, and has the same value.

Proof. For a < u < v < b, let M(u,v) be the least upper bound for Riemann-Stieltjes sums
Srs(f,9; k,0) based on partitions k € PP ([u,v]) and intermediate partitions o of k. Then

{ M(u,y) > M(u,2) + f(2)[g(y) —g(@)] if w<z<y, (6.31)
M(u,y) < M(u,z) + f(z)[g(y) —g(z)] if u<y<uz '

Suppose (RRS) [° f dg exists and € > 0. Then exists A = {z;: j =0,...,m} € PP ([a,b]) such
that

b b
(RRS) / fdg — € < Sps(f, g: 5,0) < (RRS) / fdg+e (6.32)

for each refinement x of A\ and intermediate partition o of k. For each z € (a,b], let j(z) be
the greatest integer such that 2,y < z. Let M(a) := 0, and for z € (a,b] let

i(z)
M(z) := Z M(zj_1,2;) + M(zj(w),m),
j=1

where the sum over the empty set is 0. Define a positive function é(-) on [a,b] by d(z) :=
min{z — 2j(2), Zj(z)+1 — 2} if T € (2j(z), 2j(@)41), 6(a) == 21 —a, 6(b) := b — zp—1 and
0(zj) = min{z; — zj_1,2zj41 — 2} for j = 1,...,m — 1. By (6.31), the function M so de-
fined satisfies (6.29). Hence it is a major function of f with respect to g. By (6.32), it
follows that M (b) < (RRS) [° f dg + . Similarly one can define a minor function m such that
m(b) > (RRS) J° f dg — €. Since € is arbitrarily small this proves the theorem. a

Kurzweil [68, Section 1.2] suggested an equivalent definition of the (W PS) integral based
on an extension of the limit as the mesh of partitions tends to zero in the definition of the RS
integral. For a partition a = ¢ < 1 < --- < &, = b, points y; € [z;—1,2;], 1 = 1,...,n, are
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called tags and the pair of sets 7 = ({z;: 4 = 0,...,n},{y;: 4 = 1,...,n}) is called a tagged
partition of [a,b]. A gauge function is any function with strictly positive values. Given a gauge
function d(-) on [a,b], a tagged partition 7 = ({z;: i = 0,...,n},{y;: i =1,...,n}) is d-fine if
Yi—0(yi) <xim1 <y <z <y;+6(y;) fori =1,...,n. Let TP(4,[a,b]) be the set of all §—fine
tagged partitions of [a, b].

Lemma 6.29. For any gauge function 6, TP(9,[a,b]) is nonempty.

Proof. Let §(-) be a gauge function on [a, b]. Then the system of open intervals {(y — d(y),y +
d(y)): y € [a,b]} is an open cover of [a,b]. Since [a,b] is compact there is a finite subcover
{Ji = (yi —8(vi),vi +0(y;): i =1,...,n} of [a,b] such that any n — 1 of J; do not cover [a, b].
Since y;, i = 1,...,n are different we can assume that y; < --- < y,. Also, J; N J;y1 # 0 for
i=1,...,n=1, inJj=0for |i —j| >1,4,5=1,...,n,a € J; and b € J,. Hence one can
find numbers ¢ = 29 < 1 < ... < z, = b such that z; € J;NJ;41 fori =1,...,n—1 and
Yi € [xi—1,zi] for i =1,...,n. Thus {z;:1=0,...,n},{yi:i=1,...,n}) € TP(4,[a,b]). O
The sum

S5(r) = S5(,7) 1= 3 £ wi)la(e) — g(zic)]

based on a d—fine tagged partition 7 = ({z;: ¢ =0,...,n},{y;: i = 1,...,n}) will be called the
gauge sum based on 7. The gauge or Henstock-Kurzweil integral (HK) fg fdg is defined as
the number A, whenever it exists, such that for each € > 0 there is a gauge function §(-) on
[a,b] such that |S5(f,g;7) — A| < € for each J-fine tagged partition 7 of [a,b]. Kurzweil [68,
Theorem 1.2.1] proved the following statement:

Theorem 6.30. The integral (W PS) [° f dg exists if and only if (HK) [ f dg exists, and then
their values are equal.

Proof. Suppose (WPS) [ fdg is defined. Then given e > 0, there exist a major function
M € U(f,g) and a minor function m € L(f,g) such that

M) — e < (WPS) / " Fdg <m(b) +e. (6.33)

a

Let 6 := dpp ANy, and let 7 = ({zj: i = 0,...,n},{y;: i = 1,...,n}) be any d—fine tagged
partition of [a, b], which exists by Lemma 6.29. By (6.29), we have

M(xi) —M(yi) > f(yi)lg(wi) —g(yi)] and M(yi) — M(zi-1) > f(vi)lg(yi) — g(zi-1)] (6.34)

for each i = 1,...,n. Adding up 2n inequalities (6.34) we get the upper bound M (b) > Ss(7)
for the gauge sum S;(7). Similarly, using (6.30), we get the lower bound Ss(7) > m(b). By
(6.33), it then follows that

b b
(WPS)/ fdg—e < S5(r) < (WPS)/ fdg +e.

Thus (HK) [° f dg exists with the same value as the (W PS) integral.
Now suppose (HK) [° f dg is defined. Given e > 0 there exists a gauge function §(-) such
that for each d—fine tagged partition 7,

(HK) / " Fdg— e < 85(r) < (HK) / g +e. (6.35)
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For each z € (a,b], let §, be the gauge function J restricted to the interval [a,z]. Then for
each z € (a,b], let

m(z) := inf {Ss,(7): 7 € TP(d4,[a,z])}, M(z) :=sup{Ss,(7): 7 € TP(dy,a,x])}

and m(a) = M(a) := 0. Then m(z) and M(z) have finite values for each = € (a,b]. Let
z € (a,b) and z € (z,z + d(z) A b]. Then for each 7 = ({a = z¢,...,2m =x},{y1,-- -, Ym}) €
TP(d,,[a,z]), {zos--sTm, 2} {Y15- -+, Ym,x}) € TP(J,,[a,z]). Thus

S5, (1) + f(2)g(2) — g(x)] < M(2)

for any 7 € TP(d,[a,z]). Thus the first inequality in (6.29) holds. Similarly one can show
that the second one and (6.30) also hold. Therefore m and M are minor and major functions
respectively. By Lemma 6.27 and (6.35), it then follows that

WES) [ fdg - e <mib) < 1(7,0) S U,0) < M) < WPS) [ fdg + e

Since € is arbitrary, L(f,g) = U(f,g) and equals the (HK) integral. The proof of Theorem
6.30 is complete. O

Schwabik [100, Theorem 3.1] proved the following for g of bounded variation, where f is
not necessarily regulated, if (a) f is bounded, or (b) f is arbitrary and for any ¢ such that
g(t—) = g(t+), we have g(t) = g(t—) also.

Theorem 6.31. Suppose f and g are regulated on [a,b] and g is right—continuous on (a,b]. If
+b fdg exists then (HK) [° f dg exists and has the same value.

Proof. Given € > 0, take a partition A = {z;: j = 0,...,m} of [a,b] such that for any
refinement k of A and open intermediate partition o of k,

b
‘Sy(f,g; K,0) — ?ffdg| <e (6.36)

By Lemma 6.18 we can assume that (6.36) holds also for f replaced by fia’b) or by A;r,b 7,

taking A as a common refinement A = X' U A" of partitions X' for fg_a’b) and €/2, and X" for
A;’b f and €/2. It suffices to prove the Theorem for fia’b) and for A:b f.

Define a gauge function §(-) on [a,b] by: if z &€ A, let d(z) := nfinj |z — 2j|/2. Then any
d(-)-fine tagged partition must contain each z; as a tag. For j = 0,...,m, define §(z;) such
that: 6(z;) < min;4; |2 — 2;|/3 and

m

1£lloo - {Osclg [ — 8(25), 2)) + Osclgs (2j-1, -1 + 8z } <e.  (6:37)

j=1
Let 7 = ({uj: i =0,...,n},{v;: i =1,...,n}) be any 6(-)-fine tagged partition of [a, b] and let

n

S(r) =3 f(vi)lg(ua) — g(ui-1)] (6.38)

=1

be the gauge sum based on 7. We can assume that v; = u; = v;41 never occurs since if it
did, the ith and (¢ + 1)st term in S could be replaced by f(v;)[g(wit+1) — g(ui—1)], and we
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would still have a gauge sum based on a J(-)-fine tagged partition equal to Ss(7). Since the
tags {v;: 4 = 1,...,n} must contain the points of A, for each index j € {0,...,m} there is an
index i(j) € {1,...,n} such that z; = v;;). Let p:={i(j): j =0,...,m} C {1,...,n}. For
j=1,...,m—1, by definition of §(-), we must have

Ui(5)—1 < Vi(5) < Uj(5)- (639)

We also have i(0) =1, v1 = 20 = ugp = a and i(m) = n, v, = 2y, = uy = b.

First suppose that f is right—continuous on (a,b); that is the case when f = fJ(ra’b). We
will show that one can find a Young sum based on a refinement of A, which is arbitrarily close
to the gauge sum S. To this aim we will replace the values g(u;) in S, i =1,...,n— 1, by
values g(z;) at continuity points z; of g, close to u;. Then the Young sum terms f(z;) AT g(z;)
will be 0. For each i = 1,...,n — 1 such that u; < v;11, replacing u; in S by a slightly larger
x; > u; which is a continuity point of g gives a sum T with [T — S| < €. If v;11 = u;, then
let U be a sum equal to T except that for each such i, we replace v;11 by ¥;+1 and u; by
x; with u; < x; < Y41 < ui+1, where z; is a continuity point of g and let y;11 — u; be as
small as desired. Since f is right—continuous on (a,b), we can make |U —T'| < €. In either case
v; < u; < x;. Let zp :=a and =, := b. Let y; := v; for each ¢ = 2,...,n—1 for which y; was not
previously defined. Thus y;;) = v;(;) for j = 1,...,m — 1 by (6.39). Choose any y; € (a,u1)
and y, € (zp-1,b). Let V := Sy (f,¢9;¢, p) be the Young sum based on ¢ := {z;: i =0,...,n}
and p:={y;:i=1,...,n}. Then

[V -Ul = [f(a)ATg(a) + f(y1)lg(21) — gla+)] = f(a)[g(z1) — g(a)]
+F(0)ATg(b) + f(yn)[9(b—) — g(zn-1)] = F(D)[g(b) — g(zn—1)]]
= |lf () = Fla)llg(z1) — glat)] + [f (yn) — FO)][g(b—) — g(@n—1)]| < 4e

by (6.37). Now let kK := AU = {s;: 1 = 0,...,k}, a partition of [a,b] with k = m +n — 2.
Each interval (z;_1,z;) for ¢ = 2,...,n — 1 contains z; if ¢ = i(j) € u, otherwise contains no
zj and becomes an interval (s;_1,s;) for some [. In the latter case let ¢; := y;. In the former
case we have for some [, s; o = z;_1 < z; = 51 < x; = s5;. Choose any t;_; := w; with
Si—p < ti—1 < s;—1 and t; :=r; with 5,1 < t; < s5;. Let W := Sy (f, g; &, 0) be the Young sum
based on k and its open intermediate partition o := {#;: [ =1,...,k}. Then

w-vl = | {Fw))lglzi—) — g(wmigy-)] + F(z)Ag(2))

+ f(ri)lg(zigy—) — 9(25)] — f(=)lg(zi5—) — g(xi(j)q)]} ‘

IN
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<

|
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=

+ 2 IF(rs) = F(z)llg(wig =) — 9(2)]] < 2€

by (6.37). Here W is a Young sum over a refinement of ), so [W — #% fdg| < e. Thus
|S — b fdg| < 9¢. The conclusion follows when f is right-continuous on (a, b).

Now suppose that f € co((a,b)) (cf. notation (6.27)); that is the case when f = A;L,bf.
There is an open intermediate partition {w;: j = 1,...,m} of A = {z;: j = 0,...,m} such
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that f(w;) = 0 for all j. Thus by (6.36)

Y F)Age) — £ 7dg| < e (6.40)

=1

For any set v C {1,...,n — 1}, consider partitions k = {s;: l = 0,...,k}, k = m+n —2,
consisting of A, u; for ¢ € v, and for each ¢ € {1,...,n — 1} \ v, a continuity point of g close to
u;. Let o = {t;: 1 =1,...,k} be an open intermediate partition of x with f(¢;) = 0 for all [.
Then from (6.40) and (6.36) we obtain

Y F(u) A g(w)

i€y

< 2. (6.41)

Consider also partitions (k,o) defined in the same way except that for ¢ C {1,...,n — 1}, if
i € &\ pand i is even, we take s; = 8y(#) to be, instead of u;, a continuity point of g a little
larger than u;, while s;(;_; is a continuity point of g a little smaller than u;—; and #;;) = u;—1.
For each 7 there will be an s;(;), a continuity point of g near u;. Let f(#;) = 0 for other [ as
before. Letting s;;) | w; and sy;-1 T u;—1 it follows that
| (i )lgluws) — glui 1-)]): i € €\ py i even}| < 2e.

The same holds likewise for ¢ odd. Thus

| flue)lg() — glui =) S4e, or |3 flw)lg(ui) — g(wi)]| < de.

i€§\p i+1€€\u
With v ={i:i+ 1€ &\ p} in (6.41) this gives

| Y F)lgluig) - g(us)]| < 6e.

i+1€g\u

If vi41 = u; then 1 + 1 ¢ u by (6.39). Thus

|Z{f(ui)[g(u,-+1) — g us =iy, i=1,...,n— 2}\ < 6e.
Here f(u;) could be replaced by f(u;) — f(yi+1), where u; < yj+1 < ui+1 and f(y;+1) = 0. So
the gauge sum (6.38) differs by at most 6e from the sum

n

S = Zf(wz)[g(uz) — g(ui-1)],

i=1
where w; :=y; if u;_1 = v; and 1 = 2,...,n — 1, w; := v; otherwise. Then u;_1 < w; < u; for
1=2,...,n—1. The rest of the proof follows as in the case where f is right—continuous except

that now there is no need to consider the sum U. The proof of Theorem 6.31 is complete. O

Ward [111] stated and Saks [98, Theorem VI.8.1] gave a proof of the fact that (W PS) [° f dg
is defined provided the corresponding Lebesgue—Stieltjes integral (LS) fé’ f dg is defined, and
then they are equal. By Theorem 6.30, the gauge integral is in the same relation with the (L.S)
integral. The following gives conditions when the converse holds.
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Theorem 6.32. Let f be non-negative on [a,b], and let g be non-decreasing on [a,b]. Then
(HK) fgfdg exists if and only if (LS) fgfdg does, and then the two are equal.

Proof. Recall that the McShane integral is defined as the (H K') integral except that in a tagged
partition ({z;: 4 =0,...,n},{y;: i = 1,...,n}) the tags y; need not be in the corresponding
intervals [z;_1,z;]. By Corollary 6.3.5 of Pfeffer [90, p. 113], under the present hypotheses
(HK) [ f dg exists if and only if the corresponding McShane integral exists, and then the two
are equal. The equivalence between the McShane and Lebesgue-Stieltjes integral was proved
by McShane [80, pp. 552,553]. Also, it follows from Theorem 4.4.7, Proposition 3.6.14 and
Theorem 2.3.4 of Pfeffer [90]. The proof of the theorem is complete. O

Suppose a continuous function f: [a,b] — R is differentiable everywhere on (a,b). It may
be that f’ is not Lebesgue integrable, e.g. if [a,b] = [0,1], f(z) = z%sin(r/2?), 0 < z < 1,
f(z) = 0 elsewhere. The Denjoy and Perron integrals were defined so that for every such f’,
[Zf'(t)dt = f(z)—f(a), a <z < b. These integrals and the later-invented Henstock—Kurzweil
integral turned out to be equivalent for integrals [° g(x)dz: Gordon [45, Chapter 11]. The
following holds:

Theorem 6.33. Let f be a continuous function: [a,b) — R having a derivative f'(z) for
a < x < b except for at most countably many xz. Then (HK) [J f'(t)dt ezists and equals
f(z) — f(a) fora<z <b.

Proof. Apply Theorems 7.2 and 11.1 of Gordon [45]. O

For another example, f(z) := z2sin(e'/?), z # 0, f(0) := 0, satisfies the conditions of
Theorem 6.33 although f’ has very wild oscillations.

While there has been relatively little literature about the Young (RYS) and (CY) integrals,
there has been much more about Henstock—Kurzweil (gauge) integrals, e.g. Lee Peng—Yee [89].
A 1991 book by Henstock [48] has a reference list of more than 1200 papers and books, mainly
on the theme of “non-absolute integration”, if not necessarily about the (HK) integral itself.
In fact, Henstock [48] treats integration over general spaces (“division spaces”).

6.6 Comments and related results

Integration by parts In stochastic analysis, and for some integral equations as will be
seen in Section 7.4, there are advantages in integrating left-continuous integrands with respect
to right-continuous functions. In that case we have the following:

Theorem 6.34 (integration by parts). Let f and g be right-continuous and of bounded vari-
ation on [a,b]. Then for Lebesgue-Stieltjes integrals,

b b

[ dg+ [ df = foli— 3 (AfATg)(@). (6.42)
e a a<z<b

Proof. By (2.4), [° fga)dg = fga)g|2 - fggdfga). By formulas for the (CY) integral, fggdfga) =

b g(,a) dea) + X (ap) ATgAT f, and b g(,a)dfga) = b g(f) df — (g A~ f)(b). Collecting terms, the
result follows. 0O
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The integration by parts formula (6.42) also holds for any of the integrals following from
the (LS) integral in Diagram 2.1 (the (RY'S), (HK), or (CY) integral). Note that the sum
> A~ fA~g appears in (6.42) and in (2.4) with opposite signs. Naturally, A" terms as in (2.4)
don’t occur in (6.42) because of right continuity. In stochastic analysis, there are integration by
parts formulas with the terms of (6.42) and/or further continuous terms (see e.g. pp. 227-235
and 325-330 in [14)).

W. H. Young’s integrals Let h be a monotonic function on [a,b]. Suppose f is a step
function on [a,b], that is f is constant on each open interval (z;_i,z;) of a partition kK =
{z;:1=0,...,n} € PP ([a,b]). Then let

n

/ab fdh:=Y" {[fA+h]($i—1) + f(@ici ) [h(zi—) — h(zi1+)] + [fA_h](Iz')}- (6.43)

=1

Starting with such integrals for step functions f, W. H. Young (1914) defined integrals for
more general functions f by his method of monotone sequences, later adopted by Daniell [13]
in defining the “Daniell integral.” Thus Young obtained an integral equivalent to the Lebesgue—
Stieltjes integral, (see Hildebrandt [49, p. 193]), which Lebesgue had previously defined by a
change of variables. If h(z) = z, then the right side of (6.43) is a Riemann sum for f because
f(xi1+) = f(y;) for each y; € (zi—1,x;), % =1,...,n. Also, the right side of (6.43) is equal to
the sum Sy (f, h;k,0) defined by (6.5) for any open intermediate partition o of k. Therefore
it was natural to define an integral following the definition of the Riemann-Stieltjes integral
except that Riemann-Stieltjes sums are replaced by Young sums. However it was known as
stated by R. C. Young (1929, p. 221) that such an integral would coincide with the Riemann-
Stieltjes integral for monotonic functions h. Namely the following is true:

Proposition 6.35. Let f be a bounded function on [a,b], let h be of bounded variation on [a, b],
and let h be continuous at each = € (a,b) such that h(z—) = h(z+). Suppose that a number A
exists with the property: for each € > 0 there exists § > 0 such that |Sy (f, h;k,0) — A| < € for
each k € PP ([a,b]) with mesh || < ¢ and for each open intermediate partition o of k. Then
(MRS) [° f dh exists and has value A.

Remark. Any monotonic function h satisfies the above hypothesis. A different proof of the
preceding statement is indicated by Hildebrandt ([52, 11.19.3.12], cf. also [50, 8.11]). The
following proof also extends to the case when h € W,,, f e Wy, p>1,g>1and 1/p+1/¢g=1
in place of the assumptions f bounded and h € Wj.

Proof. Let € > 0 and let z € (a,b). By hypothesis there exists § > 0 satisfying the stated
property. Let v <z <v,v—u < § and y € (u,v). Consider a partition x,, of [a, b] containing
u, v and no other points in between. Let o, and oy be two open intermediate partitions of x
with the same points except the points z and y. Subtracting two Young sums based on the
same partition k,, and on two open intermediate partitions o, and oy, we get the bound

[f (z) = FW)][A(v—) — h(u+)]| < 2e.

Since € > 0 and y are arbitrary, it follows that f is continuous at xr whenever A*h(z) =
h(z+) — h(x—) # 0. Therefore at each x € (a,b) either f or h must be continuous. A similar
argument applied for z = ¢ and z = b yields that at each endpoint one of the two functions must
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be one-sidedly continuous. Due to this continuity implication, to show the Riemann-Stieltjes
integrability of f with respect to h it is enough to consider Riemann-Stieltjes sums for open
intermediate partitions. Let K = {z;: i =0,...,n} € PP ([a,b]) and let 0 = {y;: i =1,...,n}
be an open intermediate partition of k. Then we have

R(";aa) = SRS(fah;h:ao') - SY(fah; H,U) (6'44)
= > {lf(w) = f@i-)]ATh(zio1) + [f(yi) — f(z:)]Ah(z:)}.
=1

Again fix € > 0. Since A has bounded variation, there exists a finite set y of jump points of A
of cardinality m such that the sum of the absolute values of jumps at other points is less than
€/(2]|flloo)- Then choose é > 0 such that the oscillation of f around each point of p is less
than €/(2m||h||x). By (6.44), it follows that |R(k,0)| < 2¢ whenever the mesh |x| < §. The
statement of the proposition follows at once. O

The preceding statement shows that replacing Riemann—Stieltjes sums by Young sums in
the definition of the mesh—Riemann—Stieltjes integral essentially gives nothing new. In Section
4.3 we saw that this is not so if the same change is made in the definition of the (RR.S)
integral. It led to the new integral called the refinement—Young—Stieltjes integral, or just the
(RYS) integral. Full-fledged uses of this integral appeared in the works of L. C. Young [118]
and Gehring [39]. Hildebrandt discussed the (RYS) integral in his survey paper [50, p. 275]
and in his book [52, pp. 88-96].

The early history of Stieltjes integrals Medvedev [81] gives a history of concepts of
integration. He describes how Stieltjes (1894) defined an integral [° f(u) dg(u) for f continuous
and g nondecreasing. Konig (1897), in Hungarian, gave the full definition of mesh Riemann-
Stieltjes integral, and showed that the classical integration by parts formula holds with endpoint
corrections

b b
/a fdg + / gdf — (fg)l = (AT fA*g)(a) — (A~ FAg)(b),

which actually must be 0 if the integrals are defined (in the mesh or the later refinement
Riemann-Stieltjes sense). Kowalewski (1905) rediscovered the definition and now proved that

/abfngr/abgdf:(fg)IZ

provided that both integrals exist. According to Medvedev, F. Riesz in 1909 made known the
existence of Konig’s paper to the world outside of Hungary, but without characterizing it.
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Chapter 7

Product integration

7.1 Ordinary differential equations

The product integral first arose as a way of representing the solutions of initial value problems
for linear ordinary differential equations. Consider a linear kth order ordinary differential
equation

d*f(t) "1 f(t)

dtk dtk—1

where for the present f and the coefficients A; and B are real-valued. As is often done in
differential equations one can write an equivalent first order linear vector and matrix differential
equation

+ A1 (t) b+ AW)F(t) =B{), a<t<b, (7.1)

dY/dt = M -, (7.2)

where Y is the (k + 1) x 1 column vector Y = (yo,y1,---,yx) with yo = 1, y1 = f(¥),
y; =7 f(t)/dt? L for j =2,...,k and

0000 0
0010 0
v_| 0001 0
0o . .0 1
B —Ay . . ... —Ap,

with B := B(t), A; := A;(t), 7 =0,1,...,k — 1. If (7.2) holds at a point ¢, then
Y(t+h)—Y(t)=hM(t) - Y(y) + o(h) as h |0, or

Y(t+h) = (I +hM@®)-Y(t) +o(h)  ashlo, (7.3)

where I is the (k + 1) x (k + 1) identity matrix. Let N(t) := [! M(u)du. If (7.2) holds for
a <t<bandY is continuous on [a,b] then informally, one sees by iterating (7.3) and letting
h |} 0 that for the product integral as defined in Section 3.5,

Y(w) = (IU+dN))Y(t) fora<t<u<b. (7.4)
t
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More formally, making a stronger regularity assumptions than necessary for simplicity, if M is
continuous, then (7.2) implies the integral equation v

Y(u) =Y(t) + $dN(z) - Y(x), a<t<u<b, (7.5)

and (7.4) will indeed give the unique solution of (7.5) and thus of (7.1) by Theorem 7.13 below,
or by Theorem 5.21 in [29], as follows. These facts give that H(u) := ][ (14 dN) is the unique
matrix—valued solution of the matrix integral equation

H(u) =T+ /tu dN(z)-H(z), t<u<b. (7.6)
Suppose that Z(-) were another vector—valued solution of
Z(u) =Y (1) + /tu dN ()2 (x).
Let A(u) = (Aij(u)) be defined by

oy ) (Z=Y)(u) fori=1
Aij(u) := { 0 for i > 1.

Then H + A would give a solution of (7.6) different from H, a contradiction.

The above considerations also apply to systems of first—order linear ordinary differential
equations, where M can be a general (continuous) square matrix—valued function instead of
having the specific form coming from one kth order equation.

Equation (7.4) gives the solution of an initial-value problem for linear ordinary differential
equations in terms of an operator which is clearly linear in the initial values Y'(¢). It is non—
linear in the coefficients. For a kth order linear ordinary differential equation (7.1) the solution
will be y1(t). The operator will be shown to be holomorphic in the coefficients in Section 7.5.

It’s easy to check that for two 3 x 3 matrices A, B of the form of M, so that kK = 2, we have
AB = BA if and only if A = B. The same is true for any k£ > 2: consider the next—to-last
row of the products. Thus commuting matrices will be obtained only for differential equations
with constant coefficients if k& > 2.

7.2 Product integrals

We were introduced to probabilistic and statistical uses of the product integral by Gill and
Johansen [43], who use an interval function formulation. In our work [29] we used point
functions. Now we have come to prefer interval functions, but perhaps there is some advantage
in seeing and comparing both formulations.

The book of Dollard and Friedman [17] contains a survey and examples of applications of
several types of product integrals. In the case when a function h is real valued, the product
integral with respect to h usually can be written explicitly as in Theorem 7.8 below. Therefore
we consider product integrals for functions with values in a Banach algebra B with an identity
I. Several results stated in earlier sections for real-valued functions will be used for B-valued
functions. Their proofs in the more general case are the same.

78



In Section 7.5 we apply some ingenious inequalities of T. Lyons [76] to bounding Peano
series expansions of product integrals. It has not escaped our attention that these inequalities
can have other applications. We present what we could write up in the time available so far.

Let x4 be an additive interval function on an interval [a,b] with values in B. As before
the class of all such functions is denoted by Z([a,b];B). Also, as in Section 4.5 we use two
classes of subintervals of [a,b]: Jos([a,b]) := {(c,d),{c}: a < ¢ < d < b} and I([a,b]) :=
{le,d], (c,d], [c,d), (c,d): a < c<d<b}. Let IP ,5([a, b]) be the set of all partitions of [a,b] by
intervals from J,s([a, b]). Recall that the set IP ([a,b]) of interval partitions was introduced in
Section 2.1. For J € J([a,b]) and D = (J1,...,Jn) € IP (J), let

N
P(159) == Py (@) = [ [T+ u(J)] := [T+ u(Iw)] - - [T+ ()]
j=1

Similarly define Py, ()(14;®). Since B may not be commutative, the product sign is used below
with the prescribed order. Some authors use the reverse order.

Definition 7.1. Let u € Z([a, b]; B) be additive and let J € 3([a.b]). The product integral with
respect to p over J is defined to be the limit

JUL + dp) = lim Py 5)(p; D) (7.7)
J of

if it exists under refinements of J-partitions of J (cf. Definition 6.23).

Lemma 7.2. Let pp € Z([a,b];B) be additive and upper continuous. Then the limit in (7.7)
exists if and only if it exists under refinements of J,s—partitions of J, and the two are equal.

Proof. Since IP ,4(J) C IP (J) and each J-partition can be J,,-refined, if (7.7) exists then so
does the limit under refinements of J,s-partitions of J, and the two are equal. The proof of
the converse implication is similar to the proof of Theorem 6.26 and is omitted. O

As in Dudley and Norvaisa [29, Definition 4.20] given a B-valued function h on [a,b], the

product integral
b

]aI(]I +dh) (7.8)

is defined to exist and equal A iff for every € > 0 there is a A € PP ([a, b]) such that
|P(h;k) — Al <€ (7.9)
for each refinement x of A\, where P(h;k) := [[iq [1 + h(z;) — h(zi—1)] for k = {z;:i =

0,...,n} € PP([a,b]).
To relate the product integral (7.7) with (7.8) recall the definition (4.32) of the interval
function up corresponding to a regulated function . Then we have:

Theorem 7.3. Let h € R([a,b];B) be either right-continuous or left-continuous at each point
of (a,b) and let h(a) = 0.
(1) The ezistence of any of the three product integrals:

b b b—
(I + dh), JT(I+ dh), JT(I+ dh) (7.10)
a a+ a
implies the existence of the corresponding product integral with the same value:
JU (T + dpn), N (T+dpn), JU(T+ dpn). (7.11)
[a,b] (a,b] [a,b)
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(2) If, in addition, there is a finite constant C(h) such that

sup [P (un; D)|| < C(h) (7.12)
DeEIP (J)

for each subinterval J C [a,b], then the converse to (1) holds.

Remark. By Lemma 4.19 of [29], condition (7.12) is satisfied provided v,(h;[a,b]) < oo for
some 0 < p < 2.

Proof. We prove the stated relation only for the product integrals ]IZ(]I—I—dh) and [, (I+dup)
because a proof for the other two pairs in (7.10) and (7.11) is similar. To prove (1) let e > 0. By
definition of the product integral with respect to h, there exists A € PP ([a, b]) such that (7.9)
holds for each refinement x of A. Let D) be the J,s-partition of [a, b] such that the corresponding
point partition (D)) = A and let D be any J,s-refinement of D). Let k := {z;: i =0,...,n} =
©(®) be the corresponding point partition of [a,b]. Let I, := {i = 1,...,n — 1: ATh(z;) = 0}
and I :=={i =1,...,n— 1} \ I,. Then A~h(z;) = 0 for each i € I; by assumption. Choose
points z}, i = 0,...,n recursively as follows: let z{, € (z9, 1) and supposing z;_; to be chosen,
then, if ¢ < n, take either z} € (z,_1 V2,_,,z;) if i € I, or =, € (z;,2541) if ¢ € I}, while if
i = n take z}, € (z,—1 V zl,_1,27,). Let Dj := [I+ h(z} A z1) — h(z()][I + h(zy)], for each
i=1,....,n—1,let

D { [T+ h(z),q Azivr) — h(@)][L+ h(z;) — h(z})] ifi€l,
t [T+ h(zi 1 Azip1) — h(z))][T+ h(z]) — h(z;)] ifie I
and let D], := I+ h(z,) — h(z]). Letting z} | z; if i € {0} U, and z} 1 z; if i € I, U {n}, we
get that Dg — [T+ h(z1—) — h(zo+)][T + h(zo+)] = [T+ pa((o, 21))][T+ pr({zo})];

D} - { ) e A i o 2} — [+ an i i DI + ()

foreach i =1,...,n—1, and D], = I+ pp({z,}). Therefore
P(h;k') = D), --- DDy — Ps,, (pp;®)  as k' — k.

Since A C K C &/, by (7.9), it follows that || JI’(I+dh) — Ps,, (us; ®)|| < € for any J,,-refinement
D of D). Statement (1) now follows from Lemma 7.2.

To prove (2), take C'(h) > 1 and again let € > 0. Since each J-partition can be J,s-refined,
there is an J,s-partition D, of [a,b] such that

| 70+ dun) = Poy (un; D) < e (7.13)
[a,b]
for each J-partition ® J ®.. Let {z;: j = 0,...,m} = p(D,) be the corresponding point
partition, and let {v;_1,u;: j = 1,...,m} be a set of points such that z;_; < vj_1 < u; < z;
forj=1,...,m and
(max [Ose(h; (2j-1,vj-1]) V Ose(h; [uj, 27))] < ¢/[2]|hlloC(R)?(m + 1)]. (7.14)

Let X := {zj,vj_1,u: j =0,...,m} and let k = {z;: i =0,...,n} € PP ([a,b]) be a refinement
of A. Define the sets I, I; as in the above proof of statement (1), and for each j = 0,...,m,
let i(j) € {0,1,...,n} be such that z;;) = z;. Let D, be the J-partition of [a,b] consisting of
the intervals: {20}, J1,..., Jij)s {2} Jigj)+15 - - - » Iny {#Zm }, where, for j =0,...,m —1,
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Ti(it1)—1s 2j ifi(5+1) €1, . S
Tia1) = { E:I:;((j:ll))_ll, zjill)) ifig' i 1; c I;, and fori(j) +1<i<i(j+1)
[Ti—1,2z;] fi—1€T,i€l,
T ) Ehaigml i) +1el g .= @inz] ifi-Liel
W)+ (2j, i(y41)  ifi(G) +1 €T, ) [mienm) i1 €
(i—1,2;) fi—1€I., i€l

Then ®,, € IPy([a,b]) and D, 3 D,. Due to the assumption of left- or right-continuity we
have pn(Jij41)) = Mzjr1—) — Mg -1)s #r(Jigy+1) = b(ig)+1) — h(z+) and pp(Ji) =
h(zi) — h(zi-1). Let By := [T+ pn({2m DT+ pn(Jn)];

T+ (DI + ()] i4G) € I,
Bii={ (14 m (i) I+ mn({z )] i) € 1,
]I+uh(J) ifie{l,...,n—1}\(LUL)

and By := (T4 pp(J1))(T+ pr({z0}))- Using a telescoping sum representation, we get

n n—1
= P(h; k) — Py(un; @) = [[(1+ A'h) HB [T+ A"k — B,] [[ Bi
=1 =1
m—1 n o i(j)—l n )
+y ( H (1+ AT)) 1+ ADh — Byp]( T Bi) + [1(X+ AB) [T+ hz1) — Bi).
j=1 i(j)+1 i=1 i=2

Then using (7.12) and (7.14), we get the bound
1T < CMIATRDB)[R(b=) = h(zn-1)] + Z_ C(h)?Hj + C(h)|[h(a+)[h(z1) — haH)]l| <e,
j=1

where
1. .= ) I1ATR()[R(z) = h(zigy- )]l ifi(5) € Iy
’ 1A (i)+1) — h(z) )]A hiz)| i) € I
By (7.13), it then follows that || Ty, (T + dun) — P(h; k)| < 2¢ for any point partition £ > A.
Since € > 0 is arbitrary, (2) holds. The proof of Theorem 7.3 is complete. O

As the following example shows, the one-sided continuity assumptions of the preceding
theorem cannot be dropped.

Example 7.4. For ¢ € [0,1], let he(z) := 0 for z € [0,1), he(1) := € and he(z) := 1 for
z € (1,2]. Then the product integrals with respect to h¢ and pp, exist, and

]21(1 +dhe) =(14+€)2—-¢) and [ (1+duy) =2
0 [0,2]

Therefore the two product integrals have the same value if and only if either ¢ = 0 or ¢ = 1;
that is if and only if h¢ is either left-continuous or right-continuous.

Recall that Z,([a, b],B) is the set of all 1 € Z([a, b]; B) with bounded p-variation as defined
by (4.38). Next are the main facts about the product integral to be used in the subsequent
sections.
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Corollary 7.5. Let p € Z,([a,b];B), 1 < p < 2, be additive and upper continuous. Then the
product integral with respect to p is defined over any subinterval of [a,b] and the mapping

3([a, b)) 3 J v (I + du) € B (7.15)
J

is a multiplicative and upper continuous interval function on [a,b] with bounded p-variation.

Proof. The functions R, , and L, , defined by (4.29), are respectively right-continuous and
left—continuous on (a,b), and both are 0 at a. By Proposition 4.37 and Theorem 4.39, u = py,
with h = Ry, 4, or h = L, 4, and h has bounded p-variation. Therefore the existence of the
product integral with respect to p over any subinterval of [a, b] follows from Theorem 7.3 above
and Theorem 4.23 of [29]. To see that (7.15) is multiplicative let a < ¢ < b. Then by Theorem
7.3 above, Corollary 4.24 and Lemma 5.1 of [29], we have

c b
[]I](]I +dp) = J(I+dR,,) )}_(]I +dR, ) = [ﬂ](]I + du) (ﬂ](]I + du)
a,b a c a,c c,b
c— b
= H(]I+dLu,a)ﬂ(]I+dLu,a) = [ﬂ)(]I‘FdH)[ﬂb](]H‘dM)-

Similarly using Theorem 7.3 above and Lemma 5.2 of [29] one can show that (7.15) is upper
continuous at (). This yields upper continuity by Theorem 4.35. The interval function (7.15)
has bounded p-variation by an analogous result for the indefinite product integral with respect
to point functions proved in Proposition 5.3 of [29] and by Theorem 4.39 and Lemma 4.13.
Thus the conclusion of Corollary 7.5 holds. O

The condition on p-variation in the preceding statement is sufficient but not necessary. In
the case of real-valued functions we have necessary and sufficient conditions for existence of
a non—zero product integral. The following statement is Theorem 4.4 of Dudley and Norvaisa
[29].

Theorem 7.6. For a real-valued function h on [a,b], the product integral (7.8) exists and is
non zero if and only if the following two conditions hold:

(1) h € Wila,b];

(2) A h(z) # —-1# A h(y) fora<z <b, a<y<b.

Let g be a k x k matrix-valued function defined on an interval [a,b] and let k = {z;: i =
0,...,n} be a partition of [a,b]. Volterra [110, Opere, I, p. 235] defined the product integral
of the function g over [a,b] to be the limit

tim [T (¥ + 9(3:) (@1 — a3-0) (7.16)

i=1

if it exists, where I is the identity matrix, y; are any points from [z;_1,z;] for i =1,...,n and
the limit is taken as the mesh || of the partition x tends to zero. He proved the existence of
the limit under conditions analogous to those under which Riemann [94] proved the existence
of his integral. Masani [79, Sec. V] proved among other things that for ¢ with values in a
Banach algebra the limit (7.16) exists if and only if the function g is Riemann integrable. Next
we prove a similar result for the (RYYS) integral. Let f be a real-valued function on [a,b]

82



and let h € Rla,b]. For k = {z;: 1 = 0,...,n} € PP ([a,b]) and open intermediate partition
o={yiri=1,...,n} of K, let

n

Py(f,h;k,0) = [[ {1+ (FATR) (@ic1) H1 + £ (yi) [(mi—) — h(zici+)]H1 + (FATR)(z:)}.

i=1

The subscript Y for Py refers to the similarity between this product and the corresponding
Young sum.

Definition 7.7. Let f be a function on [a,b] and let h € R[a,b]. The product integral of f
with respect to h over [a,b] exists and has value A, if for each € > 0 there exists a partition
A € PP ([a, b]) such that

|Py (f,h;r,0) — A| <€ (7.17)

for each refinement x of A and open intermediate partition ¢ of k. If the product integral is

defined then we write ,

T+ fdh) := A. (7.18)

a

A product []; A; will be said to converge absolutely if 3, |A; — 1| < co and A; # —1 for all
. Let
x[z] = (14 2)e %, z€R (7.19)

For J C [a,b] and § > 0, let I*(0; J) := {x € J: |Ag,b(f)| > ¢}, where § = — and f = +. Let
TIxisasn=tm II xifagne I xrabhe (7.20)
J zel—(8;J) zel*(8;J)

provided the two products converge absolutely.

Theorem 7.8. Let f be a bounded function on [a,b], h € Wi[a,b], both real-valued, and

WA h(y) # -1 # f(z)ATh() (7.21)

for a <z <y <b. Then the integral (RYS) fgfdh exists if and only if the product integral
(7.18) does, and if so they satisfy the relation

F(L+ fdh) = exp { (RYS) / ’ fdn} T x(fa*h). (7.22)

a4 [a,b]

Remarks. The product over jumps is as in the stochastic case, e.g. when f =1 ([15]). Condition
(7.21) does not restrict small jumps of h, that is, (7.21) holds if |[A~h(y)| V|ATA(z)| < 1/||f]lco
fora<z<y<b.

Proof. A Taylor series expansion with remainder for the function (7.19) yields
x(u) =1 —0(u)u?, where 1/(4,/e) < 0(u) < 3/e/4 for |u| < 1/2.

Thus for any finite set v C (a,b) of points = such that |[fAA](z)| V [[fATh](z)] < 1/2, we
have the bound
Y11= x(fAR)| < (3Ve/4)||f|[5S2(h)? < oo.

v
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That is, the product []j, 4 x(f A*h) in (7.22) converges absolutely.
By another Taylor series expansion with remainder, it follows that

log(1 4 u) = u — O(u)u?, where 2/9 < 0(u) <2 for |u| < 1/2. (7.23)

Let € > 0. There exists A = {z;: j = 0,...,m} € PP ([a,b]) satisfying the following four
properties:

(1) D= I~(1/2 [a,8) UT*(1/2; [a,8]) C X

(2) Osc(h; (zj-1,%;)) < 1/(2[|flloc) for j =1,...,m;

(3) for each finite set v C (a,b) disjoint from A,

D LATR)? + (ATR)*] < e/ (4] flls0);

v

(4) for each refinement kK = {z;: i = 0,...,n} of A,

S (hais) — bz P < e/ (41 fll).

i=1

The existence of A follows from Corollary 4.11, Theorem 4.10, &2(f) < oo and Lemma 4.18,
applied in that order. Let kK = {z;:4 = 0,...,n} be a refinement of A and let 0 = {y;: ¢ =
1,...,n} be an open intermediate partition of k. Then let

Af = Al(k) = [fAPR)(z;) and A = Ag(k,0) = F(y)[h(zi—) — hlzi1+)],

where § = — and §f = +. Also, for each index j = 0,...,m of A, let i(j ) € {0,...,n} be the
index of s such that z;;) = z; and let I := {0,...,n} \ {i(j): 7 =0,...,m}. By the above
conditions (1) and (2), we have

log {Pyv(f,h;k,0)} = log{ ﬁ 1+ A+ )+ 45 } +) log(1+ A7) +log(1+ Af)]
j=1 el

+ Z log(1+4;) by (7.23) and (7.20)

i=1
= log{Hx[fAih]} + Sy(f,h;k,0) — R(k,0), (7.24)
A
where "
R(k,0) =Y 6(A 2+ [0(A 2+ 0(A1) (A3

i=1 i€l
By the above conditions (3) and (4), it then follows that

R(r,0) < 2| flloc Y [M(@i=) = h(zi1)]” +2I|f oo Y (AT R(z:) + (A™h(2:))*] < €

i=1 i€l

for any refinement k of A and open intermediate partition o of k. Since log{[], x[fA%h]} in
(7.24) does not depend on x and o, the (RYS) integral exists if and only if the corresponding
product integral (7.18) does, and relation (7.7) follows. The proof of the theorem is complete.
O
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7.3 The Duhamel formula

We prove the Duhamel formula, which is an integral representation of a difference between two
product integrals. Its discrete analog is a simple algebraic identity:

n n n n+1 1—1
ITa;— T8 =3 ( II @)t —b)(I1s) (7.25)
i=1 j=1 i=1  j=i+1l j=0
valid by a telescoping sum for any elements a1, ..., a, and by,..., b, of a Banach algebra, with

bo == any1 := L An integral 1,5 f(y) p(dy) g(y) is defined as a limit under refinement of
sums >-7 f(y;)p(I;)g(y;) over interval partitions {I;}7_; of [a,b] and y; € I}, j = 1,...,n.
This reduces to the previous definition if B is commutative.

Theorem 7.9 (Duhamel formula). Let p,v € Z,([a,b],B), 1 < p < 2, be additive and upper
continuous. Then

JU(M+dp) = T (T+dv) = £ J{(T+dp)(p—v)(dy) JT(T+dv), (7.26)
[a,0] [a.0] [a.6] (9.5) [av)

where a product integral over the empty set is defined as 1.

First proof. Let R := R, , and L := L, , be the functions defined by (4.29). By Theorem
4.39, R and L have bounded p-variation. Thus by Theorem 7.3 and Corollary 7.5, the following
product integrals are defined and satisfy the relations:

T (Ttdp)— T (1+dv)=[(A+dR) - TA+dL), | (I+dv) = T(1+dL)
a0 0.0 a a [a.9) a

fora <y <b, and
b b (at)
JL(T+dp) = T (1+dR) = (JI(1+dR))
(y,] y+ y

for a < y < b, because R is right—continuous only on (a,b). Here f(1) is a function on [a, b]
defined by f(@t)(z) := f(z) for a < z < b and f(**)(a) := f(a+). Since R is right-continuous
on (a,b) and L is left—continuous on (a,b), the Duhamel formula of [29, Theorem 5.5] can be
written in terms of the (C'Y") integral as follows:

):((]1 +dR) — )3(]1 +dL) = (CY) /ab ():((]1 +ar)) " a(r - L)(}Z{(]I +ar)”

= (RYS) ’ N (I+du)d(R—L) J (I+dv),
a (y,b] la,y)

where the last equality holds by Proposition 6.22. Since the (RYS) integral does not depend
on values of the integrator at jump points, and since (p — v)([a,z]) = R(z) — L(z) for all
z € [a,b] except at atoms of y — v, the Duhamel formula (7.26) holds. O

We give a second proof of the Duhamel formula which in view of what is used from [29]
would give a shorter total proof. It shows how the (RYS) integral appears in (7.26) as compared
with the Left Young and Right Young integrals used in the Duhamel formula of [29, Theorem
5.5].
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Second proof. Let ® = (J1,...,Jn) be a Young interval partition of [a,b] and let p(D) =
{zo,z1,...,2,} be the corresponding point partition. For any I C {1,..., N} and an additive
interval function ~, let

P? (Uier Ji) H[]I—l—'y and P7(0) := 1
el

Define step functions G® and F® on [a, b] by

G2 (y) = PP ([zi,b]) ify € (zi—1,;) for some i =1,...,n
yi= P2 ((zi,b]) if y = x; for some i =0,...,n

and
Fo(y) = P?([a,zi—1]) ify€ (zj—1,z;) for somei=1,...,n
| P?(la,z;)) ify==; for some i =0,...,n.

Letting v := p — v, by (7.25), we have

LGPy P - i (e, D) (@11, 20) P2y 1]) + 3 P2 (o, )1 ({6 P2 (0 :)
— P2(ia,) - P2(fa,). (727

In the next lemma we construct an increasing sequence {®,,: m > 1} of Young partitions of
[a,b] such that D := Upp(D,,) is dense in [a,b], contains all the atoms of v and, for each
yeD,

lim G®™(y) = I (I+dp), lim F°m(y) = J[ (1+dv), (7.28)
moee (y,b] moee [a,y)

lim Pgm([a b)= T (I+du) and lim P2™([a,b]) = ]| (I+ dv).

m— 00 [a,b] m—00 [a,b]

Then (7.26) will follow provided
lim ;ﬁGgm dy FPm = ;/': U (T+dp)y(dy) T (I+ dv). (7.29)
" @ (y,0] [a,y)

Lemma 7.10. There exists an increasing sequence {Dp,: m > 1} of Young interval partitions
of [a,b] such that D := Upp(D.y,) is dense in [a,b], contains all the atoms of vy,

lim POn(y,b) = J (T+dp),  lim P27 (ay) = T (L+dv),  (7.30)

e [y,6] [a,y]
and (7.28) holds for y € D.

Proof. Let {&,,: m > 1} and {(y,: m > 1} denote the atoms of y and v, respectively. For
each m > 1, put rp, := {a+127"™: 1 =1,...,[2™(b — a)]}. We will proceed recursively. By
Corollary 7.5, there exists a Young partition ©; such that, for each refinement ® of D,

122 ([a,0]) = JT (T+du)| VPP ([a,8]) = T (I+dv)|| <1.

[a,b] [a,b]

We may and do assume that &, {4 and the points of 1 are endpoints of some elements of
D1. Assume that m > 2 and we already have Young partitions D1,..., D1 with p(Dp,—1) =
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{zm=t .. ,xnm(:nlfl)}. To construct D, using Corollary 7.5, for each i = 0,...,n(m — 1) — 1,

one can find a Young partition D%# of [z, b] such that

|P2 @y~ 1 @raw| VPR~ T (@) <1/m

EXE (1]

for all refinements ® of ©&#. Similarly for each i = 1,...,n(m — 1), one can find a Young
partition D% of [a, '] such that

for all refinements © of 4. We may and do assume that among the endpoints of elements of
the new partitions D%# and D% are all points 7, N [z, b] and 7, N [a, 27" 1], respectively.
Let ®,, be the Young partition of [a,b] such that

PP (o, s )~ T (T+dp)| v [BR(e, s )~ T (@+dp)||<1/m

[a,z]" ] [,z )

p(®Dm) = {&m,Gn} U (UG p(@5)) U (U7 p(oi)).

We arrive recursively at a sequence of Young partitions {D,,: m > 1}. By construction the set
D := Upnp(Dy,) is dense in [a, b], contains all atoms of v and relations (7.28), (7.30) hold. O

To prove (7.29) we will use a convergence theorem for (RYS) integrals. The theorem applies
to sequences {fm} = {fm: m > 1} of functions which have uniformly bounded p-variation and
converge locally uniformly. That is, we say that {f,} is a Wy-sequence if supy, || fm/||jp) < oo
and {fm} converges locally uniformly to f at y, if given € > 0, there is an mg and a § > 0 such
that

[fm(2) = f(2) <€ (7.31)

for all m > my and all z distant less than ¢ from y. To show local uniform convergence in the
proof below we first show uniform convergence on the left at y meaning that (7.31) holds for
z < y, and the other conditions are the same. Then we show uniform convergence on the right
at y meaning that (7.31) holds for z > y.

Proposition 7.11. Let h € W,([a,b];B) and let {gm}, {fm} be W,y—sequences of B-valued
functions on [a,b], where p~1 4+ ¢t > 1, p,g > 0. Suppose that {g,} and {fn} converge
pointwise on a dense set to functions g, f € Wy([a,b; B), respectively, and that both sequences
converge locally uniformly to their limits at each discontinuity of h. Then

im (RYS) / " o dh fr = (RYS) / " gdh f. (7.32)

Proof. By Proposition 6.22, the (RYS) integrals exist and are equal to the corresponding
(CY) integrals. Thus the stated convergence theorem follows from Proposition 3.33 of [29]. O

Continuation of the second proof of Theorem 7.9. We check the hypotheses of Propo-
sition 7.11 with ¢ = p only for g, = G™ := G®™, m > 1. The hypotheses for {F®™} can be
verified similarly. For the rest of the proof we use without special mention Theorems 4.39 and
7.3 relating the p-variation and the product integrals for u, R, , and L, 4. Let

Cp) := sup{||P!f3(J)||: D eIP(J), J € Jps([a,b])}.
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Since vp(p) < oo, by Lemma 4.19 of [29], C(u) < oco. Suppose for a moment that p :=
Cpllpllpy < 1 for a suitable constant Cj, from Lemma 4.18 of [29]. Then for x € PP ([a,b]), by
inequality (4.52) of [29], we have

5p(G™5k) < C(uPsup{ 3 I1PP™ () = 1P: {J;} € P (3os([a,B))), {Jj} C D }
< [CW/0 = PP sup { 3 vyl 7): {73} € TP (Bos([a,B])), {Jj} C O

< [C(u)/(1 - P)]pHMHI()p)-

Since s and m are arbitrary, {G™} is a W)-sequence in the case when |[|u[/) < 1/Cp. In the

general case we use Lemma 4.7 above to split the interval [a, b] by a Young partition ® so that

the above bound holds on each open subinterval of ®. This yields that {G™} is a W)—sequence.
Let y be an atom of vy = gy —v. Then y € D = U, p(D,,). First, we show that if y > a,

G™ — J[(I+du) asm — oo, uniformly on the left at y. (7.33)
('ab]

Let € > 0. By Lemma 7.10, there exists mg so large that, for all m > my, y € p(D,,) and

HGm(y—) - )(b](n +dp) H <e (7.34)

By Lemmas 2.18 and 5.2 of [29], there exists § € (0,y — a) such that

(s [y = 6,9)) < {le/(2C(W)] A (2Cp) ™1}, (7.35)

where C), is as before a suitable constant from Lemma 4.18 of [29], and for all z € [y — d,y),

| 10— 1] = | fasang - forana|<e @)

[y,b]

because L, , is left—continuous at y. Thus by inequality (4.52) of [29] and (7.35) above, we
have for z € [y — 4, y),

1G™(2) = G™(y—) < C(p)max{|PY"({z,y)) — 1I|: z € p(Dm) N [y — 6,y)}
< 20 ()wp(psly — 0,9) P <,

where {-,y) is an interval right open at y. Thus by (7.34) and (7.36), for each m > mg and
z € [y — 4,y), we get

|6 () - JLa aw| < 16™=) - ™l + |[6mw-) - T )|

| 7@+ dw) = T+ )| < 3e.
.t (2]

Therefore (7.33) holds.
Second, we show that if y < b,

G™ — I (I+du) asm — oo, uniformly on the right at y. (7.37)
('ab]
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Let € > 0. By Lemma 7.10, there exists mg so large that, for all m > my, y € p(®,,) and

l6™w) — T @+ dw)| <e. (7.38)
(y,b]

By Lemmas 2.18 and 5.2 of [29], there exists § € (0,b — y) such that

vp (s (y,y + 8]) < {[e/(2C ()] A (2C,) 1}, (7.39)

where C), is again a suitable constant from Lemma 4.18 of [29], and for all z € (y,y + 4],

|1

,0] (y,b]

b

(U d) — L (E+dp)| = || T+ i) — (X 4+ dE0)
z+ y+

<e. (7.40)

We can and do assume that y + § € p(D,,) for m > my. Then by inequality (4.52) of [29] and
(7.39) above, we have for z € (y,y + ¢],

IG™(2) = G™(y)ll < C(p) max{||PP™((y,x}) — I||: = € (D) N (y,y + )}
< 20(m)vy (s (y,y + 8))'7P < e,

where (y,-} is an interval left open at y. Thus by (7.38) and (7.40), for each m > my and
z € (y,y + 4], we get

|6™@) = T (+dw)| < 16™) - ™)l + || w) - T+ dp)|
(2,b] (,]

+| T @+dw) — T+ d)| < 3e.
(] (2]

Therefore (7.37) holds. This together with (7.33) yields that {G™} converges locally uniformly
at each atom of v. By Lemma 7.10 it also converges densely. Hence all the hypotheses of
Theorem 7.11 are satisfied, and hence (7.29) holds. The second proof of the Duhamel formula
(7.26) is complete. O

7.4 Integral equations

First, as an example, let’s consider the integral equation

G(z) = C + /0m Gly) dF ().

Let 0 <z < 2and F := 1[1,00). Then for the integrals we are considering other than the
(MRS) and (RRS) integrals (which may be undefined), the equation gives

G(z) = C, ifo<z<1;
=Y c+aen), ifi<z<2.

For z = 1, this yields a contradiction (unless C = 0). In accordance with some developments in
analysis (see below) and stochastic analysis (e.g. Doléans-Dade [15]) it seems desirable that in
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such an equation the integrand should be left—continuous while the solution is right—continuous.
Writing

Glo) =P (z)=C+ /0 "GO dF(y)

we get
C, ifo<z<l;
G(‘”)_{ 20, if1<z<2

and now there is no contradiction. The integral can be any of those we are considering (in
Figure 2.1) except for the (M RS) integral but now including the (RRS) integral.

In analysis several approaches have been suggested to solving a linear Stieltjes type integral
equation with respect to a possibly discontinuous function F' of bounded variation. Using an
integral equivalent to the (RYS) integral, Hildebrandt [51, p. 359] proved that if a matrix—
valued function F' with bounded variation has a finite number of discontinuities on [a, b] then
the integral equation

G(z) = Gl(a) + / "dF(y)Gly), a<z<b (7.41)

has a unique solution if and only if the matrices I — A~ F(z) have inverses for all points of
discontinuity of F'. Thus a situation similar to the above example is excluded. Hildebrandt
considers cases where F' may have non—zero jumps (AT F)(u) and (A~ F)(u) on the two sides
of the same point and seeks an actual solution of (7.41) with G(y) (not G(y—)). The solution
is a kind of product integral where the factor at a point u where F' has jumps on one side or the
other is [T+ At F(u)][T— A~ F(u)]~!. MacNerney [77] used the left Cauchy and right Cauchy
integrals defined as (RRS) integrals except that tagged partitions ({z;},{y;}) are used such
that y; = z; 1 and y; = z;, respectively. Honig [53] used the interior (RRS) integral defined as
the (RRS) integral except that the tagged partitions ({z;},{y;}) defining the integral satisfy
the relation: z;—; < y; < z;. The book of Schwabik, Tvrdy and Vejvoda [101] treats linear
integral equations with respect to functions of bounded variation using the (HK) integral.
The form of the Duhamel formula from the preceding section suggests the following:

Definition 7.12. Let v be a B—valued additive and upper continuous interval function on
[a,b]. We say that a B-valued interval function « satisfies the forward linear integral equation
with respect to v, if the integral Fp, v(dz) a([a,z)) is defined, and for all y € [a, b],

affa,y]) =1+ [%] v(dz) a(la, z)). (7.42)
ay

Similarly, we say that a B-valued interval function « satisfies the backward linear integral
equation with respect to v, if the integral i,y a((z,b]) v(dz) is defined, and for all y € [a, b],

o[y, b)) =1+ F a(z,b]) v(dz). (7.43)
[y,0]

Theorem 7.13. Let v € Z,([a,b];B), 1 < p < 2 be additive and upper continuous. Then the
product integral J[(I1+dv) is defined, is in Iy([a,b]; B) and is the unique solution in I, (|a, b]; B),
for any r > p such that 1/p+ 1/r > 1, of the forward integral equation (7.42).
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Proof. The product integral J[(I + dv) exists and is in Z,([a, b]; B) by Corollary 7.5. Taking
g = 0 in the Duhamel formula (7.26) we get that J[(I+ dv) satisfies the forward linear integral
equation with respect to v. Let u be another solution in Z,([a, b]; B) and let

F(y) := [)I](]I+ dv) — u(la,y]) for a <y <band F(a) := I — pu(d).
ay

Then for some h € [v], (cf. (4.34)) and all y € [a, b],
Y an P
F(y) = (RYS) / dh F.

So F(a) = 0. By (6.8), ATF(a) = (ATh)(a)F(a) = 0. Thus F(a+) = 0. By the Love-Young
inequality for the indefinite (RYS) integral (Corollary 4.28), and since || F'||[) is a non-increasing
function of p (Lemma 4.5), for > p such that 1/p+ 1/r > 1, it follows that

1F ) < [1F Ml < Do [Pl ) |17 | (7.44)

where D), = 2{(p~! + r=!). Then (7.44) holds for norms over any subinterval (a,y] of [a, b].
Taking y close enough to a we will have ||h||) < 1/Dp, by Lemma 4.8, and thus F' = 0 on
[@,y]. There is a largest y for which this holds, with y < b. If y = b then we are done. If
y < b then we can repeat the argument with y in place of ¢ and contradict maximality of y.
So uniqueness is proved. O

7.5 Lyons’ inequalities and series expansions

In this section we prove that the product integral with respect to a regulated additive interval
function y on [a, b] with bounded p-variation 1 < p < 2, has the series expansion:

U(U+dp) =T+ p(fa,b]) + > F u(dzr) F pldw)-- F  p(dog).
[a.0] k>2 (] [a,21) [a,a-1)

Proposition 7.14. For 1 <p < 2, let u € T,([a,b];B) be additive and upper continuous, and
let f € Wyp([a,b];B). Suppose that f is right-continuous on [a,b), f(a) =0 and v,(f;[u,v]) <
pF(v) — pF(u) for a <u < v <band k> 1, where p(z) := vy(y; [a,z]) for = € [a,b]. Then for
the function H defined on [a,b] by H(z) 1= F4 5 dp f&a), and any a <u < v <b,

P (w) — p“l(U))l/P

Vo u.o]) < Gp( =1

(7.45)

where Cp := 1+ 4YP((2/p), and H is right-continuous on [a,b).

The proof of this proposition will be based on two facts. The first one is a part of Theorem
1.1 of Lyons [76], up to the constant 4.

Lemma 7.15. Let p be a non-decreasing function on [a,b], k be a positive integer and k =
{z;:1=0,...,n} € PP([a,b]). Then there ezists an indezx i € {1,...,n — 1} such that

4 -
n—1)2 <p k—l-/; )

(0" () — pF (@i 1)][p(mis1) — plas)] < (
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Proof. Denoting Al¢ := </>(xz) — ¢(z;_1) for a function ¢, for each i = 1,...,n — 1, we have

. . P k—1
AigEAT+ ), = / B TESEY / ' du[p(zi)]) T [p(wiss) — plai)]
P \Ti— 1 wz 1
k /”“”” W72 gy /p‘ L6012 gy, (7.46)
p ) p(xs)

Then using the inequality 2,/zy < = + y for z,y > 0, we get

(l‘i—l

1 n—1 . . 9
1<Izn<1,? I{Az kAz—Hp} < {n : ; /AzpkAz-I-lp}
1 \/E p(Tn-1) p 2
by (7.46) < {n_17(/p(a) du-l-/wl)
VE [P e 2 2V <k+1>/2(b) _ ,,(k+1)/2(a) )
= {n 1/{)()1;2 du} :{n—l( k+1 )}
k+1 lc+1( )
n—l < k—l—l )’

where in the last step, the inequality (d — ¢)? < d? — ¢? for 0 < ¢ < d was used. The proof is
complete. 0O

The second fact to be used in proving Proposition 7.14 is the following:

Lemma 7.16. Let f,h € W,([a,b];B) for 1 < p < 2, let f be right—continuous on [a,b) and
let b be right-continuous on (a,b). Then for any € > 0 there is a partition {z;}7L, € PP ([a,]])
such that

|zys) [ b 19— S Mhz) — -0l ()| < €

Jj=1

Proof. Since || fSa)H(p) < Ifll¢py, and #9  have no common one-sided discontinuities, the
(RYS) integral exists and equals an (RRS) integral by Theorems 4.26 and 6.13. Thus there
exists a partition {z;}72 such that

|zrs) [ " dh £ — f; h(s3) — bl @ )] < €

whenever z;_; <y; < zjfor j =1,...,m. Wecanlet y; | zj_; for j = 1,...,m, giving f(z;_1)
by right—continuity of f on [a,b). The conclusion follows. O

Proof of Proposition 7.14. Let a <u < v < b. Since R, , is right—continuous on (a,b), by
Proposition 3.25 and Corollary 3.20 of [29], we have

v
H(u) — H(v) = (RYS) / dRyq f.
u
Let € > 0. By Lemma 7.16, there exists A = {z;: i = 0,...,n} € PP [u, v] such that

(RYS) vdRu,a F9 s <e
|&vs) |
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where S(A) := S0 [Ryua(7:)—Rya(zio1)]f(zi—1). Let A' := A\ {z;} for some i € {1,...,n—1}.
Then we have

IS(A) = S| 1 Bua(Tit1) = Rya (i)l [| £ (2:) = f(zia)]

{Ip(@ir1) — p(@:)] (¥ () — pF (i )]}7P.

By Lemma 7.15, there exists an index ¢ € {1,...,n — 1} such that

<
<

4 pk+1(v) _ pk_H(u))}l/p'

IS(A) = S| < {(n—1)2( k+1

Deleting further points according to Lemma 7.15, we obtain the bound

|rYs) /u "Ry £

< 4l i - _11)2/,, (Pk“(’t); :qu“(U) ) 1/p
FRpa(v) = Bya(w)]f (W)l + €

Since f(a) = 0, we have

p(v)

v k41 () — ofH (g
1Ry ()~ Ry I P < o) = pluloh () < [ = 20 )

Letting € | 0, it follows that

FHL (v) — pF 1 (u) ) 1/p
k+1 )

|RYS) [ B 1] < 11+ 20501 (2

Using this inequality on subintervals, (7.45) follows. O

Proposition 7.17. Let p € Zy([a,b];B), 1 < p < 2, be additive and upper continuous. For
each k = 2,3,... the function Ix(p) on [a,b] defined by

I(p)(y) == F pldz1) £ pldze)--- F pldg), a<y<b  I(p)(a):=0

[ayy] [aaxl) [a,$k_1)

ezists, and satisfies the bound

k _ .k a
| Tk (1)) < C,’f‘l(%)l/p, (7.47)

where p(y) == vp(p; [a,y]) and C, = 2(1 +41/7¢(2/p)).

Proof. Let I1(u)(z) := p((a,2]), z € [a,b]. Then Ix(u)(y) = %[a,y]p(dm)(Ik_l(u))(,a) for each
k= 2,3,.... It is clear that I;(u) is right—continuous on [a,b) and 0 at a. Because of the
relations a < xp < zp_1 < -+ < x1 < y, we have

I(p)(y) = F pldz1) F pldre)--- F  pldz),

(avy] (a'a"l:l) [aawk—l)

so that each Iy (p) is right—continuous on [a,b) and 0 at a by the definition. Thus Proposition
7.17 follows from Proposition 7.14 by induction. O
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Theorem 7.18. Let pu € Z,([a,b];B), 1 < p < 2, be additive and upper continuous. Then the
series Y p~o Ix(1) converges in Wy([a,b]; B), the product integral with respect to p exists, and
they satisfy the relation:

[ﬂ](ﬂ +dp) =T+ p(la,y) + Y L(p)(y), fory € [a,b]. (7.48)
ay £>2

Proof. The series ;o I (i) converges in W, by Proposition 7.17. The product integral with
respect to p exists by Corollary 7.5. To prove (7.48) let a be the interval function on [a, b]
defined by

a(J) =T+ p(J) + 3 Fdp (-1 ()™,
k>2 7

where u is the left endpoint of J C [a,b] and I)(p)(z) = u((a,z]), = € [a,b]. By Theorem
4.39, « has bounded p-variation. Also for each y € [a, b], it follows that

£ pdz)a(le,z)) = play) + £ pldo)u((a,z) + £ p(do) Y. F dp (T 1(w)

la,y] la,y] [a,y] k>2[a,z)
= u(lay) + F uldn) F pldeo) + . F dp (I(u)@
la,y] la,z1) k>3 [a:y]
= a(fa,y]) — L

To show that the integrals in the series all exist it is enough to apply the Love—Young inequality.
Thus « satisfies the forward linear integral equation with respect to . Since the unique solution
in Z,([a, b]; B) of this equation is the product integral with respect to u by Theorem 7.13, (7.48)
holds. The proof is complete. O

Corollary 7.19. Let u € Zy([a,b];B), 1 < p < 2, be additive and upper continuous. Then the
mapping
T,5 e J(1+dp) €1, (7.49)

18 analytic with infinite radius of uniform convergence of its Taylor series around any point.

Proof. By Corollary 7.5, the mapping (7.49) is defined. (7.48) gives a power series expansion
of the product integral with an infinite radius of uniform convergence at 0 by (7.47). Thus by
Theorem 11.11 of [11, p. 163], where we suggest that || A,,|| be replaced by | Al in the proof,
the same is true at any other element of 7,,. O

7.6 Comments and related results

Survival and hazard functions Let T be a positive and bounded random variable on a
probability space (2, Pr). The survival function S on [0, c0) is defined by S(t) := Pr({T > t})
for 0 <t < co. Let g := sup{t > 0: S(¢) > 0} which is finite because T is bounded. A
nonnegative measure A on [0, o) is a hazard measure if, letting 7p := inf{t > 0: A((¢,00)) = 0},
we have

(@) 0 < Ty < oo

(b) for 0 < s < 1, A({s}) <1 and A([0, s]) < oc;

(c) either A([0,74)) < oo and A({7a}) =1 or A([0,75)) = 0o and A({7a}) = 0.
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Theorem 7.20. There is a 1 — 1 correspondence between hazard measures A on [0,00) and
survival functions S on [0,00) given by

St)= T(1—=dA), 0<t<T,, S(ta) =0 and
0,¢]

1 if S(ts—) >0

0 otherwise A((7s,00)) =0,

Moy = [

[0,¢] S(u—)’ 0<t<r7s, A({Ts}) — {

with TA = Tg.

This is approximately Theorem 11 of Gill and Johansen [43] (see also [42, Section 5], [1,
Theorem I1.6.6]).

In survival analysis there is a sample of n individuals each of whom has a lifetime T; and a
“censoring time” Cj;. Let T; be independent identically distributed positive random variables
with an unknown law having a survival function S to be estimated, and let Ci,...,C, be
independent identically distributed positive random variables with a law having a survival
function H. For each i one observes X; := min(T;,C;) and D; = 1x,-7;}, that is whether
X; actually equals T; or C;. We assume that for some 79 < oo, C; < 79 for all 2. Let
Tp 1= MaXi<i<n Xi < 7p. For 0 <t < 7y, let

1 1

Nn(t) = E#{Z XZ S t, DZ = 1}, Yn(t) = n#{’l. Xz Z t}, and An([oat]) = /['O’t] Yn .

The empirical hazard measure A, so defined is called the Nelson—Aalen estimator of the hazard
measure. Since A, ([0, 7,)) is always finite in this case, A, ({7,,}) := 1 is needed to fit the above
definition of hazard measure. Unlike the point masses at X; = T; < 7,, representing deaths, or
other endpoints of studies, A, ({7,}) = 1 simply means that only the distribution of min(X;, ;)
can be estimated at all. The empirical survival function S, defined by

Sp(t) := J1 (1 —dAy), 0<t<my,
[0,2]

is called the Kaplan-Meier estimator of the unknown survival function S(¢) = Pr({T; > t}).
Sy, is the nonparametric maximum likelihood estimator of S on [0, 7g) from the given data set,
and has other good properties. However, no estimator can be reliable for ¢ large enough so
that Y,,(¢) is small.

An alternative definition of the product integral Let M be the set of k x k ma-
trices with complex entries, let x4 be a nonnegative measure on an interval [a,b] and f €
L([a, b], 4, My,). Dollard and Friedman [17, pp. 155-156] define a form of product integral

n
II exp{fdu} as a limit of products [ exp {v((zi1,z:])} (7.50)
(a,b] i=1
over partitions ¢ = zp < 1 < --- < x, = b as the mesh of partitions goes to 0, where

v((c,d]) == [(c,q f dp. The exponential is defined by its usual power series. If the signed
measure v has no atoms, then

H exp{fdu}= ] (I+dv) (7.51)

(a,b] (a,b]
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(Dollard and Friedman [17, Theorem 1.7.1, p. 52]; the continuity assumption there can be
avoided because of our different formulation). The function g(z) = e* or 1+ 2z can be replaced
by any function analytic in a neighborhood of 0 with g(0) = ¢'(0) = 1. Thus g(z) = 14+2+0(2?)
as z — 0. Beside 1 + z and e?, the function 1/(1 — z) also has been applied, cf. Hildebrandt
[61] and Freedman [36]. If v has atoms the product integral depends on the choice of g and
corresponding definitions give different results.

If the values of v on different intervals commute, e.g. if v is real-valued, then simply

IT exp {7 du} = exp{v((a, b))}, (7.52)

(asb]

which is never 0 since v is a finite signed measure. If v is taken as a hazard measure and has
atoms, (7.50) does not give the Kaplan-Meier estimator but a different, unwanted estimator.
While the product integral JT(I+dv) gives solutions of integral equations (7.42) and (7.43),
the form
P(a,b) := [ exp{f du}

(asb]

gives solutions of integral equations
Pla) =T+ [ Jo(o)Pla5) u(ds)

where f4(s) := ¢(f(s)u({s}))f(s) and ¢(z) := (¢* —1)/z, z # 0, $(0) := 1 (Dollard and
Friedman [17, pp. 160-161]). For natural integral equations with atoms (jumps), then, it seems
that JI(I + dv) might be preferred. If v has no atoms, then in light of (7.52) one can see how
the form [], ) exp{fdu} might have been preferred, although it is equivalent to J[(I+ dv) by
(7.51).

We next extend the definition of the product integral ILe%. Let r := {I; }7—1 be a partition
of an interval J into disjoint subintervals (some of which may be singletons), i.e. k € IP (J).
Then z < y whenever z € I;, y € I;, and 1 <4 < j < n. Let v be an additive interval
function defined on all subintervals of J, with values in a Banach algebra B with identity I.
Recall that for A € B, e? := exp(4A) := =0 A7/4!, where A? := 1. We define the product
Met” := 7, exp{v(I;)}. We say that the product integral I e exists and equals A € B
if for every € > 0 there is a k € IP (.J) such that for every refinement A of «, |4 — Iy e®”|| < e.

If B is commutative then eAtB = e4eP for any A, B € B and the following is immediate:

Theorem 7.21. If B is a commutative Banach algebra with identity then for an arbitrary
finitely additive interval function v into B, defined on all subintervals I of an interval J, I e®™
ezists and equals €’). In fact, .e® = €D for any partition s of I. If I ranges over
subintervals of J then the map v +— (I + Ije®) is holomorphic from the supremum norm
[¥lloo := suprc s lv(I)]| to dtself.

In the noncommutative case, it is not hard to show that IT;e? is defined in B at least for
v € Wi(J,B). Note that such a v is countably additive. But we have:

Proposition 7.22. Let My be the Banach algebra of 2 x 2 real matrices with I := (} 9). Then
the maps v — H[O,l]ed“ and v H[O,l}(I + dv) on Wi([0,1], M2) are not continuous in the
p-variation norm for any p > 2.
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Proof. Let B:=(§3), C:=(9),andfor 0 <d <1/21let X ;=TI +éB and Y := 1 + 6C,.
Then B2 = C? = 0,50 X ' =T 6B, Y! = T—-6C, B = X and ¢’ = Y. Let
T:=YXY !X 'YX~V X. Then straightforward algebra gives Th; = 1 — 262 + 6* + 69,
Tig = Toy =265+ 67, and Thy = 1 + 262 + 36* + 36% + 68. Here T is symmetric (self-adjoint),
as can be seen directly from its definition since X = Y, etc. Thus T can be diagonalized
by some rotation. The characteristic equation for its eigenvalues is A2 — tA + 1 = 0 where
t = 24 46* + 465 + 68, and T has determinant 1 since each factor does. The roots are thus
A= [t & (12 — 4)1/?]/2. Tt follows easily that the larger eigenvalue is > 1 + 262 > exp{6%}.
Now for each n = 1,2,---, let k¥ be the partition of (0,1] into the 8n subintervals ((j —
1)/(8n),7/(8n)], j =1,---,8n. Let the values of v on the first eight subintervals be successively
0C,0B,—6C,—dB,—0C,—6B,6C, §B; and then the cycle repeats n times. If I is one of the 8n
intervals in k and J C I let v(J) := 8nA(J)v(I) where X is Lebesgue measure. The sum of the
8 values in a cycle is 0. It follows by Lemma 4.20 that the p-variation of v is bounded above
by KndP for some constant K. Since p > 2 we can choose 8, := n~%/(2*P) 0 that nd? — 0
but 762 — oo as n — co. Then H[O,l]ed” = T", via the partition x and any refinement of it,
and J{o ;) I+ dv =T" also. Since T" has an eigenvalue > exp(nd2), the conclusion follows. O

In Proposition 7.22, p-variation for p > 2 can be replaced by ¢-variation for any ¢-function
such that ¢(z) = o(z?) as z | 0.

Comparing product integrals and integral equations There are different possibilities
for defining product integrals and integral equations they satisfy, which are actually different
in case there are jumps. As we have seen,

Dollard and Friedman [17] defined a product integral lTe? and obtained an unusual integral
equation.

We, in [29], defined a product integral J{(I+ df) and obtained an unusual integral equation
in terms of “Left Young” or “Right Young” integrals.

Hildebrandt [51] solved a natural integral equation and found an unusual product integral
with factors (I+ At f)(T— A~ f)~L.

Stochastic analysts, some analysts, Gill and Johansen [43], and Gill [42], defined integral
equations with left-continuous integrands and right-continuous solutions. Also, results were
formulated in terms of interval functions in [43], [42], where the product integral is J(I + dpu).
These formulations, as we have seen in Sections 7.4 and 7.5, seem to fit together well.
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