Vassiliev Theory
by P. Vogel!

Abstract.

There exists a natural filtration on the module freely generated by knots (or
links). This filtration is called the Vassiliev filtration and has many nice properties.
In particular every quotient of this filtration is finite dimensional. A knot invariant
which vanishes on some module of this filtration is called a Vassiliev invariant. Almost
every knot invariant defined in algebraic term can be describe in term of Vassiliev
invariants. Unfortunately the structure of all such invariants is completely unknown.
The Kontsevich integral is, in some sense, the universal Vassiliev invariant. It takes
values in a module A of 3-valent diagrams. So a good way to construct a knot
invariant is to compose the Kontsevich integral with a linear homomorphism defined
on A.

Every Lie algebra equipped with a nonsingular bilinear symmetric invariant form
produces a linear homomorphism on A and therefore a knot invariant. If the Lie alge-
bra belongs to the A series, the induced knot invariant is the HOMFLY polynomial.
If the Lie algebra belongs to the B-C-D series, one gets the Kauffman polynomial.
The Kauffman bracket is obtained by the Lie algebra si,.

The structure of A is more or less unknown. This module is actually a polynomial
algebra, but the number d,, of generators in degree n is known only for n < 13. A Lie
algebra L induces an algebra homomorphism from the Hopf algebra A to the center
of the enveloping algebra of L. So, in some sense, there a universal algebra £ over an
algebra A such that A is the center of the enveloping algebra of £. This Lie algebra
is defined as a category satisfying some conditions. There is many conjectures about
this universal Lie algebra and the coefficient algebra A. The decomposition of L& in
simple modules is given for p < 3.

1. VASSILIEV INVARIANTS

1.1 Knots and links invariants
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A link is a compact 1-dimensional smooth submanifold of R®. A connected link is
called a knot. A link may be oriented or not. Every knot is the image of a embedding
f from the circle St into R3. For a link, the situation is similar but the embedding
is defined on a disjoint union of finitely many copies of the circle.

1.2 Definitions. A link L is called banded if L is equipped with a vector field V'
from L to R3 such that V(z) is transverse to L for every point = € L.
A link L is called framed if it is oriented and banded.

Two links Ly and L; are isotopic if there exists an isotopy h; of the ambient space
R? such that hg is the identity and L, is the link hy(Lg). If the links are oriented we
suppose also that L; has the same orientation as hy(Lg). If (Lo, Vo) and (L1, V]) are
banded links, there are called isotopic if Ly and L; are isotopic via an isotopy h; in
such a way that V] is homotopic to the vector field hy(V5) by an homotopy which is
always transverse to L;. So we have four isotopy relations corresponding to the four
classes of links: non oriented, oriented, banded or framed.

An invariant of knots (or links) is a function from the set of knots (or links) to
some module which is invariant under isotopy. It’s also possible to define an invariant
of oriented knots (or links), or an invariant of banded knots (or links) or an invariant
of framed knots (or links).

Every link can be described by its projection on the plane if it is generic. Such
a projection is called a diagram of a link. A diagram of a link is a finite graph D
contained in the plane such that every vertex is of order 4. Moreover near every
vertex x two edges arriving at x correspond to the over branch and the two other
ones correspond to the under branch. The edges corresponding to the over branch
are represented by a connected path.

Let L a link represented by a diagram D. If L is oriented, the orientation is
represented by an orientation of D. If it is banded it is possible to choose the diagram
D in such a way that the transverse vector field is normal to the plan R? with positive
last coordinate.

Using this convention every diagram defines a banded link and every oriented
diagram defines a framed link and these links are well defined up to isotopy.

Suppose that Ly and L; are two links related by a family L;, 0 < t < 1, of
geometric objects. If every L, is a link which depends smoothly on ¢ (that is the
union Ly of all L, x {¢} is a submanifold of R? x [0, 1]) the links Ly and L; are
isotopic. But it is possible to consider singular deformation when L; becomes singular,
for some particular values of t. The simplest example of such a singular deformation
is when a branch of L crosses another one. When this crossing happens the link
becomes a singular link in the following sense:

Definition. A singular link L is the image of an immersion f from a 1-dimensional
compact manifold I" to R? such that f has only finitely many multiple points and
every multiple point is double and transverse, together with local orientations in I’
near each singular point of f.

A singular link L is oriented if the source I' of the immersion f is oriented and the



local orientations are induced by the orientation of I'. It is banded if L is equipped
with a transverse vector field V' such that, for every double point x of L, V(z) is
transverse to the plan which is tangent at x to the two branches of L containing x.

If D is a diagram of a link and P a subset of the set of vertices of D, one
can associate to (D, P) a singular link L where the double points correspond to the
points in P. With the same way as before, the diagram induces a well defined banded
structure on L. If D is oriented, L is naturally framed.

Let L be a singular link and = be a double point in L. One can modify L a little
bit near x and obtain a new singular link L’ with one double point less. But it is
possible to do that in two different ways, and one gets two new links L, and L_.

. >< L, X L X

Since L is supposed to be oriented near z, there is no ambiguity between L, and L_.
If L is banded, the two desingularized links L, and L_ are still banded.

1.3 Lemma. Let I be an invariant of oriented knots. Then I extends uniquely to an
invariant defined on the set of all singular oriented knots and satisfying the following
property:

If K is a singular oriented knot and K, and K_ are the two knots obtained by
desingularization near a double point in K, one has:

I(K) = I(Ky) = I(K-)

The extension of I may be defined in the following way:

Let K be a singular oriented knot. Denote by X the set of double points in K
and by F the set of functions from X to {£1}. If o is a function in F one can
desingularize K near every every double point in A by using the positive or the
negative move near a point z if a(x) = 1 or —1. So for every a € F one gets a knot

K,,. Then one sets:
I(K) =) e(a@)I(Ka.)
aeF

where e(a) is the product of all numbers a(x), z € X.

1.4 Definition. Let I be an invariant of knots. One said that I is a Vassiliev
invariant of degree < n if I vanishes on every oriented singular knot with at least
n + 1 double points.

Remark. If I is an invariant of oriented links, or an invariant of knots (or links)
or banded knots or links or framed knots or links, it is possible to extend I to the
corresponding set of singular knots or links and one can define a Vassiliev invariant
of knots (or links), or banded knots (or links) or framed knots (or links).



Example. Let L be a singular oriented link with only one double point . One can
modify L near x in three different ways:

oG e X e X e )(

These three links have no double point. The Conway polynomial V is the only
polynomial invariant of oriented links which is equal to 1 for the trivial knot and
satisfies the following skein relation:

V(Ly) = V(L-) = tV(Lo)

For every oriented link L, V(L) is a polynomial in the ring Z][t].

h

1.5 Proposition. The nt coefficient of the polynomial V is a Vassiliev invariant of

degree n.

Proof: The skein relation shows that V(L) is divisible by ¢" if L is a singular link

with at least n double points and the nth coefficient a, of the polynomial V is an

integral invariant of oriented links which vanishes on every singular links with at least
n + 1 double points. The result follows. O

If £ is a module, denote by Z(F) the set of invariants of knots with values in F.
For every integer n > 0, denote by V,,(F) the set of Vassiliev invariants of degree
<n.

1.6 Proposition. Let R be a ring. Then the R-modules V,,(R) form an increasing
family of finitely generated R-submodules of Z(R):

Vo(R) C Vi(R) C Va(R) C ... C Z(R)

Moreover one has: V,(R)V,(R) C V,1+4(R) for every p,q > 0.

Remark. This proposition is also true for the module of invariants of knots or
banded knots or framed knots. For links it is also true but only for invariants of links
with a fixed number of components.

In order to prove such a result one needs to study more precisely the set of singular
links (or knots).

2. THE ALGEBRA OF KNOTS

Let K be the set of isotopy classes of oriented knots and Z[K] be the free Z-
module generated by K. The connected sum operation induces on K a structure

of commutative monoid. With this structure Z[K] becomes a commutative algebra.
Moreover the map K — K® K induces a comultiplication A from Z[K] to Z[K]QZ[K].
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With these structures Z[K| is a commutative and cocommutative Hopf algebra (but
without antipode map).

The inclusion K C Z[K] is obviously an invariant of oriented knots. Therefore it
extends to singular knots and every singular link may be see as an element of Z[K].
So, using previous notations, one has the following, for every singular oriented knot

K:
K = Z e()I(K,)
acF
Let’s denote by I,, the submodule of Z[K] generated by singular knots with at least
n double points. With this notation an invariant I of oriented knots is a Vassiliev

invariant of degree < n if it vanishes on I,,4; and the module V,,(R) is isomorphic to
the R-module Hom(Z[K|/I,,+1, R).

2.1 Proposition. The submodules I,, form a filtration of Z[K| which is compatible
with the Hopf algebra structure. The graded associated algebra GA = &1, /1,41 is a
connected graded Hopf algebra.

2.2 Proposition. The Hopf algebra G'A is finitely generated in each degree and
GA ® Q is a polynomial algebra.

Proof: We have to check the following conditions:
Z[IC]:](]DIIDIQD

Vp, q Iply C lpig
Vn AL)Cc & [,®],
pt+g=n
The first property is obvious. The connected sum operation extends linearly to
connected sum for singular links and the second property follows. The third one
is a consequence of the following formula:

A(K) = ZKa ® Koo

where K is any singular oriented knot, and « run in the set of all functions from the
set X of double points of K to {0,1}. If § is a function from X to {—1,0,1}, Kj
denote the singular knot obtained from K by a positive (resp. negative) modification
near every double point & where (3 is equal to 1 (resp. —1).

Then GA is a graded Hopf algebra which is connected, commutative and co-
commutative. Therefore GA is rationally a symmetric algebra over the module of
primitive elements (i.e. elements z satisfying A(z) = 1@z + 2z ® 1). If {z;} is a
homogeneous basis of the module of primitive elements, GA ® Q is the polynomial
algebra Q[{z;}|.

The last thing to do is to prove that I/, is finitely generated for every n. To
do that, it is enough to show that I,,/I,,.; is finitely generated for every n > 0. This
point will be proven in the next section.

Remark. If one consider the case of unoriented knots, the connected sum operation
is no longer defined. We still have a Vassiliev filtration but the corresponding graded
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module is only a cocommutative coalgebra. The same hold for other classes of knots
or links. Nevertheless, in the case of links (unoriented, oriented, banded or framed),
one can use the disjoint union operation. In these cases the graded associated modules
are Hopf algebras.

3. CHORD DIAGRAMS AND 3-VALENT DIAGRAMS

Definition. A chord diagram is a collection of disjoint pairs of points in the standard
circle S'. This structure is defined up to isotopy in the circle. Such a pair {a,b} is
called a chord. It is represented by the chord [a,b] in the plan. In other words a
chord diagram is a picture in the plan represented by the standard circle and finitely
many chords with disjoint boundaries.

Notice that the set D! of chord diagrams with exactly n chords is finite.

o O @

Let D be a chord diagram represented by n chords ¢; = [a;, b;], i = 1,...,n in the
circle S'. Then there exists a unique immersion f (unique up to regular homotopy)
such that the image of f is a singular knots having exactly n double points: the
points f(a;) = f(b;), i=1,...,n.

If f and g are two such immersions, they are regularly homotopic. Then there
exist p such immersions h; such that f = hy, g = h, and h;; is obtained from h; by
making a crossing change somewhere. Let K be the image of h;. Then K; and K,
are obtained from a singular knot K7 with n + 1 double points by the positive and
negative moves near some double point of K J’ Therefore the difference K; . — K;
belongs to I,,11 and the two singular knots corresponding to f and g induce the same
element in I,,/1,11.

Hence every chord diagram D € D¢ induces a well defined element [D]in I, /1,11 =

GA,.
D: @ — (D] :

Since I, is generated by singular knots with exactly n double points, this correspon-
dence induces a surjective homomorphism from Z[D¢] onto I,/I,4+,. Therefore the
Hopf algebra GA is finitely generated in each degree.

Remark. For unoriented knots the situation is different. In order to consider a
singular knot as an element of Z[K], one need to consider local orientations near each
double point. So a chord diagram in this context is a manifold I" diffeomorphic to
a circle equipped with chords and local orientations near each endpoint of a chord.



Moreover if one changes a local orientation in some place, the induced element in
I,/ 1,41 is multiply by —1.

For banded knots there is another problem. If a chord diagram D is given, it is
not possible to define naturally a banded structure on the singular knot constructed
from D. The singular knot can be represented by a diagram A contained in the plan.
This diagram is oriented and has n double points, p positive crossings and ¢ negative
crossings. If one positive crossing is replaced by a negative crossing, the difference
of the two corresponding singular knots belongs to I,,.1. Therefore the class of the
singular knot depends only on the class of p — ¢ mod 2.

Actually there is two functions D +— [D]g and D +— [D;]. The first one corresponds
to the case p — ¢ even and the other one to the case p — ¢ odd. In the case of banded
knots (or framed knots) one has a surjection from Z[D¢| & Z[D:| onto I,/ I41.

3.2 Proposition. The morphism D +— [D] satisfy the following relations:
— If D contains an isolated chord, then: [D]| = 0.

(1T) D = R = [D]=0

— Let Dy, D5, D3 and D, be four chord diagrams which differ only in three parts
of the circle and two chords and which have the following form near these chords:

(3)§ 'Z (2) (3)f ? (2) (3)2 (2) 3) (2)
Dy : D, : D3 : Dy : )%
o) &) o) o)

then one has the following:

(4T) [D1] = [Do] = [Ds] = [D4]

Remark. The relation (17T) is called the 1T (one term) relation. It holds for oriented
or unoriented knots but not for framed knots or banded knots. The relation (4T) is
called the 4T (four terms) relation. It holds for every class of knots or links.

In the case of banded or framed knots, the 4T relation holds for both functions

[?]0 and [?]1

Proof: If D is a chord diagram with one isolated chord, the corresponding singular
knot K may be chosen to be represented by the following diagram:
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Therefore the knots K and K_ are the same and [K] is the zero element. In the
case of banded or framed knots Ky and K_ don’t have the same banded structure
or the same framing and the property 1T doesn’t work.

Let K, be a singular knot corresponding to the diagram D;. The diagrams Ds,
D3 and Dy may be represented by singular knots K5, K3 and K, differing from K;
only near parts (1), (2) and (3). Near this region the knots K; look like the following:

(2) (2) 2) 2
K 7L‘—w(1) Ky 4%»(1) Ks ) Ky —/"—(1)

In order to compute the class of each K; in I, it is possible to modify K; near the
part (3). Denote by P the plan generated by parts (1) and (2) of the knot. This
plan is cut into four pieces: the upper-right piece P;, the upper-left piece P, the
under-left piece P3 and the under-right piece Pj.

If (3) doesn’t cross parts (1) and (2), it crosses P in some P; and defines a singular
knot K. With this conventions one has:

K, =K; - K, Ky, =K, — K] K3 = K| — K} K, = K, — K,
and the 4T relation follows. O

This notion of chord diagram is generalizable in the following way: Let I' be a
compact one-dimensional manifold. A n-chord diagram on I' is a finite collection of
n disjoint pairs of points (or chords) in the interior of I" and a orientation of T near
each point in this collection. The set of n-chord diagram on I' will be denoted by
D ().

If T has no boundary, a n-chord diagram D on I' induces a singular link [D]
which is oriented near each double point. Moreover [D] is well defined modulo the
submodule I,,; generated by singular links with n + 1 double points. If ' has a
boundary the same construction works but one has to consider embeddings of (I", 9I')
in the pair (B?, dB?) instead of links.

In all this cases the 4T relation holds.

3.3 Definition. Let I" be a curve (i.e. a compact one-dimensional manifold). A
[-diagram is a triple (K, f, a) where:

— K is a finite graph and f is a homeomorphism from I" to a sub-graph of K
such that every point in f(9I') is a univalent vertex of K and every other vertex of
K has valency 3

— «ais a function which associates to every 3-valent vertex x in K a cyclic ordering
a(x) between the three edges of K starting from x.

Usually a I'-diagram will be represented by a graph K immersed in the plane and
containing I'. The cyclic orderings are given by the orientation of the plane.
Such a diagram is also called 3-valent diagram in the literature.



A chord diagram K is actually a particular S'-diagram. The graph is the union
of the circle and the chords. The vertices of K are the endpoints of the chords. If x
is such a vertex, on has a natural cyclic ordering: first the chord, after the arc of the
circle arriving at x and then the arc of the circle starting from x.

In the same way a n-cord diagram on a curve I' is a particular [-diagram and we
have a map from D4 (T") to the set of I'-diagrams.

3.4 The module A(T"). Let I be a compact one-dimensional manifold. Let k£ be a
field of characteristic zero. The module A(T") is the k-module given by the following
presentation:

The generators are the I'-diagrams. The relations are the following:

— If a I'-diagram K is obtained from a I'-diagram K’ by changing a cyclic ordering
in one place, then: K = —K'.

o T=-Y

— the IHX relation (also called Jacobi relation):
If three I'-diagrams K, K’ and K" differ only near an edge in the following way:

K : :: K': H K" : X

one has:

(IHX) K=K —K"

In the IHX relation, the edge is not necessary outside of I'. If not the relation
takes the following form:

(STU) =\ - X

This relation is called the (STU) relation.

Remark. The module A(T) is a graded module. The degree of a I'-diagram K is
half the number of three-valent vertices of K.



3.5 Proposition. Let I be a curve. Let A.(I") be the submodule of A(I") spanned by
['-diagrams K such that each component of K meets I'. Then the natural map from
D(T) to the set of I'-diagrams induces an isomorphism from the quotient module
K[D:(1")]/(4T) to the degree n part A.(T"), of the module A.(T).

This result is proven by Bar-Natan [BN] in the case ' = S'. The general case
can be done exactly in the same way. The fact that the 4T relation holds in A.(T") is
easy to check:

(3)§ 2(2) B (3)f 3(2) B (3)f 5(2) B (3)2(2) (3)f ?(2)
o)) (1) o)) (1) o))

3.6 Algebraic properties of A.

3.7 Proposition. An inclusion i from a curve I' to a curve I induces a homomor-
phism i, of graded modules from A(T") to A(T").

If T and T" are two curves the disjoint union operation induces a homomorphism
from A(T") @ A(I”) to A(T'TILY).

If f is a continuous map from a curve I' to a curve 1" sending boundary to
boundary, f induces a well define homomorphism f* from A(I") to A(L"). Moreover
if f and g are two homotopic maps from (I",01") to (I, 01""), the homomorphisms f*
and g* are equal.

Sketch of proof: The first homomorphism send a I'-diagram K to the union K UI".
It is easy to see that AS and IHX relations are satisfied and this homomorphism is
well defined.

The second homomorphism send K ® K’ to the disjoint union K J[ K.

The last homomorphism is more complicated to define. First suppose that f is
smooth and has only finitely many critical points and distinct corresponding critical
values. Let K be a I"-diagram. Let {z;} be the set of vertices of K contained in I"'
and H be the closure in K of the complement K — I"'. Suppose also that every x; is
a regular value of f. The space H is a finite graph and the set of univalent vertices
of H is exactly the set {z;}. The diagram K is the union (over {z;}) of I" and H.
Moreover, for each vertex x;, the cyclic ordering near x; induces an orientation w; of
a neighborough of z; in I'. Let S be the set of functions s from {z;} to I" such that
s(z;) € fY(ax;) for every z;. This set S is finite because f is a finite covering over a
neighborough of {z;}.

For every s € S the union of I' and H, where each z; € H is identify with the
point s(x;) € T is a finite graph K. Since f is étale near every point s(z;), the
local orientations w; induces local orientations w] near each point s(z;). The graph
K equipped with these local orientations induces a I'-diagram still denoted by K.
Then one defines f*(K) as the sum in A(T) of all K.

Suppose now that f is any continuous map from (T, T') to (I", 0I'"). This function
is homotopic to a smooth function f’ such that every point z; is a regular value of f.
Then we set: f*(K) = f"*(K). If f is homotopic to another function f” satisfying the
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same property, f’is smoothly homotopic to f” by a homotopy h; such that every h; is
smooth and only finitely many h; has some x; as critical value. One mays also suppose
that each of these critical functions h; has only one x; as critical value corresponding
to only one non degenerate critical point. The element h;(K) is well defined for every
non critical function h;. It is easy to see that this function is locally constant in ¢
and the AS relation show that each jump of this function is trivial. Therefore this
function is constant and f™(K) is equal to f”*(K). Consequently f™(K) depends
only on K and the homotopy class of f.

In order to prove that f* is compatible with AS and IHX relation it is enough to
consider the case where f is smooth and has no critical value where the geometry of
the diagrams is modified by the relation. In this case f* sends an AS relation to a
sum of AS relation and an [HX relation to a sum of IHX relations. O

Corollary. For every curve I', A.(T') is a graded cocommutative coalgebra.

Proof: Let f be the first projection from I" x {0, 1} to I'. The homomorphism f*
sends A.(I") to A.(I' x {0,1}). Consider the module A.(I" x {0, 1}) quotiented by the
submodule M spanned by all diagrams K for which some component meets I" x {0}
and I' x {1}. We have a natural map:

AT x {0}) @ A(T x {1}) — AT x {0,1})/M

which is obviously an isomorphism. Then the homomorphism f* composed with
the quotient map induces a homomorphism A from A.(T") to A.(I') @ A.(T"). Tt
is not difficult to see that A.(I") equipped with this homomorphism A is a graded
cocommutative coalgebra. O

3.8 Proposition. The graded modules A.([0,1]) and A.(S") are isomorphic graded
commutative and cocommutative Hopf algebras.

Proof: Let f be an embedding from [0,1] to the circle S' which is compatible
with the orientations. This injection induces a homomorphism ¢ from A.([0, 1]) to
A.(SY). This homomorphism depends only on the isotopy class of f and then it is
well defined. It is easy to see that ¢ is an epimorphism of coalgebra. The fact that
¢ is an isomorphism is proven in [BN1]. The algebra structure on A.(]0, 1]) comes
from the embedding from [0, 1] ][0, 1] to [0, 1] which is an increasing bijection from
the first copy of [0, 1] to [0,1/3] and an increasing bijection from the second copy of
0,1] to [2/3,1].

The fact that the product is commutative can be see in the circle. If v and v are
represented by [0, 1]-diagrams K and K', uv is represented by the diagram L obtained
by placing K’ after K on the interval. But in the circle, one can move K’ around
the circle and uv is equal to vu in A.(S). Since the inclusion map from A.([0, 1]) to
A.(S?) is bijective, one has: uv = vu. O

3.9 Proposition. Let n > 0 be an integer. Then P, = A.([0,1] x {1,...,n}) is a
cocommutative Hopf algebra.

Proof: The coalgebra structure of P, is already defined. The product is defined as
follows: Denote by X the set {1,...,n} and consider a map 7 from [0, 1] x {0,1} to
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0, 1] which is increasing with respect to the parameter in [0, 1] and send [0, 1] x {0}
to [0,1/2) and [0, 1] x {1} to (1/2,1]. Then the product map is the composite:

Au([0,1] x X) @ A([0,1] x X) — A([0,1] x {0,1} x X) & A([0,1] x X)

The antipode map is constructed by induction on the degree. O

Remark. The Hopf algebra P; is isomorphic to A.([0,1]) = A.(S?) and is commu-
tative. For n > 1 P, is never commutative.

4. THE CATEGORY OF DIAGRAMS

A good way to understand knots or links is to cut such a link by horizontal planes.
So one gets one-dimensional submanifolfs of R? x [0, 1] with boundary in R? x {0, 1}.
These objects are called tangles. The tangles form a category 7. An object in the
category 7 is a finite subset X in the plane R%. A morphism from X to Y is an
isotopy class of tangle in R? x [0, 1] with boundary X x {0} UY x {1}.

One may also consider the category of oriented tangles, banded tangles or framed
tangles. In view on the Kontsevich integral it will be also convenient to consider
categories of parenthesized tangles (or non associative tangles). In this category the
morphisms are the same but the objects are more complicated. They are points
written in a non-associative way in R C R2.

The same consideration holds for diagrams.

Definition. Let I' be a curve (i.e. a compact one-dimensional manifold). Let X be
a finite set. A (T', X)-diagram is a triple (K, f, g, a) where:

— K is a finite graph and ¢ is an injection from X to the set of univalent vertices
of K

— f is a homeomorphism from I' to a sub-graph of K such that the set of univalent
vertices of K is the disjoint union of g(X) and f(0I")

— every vertex in K is univalent or three-valent

— «ais a function which associates to every 3-valent vertex x in K a cyclic ordering
a(x) between the three edges of K starting from x.

A (T, 0)-diagram is nothing else but a I-diagram. Usually a (I, X')-diagram will
be represented by a graph immersed in the plan and containing I" and X, and the
cyclic orderings are induced by the orientation of the plan.

The AS and IHX relations make sense for (I', X')-diagrams. So one can define the
quotient:

The graded module A(T", X'). The module A(T", X) is the module freely generated
by all (I, X)-diagram and quotiented by the AS and IHX relations. The degree of
an element of this module which is represented by a diagram K is half the number of
3-valent vertices of K. This degree is half an integer. Twice this degree is congruent
to the order of X modulo 2.
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4.1 The category of diagrams D. The objects of D are the finite sets [n] =
{1,...,n}, n > 0. A morphism from an object X and an object Y is an element of
the module A(0, X [TY). The composite of a morphism from X to Y and a morphism
from Y to 7 is obtained by taking the union of diagrams over Y.

4.2 Proposition. The category D is a monoidal linear category. As a monoidal
category it is generated by one object (the object [1|) and four morphisms:

— the morphism d; from 2| to [0] represented by )

— the morphism dy from [0] to [2] represented by (
— the morphism d3 from [2| to [1] represented by }
— the morphism d4 from [2| to [2] represented by ><

Proof: The monoidal structure is given by the disjoint union. The tensor product of
two objects [p] and [g] is the object [p+ ¢, and the first p points in [p+ ¢] correspond
in the standard way to the points in [p| and the last ¢ points in [p + ¢] to the points
in [g]. The tensor product of two morphisms u and v represented by two diagrams
K and K’ is the morphism represented by K] K.

It is easy to see that the category D is a monoidal category and the monoidal struc-
ture is strictly associative. Moreover for every objects X and Y the set Homp(X,Y) =
A(D, XTTY) is a module and the composition and the tensor product are both bilin-
ear.

The object [p| is the tensor product of p copies of [1]. A morphism between [p]
and [g] is a linear combination of morphisms corresponding to diagrams. Consider
now such a diagram K. This diagram is a finite graph containing [p| [1[g]. There exist
a subdivision K’ of K and a function f from K to [0, 1] x R, which is affine in every
edge of K’ and sends every point ¢ € [p| to (0,7) and every point j € [q] to (1, 7). Let
X be the set of double points of f and Y be the image under f of the set of vertices of
K. If fis chosen to be generic enough, the image of X UY under the first projection
consists of distinct points. Then one can cut [0, 1] X R into pieces U; = [a;, a;11] X R,
with: 0 =a¢g < a1 < ... < a, =1, and XUY meets U; in at most one point. Then the
morphism induced by K is the composite of n elementary morphisms corresponding
to the diagram K; = K N U;. By construction each such morphism is on the form
Id®u®ld where u is the morphism d, or a morphism corresponding to a connected
graph H with at most one 3-valent vertex. If H has no 3-valent vertex u is 1 or d;
or do. If H has one 3-valent vertex, we have four possibilities for H, but each of
these may be express as composite of morphisms d;, ds and d3. Precisely the four

possibilities are:
}:dg > :d10(1®d3)

<:(1®d3®1)0(1®1®d2)0d2 {Z(d3®1)0(1®d2)
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Therefore the four morphisms d; generate the full category. O

4.3 Remark. Actually it is possible to describe the monoidal category D by gener-
ators and relations. The generators are the object [1] and morphisms d;, ds, d3 and
dy4. The relations are the following:
dsody = —ds
—dso(ds®1)o(1®1®1+(di®@1)o(1®ds)+(1®ds)o(ds@1)) =0
dyody =d
—dyo(d3®1)=dio(l®ds)
—dsods=1®1
—1=(d1®1)o(1®dy) =(1®dy) o (da®1)
—(d4®@1)o(1®dy)o(ds®1)=(1®dy)o(ds®1)0(1Rdy)
7(1®d3)0(d4®1)0(1®d4) :d40(d3®1)

4.4 The category of diagrams D(Fy, F;). Consider two sets Fy and F;. Consider
a I'-diagram K where I' is a curve. Suppose that only some components of I' are
oriented. Suppose that each oriented component of I' is “colored” by an element of
E; and each unoriented component by an element of Fy. If one cuts such a diagram
into pieces one gets diagrams with univalent vertices. This univalent vertices are of
different type:

— points outside of '

— points in a unoriented component of I'. Such a point is colored by an element
of Fj.

— points in an oriented component of I'. Such a point is colored by an element of
E; and the orientation of I" defines a sign on it.

The points of the first type are called standard points. The points of the second
type are called unoriented point. They are colored by Ej. The points in the last type
are called oriented points. They are colored by F; and equipped with a sign.

So we are able to define a category corresponding to this situation.

An object of the category D(FEy, E1) is a 5-tuple (X, X, X1, o, 3), where X, X,
and X; are disjoint finite sets, a is a function from Xy [] X; to Ey 11 £ sending X,
into Fy and X; into E;, and [ is a function from E; to {£1}.

A morphism from (X, Xy, X1, «, §) to (X', X{,, X7, a/, 3') is a triple (T, f, u), where
[' is a compact partially oriented one-dimensional manifold with boundary OI' =
Xo I X1 I XHII X7, fis a function from the set of components of [' to ' and u is an
element of A(I'; X [T X’), such that:

— the oriented components of I are sent by f into £

— the unoriented components of I' are sent by f into FEj

the restriction of f on the boundary of T" is the function o] o/
the sign induced by the partial orientation of I' on its boundary is the function

B -5
It is easy to see that all these data define a category. The composition is given
by gluing. We have also a monoidal structure obtained by disjoint union.
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Remark. There is also a completed version of this category, where a morphism is a
triple (I, f,u) satisfying the same condition as above except that u lies now in the

~

completion A(T', X [TX") of AT, XTI X’) (completion with respect to the degree).

Remark.

The most important cases are the unoriented category D(un) = D([1], ) and the
oriented category D(or) = D(0,[1]) and also their completed versions D(un) and
D(or) .

5. THE KONTSEVICH INTEGRAL

The Kontsevich integral was originally constructed to associate to every knot
a: S — R? an element Z(a) lying in a a quotient of the module A(S*) . This
construction was generalized to every link and every tangle.

5.1 The case of braids.
Let I' be a braid with n strands. This braid is nothing else but the image of

embedding a : [0,1] x {1,...,n} — R?*x [0,1] = C x [0, 1] such that «(t,1) is on the
form (G;(t),t) for every ¢ = 1,...,n and every ¢t € [0,1]. Let w(t) be the degree 1

form defined by:
S, 0 = B0
1<i<j<n ’ ﬂi(t) - ﬂj@)
where h;; is the diagram obtained by adding one edge a to [0, 1] x {1,..., n} attached
on points (1/2,4) and (1/2,7), with equivalent cyclic orderings (equivalent with re-

spect to the involution (¢,7) < (t,7)). The form w(t) has its coefficients in the algebra
P,, (defined over C).

w(t) =

The Kontsevich integral of u is defined be the following series:

Zu) =a, /A Wt rw(ty)

-~

where A, is the simplex 0 < ¢t; < --- < ¢, < 1. This integral belongs to A.(T") ,
where I is considered as an abstract curve.

5.2 Proposition. If two braids are isotopic, they have the same Kontsevich integral.

~ ~

Moreover if I'y and I'y are composable, one has a product A.(I'1) ® A.(I'y) —

~

A.(T1T'y) defined by union of diagrams and one has:

Z(Ihy) = Z(T'1)Z(T9)
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Sketch of proof: If one consider a braid as a path in the configuration space X,
of all n-tuples of n distinct points in C, w(t) appears as the inverse image under the
path of a form w defined over X,,. This form (with coefficients in P,) is actually
a flat connexion called the Knizhnik-Zamolodchikov connexion. More precisely, one
has dw = 0 and w Aw = 0. The first equality is trivial and the second one is an easy
consequence of the IHX relation.

With this point of view, Z(T") is the monodromy of this connexion and, because
the connexion is flat, Z(T") depends only on the homotopy class of T

The fact that Z is compatible with the product is a trivial consequence of the
Fubini formula. a

Actually the braids form a category: the category of braids B. An object in this
category is a finite subset in C and a morphism from a set X C Ctoaset Y C C
is an isotopy class of braids I' C C x [0, 1] meeting transversally the boundary of
Cx[0,1]in X x {0} UY x {1}. The properties implies that Z is a functor from the
category of braids B to the category D(un)A

5.3 The case of tangles.

The category of braids B is a subcategory of the category of tangles. The functor
cannot be extended to this category but it is the case if one consider tangles equipped
with vector fields.

5.4 Definitions. A banded tangle (or b-tangle) is a 1-dimensional compact subman-
ifold T' C C x [0, 1] equipped with a vector field V' such that:

— T meets transversally C x {0, 1} on its boundary

— V is transverse to I, i.e. for every x € T', V(z) is a vector in C x R which is
not tangent to I'

— for every z € dI', V/(z) is the vector (i,0).

Two b-tangles (I', V') and (I”, V") are called isotopic if there exists an isotopy h;
on C x [0, 1] such that:

— hy is the identity on C x 9[0, 1] (for every t € [0, 1])

— hg is the identity

— () =T

— V" is homotopic to dh; o V' by a homotopy which is constant on 0" and always
transverse to I".

A b-link is a b-tangle without boundary. It is contained in C x (0, 1).

Usually a b-tangle will be represented by a diagram in the plane contained in
R x [0, 1] equipped with the constant vector field (i, 0).

5.5 Proposition. The b-tangles form a category 7 containing the category of braids
B.

Proof: The objects of 7 are the finite subset of C. A morphism in 7 from X C C
to Y C C is an isotopy class of b-tangle T' meeting the boundary of C x [0,1] in
X x {0} UY x {1}. The composition is obtained by gluing. The inclusion functor
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B — T send a braid I' to the b-tangle (I', V') where V' is the constant vector field
(2,0).
5.6 Proposition. The functor 7 extends to the category of b-tangles 7 .

This extension is unique under certain conditions. See [L] for a proof. There
is two bad things about this functor: it is very difficult to compute and Z is not
a monoidal functor. The target category of Z is a monoidal category (via disjoint
union) but not the source category 7.

The category of g-tangles.

Consider the free non associative monoid F' generated by one object . called point.
The unique monoid homomorphism from F' to (Z, +) sending the point to 1 is called
the degree map. Every element u € F' of degree > 1 can be written is a unique way:
u = vw. Moreover F' has a unique antiinvolution u — w* which sent the point to
itself. The elements of I are called g-objects.

A g-object is nothing else but a finite set equipped with a parenthetization. For
example there is 5 g-objects in degree 4:

u=()0) =) v =) w=(C).  w=.((.))

To every g-object X one can associate to it the subset Xcc given by the integers
1,...,n corresponding to points in X.

One define now the category of g-tangles 7" by the following;:

The objects of 77 are the g-objects. A morphism in 7’ from a g-object X to a g-
object Y is an isotopy class of g-tangles corresponding to a morphism in the category
T from X to Y.

The category 7" is a monoidal category. The monoidal structure on the level of
objects is the product in F'. On the level of morphisms, the monoidal structure is
obtained by putting the second tangle on the right hand size of the first one.

There is another algebraic operation on the category 7’: the doubling.

Let I be a g-tangle. It is a morphism in the category 7’ from a g-object X to
a g-object Y. Let I'y be a component of I' with non empty boundary. Suppose that
[ joins a point in C x {0} to a point in C x {1}. These two points correspond to
a point x in X and a point y in Y. Let u be a g-object of degree n. Then one can
replace I' by n parallel copies of I' sitting in a band normal to the vector field which
is a thickening of I'y. One can also replace z in X by v and y in Y by w in order to
obtain new g-objects X’ and Y’. So one gets a new ¢-tangle I'” joining X' to Y.

If the boundary of Iy is contained in C x {0} or in C x {1}, z and y are both in
X or both in Y. In these cases one has to replace x by u and y by u*. In all cases
one gets a new g-tangle IV joining X’ to Y’. This g-tangle I' is called a doubling of
.

The category 7" is generated, as a monoidal category, by one object (the point)
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and the following morphisms:

=X x=X w=U e vl

the last morphism is the morphism from a g-object w; (wow3) to (wywy)ws represented
by the trivial tangle. It is obtained by doubling from the associator morphism from

() to ().

5.7 Theorem [Dr]. There exist a functor Z from the category of q-tangles T" to
the category of diagrams D(un)A such that:

— Z is a functor of monoidal categories

— for every g-tangle T with underlying curve I, Z(T') is on the form (I, u) where
u is a group-like element in A,(T')

— if T" is obtained from a braid T" by doubling, if I and I are the underlying
curves and if Z(T) = (T',u), then one has: Z(T') = (I, f*(u)), where f is the
canonical projection from I to I.

— if Uy is the positive or negative half-twist, one has: Z(Uy) = exp(£h/2)o,
where o is the transposition in &, and h is the following element in Ps:

-

This functor Z is not unique, but for every banded link L, Z'(L) is unique.
More precisely, if Z; and Z, are two functor satisfying the properties of theorem
5.7, Z1(L) = Z5(L) for every banded link L. Actually Z5 is obtained from Z; by a
gauge transformation in the following sense: for every g-object X there is a group-
like element F'(X) € A.(X x[0,1]) C EndD(un)A (X) such that, for every morphism 7’

from a q-object X to a q-object Y one has: Zy(T) = F(Y)Z,(T)F(X)™.

Another interesting results is the following: every functor 7 satisfying the prop-
erties of theorem 5.7 is gauge conjugate to a rational functor [LM].

The functor 7 is characterized by the following elements:

a=7(u) B = Z(v) b = 7Z(w)

where w is the associator from .(..) to (..). represented by the trivial b-tangle.

U e el

The element ®, also called associator, lies in the algebra P5 . Via the projection
from u and v to [O, 1] sending left boundaries to 0 and right boundaries to 1, one
may consider o and 3 as element in the algebra P; = A.([0,1]) .

The associator ® is not unique. It has to satisfy many properties. Up to now
there is only one associator which explicitly known. It come from the Kontsevich
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integral by taking a limit of this integral when sources and target goes to certain
limit configurations.

Remark. The functor Z extends to the category 7 of framed ¢-tangles. An object
of T is a q-object equipped with signs. A morphism is a framed tangle 7', i.e. an
oriented banded tangle. If this tangle is a morphism from X to Y, the sign of a point
x in X is the opposite of the sign coming from the orientation of 7" and the sign of
a point y in Y is the sign coming from the orientation of 7. I£ we don’t forget the

orientation Z induces a functor from 7 to the category D(or) . For simplicity all
these functors will be called the Kontsevich integral and denoted by Z.

5.8 Theorem. Let © be the chord diagram with only one chord. Then the Kontse-
vich integral Z induces an isomorphism from the completion of Q[K] with respect to
the Vassiliev filtration to A.(S) /(©).

Let K" be the monoid of framed knots. Then the Kontsevich integral 7 induces
an isomorphism from the completion of Q[K'| with respect to the Vassiliev filtration
to the product of two copies of A.(S) .

Proof: The Kontsevich integral sends a framed knot K to an element Z(K) in the
completion A.(S') of A.(S?). The element Z(K) is an infinite series:

2(I) = i::znuo

where Z,(K) belongs to A.(S'),. Moreover the constant term Zy(K) is equal to 1
for every knot K.

Up to gauge transformation we may as well suppose that Z has rational coeffi-
cients.

Denote by 7 the category of framed ¢-tangles. If we replace the morphisms of
this category by the sets of formal linear combinations of framed tangles, we get a
new category Q[’j']. By linearity 7 induces a functor still denoted by Z from the
category Q[T] to the oriented category D(or) .

A framed singular knot K is represented by an oriented diagram A. Let D be
the chord diagram associated to K. The diagram A has n double points, p positive
crossings and ¢ negative crossings. Let a be the class of p—g mod 2. Then in Q[’f] one
has: K = [D],. The knot K may be seen as an endomorphism of the emptyset in the
category Q[’ﬂ Cutting D into pieces produces a decomposition of K as a composite
(in Q[T]) of elementary morphisms K;. Some of these K; are standard tangles, but
n of these morphisms have the form Id®T;®Id, where T; is a morphism between two
points and two points (with some sign) represented by a singular tangle with one
double point. In this case the singular tangle represents the difference between a
positive and a negative half-twist.

If K; is standard, Z(K;) has constant term 1. If K; has a double point, Z(K;) is
on the form Id ® Z(T;) ® Id and we have:

am=2( > )=er( D)= > )
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where € depends on the local orientations near the double points in 7;. On the other
hand the images under Z of the half twists are given by the following exponentials:

z( X )= >< .eXp(g)
A S )= S ol

where u is the following diagram:

u = — =

Then we have:

Z( >< ):5 >< (exp(g)—exp(%uD:e >< (uw+---)

Therefore the degree one term of Z(K;) is exactly the chord diagram corresponding
to K;. Hence the Kontsevich integral Z(K) is trivial in degree < n and its degree n
term is represented by the chord diagram [D], associate to the diagram A.

Let I] be the nth fltration of Q[K'] in the Vassiliev filtration. The degree n term
of the Kontsevich integral Z induces a homomorphism Z,, from the quotient I, /1]
to A.(S'), and, for every chord diagram D € D¢ and every a € {0,1}, Z,([D],) is
the class of D in the module A.(S"),.

Consider the ring R = Q[f]/(0* — 1). Every framed knot K has a self linking
number a = A(K,K). If K is represented by a diagram A this number a is the
difference between the number of positive crossings of A and the number of negative
crossings.  Consider the following homomorphism ¢ from Q[K'] to R ® A.(S') :
K p(K) = 05K @ 7(K).

This homomorphism induces a function ¢, : I} /I} ., — R ® A.(S"),. We have
the following diagram:

QIDL)/(4T) & Q[DE] /(4T) - 11 /1,y 2% R @ AL(SY),

where ¢ is the map D & D' +— [D|o + [D];.

We have shown that 1 is surjective. On the other hand the composite ¢, o 9 is
the map: D@ D' — f(D)+6f(D’) where f is the isomorphism from Q[DS]/(4T") to
A.(S1),. Hence 1 and ¢,, are isomorphisms.

In the case of oriented knots, we have only one function D +— [D] which satisfies
also the 1T relation. On the other hand the Kontsevich integral is well defined, but
only in the quotient A.(S') /(©). Since the natural map f from Q[DS]/(4T) to
A.(S1),, is an isomorphism, it induces an isomorphism f; from Q[DS]/(4T,1T) to
AL (S, = (AC(Sl)/(@)>n. So we have the following diagram:

QDS (AT AT 5 1,/ 1 yy 22 AL(SY),

where 1 is the map D + [D]. Since 1) is surjective and the composite Z, oy = fi
bijective, 1, and Z,, are isomorphisms. O
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6. WEIGHT FUNCTIONS

The Kontsevich integral of a link or a tangle lies in a completion of a module of
diagrams A(T", X). In order to have an invariant of links or tangles it’s enough to
construct linear homomorphisms from a module of diagrams to some module.

A weight function on (I'; X) is a homomorphism from the module A(T, X) to
some module E. Such a function associates to every (I', X')-diagram K an element
¢(K) € E in such a way that ¢ satisfy AS and ITHX relations.

The standard way to construct a weight function into a ring or a module is ob-
tained with the help of a Lie algebra or a Lie superalgebra.

Definitions. Let k£ be a characteristic zero field. A Lie algebra over k is a pair

L = (L,], ]) where L is a k-vector space and [ , | a bilinear homomorphism from
L ® L to L (called the bracket or the Lie bracket) such that:
— the Lie bracket is antisymmetric: [z,y| = —|y, z] for every z,y in L

— the Lie bracket satisfies the Jacobi identity: [[x,y|, 2| + [y, 2], x] + [[z, ], y] =0
for every x,y, z in L.

Let L be a Lie algebra. A L representation (or a L-module) is a vector space F
together with a bilinear map z ® e — xe from L ® E to E such that;
for every x,y in L and every e in E one has: x(ye) — y(ze) = [z, yle

Let Mod; be the category of finite dimensional L-modules. The objects of this
category are the finite dimensional L-modules and the morphisms are the linear maps
compatible with the L-action. The category Mody is a k-linear category, but it is
also a monoidal category. If F and £ are L-modules the vector space £ ® £’ is also
a L-module by the action: z(e ® ¢/) = ze @ € + e ® xe'. The dual E* of a L-module
is also a L-module by the rule: (zf)(e) = —f(xe).

The simplest example of L-module is the module L itself with the action: z(y) =
[z, y]. This module is called the adjoint representation.

In order to obtain weight function we need to consider Lie algebras equipped with
a bilinear form.

Let E be a finite dimensional k-vector space equipped with a non singular bilinear
form b : FE® E — k. With such a form there is a well defined associated element
w=> e ®e in £® F satisfying:

Vee E e=> ble e)e, =Y eb(e), e)

This element is called the Casimir element of E. If the form b is symmetric the
Casimir element is symmetric too.

If £ isn’t equipped with a bilinear form, one still have a Casimir element w =
Ye ®e € E® E*. It satisfies the following:

Ve e E e=> e €ife)
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Definition. A quadratic Lie algebra is a triple L = (L, [, |, <, >) where (L, [, | is
a finite dimensional Lie algebra over k and < , > is a non singular symmetric bilinear
form on L satisfying the following:

Vr,y,z € L <l|z,y|,z >=< =z, |y, 2] >

This condition is equivalent to said that b is a L-linear map from L® L to k, where
L is considered as the adjoint representation and k the trivial module (the module k
equipped with the trivial action).

Supermodules and Lie superalgebras. A supermodule is a Z/2-graded module
E = Ey®FE;. The degree of an element in F; isi € Z/2. If E and E’ are supermodules
their tensor product is also a supermodule: (E ® E')y = FEy ® E, ® F; ® E] and
(E®FE') = Ey® E] & Ey ® Ej. In the classical case one has a symmetry 7' from
E®FE to ' ® L sending e ® ¢ to ¢ ® e. In the super case T is replaced by the
supersymmetry 7" sending e ® €’ to e’ ® e where ¢ is the sign (—1)P4, with p = 9%
and ¢ = 0°¢’. In this context, a supersymmetric bilinear form on a super module F
is a symmetric bilinear form on FEj together with an antisymmetric bilinear form on
El.

As in the classical case there is a Casimir element associated to every supermodule
equipped (or not) with a non singular bilinear form.

Definition. A Lie superalgebra is a pair (L, [, |) where L is a k-supermodule and
[, ]is a morphism from L ® L to L which is antisymmetric (in the super sense) and
satisfies the super Jacobi identity:

Vo € Lyy € L,z € Ly lz,y) 2] + (=DM (ly. 2], 2] + (= 1) [[2, 2], y] = 0

A L-supermodule is a supermodule E equipped with an action L ® £ — FE such
that:
Ve € L, Vye L, VeckE z(ye) — (—1)Py(ze) = [z, yle

The category of L-supermodules is still a monoidal k-linear category.

A quadratic Lie superalgebra is a triple (L, [, |, <, >) where (L, [, ]) is a finite
dimensional Lie superalgebra and < , > is a non singular supersymmetric bilinear
form on L which is invariant (i.e. the map from L ® L to k is L-linear, where L is
the adjoint representation and k the trivial L-module).

Let L be a quadratic Lie (super)algebra. Let T' be an oriented curve. A L-
coloring of I is a map f which associates to each component of I' a finite dimensional
L-(super)module. With such a coloring each point z in OI' has an associated module
Ey(x). On the other hand each point = in " is equipped with a sign e(z). If I start
from z, the sign is negative. It is positive in the other case. We'll said that the color
of z is the dual module F(z) = Ey(x) if e(z) = 1 and the module F(z) = Fy(x)* if
e(z) =—1.
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Suppose now that I' is only partially oriented. Then we define a L-coloring of T’
as a map f which associates to each oriented component of I' a finite dimensional L-
module and to each unoriented component a finite dimensional L-module E equipped
with a non singular (super)symmetric invariant bilinear form: £ ® E — k. Let x be
a point in OI'. If x lies in the oriented part of I', its sign £(z) and its color E(z) are
defined. In the other case x has only a color: the module E(x) which is the coloring
of the component of I' containing x.

6.1 Proposition. Let L be a quadratic Lie (super)algebra. Let I" be a partially
oriented curve and X = {xy,...,z,} be a finite set. Let {y1,...,y,} be the set of
points in OI'. Let f be a L-coloring of I' and Ej, ..., E, be the corresponding colors
of Yi,..., Yp.

Then these data induce a well defined homomorphism ®(L, f) from A(T", X) to
the module L*" @ Fy ® - -+ @ E,.

Proof: Let K be a (I', X)-diagram. Let K’ be a subdivision of K such that K’ has
only standard edges (i.e. no circle). Let A be the set of vertices of K’ and Az (resp.
Ay, Ay) be the set of 3-valent (resp. 2-valent, univalent) vertices. Let B be the set
of edges in K’ and B be the set of edges in K’ equipped with an orientation. The
orientation changing is an involution o — —a in B. The end- point mapping is a map
9, from B to A and the starting point mapping is a map d_ from B to A. For every
a € B one has: 04(—a) = 0_(a).

Let o be an oriented edge in B. If a is not contained in ', we set: E(a) = L.
If « is contained in a oriented component I'g of I', there is two possibilities: if the
orientation of a is compatible with the orientation of I'y we define F(«) as the color
of T'p. If the orientations don’t agree we define F(«) as the dual of the color of T'y. If
a is contained in an unoriented component Iy, F(«) is defined as the color of T'y.

Let a be an (unoriented) edge in K. Let o and —a be the corresponding oriented
edges. If a is not contained in T" denote by w(a) the Casimir element Q € L ® L =
E(a) ® E(—a). Suppose that a is contained in an oriented component I'y which is
colored by E. Up to taking another choice for a we may as well suppose that the
orientations of o and I'y are compatible. In this case we set w(a) to be the Casimir
element in £ ® E*. Suppose a is contained in a unoriented component I colored by
E. On E we have a non singular (super)symmetric invariant bilinear form and we
define w(a) as the Casimir element associated to it.

So for every a € B, the element w(a) is an element in E(a) ® E(—a). Notice
that w(a) doesn’t depend on the choice of «a, because a Casimir element is (su-
per)symmetric.

Take a numbering {aq, ...az_1} of B such that Qi1 = —ay; for every j < g,
and denote by a; the unoriented edge corresponding to ap; (and agjiq). Let £ be
the following module: £ = E(ap) ® E(aq) - ® E(ag.1). The tensor product {2 =
w(a) ® - - ®w(aq—1) belongs to the module &.

Consider another numbering {0, ..., B2q—1} of B satisfying the following proper-
ties:

— for every 3-valent vertex x in K the three oriented edges arriving to x are
Bj, Bit+1, Bj+2 for some j (in the right cyclic ordering)

23



— for every 2-valent vertex x in K’ the two oriented edges arriving to x are g3}, 541
for some j

— the oriented edges arriving to some vertex in X or in 0" appear in the ordering
corresponding to the given ordering of X U0l = {x1,..., s, Y1, .., Yp}-

This new numbering is obtained by a permutation ¢ of the set B. The group of
permutations of B acts on €. In the super case this action permutes a pure tensor
and multiply it by a sign. In particular a transposition acts as the supertransposition:
r®y+— (—1)Yy ® x where x and y are of degree i and j.

Denote by ' the image of Q) under o.

Let  be a 2-valent vertex of K’ and o and a4 the oriented edges arriving to .
In any case one has a canonical bilinear form b, defined on E(a;) ® E(a;t1). This
form is the given form on L ® L, the evaluation map from some F* ® F to k or a
given form on £ ® E where F is a color corresponding to a unoriented component of
.

Let z be a 3-valent vertex of K’. This vertex is a vertex of K. Let o, aj;; and
aj+2 be the oriented edges arriving to x. If x is not contained in I' we have a trilinear
form b, on E(a;) @ E(ajt1) @ E(aji2) = L3 the form u @ v @ w —< u, [v,w] >=<
[u,v],w >. If  belongs to the curve I, the module E(o;) ® E(ajt1) @ E(ajq2) is,
up to a (unique) cyclic permutation a module on the form F*® L ® FE and the form
b, is defined (up to this permutation) as the form: e* ® u ® e — e*(ue).

Now we are able to define the element ®(L, f)(K) as the image of 2 under the
tensor product of all forms b,. The fact that ®(L, f)(K) doesn’t depend on any
choice follows from the construction. The morphism ®(L, f) is compatible with the
AS relation because the form b, is completely antisymmetric (if z is not contained
in I'). The compatibility of the IHX relation comes from the Jacobi identity and the
STU relation from the algebraic property of an action of L on a L-module. a

Let L be a quadratic Lie (super)algebra. The category Mod;, is a monoidal
category. Denote by L the adjoint representation.

The Casimir element may be seen as a homomorphism from k = L% to L ® L =
L®%. The form <?,7> is a homomorphism from L®? to L®® and the bracket is a
homomorphism from L®? to L = L®'. The symmetry (or the supersymmetry) 7 is a
homomorphism from L®? to itself.

6.2 Theorem. Let L be a quadratic Lie (super)algebra. Then there exists a unique
functor ®;, of monoidal categories from the category of diagrams D to the category
Mod;, sending [1] to the adjoint representation L and morphisms d; — d4 to the
invariant form, the Casimir element, the Lie bracket and the symmetry T respectively.

Proof: The morphisms d; are defined in 4.2. The unicity of such a functor comes
from the fact that D is generated by [1] and the d;’s morphisms. In order to construct
®; it is enough to prove that @ is compatible with all the relations satisfied by the
d;’s.

The first relation means that the bracket is antisymmetric. The second one which
correspond to the IHX relation is send by ®; to the Jacobi relation. The other
relations are easy to check.
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A direct way to construct @y, is the following: Set @, ([n]) = L®*. Let u be a
morphism from an object [p| to an object [¢]. This morphism belongs to the module
A0, [p|1[g]). Then ®(L,—)(u) is an element of the module L% ® L®I. But L is
canonically isomorphic to its dual (as a L-module). Then ®(L, —)(u) may be seen as
an element of the module L**? @ L®7 or an element @1 (u) of Hom(L®?, L®).

So & is well defined. The fact ®, satisfy the desired properties is a formal
consequence of the construction. O

Remark. This theorem gives a very efficient way to compute the image under
®(L,—) of a (I', X)-diagram when T is empty. Just take a bijection between X and
some [n], and the diagram becomes a morphism from [0] to [n] and can be decomposed
in a composite of the morphisms d;’s. Then the theorem give the desired computation.

This theorem may be generalized in the case of colored curves.

6.3 Theorem. Let L be a quadratic Lie (super)algebra. Let Ey and E; be two
sets. Let fy and f; be two coloring functions sending every x € FE; to a finite
dimensional L-module f,(x) and every x € FEj to a finite dimensional L-module fy(x)
equipped with a non singular bilinear (super)symmetric invariant form. Then there
exist a unique monoidal functor ®(L, Ey, E1, fo, f1) from the category D(Ey, E;) to
the category Mody, satisfying the following properties:

— An object of D(Ey, E1) reduced to a standard point is sent to L. An oriented
point with color e € Ey and sign ¢ is sent to the module fi(e) if e =1 or to its dual
in the other case. An unoriented point with color e € Fy is sent to the module fy(e)

— The functor send morphisms dy, do, d3 and dy4 to the bilinear form < , >, the
Casimir element, the bracket and the (super)symmetry

— If X is an object with two points x and y and K is a diagram composed with
two edges joining x to y and y to x, then the image of this morphism under the
functor is the (super)symmetry

— If X is an object with only two points x and y colored by Ey or F; and u is
a morphism from X to () represented by a diagram K with only one edge, the image
of u is the evaluation map if K is oriented and the given bilinear form in K if not

— If X is an object with only two points x and y colored by Ey or F; and u is
a morphism from () to X represented by a diagram K with only one edge, the image
of u is the corresponding Casimir element

— If u is the morphism corresponding to the following diagram, its image is the
action map:

\ € = (z @ u > zu)

where z is in L and w in the color module associated to e (or its dual if the curve is
oriented in the other way).

Sketch of proof: It is easy to see that the objects and morphisms described in the
theorem generate the monoidal category D(Fy, F1) and the functor is unique.

The construction of the functor is exactly the same as above. The functor is
defined on the objects. On morphisms the definition uses the functions ®(L, f)
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constructed in proposition 6.1.
7. INVARIANTS OF LINKS

Let L be a quadratic Lie (super)algebra over a field k and E be a finite dimensional
L-module. Let K be a framed link. The Kontsevich integral Z(L) of K may be seen
as a morphism from ) to itself in the oriented category D(OT)A. This integral has
an expansion Z(K) = Y. Z,(K) and each Z,(K) is an morphism of degree n in
the category D(or). Let ® be the functor ®(L, 0, [1], —, ), where E is the coloring
1 — E, we have a series of numbers: a,(K) = ®(Z,(K)).

In order to force the series 3 a,(K) to be convergent, we’ll consider a formal
modification of the functor .

Let X and Y be two objects in the category D(Ey, E;) and u be a morphism from
X to Y. Suppose that X and Y have p and ¢ elements and that u is represented by
a diagram with n 3-valent vertices. Set: 0°u = (n + ¢ — p)/2. This new degree is
an integer and, with this degree, the category D(Ey, £1) becomes a graded monoidal
category.

Let ® = ®(L, Ey, Fy, fo, f1) be a functor from D(Ey, F;) to Mody, correspond-

~

ing to some colorings. Then we have a new graded functor ® from D(FEy, F1) to
E[[1][t " |@Mody, defined by: ®(X u,) = 3 ®(u, )7 .

With these conventions, we have: ®(Z(K)) = ¥ a,(K)t* € k[[t][t7}], and ® 0 Z
is an invariant or framed links.

If we want to have an invariant of banded links, we have to consider other data.
If K is a banded link, Z(K) is a morphism from () to itself in the unoriented category
D(un)A In order to have a weight function in this case, we have to take a L-module
E equipped with a non singular (super)symmetric bilinear invariant form. The same
construction as before applied to the functor ® = ®(L,[1],0, E, —) gives rise to an

invariant ® o Z of banded links.

The Kauffman bracket. Consider the simplest Lie algebra: L = sy of all 2 x 2
matrices with zero trace. This Lie algebra is equipped with a form: a®g —< a, 3 >=
tr(af). With this form, L becomes a quadratic Lie algebra. Consider the standard
representation F of dimension 2. An isomorphism A% E ~ k induces an antisymmetric
bilinear invariant form b from F® F to k. Consider now the following L-supermodule
E': the degree 0 part of £’ is trivial and the degree 1 part of £’ is the module FE.
Then the (super)dimension of E’ is —2 and the form b induces a supersymmetric
form ¥ on E'. Let ® be the functor ®(L, [1],0, E’, —). The construction above gives
rise to a functor ® and an invariant of banded links.

7.1 Theorem. Let K +—< K > be the invariant of banded links induced by the sl

equipped with the standard representation consider as a supermodule of superdimen-

sion —2. Set: A = —exp(t/4). Then this invariant satisfies the following properties:
— for every banded link K, < K > belongs to kl[[t|]
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— < > is multiplicative with respect to the disjoint union operation
— < () >=1 and the invariant of the trivial banded knot is —A? — A2
— the invariant < > satisfy the following skein relation:

< X >=A< : >+A71 < )C >

Proof. Let {e1, e2} be a basis of the standard representation F. The Casimir element
Q€ L ® L is the following:

Q = Zeij ®€ji — %Id@ld
ij
where e;; is the elementary matrix with 1 in the (7, j) place. Consider the supermodule
E"=0& E. We have the following decomposition: £’ ® E' ~ k & L, where k is the
trivial L-module.
We have particular endomorphisms of £/ ® E': the identity, and the images under
® of the following diagrams:

-OC - X<

An easy computation gives the following;:

Id = (1,1) d(h) = (—2,0) ®(u) = (=3t/2,t/2) O(T) = (1,-1)

Let K, Ky and K. be the following tangles:

D G T

For every tangle K denote its invariant ®(Z(K) by < K >. With this notation we
have the following:

< Ky >=®(Toexp(u/2)) = (1, —1)(exp(—3t/4,t/4) = (exp(—3t/4), — exp(t/4))
< Ky >= &(Id) = (1,1)
< Ky >= ®(Ko) = (a,0)

for some a € k[[t]|]. Therefore there exists an element b € kl[[t]] such that:
< Ky >=—exp(t/4) < Ko > +b < K, >

Consider a singular banded link L with only one double point x. We can modify
L near z in oder to get three banded links:

> b > e T s D (C
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In the category of non associative tangles we can express this links on the following
form:
L+ :uo((1d®K+)®Id)OU

LQZUO((Id®K0)®Id)OU
Lo =uo((Id® Ky)®Id)ow

and we have:
<Ly >=<u>o(ld® < K > ®Id)o <v >

= —exp(t/4) <u > o(ld® < Ky > ®Id)o < v >
+b<u>o(ld® < Ky > ®Id)o < v >= —exp(t/4) < Lo > +b < Lo, >

Applying this method to the negative crossing (with —u instead of u), we get also
the following:
<L >=—exp(—t/4) < Ly > +V < Ly >

for some b’ € k[[t]]. By applying a 90° rotation of the picture we get:
< Ly >=—exp(—t/4) < Lo > +b < Lo >

and b is equal to —exp(—t/4). So the invariant K +—< K > satisfies the desired
skein relation. The other relations are easy to check. O

Remark. This invariant is actually the Kauffman bracket. It can be computed
using the skein relation. It is easy to prove by induction that < K > is an element

of Z[A, A71].

The Kauffman polynomial. Consider now a n-dimensional vector space £ equipped
with a non singular symmetric form b. Let L = o(E) be the Lie algebra of antisym-
metric endomorphisms of E. The trace of the product induces a form <, > on L
and L is a quadratic Lie algebra. The module F is a L-module and functors & and
® are defined. So we get an invariant of banded links.

7.2 Theorem. Let K — F(K) be the invariant of banded links induced by the
quadratic Lie algebra o(F) equipped with the standard representation E. Set: a =
exp((n — 1)t/4) and z = 2sh(t/4). Then this invariant satisfies the following proper-
ties:

— for every banded link K, F(K) belongs to kl[t]]

— F' is multiplicative with respect to the disjoint union operation

— F(0) = 1 and the invariant of the trivial banded knot ¢ is:

F(6)=1+

— if K’ is obtained from a banded link K by a positive twist, one has: F(K') =
aF(K)
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— the invariant F' satisfies the following skein relation:

PO )-r( > )==(rC __ )-r( D C )

Proof: The module A% E is isomorphic to L by the rule:
eNe — (u — b(u, z)y — b(y, u)x)

The module S?E contains the trivial module generated by the Casimir of E as a
direct summand. So we get the following decomposition:

FEQE~kEDLDF

The situation is similar as above except that we have three modules instead of two.
With the same notations, we have:

Id=(1,1,1) ®(h) = (n,0,0) d(u) = (1 —n)t/2,—t/2,t/2)

O(T) = (1,-1,1)

If we extend F’ to all non associative banded tangle, we have, with the same notation
as above (and K_ as the inverse of K):

F(K ) = (exp((1 — n)t/4), — exp(~t/4), exp(t/4))

F(K-) = (exp((n — 1)t/4), — exp(t/4), exp(—t/4))
F(Ko) = (1,1,1)
F(K.) = (a,0,0)
for some a € k[[t]]. Then there exists an element b € k[[t]] such that:

F(K,) — F(K_) = 2sh(t/4)F(Ky) — bF(Kx)

and the same argument as before shows that F' verifies the following skein relation
for every banded link L:

F(Ly)— F(L_) =2sh(t/4)F(Lo) — bF(Ls)
By applying a 90° rotation of the picture we get:
F(Ly) = P(L) = bF(Lg) — 25h(t/4)F (L)

and therefore:

sh((n — 1)t/4)
sh(t/4)

b = 2sh(t/4) = a=1+
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On the other hand we have:
F(KooKy) = (a2, 0,0) = F(0)F(Kw)

where ¢ is the trivial banded knot. Then we have: F'(6) = a. Let L be a link and
L' and L” be the link obtained from L by applying a positive or negative twist. By
construction there exists a series o in [[¢]], with constant term 1, such that:

F(L") = aF(L) F(L"Y=a 'F(L)
and the skein relation shows the following:
a—a ' =2sh(t/4)(F(§) — 1)

which implies:
a =-exp((n—1)t/4)

O

Remark. This invariant is called the Kauffman polynomial. For every banded link
L, F(L) belongs the the algebra Z[z, 27!, a, a™].

The HOMFLY polynomial. Consider now the Lie algebra L = sl, of n x n-
matrices with zero trace. This Lie algebra is quadratic by taking the trace of the
product as bilinear form. The standard representation FE is n-dimensional. The
module E is a L-module and functors ® and @ are defined on the category of non
associative framed tangles. So we get an invariant of framed links.

7.3 Theorem. Let K — P(K) be the invariant of framed links induced by the
quadratic Lie algebra sl,, = sl(E) equipped with the standard representation E. Set:
a =exp(t/(2n)), = exp(nt/2) and z = exp(t/2) — exp(—t/2). Then this invariant
satisfies the following properties:

— for every framed link K, P(K) belongs to k[[t]|

— P is multiplicative with respect to the disjoint union

— P(0) =1 and the invariant of the trivial banded knot ¢ is:

BB

z

F(3)

— if K’ is obtained from a banded link K by a positive twist, one has:
P(K'") = Ba™'P(K)

— If K, K_ and K, are obtained from a singular framed link by the three
standard modifications, on has:

aP(K.)—a 'P(K_) = zP(K,)
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Proof: Let {e;} be a basis of the standard representation E. The Casimir element
Qe L ® L is the following:

1
Q:Z&J@eﬂ—gld@)ld
ij

where e;; is the elementary matrix with 1 in the (4, j) place.

With the same notations as above, we have three endomorphisms of £ ® E: The
identity, the symmetry 7', and the endomorphism u. An easy computation shows the
following:

t
u=1tT——Id
n
We have the decomposition:
EQE~SEe \*E
With respect to this decomposition, we have:
Id = (1,1) T=(1,-1) u=(t—t/n,—t—1t/n)

If K, and K_ are the framed tangle corresponding to positive and negative half
twists, we have:

t t t t

P(Ky)=Toexp(u/2) = (GXP(§ - %): —eXp(_§ - %»

and that implies:
aP(K,) —a 'P(K_) = zP(K,)

With the same argument as above, this formula becomes true for every framed link,
and the skein relation is proven.
On the other hand, we have the following decomposition:

EFFPRE~k®dL

We have also three endomorphisms: the identity and the image under d of the

following diagrams:
-‘—_
h: D C u:
D

In this decomposition, we have:

Id = (1,1) ®(h) = (n,0) ®(u) = (nt —t/n, —t/n)

><
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we have: " " "
n
(K4) = T oexp(u/2) = To (expl’y = o). exp(—)

Denote by K_ the tangle K., but with a negative crossing. We have:
aF(Ky)—a 'F(K_) = (exp(nt/2) — exp(—nt/2))T o (1,0)
On the other hand the skein relation is the following:
QP (K.) — a ™ F(K_) = (exp(t/2) — exp(—t/)) F(K)

and: F(Ky) = F(6)T o (1,0). Thus we get the desired formula for F'(9).

Let L be a framed link and L’ and L” be the link obtained from L by applying
a positive or negative twist. By construction there exists a series v in [[t]], with
constant term 1, such that:

P(L) =~yP(L) F(L") =~y7'P(L)
If one applies the skein relation to L. one gets:
ay—a iy =zP(d) =5 -5

Since the constant term of v is 1 the only possibility is:

ay =0 — v = Ba

and that finishes the proof. a

Remark. This polynomial invariant can be computed using the skein relation. It
belongs to the subring of k[[t]] generated by a, a™t, 3, 7, z and (8 — 571)/2. But
the three variables «, § and z are algebraically independent in the following sense:
there is no polynomial @ such that Q(a, 3, z) vanishes in k[[t]] for every value of n.

Then the polynomial invariant P belongs to a ring contained in the polynomial
algebra Z[a,a™t, 3, 871, 2, 271]. If we want to have an invariant of oriented link, it’s
enough to set: # = a. This polynomial is the HOMFLY polynomial. It satisfies all
properties of the theorem, except that a = 8 and z are formal variables.

Remark. If one consider a k-supermodule E with non zero superdimension n as a
module over the Lie superalgebra L = sl(FE), one gets exactly the same polynomial
invariant as before in theorem 7.3. If one takes a k-supermodule of superdimension n,
equipped with a non singular symmetric form and the Lie superalgebra L = osp(FE),
one gets the same polynomial invariant as before in theorem 7.2. Roughly speaking,
the A series give the HOMFLY polynomial and the B-C-D series give the Kauffman
polynomial.
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8. THE ALGEBRA A

8.1 Construction of A

Let T" be a curve (i.e. a one-dimensional compact manifold), and X be a finite set.
Denote by A(T", X') the Q-module generated by all (I', X)-diagrams and divided by
the AS and THX-relations. If T" is empty, the module A(T", X') will be simply denoted
by D(X). Denote also by D.(X) the submodule of D(X) generated by connected
(0, X)-diagrams, and by Dy(X) the submodule of D(X) generated by connected non-
empty (0, X)-diagrams having at least one 3-valent vertex. It is easy to see the
following;:

8.2 Proposition. Let X be a finite set. Let w(X) be the set of partitions of X.
Then there is a canonical isomorphism:

DX)=D)@( & DY)

ren(X) Yenm
If X has 0 or 2 elements, one has:
D.(X) ~ Q& Dy(X)

If X has one element, D.(X) and D(X) are trivial modules. If X has at least 3
elements the two modules D.(X) and Ds(X) are equal.

Proof: The first formula is a consequence of the fact that a (0, X)-diagram K may
be written in a unique way as a disjoint union: K = H U (UiKi), where H has no
univalent vertex, and K; are connected and non-empty. The sets X N K; form a
partition of X, and the formula follows.

On the other hand every non-empty connected (f), X)-diagram has a 3-valent
vertex except the circle if X is empty or the interval [0, 1] if X has 2 elements. The
fact that D.(X) = Ds(X) = 0 when X has only one element, is an easy exercise (see
[V2] for a proof). O

If X is a set, the symmetric group &(X) acts on modules D(X), D.(X) and
D,(X). In particular for every n > 0 the module F(n) = D,([n]) is a &,-module.

8.3 Definition. Let A be the submodule of F'(3) = D([3]) consisting of all elements
u € F(3) satisfying the following:

Vo € B3, o(u) =e(o)u

where ¢ is the signature homomorphism. The degree of an element u € A represented
by a diagram K is (n — 4)/2, where n is the number of vertices of K. This degree is
also the rank of H;(K'). With this degree, A is a graded Q-module.

8.4 Proposition. The module A is actually a graded Q-algebra. Moreover, for every
set X, Dy(X) is equipped with a natural A-algebra structure.
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Proof: Let X be a finite set. Let K be a (0, X)-diagram. Suppose that K is
connected and has some 3-valent vertex x. Let u be an element of A represented
by a (0, [3])-diagram H. Because of the numbering of the set of edges arriving to
x, one can insert H in K near x and one gets a new diagram K (z, H). Since H is
completely antisymmetric with respect with the Gs-action, the class of K(z, H) in

D(X) doesn’t depend on the choice of the numbering. Moreover it depends only on
K, x and u and will be denoted by K(z,u).

\

xT — u

/

Consider an edge a in K with vertices x and y. Consider the following part of
K(z,u), where the small circle represents H inserted near x:

/

Or equivalently:

In the same way we have:

which implies:



and, by applying a rotation of the picture, we have:

and then:

Therefore inserting H near x or y gives the same element in D,(X) and the element
K(z,u) doesn’t depend on the choice of the vertex x. Then K(z,u) depends only
on K and the class u of H in A. It is easy to see that the map K — K(z,u) is
compatible with the AS relation. But this transformation is also compatible with
the THX relation because such a relation corresponds to an edge a in K and the
transformation may be done near a vertex outside a. If K has only two vertices this
proof doesn’t work but a direct computation shows also the compatibility with the
[HX relation.

Hence this transformation induces a well defined homomorphism from A ® D,(X)
to Ds(X). In particular this homomorphism induces a morphism from A® A to A and
A becomes an algebra. It is easy to see that the previous morphism from A ® D,(X)
to Ds(X) induces on Ds(X) a structure of A-module. So the last thing to do is to
prove the following lemma:

8.5 Lemma. Let X be a finite set and Y be the set X with one extra point 1y
added. Let K be a connected (), X)-diagram. For every x € X denote by K, the
(0,Y')-diagram obtained by adding to K an extra edge from yy to a point in K near
x, the cyclic ordering near the new vertex being given by taking the edge coming
from yq first, the edge coming from x after and the last edge at the end.

Then the element ¥ K, is trivial in the module F(Y).

P A

Proof: For every oriented edge a of K from a vertex u to a vertex v, we can
connect yy to K by adding an extra edge from yo to a new vertex zy in a and
we get a (), Y)-diagram K, where the cyclic order between edges arriving at g is
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(IOU, ToYo, 'TOU) .

Zo
U Yo

It is clear that the expression K, + K} is trivial if b is the edge a with the opposite
orientation. Moreover if a, b and ¢ are the three edges starting from a 3-valent vertex
of K, the sum K, + K, + K. is also trivial. Therefore the sum Y~ K, for all oriented
edge a of K is trivial and is equal to the sum Y K, for all oriented edge a starting
from a vertex in X. That proves the lemma. O

Remark. The algebra is commutative. In [V2] the algebra A is constructed with
integral coefficients and it is shown that 12ab = 12ba for every a and b in A. In this
situation A is defined over the rationals and is commutative.

In degree less to 4, the module A is generated (over Q) by the following diagrams:

Let n > 0 be an integer. We have the following element in F'(3):

Ty =

having n horizontal edges on the left hand side of the picture. It is proven in [V2]
that z, lies in A for every n > 0. We have:

=2t and Ty = t*
Moreover the even /s can be express in term of the odd z/,s.
8.6 Proposition. The algebra Endp([0]) of endomorphisms of the emptyset [0] in

the category D is isomorphic to the tensor product of the polynomial algebra Q0]
and the symmetric algebra S(FE) of the free A-module E generated by the O-diagram.
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Proof: It is clear that Endp([0]) is the symmetric algebra of the module D.(]0])
of connected non-empty diagrams. The module D.([0]) is the direct sum of the Q-
module generated by the circle 6 and the module D([0]). But this last module is
equipped with a A-module structure. Actually D,([0]) is the free A-module generated
by the ©-diagram with two vertices and three edges joining them. The result follows.

5=() 0=

Only partial things are known about the structure of A. Every simple quadratic
Lie (super)algebra L produces an algebra homomorphism from A to the coefficient
ring of L (see next section). By this way one gets 8 algebra homomorphisms from
A to different polynomial algebras. Another point which is known is the following:
the elements x1, x3, x5, ... are not algebraically independent. A family of relations
including a special relation in degree 10 considered in [V2] was discovered by Kneissler
[K]. In order to explain these relations, one has to consider the following algebras:

Let o, # and v be formal variables of degree 1. Let R be the algebra of symmetric
polynomials in o, 5 and . This algebra R is a subalgebra of Q[a, 3,7]. Ift = a+[+,
s = af + v+ ~va and p = afy are the elementary symmetric polynomials, R is the
algebra Qlt, s, p]. Set: w = (t + a)(t + B)(t + ) = p + st + 2t* and define Ry to be
the subalgebra Q[t] ® wR of R.

On the other hand consider the elements 2/, € R, n > 0 defined by the following:

— =0 Ty =2t xh = t? .

L % —p(2t)"
It is an easy exercise to check that all these elements belong to the subalgebra Ry.
With these algebras the result of Kneissler may be express in the following way:

—Vn =0 Tpyg = LT, o = STy 44 + T, +

8.7 Theorem. There exists a unique homomorphism ¢ of graded algebras from R,
to A satisfying the following conditions:

— @ sendst tot

— for every n > 0, ¢ sends !, to x,.

Related with this result we can formulate different conjectures:
8.8 Conjecture. The morphism ¢ is injective.
8.9 Conjecture. The morphism ¢ is bijective.

Presently ¢ is known to be bijective in degree < 11 and injective in degree < 16.

37



9. THE CATEGORY 7/

The algebra A acts on many modules of diagrams but not on all. In particular
the set of morphisms Homp([p], [q]) in D between two object [p| and [q] are not
A-modules.

The category D' is the category D where an action of A is forced. More precisely
the objects of the category D’ are the sets [p], n > 0 and if [p] and [g] are two objects
in D (or D’), the module Homyp ([p], [g]) of morphisms in D’ from [p] to [¢] is defined
to be the quotient of Homyp([p], [¢]) ® A by the following relations:

— Let u is an element of Homp([p|, [q]) represented by a diagram K, and = be a
3-valent vertex in K. Let v be an element in A. Then u ® v is equivalent to v’ ® 1
where ' is obtained from u by inserting v near .

— Let u is an element of Homp([p], [¢]) represented by a non empty diagram K

and v be an element in A. Then u ® 2tv is equivalent to u’ ® v where v is obtained
from u by inserting a circle in some edge in K.

} Xv = >v— ®1

— ®2tv = —0— ®u

9.1 Proposition. The category D’ is a linear monoidal category over the polynomial
algebra A[0]. Moreover the canonical functor from D to D’ induces, for every [p]
and [q| a morphism from Homp([p|,|q]) to Homp/ (|p|, [q]) which is injective on the
submodule of Homp([p|, [q]) generated by connected diagrams.

Proof: If we apply the construction above to the functors D, D, and D, considered
in section 1.1, we get new functors D', D, and D, from finite sets to A-modules. By
construction, D.L(X) is isomorphic to Ds(X) for every finite set X. If X is finite,
one has: D.(X) = Q" @& Ds(X), where n = 1 if the order of X is 0 or 2 and n = 0

otherwise. Therefore we get:
D(X)=AN"® Dy (X)
and D.(X) is contained in D.(X).
The module D() is actually an algebra by the disjoint union of diagrams. More
precisely D(0) is the symmetric algebra of the graded module D.(():
D(0) = S(D:(0)) = Q[o] @ S(Ds(0)) = Q[d] ® S(AO) = Q[d] @ 5(2tAJ)

The module D'(0) is also an algebra, but over A:

D'(0) = A[4]
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For an arbitrary finite set X, we have:

DX)=D0)@( & & DY)

ren(X) Yerm

D'(X) = Al ® ® ® DY
( ) [ ] A (TrETr(X) Yer C( )>
where the last tensor product is over A.

By applying this results to the morphisms of the categories D and D', one gets the
result. The action of A on modules of homomorphisms is obtained by construction.
The multiplication by 0 is the disjoint union with a circle.

9.2 Proposition. Let L be a quadratic Lie (super)algebra over a coefficient field k.
Suppose L is simple with a non trivial bracket. Then there exists a unique algebra
homomorphism xy, from A[0] to k and a unique functor ®;, of monoidal categories
from D' to the category Mod;, of L-modules such that:

— x1(0) is the (super)dimension of L

— &y, sends [1] to the adjoint representation L and the following diagrams:

o o X

to the scalar product, the Casimir element, the Lie bracket and the (super)symmetry
respectively
— For every morphism f € D' and every v € A[§] one has:

r(vf) = xr(v)®L(f)

Proof: In section 6 a functor ® from the category D to Mod[L is constructed. It
satisfies all the properties above except the properties relative to A and §. Let v
be an element in A considered as a morphism in D from [2| to [1]. Denote by ¢
the homomorphism from L ® L to L induced under ¢ by v. Consider the following

morphism D from [3] to [1]:

The image of D is the morphism:
r@y®z € L [lz,y], 2]
If we multiply D by v in the two different ways we obtain, for every z, y and z in L:

o([z, ], 2) = [p(z,y), 2]

Therefore ¢(x, y) depends only on the bracket [z, y] and there exists an endomorphism
f of L such that: o(x,y) = f([z,y]). Since L is supposed to be simple, f is the
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multiplication by an element a = y(v) € k which depends only on v. It is easy to
check that xp is a homomorphism of algebras and satisfies the following:

(D) = xr(v)®(D)

for every v € A and every diagram D for which vD is defined.

On the other hand ® transform the circle considered as a morphism from [0] to
itself to the multiplication by the dimension d of L. Therefore the functor ® factorizes
through the category D’ by a functor ® satisfying all the desired properties. O

The algebra homomorphism x, is described in [V2] for every simple quadratic Lie
(super)algebra. We get the following:

If L is the Lie superalgebra sl(F) where F is a super k-module of superdimen-
sion n, the character yp restricted to Ry is obtained by sending «, § and v to n, 2
and —2.

— If L is the Lie superalgebra osp(F) where E is a super k-module of superdi-
mension n equipped with a non singular supersymmetric bilinear form, the character
X restricted to Ry is obtained by sending o, § and v to n — 4, 4 and —2.

— If L is a Lie superalgebra of type D(2,1,7), the character xp restricted to Ry
is obtained by sending «,  and ~ to arbitrary elements in the coefficient field with
the only condition: a+ 3+ = 0.

— If L is an exceptional Lie algebra of type E6, E7, E8, F4 or G2, the character
X1, restricted to Ry is obtained by sending («, 8, 7) to (3, —1,4), (4, —1,6), (6, —1, 10),
(5,—2,6) and (5, —3,4) respectively.

There are few other examples of quadratic simple Lie superalgebras. The character
corresponding to psl(n,n) may be defined in term of sl characters. Lie superalgebras
G(3) and F(4) induce the same character as sly and sl3 (see [P]). The Hamiltonian
algebras induce the augmentation character.

The characters y; where L is of sl type fit together in one graded algebra homo-
morphism yg from A to R/(sl) where (sl) is the ideal of R generated by the poly-
nomial Py = [[(a+ ) = p — st. The osp-type characters fit together in one graded
algebra homomorphism x,s, from A to R/(osp) where (osp) is the ideal of R generated
by the polynomial P,s, = [[(a+28) = 8s*t? + 4s® + dpt® — 18pst + 27p*. In the same
way the D(2, 1, a)-type characters induce a graded algebra homomorphism x,, from
A to R/(sup) where (sup) is the ideal of R generated by the polynomial P, = t. The
exceptional Lie algebras induce graded algebra homomorphisms x; from A to R/(exc;)
where (exc;) is the ideal of R generated by P.,. = [[(3a — 2t) = 4¢3 — 18st + 27p and
the polynomial P; equal to 36s—5t2, 81s—14t2, 2255 —44t2, 815 —8t? or 365+ T2 if the
Lie algebra is E6, E7, E8, F4 or G2. A last interesting character is obtained by the
Lie algebra sly. It can be seen as a graded algebra homomorphism from A to R/(sls)
where (sly) is the ideal generated by the polynomial Py, = [[(t+a) = w = p+st+2t°.

All these characters are compatible in the following sense:

9.3 Theorem [P]. Let I be the intersection in R of the ideals (sl), (osp), (sup), (exc;)
and (sly). Then all the characters above induce a graded algebra homomorphism x
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from A to Ry/I. Moreover the composite x o ¢ from Ry to Ry/I is the quotient
homomorphism.

Remark. Since the first non trivial element in I is the product Py P,s;,PsypPezc P,
which is a polynomial of degree 16, the first element in Ry which may be killed in A
is this polynomial in degree 16.

10. THE UNIVERSAL LIE ALGEBRA

Pseudo quadratic Lie algebra.

Let L be a quadratic Lie (super)algebra over a commutative ring k. Let Mody,
be the category of L-modules. This category is monoidal and k-linear. The adjoint
representation still denoted by L is a particular module in this category. On the other
hand the scalar product f; =<7,7>, the Casimir element f, = €2, the Lie bracket
f3 = [?,7] and the (super)symmetry f; = T are homomorphisms in Mod;, from L®?
to L®, from L*° to L®?, from L*®? to L®! and from L*? to L®? respectively.

Moreover we have the following properties:

— fzofa=—f3
f3°(f3®1)°(1®1®1+(f4®1)O(1®f4)+(1®f4)°(f4®1)>:0
fiofa=hi
fio(fs®1)=fio(1® f3)

— fuofa=1®1

—1=(/i®)o(1®f2)=(1® fi)o(f2®1)

—(f1®l)o(1® fi)o(fs®1)=(1® fi)o(f1®1)o(1® fi)

—(1®f3)o(fa®1)o(1® fi) = fao(fs®1)

— (1@ fi)e(fa®l)=(fi®1)o(1® fi)

The category Mody is not strictly associative. But the full subcategory Mod/; of
Mody, generated by the tensor products of L contains the morphisms f; and is strictly
associative.

Definition. Let k£ be a commutative ring. A pseudo quadratic Lie algebra L over k
is a monoidal k-linear category £ equipped with an object L and four morphisms fi,
fa, f3 and f4 such that:

— the objects of L are the objects L®", n >0

— f1 is a morphism from L*? to L®°

— fo is a morphism from L*° to L*?

— f3 is a morphism from L%? to L®!

— f4 is a morphism from L%? to L®?

— the morphisms f; satisfy the nine properties above.

For simplicity the unit object L®° will be also denoted by k.
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Definition. Let k£ and k' be commutative rings. Let L = (L, f1, fo, f5, f4) and L' =
(L, f1, f5, f4, f1) be two pseudo quadratic Lie algebras over k£ and k. A morphism
from L to L' is a ring homomorphism y from k& to k' together with a functor of
monoidal categories ® from L to I’ sending L to L' and morphisms f; to f! and such
that @ is linear over y on the modules of homomorphisms.

Remarks. Let L be a quadratic Lie (super)algebra. Then the category Mod satisfy
all the properties of a pseudo quadratic Lie algebra. In this sense, a quadratic Lie
(super)algebra is a particular pseudo quadratic Lie algebra.

Because of this canonical example the morphism f; is called the scalar product,
f2 the casimir element, f5 the Lie bracket and f; the symmetry.

The categories of diagrams D and D’ are particular examples of pseudo quadratic
Lie algebras. The first one is over Q and the second one over A[d].

10.1 Theorem. Let L be a pseudo quadratic Lie algebra over a Q-algebra k. Then
there exists a unique morphism ¢ from D to L.

Sketch of proof: The functor is obviously defined on the objects. On the coefficients
ring it’s the unique ring homomorphism from Q to k. To define ® on the modules
of morphisms, it is enough to defined ®(D) where D is a diagram which represents
a morphism from an object [p] to another object [g]. Consider [p| included in the
standard way in R x {0} and [¢] in R x {1}. Let f be a PL map from D to R x [0, 1]
which extends the previous inclusions. If f is chosen to be generic enough, its image
doesn’t contain any vertical segment and has only finitely many double points. We
may also suppose that two vertices or double points are not in a common vertical
line. Then, by cutting f(D) by vertical lines, one obtains a decomposition of D as
a composite of morphisms of the form Id®d;®Id. By using the same expression but
with f; instead of d; one gets an morphism ®(D) from L*? to L.

Suppose now that g is another generic PL map from D to R x [0, 1] which satisfies
the same condition as above. Then one construct a homotopy h; between f and g
which as generic as possible. For such a homotopy, h; is generic except for finitely
many values of t. For a generic t the corresponding morphism ® (D), is defined. This
function is locally constant and has maybe some jump on non generic t. The non
generic values of t correspond to the case where some edge becomes vertical, or a
double point (or a vertex) crosses some edge, or two double points (or vertices) have
a common first coordinate. One have to check all these cases, but each of these
corresponds to some formula satisfied by the f;’s and the function ¢ — ®(D), has no
jump. That implies that ®(D) doesn’t depend on the choice of f. The fact that @ is
compatible with AS and THX relations is easy to check.

So the functor is defined and the theorem is proven. O

Definition. Let L be a pseudo quadratic Lie algebra over a commutative ring k.
Then L is called reduced if the algebra of endomorphisms of L% is the module kId.
It is called simple if End(L) is also the module kId.
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10.2 Theorem. Let L. be a simple pseudo quadratic Lie algebra over a Q-algebra
k. Suppose that the following diagram is cartesian:

Hom(L, L) — Hom(L, L®?)

| |

Hom(L®? L) — Hom(L%®? L®?)

where the horizontal morphisms are the composition from the left with the cobracket
(the dual of the bracket), and the vertical morphisms are the composition from the
right with the bracket.

Then there exists a unique morphism ® from D’ to L.

Remark. Actually this condition is always satisfied if L is a simple quadratic Lie
(super)algebra over a field with a non zero bracket.

Proof: Because of the last theorem, there is a unique functor ®q from D to L which
a morphism of pseudo quadratic Lie algebra. We have to prove that &, factorizes
uniquely through the category D’. Let ds be the bracket in the category D and df be
the cobracket. These morphisms are represented by the following diagrams:

- <

Let v be an element in A. The morphisms ®g(vd;) and ®g(vd}) lye in Hom (L% L)
and Hom(L, L®?) respectively. Moreover they induce the same morphism from L&?
to itself. Because of the property of L, there exists a unique morphism f from L to
L inducing ®¢(vds) and ®y(vdy). On the other hand, L is supposed to be simple and
there exists a unique element a € k such that f is the morphism ald. This element a
depends only on v. Denote it by y(v). It is easy to see that x is actually an algebra
homomorphism from A to k.

On the other hand the circle § induces under @, the scalar form applied to the
Casimir element. This endomorphism of L®° is the multiplication by an element
d € k. So we have a well defined algebra homomorphism from A[d] to k. This
homomorphism, still denoted by Yy, is the previous xy on A and send 9 to d.

Now it is easy to see that the functor @ factorizes in a unique way through D’
and the functor ® is constructed. O

10.3 Direct summand and dimension.

Let L be a pseudo quadratic Lie algebra. Suppose L is reduced (i.e every endo-
morphism of the unit object LY is scalar). It is possible to construct forms bx and
Casimir elements Qx for every object X in L. If X = L®" is an object in L, denote
by X* the object L®™ where the components are written in the opposite order. So
we have: (X @ Y)* = Y* ® X* for every objects X et Y in L. The form by is a
morphism from X* ® X to L®° = k and Qx is an morphism from &k to X ® X*.
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If X is the object L itself by is the scalar form and (2x the Casimir element. For
general objects we construct by and 2y by induction:

bX®Y = bX o (IdX X by X Idx)

QX@Y = (IdX X Qy X IdX) (¢] QX

The form by is a morphism from X ® X to L®° and Qx is a morphism from L% to
X®X.
If f is an endomorphism from an object X to itself, one defines its trace by:

T(f) =bx o (f ®Idx) o Q2x

This morphism is an endomorphism of the unit object. Since L is supposed to
be reduced, this morphism is represented by a number. So the trace 7(f) of an
endomorphism f is an element of the coefficient ring k.

It’s an easy exercise to show that 7 has the formal properties of a trace. More
precisely we have:

10.4 Proposition. The trace homomorphisms are linear. If f is a morphism from an
object X to an objectY and f is a morphism from'Y to X, on has: 7(fog) = 1(go f).
If f is an endomorphism of an object X and g is an endomorphism of an object

Y, on has: 7(f ® g) = 7(f)7(9).

Let m be a projector, that is an endomorphism of an object X such that: momr = 7.
It is possible to consider 7 as a projection onto a direct summand X,.. This new object
lies in a new category. Formally X is the projector 7 itself and, if 7 and 7" are two
projectors in End(X) and End(Y") respectively, the set of morphisms Hom(X,, X,/)
is defined by: 7'Hom(X, X')7. So we have a bigger category which is still a monoidal
linear category. In this new category the object X decomposes into a direct sum of
two objects: the object X, and X; .. The dimension of the object X, is simply the
trace of the projector 7.

In order to simplify the terminology, these new objects are called modules, or
L-modules. So every L-module in this category has a dimension. This dimension is
an element of the coefficient ring k.

Definition. Let L be a pseudo quadratic Lie algebra over an integral domain k. Let
M be a L-module. One said that M is simple (resp. absolutely simple) if End(M) is
a commutative integral domain containing kId (resp. is contained in a localization

of k1d)

Examples. If L is a quadratic Lie superalgebra, the trace is the supertrace: the
trace of the even part minus the trace of the odd part. The dimension of a module
is the superdimension: the dimension of the even component minus the dimension of
the odd component.

In the category D', the dimension of L = [1] is simply the element § € A[J].
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10.5 Theorem. Let A[§] — A be an algebra homomorphism sending t, w and pw
to invertible elements in A. Let L = [1| be the generator module in the category
D)y =D ® A. Let N’ L be the second exterior power of L. Then \? L decomposes
into a direct sum of three modules X, Xo and E. Moreover the dimensions of these
modules are:

2
dimX, — —2-5
pw
. §—3  w?
dimF = 5<T + p_w)

Proof: The elements ¢, w = p+st+2t> and pw are elements of the algebra Ry = Q[t]®
wR C R=Q]t,s,p] and Ry is sending into A by a canonical algebra homomorphism
(see 8.7). Then the elements ¢, w and pw belong to A and become invertible in A.
The category D'; is obtained from D’ by tensoring every module of morphisms by A.
This category is still a pseudo quadratic Lie algebra but over A.

Let 7 be the projector m = (Id — T)/2. Tt’s an endomorphism of L®? = [2] and
the corresponding module is A? L. The trace of Id is 62, because it corresponds to
two circles and the trace of T is 9. So we have:

506 —1)
2

dim/\2L =

Consider the endomorphisms U and V of [2] corresponding to the following diagrams:

It is easy to see the following:

U =Unrn=U U? = 2tU

Since ¢ is invertible there exists a projector n’ such that: U = 2tw. On the other
hand Kneissler [K] has shown the following formula:

w(rVm)? = —?)p%WVﬂ' + (4153 - 3%) (%ﬁ - 3fTW>U

So there exists a projector 7" in D/, such that:

3w 3p
_43__ /__I/
V=W =) =

where the element p is defined in A as the quotient PY et X1, Xo and F be the

w
images of 7', 7" and m — 7”. It is easy to compute the traces of U, V and wVm:

T(U) = 2t§ (V) = 8t% (V) = 7(xV) = 436
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The result follows. O

Remark. Let L be a simple quadratic Lie (super)algebra over a ring k. Suppose
that x send ¢, w and pw to invertible elements in k. Suppose also that the dimension
d of L is invertible in k. Then the functor ® extends to a functor defined on D/j.
One can check, case by case, that ® send F to the zero module, and therefore the
dimension d is given by: d = 3 — X(%“’).

Actually the module E seems to be very poor. We don’t have presently any
counterexample to the following conjecture:

Conjecture. For every morphism u from [2] to [2]|, represented by a connected
diagram, the induced morphism from £ to F is trivial.

With regard to this conjecture, one mays expect to kill £ in a suitable quotient of
D’ without loosing any important information. More precisely one has the following
conjecture:

10.6 Conjecture. There exists a simple pseudo quadratic Lie algebra £ over a ring
A’ and a morphism ® from D’ to £ such that:

— the algebra A’ is an integral domain contained in a localization of A

— if Hom,.([p], [¢]) is the module of homomorphisms in D’ from an object [p|
to an object [g] represented by connected diagrams, the functor ® is injective on
Hom.([p], [q])

— the module A2 £ decomposes in a direct sum of two modules X; ~ £ and X,
such that X5 is absolutely simple (i.e. End(X5) is contained in a localization of A)

Remark. If L is a simple quadratic Lie (super)algebra over a field k, the second
exterior power A? L decomposes in a direct sum: X; @ X,, where X; is isomorphic
to L via the bracket, and X5 is the kernel of the bracket. In many cases, X; and Xs
are simple. In the sl case, the module X5 is not simple, but, in the subcategory of
Mod(L) generated by L, the scalar product, the Casimir element, the bracket and
the symmetry, it is simple. If L is the Lie superalgebra D(2, 1, «), X3 is not simple,
but the endomorphism ring of A% L is two-dimensional.

10.7 Theorem. Suppose the conjecture 10.6 is true. Then there exist an extension
A" of A" and a decomposition in L ® A”:

/\2£:X169X2

SPL = Xo @ Ya(a) ® Ya(B) @ Ya(7)

such that X, X1, Xa, Ya(«), Ya(3) and Ys(y) are absolutely simple. Moreover there
exists three elements o, (3, v in A” such that: t = a+ 8+, s = af + 6y + ya,
p = afy, and half the casimir operator acts on Xy, X1, Xs, Ys(a), Y2(8) and Ya(7)
by multiplication by 0, t, 2t, 2t — «, 2t — 3 and 2t — =y respectively.

The dimension of these modules are the following:

dimXy =1
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(2t —a)(2t — B)(2t —7)

afy
dimX, = (2t —a)(2t — 5)(2ta—2 ﬁz)g +a)(t+p)(t+7)

t(2t — B)(2t — ) (t+ B)(t + 7)(Ba — 2t)
a?By(o = B) (o =)
A Galois group &3 acts by permuting the elements «, 3 and v and the modules
Yala), Ya(8) and Ys().

dimY3(a) = —

Sketch of proof. By assumption A is contained in an integral domain. Consider
the algebra homomorphism ¢ : Ry — A. Suppose that ¢ is not injective. Let
P € Qlt,s,p| be an polynomial killed by ¢, with P # 0. This polynomial has the
following form: P = t"Q(t, s, p) with Q(0,s,p) # 0. Because t is not zero and A has
no zero divisor, the polynomial @ is killed by ¢. Consider the character from A to
Q[s, p| associated with the Lie algebras of type D(2, 1, ). This character send @ to
Q(0,s,p) and @ cannot be zero.

Thus Ry is contained in A C A’. Up to inverting some elements in A and taking
some algebraic extension, we may as well suppose that A” contains Q[«, 3,v| and
every non zero homogeneous element in Q|a, 3, 7] are invertible in A’.

Consider the diagram U and V' defined in the proof of theorem 3.4. Since the
functor is injective on every module of connected diagrams, there is no relations
between U and V' in L, and projectors ' and «” are non zero. Therefore 7’ generates
X, and 7" generates X, and the projector « is the sum: «’ + 7”.

This relation may be written in the following way:

2 3s 3p

On the other hand it is easy to show the following;:

1 3t t?
A s I 2 7 <

If one substracts to this expression twice the same expression rotated by an half turn,
one gets the following relation:

=1 —s +%>_<+]—27() <+><—2:)

and that implies that the morphism 1 represented by

satisfies the following on the module S2£L divided by the image of the Casimir:
VP =t — s+ p
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Hence the action of ¥ on S2L has three eigenspaces X, Ya(a), Y2(3) and Ya(7) corre-
sponding to the eigenvalues 2t, o, # and 7. On X; and X5, ¥ acts by multiplication
by ¢ and 0.

On the other hand the action oh half the Casimir on £ ® L is 2t —1). So one gets
the desired action.

The module End(£%?) = Hom([2], [2]) is isomorphic to the module Hom([0], [4])
and the group &4 acts on it. So we have the following decomposition:

Hom([2),[2]) = By ® (4) @ E_ o (1111) & F, ® (31) & F_ @ (211) & G ® (22)

where (4), (1111), ... are simple &-modules corresponding to Young diagrams. The
assumption about the structure of A% £ implies that G is isomorphic to the module
End(X;)®End(Xs) and that E_ and F_ are trivial modules. Since ¢ has different
eigenvalues in S2£ and A? £, there is no homomorphism from S?£L to A% £. Thus F,
is zero too.

At the end we prove that F, is two dimensional and the dimension of the module
of endomorphisms of £%? is 6 (over some extension of A). The simplicity of the
modules follows.

The computation of dimensions follows directly from:

Vn >0 T(Y") = 2tx,—10

For the decomposition of £&3 the technique is much more complicated but we find
a complete decomposition. In order to have absolutely simple modules we need to
consider an algebraic extension of the ring. The first extension was necessary in order
to have the modules Y3(a), Y2(3) and Ya(y). This extension is the Galois extension of
the polynomial X3 — X2+ sX —p and the Galois group is ©3. This group permutes
a, # and v and permutes some modules. In order to have a complete decomposition
of £#3, one needs another Galois extension with Galois group G still isomorphic to
63.

In order to detect some module, one need another operator. The first operator
1 was strongly related to the Casimir operator. Denote by 7 half this operator.
Actually every element in the algebra A(S') induces an operator on every module.
The Casimir operator 27 is obtained from the diagram:

—(

Consider the operator 7’ represented by the diagram:

.

an set: 0 = ' — (843 — 3w)m. This element acts on every module and in particular on
every direct summand of £%". On an absolutely simple module it acts by a scalar.
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In order to describe the decomposition of £%2, we will use the standard action of
S; on L3, For every Young diagram a there is a corresponding module (a)£. In
this case we have the following modules (3)£, (21)£ and (111)L£. The first one is the
symmetric power S®£ and the last one is the exterior power A% L.

Now we need to define another cubic extension of the ring. Consider the following
elements in A”:

p=aby q=tlaf+py+ya) r="=

Set, also:
8 4 2

_27p2 15pg pr ¢

b= = _ L
32 16 g8 2
v
c= a(??p — 18¢ + 4r)

Now define A” as the Galois extension corresponding to the polynomial: IT = X3 —
aX?+ bX — c. In this extension IT has three roots A, i and v and the Galois group
(' is isomorphic to &3. The Galois group of the complete extension is isomorphic to

63 X 63.

10.8 Theorem. Suppose the conjecture is true. Then in some localization of A”,
L3 has the following decomposition in absolutely simple modules:

— (3)L = S3L =2X, ® X2 ® B(a) ® B(B) ® B(y) ® Ys() @ Y3(8) & Ys(v)

— (21)L = 2X, ®2X, ® Ya(a) @ Ya(B) @ Ya(7) @ B(a) ® B(B) @ B(y) ® C(a) ®
cB)eC()

—(11)L = X0 ® X5 @ Ya(a) ® Ya(8) & Ya(7) & X3(A) & Xs(p) & Xs(v)

— one has also the following decomposition:

X1 ®@Ys(a) = X1 ® Xo @ Ya(a) @ Ys(a) @ B(B) © B(y) © C(w)

X1 ®Xo = X1 32X, @ Ya(a) @ Ya(B) @ Ya(y) @ B(B) ® B(y) ® Cla) ® C(B) ®
C(7) ® X3(\) @ Xs(p) ® X3(v)

— the Galois group &3 permutes o, 3 and v and G permutes A, j, v.

— B3 permutes X (a), X(f) and X () for X =Y3, Y3, B or C and G permutes
X3(N), X3(p) and X3(v)

— the actions of m and o are the following:

X : =0 c=0
X =t c=0
X T =2t o= —18pt
Ys(a) : T=2—« o=2a(a—1t)(a—2t)(3a—1)
X3(A) - m =3t o= —6t(9p +4\)
Y;(a) : T =3t — 3 o =6a(a—1t)(Ba —1t)(3a — 2t)
B(a) : T=24+« o=2a(a+t)((B+7)(20+2y —a) —125y)
C(a) : T =3t — 3a/2 o =3a(a —2t)(t* — 9s/2 + 967)
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— the dimensions are the following:

it () — LB ) (21— ) (21 — B)(2t = ) (5 — 20)(26 + ) (2y +5)
R a367(20— B)(2a —7)(a— B)(a — )

UL+ A+ )2 = )21 = B)(2t — )(2 = 36)(2 = 31) (20 + H)20 +1)
025 (o~ A)a — 1) — 1)1~ B)
GimC(a) — — 82 @) B+ ) (21— B)(2 = )(8+1)(8+ 20)(y +26)

dimB(«a) =

3 a?fy(a = 203)(a = 2y)(a = B)(a =)
dimX3(\) = 52(3\?;\ : SC(];_LLZ)) (1—16(q—|—27°)(7p—|—2q+4r)—)\(u—i—u)—i—)\(—zp—kgq%—r))

where d = dimX; is the dimension of L.

Remark. The computation is rather difficult. The program maple is very useful for
that. Actually this decomposition holds for every simple quadratic Lie (super)algebra.
But sometime, some of these modules are zero. Another possibility is that the sum
of two modules is zero.

In the sl case, we have o = t. The polynomial IT has roots A = —p/4 and pu = p/2
and: C'(a) = X3(v) =0.

In the osp case, we have 3+2v = 0. We have: A\ = 3p/4-+tvy* and p = —3p/2—2t~>
and: Y3(a) = C(a) = B(y) = X3(v) = 0.

In the exceptional cases we have 3a = 2t and A = 0 and:

B(B) = B(7) = Ya(a) = C(a) & Xy = Y3(a) & X1 = Xs(p) = X3(v) =0
If o+t =0, we get the sly case and we have: A = —2t* — 9p/4 and:
Xy =Ya(B) = Ya(7) = Ys(B) = Y3(7) = B(B) = B(y) = C(a) = C(B) = C(7) =0

Xs(p) = X3(v) = B(a) + X1 = Ya(a) + X3(\) = 0

In the D(2,1,7) case, we have t = 0 and A = 3p/4, p = —3p/2 and all the modules
are zero dimensional except Xy, X1, Xo, X3(\) and X;(p).
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